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ABSTRACT This article studies the data collection task planning for a fixed-wing unmanned aerial vehicle

(UAV) in forest fire monitoring. Multiple wireless-based detection nodes (DNs) are distributed in high-

risk areas of the forest to monitor the surrounding environment. The task of UAV is to circularly fly to

them and collect the environmental data. Because of the kinematic constraints of UAV and the effective

communication range between UAV and DN, this problem can be generally regarded as a Dubins traveling

salesman problem with neighborhood (DTSPN). A bi-level hybridization-based metaheuristic algorithm

(BLHMA) is proposed for solving this problem. At the first level, differential evolution (DE) optimizes

the continuous-valued communication positions and UAV headings by the population-based search. For

the asymmetric traveling salesman problem (ATSP) corresponding to the combination of the positions

and headings generated by DE, a constructive heuristic based on self-organized multi-agent competition

(SOMAC) is proposed to determine the discrete collection sequence. By competitive iterations in such a

cooperative way in DE, a high-quality data collection tour can be generated. At the second level, a local

search based on multistage approximate gradient is proposed to further refine the positions and headings,

which accelerates the convergence of the BLHMA. Referring to a real-world scene of forest fire mornitoring,

the simulation experiments are designed, and comparative results show that BLHMA can find significantly

shorter data collection tours in most cases over three state-of-the-art algorithms. The proposed UAV data

collection planning algorithm is conducive to the efficient execution of the forest fire monitoring data

collection mission and the energy saving of UAV.

INDEX TERMS Unmanned aerial vehicle, Forest fire monitoring, Data collection task planning, Mixed-

variable optimization, Differential evolution, Constructive heuristic

I. INTRODUCTION

F
OREST fire is one of the most destructive disasters to

the ecological environment, and the forest fire protection

is receiving more and more attention from the governments

of the world [1]. Thus, it is very meaningful to carry out

prevention and control of the forest fire, and how to make

use of high-tech means to monitor forest fire has become a

hot topic [2], [3].

At present, there are mainly two kinds of high-tech means

for forest fire monitoring. The first high-tech means are based

on the unmanned aerial vehicle (UAV) surveillance. It is

easier for a fixed-wing UAV to get a large range of ground

information because of its top-view and high mobility [4],

[5]. It has been increasingly applied in monitoring missions,

which can be regarded as curvature-constrained path plan-

ning problems. In some research, the path planning of UAV

is simplified as the traveling salesman problem (TSP) [6]–

[10]. However, it is very important to consider the kinematic
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FIGURE 1. UAV data collection task in forest fire monitoring

constraints from the practical aspects, and the Dubins vehicle

model is usually used to approximate the dynamic model

of UAV [11]–[14]. In the path planning, a UAV circularly

collects images above the forest and detects the fire source

through image analysis [15]–[18]. The second high-tech

means are based on wireless sensor network (WSN). Multiple

wireless sensors are distributed in the forest and form a moni-

toring network [19]. These sensors continuously monitor the

surrounding environment and collect environmental data to

achieve forest fire monitoring.

Both means have advantages and disadvantages. For the

UAV-based means, a UAV can quickly obtain a large range

of ground information, but its monitoring effectiveness is

greatly affected by the image quality, which is easily affected

by weather factors, such as dust, fog, etc. In addition, in the

early stage of the forest fire, the fire is so small that there is

no obvious burning phenomenon, so it is difficult to monitor

the fire at a high altitude. For the WSN-based means, WSN

can quickly detect the possible fire area in the early stage of

the fire by monitoring the temperature, humidity, and harmful

gases. But in the deep forest of the mountainous area, the

transmission signal may be very poor, and a large number

of sensors need to be arranged to cover the forest. This will

bring great economic costs and maintenance difficulties.

This paper combines the advantages of the two means.

Multiple wireless-based, low-power, and self-sustaining de-

tection nodes (DNs) are distributed in high-risk areas of the

forest to perceive the surrounding environment and record

environmental data. Because of their poor signal transmis-

sion condition in the mountain forest, they have limited

communication capability and can only perform short-range

communication. Thus, a small, low-altitude, and low-cost

fixed-wing UAV which is equipped with a transceiver device

is adopted to circularly collect the latest data of DNs, as

shown in Fig. 1.

At the beginning of the forest fire monitoring, the com-

mand center will plan a data collection tour for the UAV,

and command the UAV to circularly collect the latest data

from all DNs to obtain the information of monitoring areas.

When the UAV arrives at the planned collection position of

each DN, it sends an application to the DN to receive the

latest data. After receiving the application, the DN sends the

data to the UAV. Then the UAV transmits the data back to

the command center, and flies to the next planned collection

position.

In this sense, UAV needs to enter the communication range

of each DN with an appropriate sequence to collect data,

and its flight path is constrained by curvature, so the data

collection task planning for a UAV in forest fire monitoring

can be generally formulated as a Dubins traveling salesman

problem with neighborhood (DTSPN) [20], [21].

A. RELATED WORK

As mentioned above, the UAV data collection task planning

in forest fire monitoring is formulated as a DTSPN which can

be regarded as a generalized variant of the classic TSP. In

addition, there are two other generalized variants of TSP. On

one hand, if the traveling salesman in TSP becomes a mobile

agent which can be treated as a Dubins vehicle, the resulting

TSP variant is called Dubins TSP (DTSP) [22], [23]. In the

DTSP, the distance between two neighboring targets to be

visited is not Euclidean distance. It should be measured by

the Dubins paths which rely not only on the visiting positions

but also on the headings of the vehicle at the positions [12].

On the other hand, if the targets to be visited are extended

from points to regions, TSP will be transformed into its

well-known variant, named the traveling salesman problem

with neighborhood (TSPN) [24]–[26]. DTSPN shares the

characteristics of DTSP and TSPN, and also inherits their

difficulties.

Similar to DTSP and TSPN, the DTSPN is also an NP-

hard optimization problem with mixed variables [27], [28].
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Solving the DTSPN involves optimizing the discrete col-

lection sequence, the continuous communication positions,

and the UAV headings simultaneously, which makes it more

challenging.

The existing methods for solving this class of problems can

be mainly grouped into four categories: decoupling methods,

transformation methods, unsupervised learning methods, and

direct search methods. In the decoupling methods, mixed

variables are optimized separately [11], [22], [28]–[31]. To

some extent, the decoupling method reduces the difficulty

of solving the problem. However, the effectiveness of de-

coupling methods mainly relies on the similarity between

problems, which makes them unsuitable for the situations

where the Euclidean distance between two points is obvious-

ly shorter than the minimal turning radius of UAV when solv-

ing DTSP and DTSPN [32]. In the transformation methods,

positions and headings are uniformly sampled to construct

the generalized traveling salesman problem (GTSP) firstly,

and then the GTSP is converted into an asymmetric traveling

salesman problem (ATSP) by the Noon-Bean transformation

[33]–[37]. The transformation method can obtain a global

optimum when taking a large number of samples, but it

greatly increases the amount of calculations. Decoupling

methods and transformation methods share the similarity that

an efficient TSP solver like the LKH can be used to provide

a high-quality solution [38]. In the unsupervised learning

methods, the solution of the sequencing part of the problem is

combined with the online sampling of the suitable positions

and headings [39], [40]. The unsupervised learning method

can be regarded as a kind of constructive algorithm, which

can find a solution with high efficiency. However, the initial-

ization and competition of neurons have a great influence on

the solution in different cases. In the direct search methods,

the mixed variables are optimized simultaneously and many

optimization algorithms can be used as search engine [26],

[32], [41]–[46]. In this method, the model has no sacrifice in

accuracy, but the solution space is complex, which makes it

difficult to find the optimal solution.

Many scholars devote themselves to the research of the

DTSPN. Obermeyer proposed a genetic algorithm (GA) that

uses a hybrid encoding scheme for mixed variables [20]. In

addition, the authors also proposed the other two methods to

solve a polygon visiting Dubins traveling salesman problem

(PVDTSP), and both of them belong to the transformation

method [36], [37]. Under certain technical assumptions, the

algorithms are resolution-complete, and can converge to a

global optimum as the number of samples grows but con-

sumes more computing time. Macharet proposed a three-

stage evolutionary method that optimizes mixed variables

independently [44]. The authors also proposed a heuristic

method for optimizing visiting positions within the target’s

neighborhood and connecting them with Dubins paths [47],

[48]. Pěnička proposed a variable neighborhood search (VN-

S) algorithm for solving the Dubins Orienteering Problem

with Neighborhoods (DOPN), which can be regarded as a

variant of the DTSPN [45]. A set of neighborhood operators

are designed to perform a well combinatorial optimization.

Zhang proposed a memetic algorithm in which a relaxed

DTSPN model is used to obtain an approximated optimal so-

lution, and a local search based on an approximated gradient

is adopted to improve the quality of the solution [32].

B. MAIN CONTRIBUTIONS

In view of two typical high-tech means in forest fire moni-

toring, this paper combines their advantages, and regards the

UAV data collection task in forest fire monitoring as a DT-

SPN. Because the DTSPN is a mixed-variable optimization

problem with extremely complex solution space, this paper

deliberates the algorithm design to reduce the complexity of

problem solving, and makes the following innovations and

contributions:

1) In the proposed bi-level hybridization-based meta-

heuristic algorithm (BLHMA), differential evolution (DE) is

adopted to evolve a group of continuous communication po-

sitions and UAV headings which are metaphorize as multiple

individuals. Besides, a constructive heuristic based on self-

organized multi-agent competition (SOMAC) is proposed to

generate the discrete collection sequence by solving an asym-

metric traveling salesman problem (ATSP) corresponding to

the combination of the positions and headings generated by

DE. In such a cooperative way, a data collection tour can be

generated. Because SOMAC is a deterministic constructive

heuristic, it avoids a large amount of blind search in the

mixed-variable space and leads to better convergence. Com-

pared with the transformation method [36], the huge amount

of computation caused by a large number of samplings is

avoided.

2) A local search based on a multistage approximate gradi-

ent is developed to improve the communication positions and

UAV headings during the iteration of DE, which can lead to

a better trade-off between exploration and exploitation in the

solution space. Compared with the strategy proposed in the

literature which does not optimize UAV headings [32], the

proposed local search can achieve precise adjustment of the

communication positions and UAV headings. This is helpful

to accelerate the convergence of the BLHMA.

3) This paper provides an effective method for the UAV

data collection task planning in forest fire monitoring, which

is conducive to the efficient execution of the task and the

energy saving of UAV.

This papaer organized as follows. Section II presents the

formulation of the UAV data collection task planning. Section

III gives a detailed description of the proposed algorithm.

Section IV evaluates the proposed algorithm through a se-

ries of computational experiments and analyses. Section V

concludes the paper.

II. PROBLEM FORMULATION

In this paper, it is assumed that multiple wireless-based,

low-power, and self-sustaining DNs are deployed in high-

risk areas of the forest. Because of their poor signal trans-

mission condition in the mountain forest, DNs can only
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TABLE 1. Parameters in the formulation of the UAV data collection task planning

Symbol Description

n Number of DNs.

Ωi The neighborhood of the ith DN, i = 1, 2, · · · , n.
Ω Ω = {Ω1,Ω2, · · · ,Ωn} is the set of neighborhoods of DNs.

si The index of the ith DN to be inspected, ∀i 6= j: si 6= sj , i, j = 1, 2, · · · , n.
S S = [s1, s2, · · · , sn] is the collection sequence of all DNs.

Yi Yi = [xi, yi, θi] is the Dubins state of UAV when approaching to the ith DN, i = 1, 2, · · · , n, [xi, yi] ∈ Ωi, θi ∈ [0, 2π).
Y Y = [Y1, Y2, · · · , Yn] is the vector of Dubins states of UAV when approaching to all DNs.

d(·, ·) Dubins distance between two Dubins states.
J(·, ·) Objective function.

perform short-range communication. Each DN can contin-

uously monitor the temperature, humidity, and harmful gas

of the surrounding environment, and record environmental

data. Then, a fixed-wing UAV circularly inspects each DN to

obtain the monitoring data.

In this situation, neighborhoods of DNs should be defined

to fit the effective communication range between UAV and

the DN. For the sake of clarity, the neighborhood of each DN

is specified as a disk centered at the DN. For the UAV, the

Dubins vehicle model is used to approximate its kinematic

model [12], and the model is described as follows:







ẋ = υ · cosθ,
ẏ = υ · sinθ,

θ̇ = υ
r
· u, u ∈ {−1, 0, 1}.

(1)

where [x, y] and θ are the planar coordinates and the heading

of the Dubins vehicle, respectively; [x, y, θ] is called Dubins

state; υ and r represent the speed and the minimum turning

radius of the Dubins vehicle, respectively; u denotes the

control input that controls the movement direction of the

Dubins vehicle.

S
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R S R

L L

L
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L
R
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FIGURE 2. The six possible shortest Dubins paths

Based on the model, Dubins gave an important conclusion

that there are at most six possible shortest paths for any

transition from one Dubins state to another [12], as shown

in Fig. 2.

Based on the above description, the optimization model

of the UAV data collection task planning is shown as (2).

Detailed descriptions of parameters and variables used in the

model are shown in Table 1.

min J(S,Y) =
n−1
∑

i=1

d(Ysi , Ysi+1
) + d(Ysn , Ys1) (2)

By using the boundary-based encoding scheme [32], a

Dubins state can be further simplified from [xi, yi, θi] to

[ϕi, θi] , ϕi and [xi, yi] can be calculated from each other

through coordinate transformation, as shown as follow:

xi = cxi
+R · cosϕi

yi = cyi
+R · sinϕi

(3)

where [cxi
, cyi

] is the position of the ith DN, and R is the

radius of its neighborhood.

In this way, the optimization scale is effectively reduced

from 4n to 3n. However, mixed-variable optimization with a

scale of 3n is still a great challenge.

Remark 1: In order to simulate the UAV data collection

planning in forest fire monitoring with different scales and

scenarios, instances with different minimum distance con-

straints DK are considered in this paper [49], including

D4 and D1-constraint instances, and more intensive ones

with overlapping situations, denoted by D∗. In D4-constraint

instances, the distribution of high-risk areas is relatively

sparse, and all DNs are far apart. In D1-constraint instances

and D∗-constraint instances, the distribution of high-risk

areas is relatively dense, and DNs are relatively close. The

definition of the minimum distance constraint is that: for all

i, j ∈ {1, 2, · · · , n}, i 6= j, ∀pi ∈ Ωi, ∀pj ∈ Ωj , and

‖pi − pj‖ > K · r, where r is the minimum turning radius of

UAV. The bigger the value of K is, the closer the UAV data

collection planning problem is to the common ATSP. In this

sense, the decoupling strategy is more suitable for instances

in which DNs are far away from each other. On the contrary,

it is not suitable for instances with dense DNs distribution.

III. BI-LEVEL HYBRIDIZATION-BASED METAHEURISTIC

ALGORITHM

In this section, a bi-level hybridization-based metaheuristic

algorithm (BLHMA) is proposed to solve the UAV data

collection task planning in forest fire monitoring. An outline

of the BLHMA is illustrated in Fig. 3. First of all, only

the communication positions and UAV headings are encoded

4 VOLUME x, 2021
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Construct individuals and record them 

as                 , and initialize the population in DE[ , ]=x φ θ

Pertaining to each individual generated by DE, the 

constructive heuristic SOMAC is used to determine the 

sequence. Take them into (2) to complete the individual 

evaluation and record the solution as              .

Generate a mutant individual                      by the 

mutation operator

[ , ]  =x φ θ

Generate a trial individual                       by the 

crossover operator

[ , ]  =x φ θ

Pertaining to the trial individual, SOMAC 

is used to determine the sequence. Then, 

the trial individual is evaluated By (2)

Selection

Trigger the local search?

One of the first 30% solutions is randomly selected as 

a competitive solution and improved by multistage 

approximate gradient method, then update the solution.

Stop running?

End : Collection sequence

: Communication positions

: UAV headings

φ
θ

S

The 

framework

 of DE

The local 

search

Y

Y

N

N

FIGURE 3. The outline of the BLHMA

to form multiple individuals in the initialization of DE. By

using the information of an individual, including communi-

cation positions and UAV headings, a Dubins distance matrix

that represents Dubins distances between all DNs can be

calculated to form an ATSP. While the ATSP is addressed

by SOMAC to obtain the collection sequence. Then a da-

ta collection tour is obtained by introducing the collection

sequence, communication positions, and UAV headings in-

to (2). With the iteration of the BLHMA, communication

positions and UAV headings are constantly updated in the

process of DE, and new ATSPs are constantly constructed

and handled, which leads to new data collection tours. Then,

a high-quality data collection tour can be obtained by the way

of iterative competition.

Moreover, to achieve a desirable trade-off between explo-

ration and exploitation of the algorithm, a modified local

search based on the previous work [32] is integrated after

the selection operator of DE, which includes three stages:

the full-dimensional and local-dimensional approximate gra-

dient descents, and the diversification mechanism. As men-

tioned above, the so-called BLHMA is constructed, and the

details are described as follows.

A. THE OPTIMIZATION OF COMMUNICATION

POSITIONS AND UAV HEADINGS BY DIFFERENTIAL

EVOLUTION

In this paper, DE is used to optimize communication posi-

tions and UAV headings, and the following gives a detailed

introduction from the aspects of the encoding, decoding,

mutation, crossover, and selection.

Remark 2: Generally, GA is good at dealing with discrete

search domain. DE is an efficient and effective global opti-

mizer in the continuous search domain, and its variants also

have excellent performance [50]. Compared with classical

population-based optimizers, such as GA, particle swarm

optimization (PSO), etc., DE has outstanding performance

in many studies [51], [52]. Besides, DE and its variants also

have been applied to the international contest on evolutionary

optimization (ICEO) many times, and they all have excellent

performance.

1) Encoding and decoding

Because when UAV flies to a DN to collect data, it must pass

through the boundary of the DN’s neighborhood, so only the

communication positions and headings of the UAV at each

DN’s neighborhood need to be determined. Based on the

boundary-based encoding scheme described in Fig. 4, any

position and heading on the boundary can be expressed by

the polar angle, and the coordinates of the communication

position can be transformed by using (3).

!!

!!

!"#$%&$'()

!"#$%&$'()

FIGURE 4. Schematic of the encoding scheme

Based on the encoding scheme, an individual can be de-

scribed as (4), a population is formed by randomly generating

multiple individuals.

xi = [ϕ1
i , ϕ

2
i , · · · , ϕn

i , θ
1
i , θ

2
i , · · · , θni ] (4)

where i = 1, 2, · · · , NP , and NP is the population size. ϕ
and θ represents the encoding of the communication posi-

tions and UAV headings respectively, and they are generated

randomly in the range of [0, 2π).

As for the decoding, in addition to communication po-

sitions and UAV headings, the collection sequence is also

needed, and all of them form a solution, as (5) shows. Take

them together into (2) to obtain the data collection tour and

complete the individual evaluation. The next section will

introduce how to use SOMAC to get the collection sequence.

VOLUME x, 2021 5
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SOLxi
=







Sxi

ϕxi

θxi







=







s1
xi
, s2

xi
, · · · , sn

xi

ϕ1
xi
, ϕ2

xi
, · · · , ϕn

xi

θ1
xi
, θ2

xi
, · · · , θn

xi







(5)

2) Mutation operator

After the decoding, all individuals have been evaluated. Then

DE employs the differential mutation to produce a mutant

vector ui with respect to different individuals in the current

population. In this paper, an advanced DE variant, called

SADE [50], is adopted, and four kinds of mutation operators

are selected.

1) DE / rand / 1

ui = xr1 + F · (xr2 − xr3) (6)

2) DE / current-to-rand / 1

ui = xi + F · (xr1 − xi) + F · (xr2 − xr3) (7)

3) DE / best / 1

ui = xbest + F · (xr1 − xr2) (8)

4) DE / best / 2

ui = xbest + F · (xr1 − xr2) + F · (xr3 − xr4) (9)

where r1, r2, r3 and r4 are mutually exclusive integers that

are randomly generated from the set {1, 2, · · · , NP}, and all

of them are different from i. F is the scaling factor. xbest is

the best individual found so far.

3) Crossover operator

After the mutation, a crossover operator, shown as (10), is

developed to produce a trial vector vi.

vi,d =

{

ui,d, if randdi ≤ CR or d = rni

xi,d, otherwise
(10)

where d = 1, 2, · · · , 2n. CR is the crossover probability,

and it is usually set as a fixed value or dynamically adjusted

within the interval (0, 1). randdi is a random number within

the interval (0, 1). rni is a number randomly selected from

the set {1, 2, · · · , 2n}, and it is used for ensuring that vi and

xi are different.

4) Selection operator

After the evaluation of the trial individual vi, the selec-

tion operation will be performed. If the data collection tour

calculated by the trial individual is not worse than that of

the original individual xi, the original individual will be

replaced and the trial individual will survive to the next

generation. Otherwise, the original individual will enter the

next generation. The selection operation is shown as (11).

In addition, the solution also needs to be updated, as shown

as (12). It is noted that, the evaluation of the trial individual

need the sequence (Svi
) obtained by SOMAC which will be

introduced in the next section.

xi =

{

vi, if J(Svi
,vi) ≤ J(Sxi

,xi)
xi, otherwise

(11)

SOLxi
=

{

SOLvi
, if J(Svi

,vi) ≤ J(Sxi
,xi)

SOLxi
, otherwise

(12)

where J(·) is the objective function of the data collection

planning problem, as shown in (2).

B. COLLECTION SEQUENCE OBTAINED BY SOMAC

Solving the collection sequence based on the communication

positions and UAV headings generated by DE is essentially

an ATSP problem. Black arrows on the boundary of each

DN’s neighborhood shown in Fig. 5 represents the communi-

cation positions and UAV headings at all DNs. The positions

and headings are used to calculate a Dubins distance matrix,

as (13) shows, which leads to an ATSP. Then, the ATSP is

solved by SOMAC.

D =











inf d12 d13 · · · d1n
d21 inf d23 · · · d2n

...
...

... · · ·
...

dn1 dn2 dn3 · · · inf











(13)

where dij = d(Yi, Yj), i, j = 1, 2, · · · , n, i 6= j. dij is

the Dubins distance from the ith DN to jth DN, which is

calculated by the positions and headings at the ith DN and

jth DN.

0 1000 2000 3000

x (m)

0

1000
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3000

y 
(m

)

FIGURE 5. Solving the collection sequence based on the communication

positions and UAV headings

For solving the ATSP, a directed graph G = (V,A) is

constructed, where V is the vertex set and A is the arc set.

The mathematical model of the ATSP is shown as follows

[53]:

min

n
∑

i=1

n
∑

j=1,j 6=i

dij · yij , (14)

s.t.
n
∑

i=1,i 6=j

yij = 1, i = 1, 2, · · · , n, (15)
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FIGURE 6. Connection of agents after selection

n
∑

j=1,j 6=i

yij = 1, j = 1, 2, · · · , n, (16)

∑

i∈K

∑

j∈K,j 6=i

yij ≤ |K| − 1,K & V,K 6= ∅ (17)

yij ∈ {0, 1}, i, j = 1, 2, · · · , n, i 6= j. (18)

where dij is associated with arci,j ∈ A. yij is equal to 1 if

arci,j is selected. Equations (15)-(16) guarantee that every

DN is inspected exactly once. K is a subset of V and (17)

makes sure that there is no local loop.

Then, the solution of the data collection planning can

be obtained by solving the ATSP. Figure 5 also shows the

solution of the simulation scenario of the UAV data collection

in forest fire monitoring. The ATSP can be regarded as an

inner-loop subproblem embedded in DE for determining the

collection sequence. Here, an efficient constructive heuristic

is expected to address it, rather than an iterative algorithm

with a large amount of computations. Thus, SOMAC is

proposed to handle the ATSP.

In SOMAC, the Dubins state of UAV at each DN’s neigh-

borhood shown in Fig. 5 is regarded as an independent agent.

Those agents connect with each other through self-organized

competition. It is noted that each agent can only connect

to other agents once, and it can only be connected once.

Because the connection among all agents is simultaneous, it

is possible that a certain agent is connected by many other

agents. In addition, some agents may connect with each other,

which leads to a local loop. A local objective function is

designed to eliminate the above conflicts. The details are

shown as follows.

1) Initialization of all agents

Because each agent can only connect to other agents once,

and it can only be connected once, an outgoing edge and an
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FIGURE 7. Connection of agents after conflict resolution

incoming edge are defined for each agent. At the beginning,

all agents have neither outgoing edges nor incoming edges.

2) Local objective function and selection operation

Each agent will gather information from other agents, and

select the one with the shortest Dubins distance. The local

objective function of the connected agent can be denoted as

follows:

faj
(Cj , aj) =

{

inf, Cj = ∅
d
c
j
qaj

, Cj 6= ∅ (19)

where aj stands for the jth agent, Cj = {cj1, cj2, · · · , cjmj
} is

the set of agents that can connect to aj . mj is the number of

members in Cj . cjq ∈ Cj , q = 1, 2, · · · ,mj .

In determining Cj of aj , three kinds of agents need to be

excluded, including itself, the agents with incoming edges,

and the agents that can cause a local loop.

3) Conflict resolution operation

Because the connection among all agents is simultaneous, a

certain agent may be connected by multiple agents. The agent

will be disconnected proactively from its connected agents

one by one according to the local objective function value

until the conflict is resolved.

An example is shown in Fig. 6. Agent 2 is connected by

agents 1 and 10, and agent 6 is connected by agents 5, 7, and

8. According to (19), for agent 2, two candidate incoming

edges can be obtained. Then, agent 1 leads to the best local

objective function value of agent 2. Thus, the connection

between agents 1 and 2 is retained, and agents 2 and 10

are disconnected. The conflict resolution of agents 5∽8 is

similar. Fig. 7 shows the connection of agents after conflict

resolution.

It can be observed that there is a local loop between agents

6 and 7, then the longest Dubins path (dotted line) in the loop

is disconnected.
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4) Termination criteria

When all the agents have selected two agents without conflic-

t, a complete directed graph emerges, and the complete data

collection tour can be obtained by sequentially connecting

the Dubins path in the digraph.

Based on the above, the agents can link with each other

to form a feasible solution, and the collection sequence is

obtained. Then the sequence is combined with the positions

and headings generated by DE in the previous section, and an

individual xi can be evaluated.

5) Pseudo-code of the SOMAC

In order to understand SOMAC more intuitively, some key

sets are defined to store agents with different connection

states and some concepts are explained in Fig. 8.

𝑆𝑁𝐼 𝑆𝑁𝑂
𝑆𝑐𝑜𝑛 𝑆𝑙𝑝𝑆𝑁𝐼 𝑆𝑁𝑂

𝑆𝑁𝐼 = 1,2,3,4,5,9 represents the set of agents that are not connected𝑆𝑁𝑂 = 6,7,8,12 represents the set of agents that are not connected to others

1

2

3

4

6

7

8

5

9 10 11 12

14 15 13

A connection chain

A local loop

𝑆𝑙𝑝={10,11,13,14,15} represents the set of agents that are neither in 𝑆𝑁𝐼 nor in 𝑆𝑁𝑂

13

Selection operation

𝑆𝑐𝑜𝑛 = 6,8 represents the set of agents that are connected many times

FIGURE 8. Connection of agents after selection

The pseudo-code of the SOMAC is presented in Algorith-

m 1. In line 1, the sets SNI and SNO reflect the connection

status of all agents. Every agent in SNI is not connected by

any other agent, and every agent in SNO is not connected

to any other agent. In line 5, Li is the ith connection chain

which reflects the connection between agents. Take Fig. 7 as

an example, {a1, a7, a9, a10} ∈ SNI , there are four connec-

tion chains. In the first chain, the agent 1 serve as a starting

of a connection chain, and the connection is completed when

the next connected agent is in SNO. Then, a connection chain

L1 is formed, like L1 = {a1, a2, a3, a4, a5}. In this way,

each agent in SNI corresponds to a connection chain. The

other three chains are L2 = {a7, a6}, L3 = {a9, a8}, and

L4 = {a10}. It is noted that, all agents are in SNI at the

beginning of the SOMAC, and a single agent can be regarded

as a special connection chain.

In line 9, for an agent ai in SNO, three kinds of agents

cannot be connected to, which is mentioned in the selection

operation. It should be noted that when the selection oper-

ation shown in lines 8∽10 is executed for the first time, all

agents are in SNI and SNO. Because they connect to others

simultaneously, they can connect to any other agents except

for themselves. However, from the second execution of lines

8-10, some agents are already connected together. By ana-

lyzing these connections, when an agent without an outgoing

edge performing the selection operation, the agents that have

Algorithm 1 Heuristic based on self-organized multi-agent

competition (SOMAC) for solving the collection sequence

1: Two sets SNI and SNO are initialized, and both of them

include all agents;

2: while SNI and SNO are not empty do

3: Find all agents in SNI , and record the number of

agents in SNI as M .

4: for i = 1 : M do

5: Built the connection chain Li among agents, and the

chain starts with the agent in SNI and ends with the

agent in SNO.

6: end for

7: Find all agents in SNO, and record the number of

agents in SNO as K.

8: for i = 1 : K do

9: For the agent ai, find the agents that ai cannot

connect to, and from the rest of agents, find the

agent with the shortest Dubins distance to connect.

Then, remove ai from SNO.

10: end for

11: Remove the connected agents from SNI

12: Find the agents that have been connected by multiple

agents, and form the set Scon. The size of the set is J .

13: for i = 1 : J do

14: For the agent ai in Scon, among multiple connec-

tions, find the one leading to the shortest Dubins

distance. Then, disconnect the other connections,

and put the corresponding agents back into SNO.

15: end for

16: Find the agents that are neither in SNI nor in SNO,

and form the set Slp.

17: while Slp is not empty do

18: For an agent in Slp, starting from it, the connection

chain is gradually built.

19: if the connection chain is looped and does not

contain all agents then

20: Disconnect the two agents in the loop with the

longest Dubins Distance and put them back into

SNI and SNO.

21: end if

22: Find agents that exist in both the connection chain

and Slp, and remove them from Slp.

23: end while

24: end while

25: Get the connection chain of all agents, and output the

collection sequence.

incoming edges or cause local loops can be excluded. In line

16, because the agents that are neither in SNI nor in SNO are

either in a chain or in a loop, local loops can be judged by the

connection chains constructed by these agents.

The time complexity of the SOMAC is analyzed as fol-

lows. Denote the number of agents by n. In the selection

operation, when constructing all connection chains shown

in lines 4∽6, all agents will be retrieved once. And for the
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operation shown in lines 8∽10, the selection operation can

be executed n times at most. Thus, the time complexity of

the selection operation is O(n). In the conflict resolution

operation, the maximum size of the set Scon is n − 1, so the

time complexity of this operation is O(n). In the local loop

resolution operation, the maximum size of Slp is n, and with

the construction of the connection chain, the size of Slp is

gradually reduced to zero. Thus, the time complexity of this

operation is also O(n).
The time complexity of the SOMAC mainly depends on

the number of loop execution shown in lines 2∽24. There are

two possibly worst cases. In the first case, all agents connect

to the same agent when executing the selection operation.

After the conflict and local loop resolution, at least one

connection can be determined. In this case, the number of

loop execution is n − 1, and the time complexity of the

SOMAC is O(n2). In the second case, agents are always

connected with each other and lead to the occurrence of local

loop. In this case, the maximum value of the number of loop

execution is not more than n, and the time complexity of the

SOMAC is also O(n2). It should be noted that in either case,

the probability of its occurrence is very small.

C. LOCAL SEARCH

In the process of population evolution, the local search is

triggered at a certain interval T , and a competitive tour is

selected to be improved [32]. Then, the full-dimensional

approximate gradient descent, the diversification mechanism,

and the local-dimensional approximate gradient descent act

on this tour sequentially. In this paper, the communication

positions and UAV headings are optimized simultaneously.

First, a full-dimensional approximate gradient descent is pro-

posed to improve all the communication positions and UAV

headings, which can make a full dimensional improvement.

When the local optimal Dubins path shown in Fig. 9

appears, the diversification mechanism and the local approxi-

mate gradient descent are applied to each component of these

variables. In this way, the communication positions and UAV

headings are further improved, and the quality of the data

collection tour is further enhanced.

1) Full-dimensional approximate gradient descent

An approximate gradient on a certain dimension of continu-

ous variables can be calculated by two solutions, as shown in

the following example:

SOLx̂ =







Sx̂

ϕx̂

θx̂







=







s1
x̂
, s2

x̂
, · · · , sn

x̂

ϕ1
x̂
, ϕ2

x̂
, · · · , ϕn

x̂

θ1
x̂
, θ2

x̂
, · · · , θn

x̂







(20)

∗SOLx̂ =







Sx̂

∗ϕx̂

θx̂







=







s1
x̂
, s2

x̂
, · · · , sn

x̂

ϕ1
x̂
, · · · , ϕq

x̂
+∆σ, · · · , ϕn

x̂

θ1
x̂
, θ2

x̂
, · · · , θn

x̂







(21)

where SOLx̂ is a competitive solution, and ∗SOLx̂ is formed

by adding a perturbation to SOLx̂. ∗ϕx̂ is the position
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FIGURE 9. Local optimal Dubins path

vector after the perturbation. The two solutions have differ-

ent communication positions. ∆σ is a small and fixed real

number which is used as a small perturbation to calculate

the approximate gradient of each dimension of continuous

variables.

Then, an approximate gradient of the qth dimension of

positions can be calculated by (22).

gq ≈ J(Sx̂, (ϕx̂,θx̂))− J(Sx̂, (
∗ϕx̂,θx̂))

∆σ
, q ∈ {1, 2, · · · , n}

(22)

Based on (20)-(22), the gradient vector of the 2n con-

tinuous variables, as shown in (23), can be obtained by

calculating the approximate gradient on the n positions and

n headings gradually.

g = [g1, g2, · · · , g2n] (23)

After deriving the approximate gradient vector, the corre-

sponding update equation of the 2n continuous variables is

shown as follow:

[ϕk+1,θk+1] = [ϕk,θk]− ρ · g

|g| (24)

where ρ is the step size, and k is the iteration number. The

iteration goes on until the tour no longer turns better.

2) Local-dimensional approximate gradient descent

Due to the full-dimensional approximate gradient descent has

strong directionality, the local optimal Dubins path caused by

an improper heading shown in Fig. 9 may exist. The diversifi-

cation mechanism is adopted firstly, and the reverse operation

is performed for each dimension of the UAV headings to

jump out of the local optimal Dubins path. Then the updated

SOLx̂
, is obtained, and the local-dimensional approximate

gradient descent is adopted to it. Because the position and

heading at a certain DN have the greatest influence on the

Dubins paths connected to the adjacent DNs, only the adja-

cent DNs are considered to reduce the computational cost.
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Thus, a local solution SOLlocal
x̂
, shown as (25) is consid-

ered, which can lead to a local data collection path by using

(2). For a pair of position and heading [ϕj
x̂
, , θ

j
x̂
, ] at the jth

DN, an approximate gradient vector can be obtained by the

following.

Taking the first dimension of [ϕj
x̂
, , θ

j
x̂
, ] as an example, a

perturbation is added, as shown in (25)-(26).

SOLlocal
x̂
, =







Slocal
x̂
,

ϕlocal
x̂
,

θ
local
x̂
,







=







sj−1

x̂
, , sj

x̂
, , s

j+1

x̂
,

ϕj−1

x̂
, , ϕj

x̂
, , ϕ

j+1

x̂
,

θj−1

x̂
, , θj

x̂
, , θ

j+1

x̂
,







(25)

∗SOLlocal
x̂
, =







Slocal
x̂
,

∗ϕlocal
x̂
,

θ
local
x̂
,







=







sj−1

x̂
, , sj

x̂
, , s

j+1

x̂
,

ϕj−1

x̂
, , ϕj

x̂
, +∆σ, ϕj+1

x̂
,

θj−1

x̂
, , θj

x̂
, , θ

j+1

x̂
,







(26)

where ∗SOLlocal
x̂
, is formed by adding a perturbation to

SOLlocal
x̂
, , and ∗ϕlocal

x̂
, is the position vector after the per-

turbation.

Then, the gradient of the first dimension of [ϕj
x̂
, , θ

j
x̂
, ] can

be calculated by (27).

g
ϕ

j

x̂
,
≈ J(Slocal

x̂
, , (ϕlocal

x̂
, ,θlocal

x̂
, ))− J(Slocal

x̂
, , (∗ϕlocal

x̂
, ,θlocal

x̂
, ))

∆σ
(27)

Based on the above, the gradient of θj
x̂
, can be calculated

in the same way. The gradient vector glocal = [g
ϕ

j

x̂
,
, g

θ
j

x̂
,
] of

position and heading on the jth DN is formed, and [ϕj
x̂
, , θ

j
x̂
, ]

can be updated by (28).

[ϕj
x̂
,(k+1), θj

x̂
,(k+1)] = [ϕj

x̂
,(k), θ

j
x̂
,(k)]−ρ· g

local

|glocal| (28)

Remark 3: It is easy to see from (24) and (28) that the upper

bound of the iteration number is ⌊2π/ρ⌋, where ⌊·⌋ is the

downrounding function.

The time complexity of the local search is analyzed below.

For the full-dimensional approximate gradient, the gradients

on 2n continuous variables need to be sequentially calcu-

lated, so the time complexity of this part is O(2n⌊2π/ρ⌋).
For the diversification mechanism, the reverse operations are

executed n times for the n-dimension headings, so the time

complexity of this part is O(n). For the local-dimensional

approximate gradient, for each DN, it needs to calculate the

gradients on ϕ and θ. Thus, the time complexity of this part

is O(2n⌊2π/ρ⌋). Based on the above, because the three parts

are executed sequentially, the time complexity of the local

search can be regarded as O(n).

D. COMPLEXITY ANALYSIS OF THE BLHMA

The pseudo-code of the BLHMA is presented in Algorithm 2,

and the time complexity and space complexity are analyzed

in Table 2. The evaluation operation has the highest time

complexity because the time complexity of the construction

of the Dubins distance matrix is O(n2). G is the number of

iterations, and mod(·) is the modulo operation. When the

algorithm satisfies the criterion mod(G, T ) = 0, the local

search is triggered, and the number of runs of the local search

is G/T . Based on the above, the time complexity and the

space complexity of the BLHMA are O(G · NP · n2) and

O(n ·NP + n2), respectively.

Algorithm 2 Bi-level hybridization-based metaheuristic al-

gorithm (BLHMA) for the UAV data collection planning

1: Initialize a population based on (4);

2: Pertaining to each individual generated by DE, SOMAC

is used to determine the sequence which mentioned in

subsection III-B. Take them into (2) to complete the

individual evaluation, and record the solution as (5);

3: Set the number of iterations G = 1
4: while the stopping criterion is not satisfied do

5: for i = 1 : NP do

6: According to the adaptive selection strategy men-

tioned in the literature [50], mutate xi by (6)-(9),

then a trial vector vi is generated by the crossover

based on (10);

7: Evaluate the trial vector vi by using the methods in

line 2;

8: Update the population based on the selection oper-

ator shown as (11), and update the solution by (12);

9: end for

10: if mod(G, T ) == 0 (T is a constant) then

11: All solutions are sorted, and one of the first 30%
solutions is randomly selected as the competitive

solution. Then the multistage local search men-

tioned in subsection III-C is conducted to improve

its parts of positions and headings;

12: Re-evaluate the improved positions and headings

by using the methods in line 2, and update the

corresponding solution;

13: end if

14: G = G+ 1
15: end while

16: Output the best solution and the corresponded data col-

lection tour.

TABLE 2. Complexity of the BLHMA

Operation Time Complexity Space Complexity

Initialization O(1) O(NP · n+ n2)
Evaluating O(G ·NP · n2) O(n)
Mutation O(G ·NP ) O(n)
Crossover O(G ·NP · n) O(n)
Selection O(G ·NP ) O(1)

Local search O(G · n) O(n)

IV. COMPUTATIONAL EXPERIMENTS

For the UAV data collection planning in forest fire mon-

itoring, it is assumed that the installation height of each

DN is 5m, and the maximum communication distance of

DN is 200m. A small and low-altitude UAV cruises 110m

10 VOLUME x, 2021
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above the ground at a speed of 40m/s, and its maximum

communication distance is more than 200m. UAV circularly

flies to all DNs to obtain their data, as Fig. 10 shows, and the

effective communication radius (R) between the UAV and a

DN can be calculated by simple geometric relation, which

is approximately equal to 170m. The schematic diagram is

shown in Fig. 11. Besides, assume that the maximum roll

angle of the UAV is 50◦. According to the force analysis

about the UAV turning, (29) can be obtained, then by using

(30), the turning radius (r) of the UAV is approximately equal

to 137m.

Fhori

Fvert

=
L · sin(β)
L · cos(β) =

M · V 2

r

M · g = tan(β) (29)

r =
V 2

g · tan(β) (30)

where Fhori and Fvert are the force of the UAV in the

horizontal and vertical direction. L is the lift force of the

UAV. V and M are the speed and weight of the UAV, g is the

gravitational acceleration, and β is the maximum roll angle.

FIGURE 10. UAV obtains data from multiple DNs

FIGURE 11. Transmission diagram of UAV and a DN

Based on the above assumptions, to verify the perfor-

mance of the BLHMA in solving the UAV data collection

planning, two-part computational experiments are conducted

in this section. In addition, three state-of-the-art algorithms

identified in the literature are involved in the computational

experiments (denoted by transformation method [36], VNS

[45], and MA [32], respectively).

Firstly, general analyses on a series of random instances

with different minimum distance constraints are given, in-

cluding D4, D1, and D∗-constraint instances. Secondly, the

convergence performance of different algorithms is carried

out, and the mechanisms of the BLHMA are analyzed.

All algorithms were implemented on a personal computer

with Intel(R) Xeon(R) Silver 4114 CPU 2.20GHz, 32GB

RAM. BLHMA, VNS, and MA were implemented by the

MATLAB R2019b. For the transformation method, a GTSP

was formed by the uniform sampling of communication

positions and UAV headings firstly, and then the GTSP was

converted to an ATSP by the Noon-Bean transformation [36],

which was implemented by the MATLAB. At the last, LKH

Ver.2.0.9 was applied for solving the ATSP to obtain a data

collection tour, which was implemented by the Visual Studio

2019 (C++). Thus, for the fairness of comparison, the solu-

tion obtained by the transformation method is only regarded

as a reference value. The code of LKH can be downloaded

from the website: http://akira.ruc.dk/~keld/research/LKH/.

The parameter settings of the BLHMA are shown in Ta-

ble 3, and the selection of some key parameters is analyzed.

Here, the framework of the SADE is adopted [50], and the

four mutation operators shown in (6)-(9) are selected. In

order to ensure the best performance of the SADE, the setting

of all parameters in SADE was consistent with the original

literature, except for population size NP . NP was left as

a user-specified parameter because it highly depends on the

complexity of a given problem.

TABLE 3. The main parameters of the BLHMA

Symbols Description Setting

NP Population size n
ρ Step size of (24) and (28) 0.2
∆σ The value of the perturbation of (21) and (26) 0.05
T The trigger frequency of the local search 5

To find a suitable value of NP , three typical values were

tried. NP with the settings of n, 10n, and 20n were tried

in the instances with different scales. BLHMA was run 20

times, and the length of the so-far-best tour is stored every 5s.

Then the mean value at each time is calculated. The results

are shown in Figs. 12-14. In the 10-DNs instance, when NP
is set to n, although the ability of the algorithm to jump

out of the local optimal solution is not strong, the algorithm

has a good balance between convergence and performance,

as shown in the displayed curve. Similarly, good results are

achieved in the 20 or 30-DNs instances when NP is set to n.

In the local search, ∆σ is used to construct approximate

gradients, and it can usually be set to a small and fixed

positive real number. We tested many different values of ∆σ
ranging from 0.01% of 2π to 2π, and found that when its
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FIGURE 12. Convergence curves of the BLHMA under different population

sizes on 10-DNs instance
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FIGURE 13. Convergence curves of the BLHMA under different population

sizes on 20-DNs instance
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FIGURE 14. Convergence curves of the BLHMA under different population

sizes on 30-DNs instance

value is less than 1% of 2π, its value has little effect on the

performance of the local search. ρ and T usually have a great

impact on the performance of the BLHMA, and both of them

were determined as follows.

In order to determine the step size (ρ) in the local search,

different step sizes were used to improve a poor data col-

lection tour on the 10-DNs instance. The local search was

run for each step value, and Fig. 15 shows the values of the

length of the data collection tour and the runtime. When the

value of ρ is small, the improvement effect of the local search

is remarkable, but it takes a long time. On the contrary, the

runtime is very short, but the search capability of the local

search is poor. It can be seen that when ρ is set as 0.2, the

local search has a good tradeoff between the runtime and

performance.
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FIGURE 15. Influence of the step size of the local search
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FIGURE 16. Comparison of different execution frequencies of the local search

strategy in BLHMA

After determining the step size, the execution frequency

of the local search was analyzed, and it also affects the

convergence of the BLHMA. It can be adjusted to achieve
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a better tradeoff between exploration and exploitation in the

solution space by changing the value of T . A comparison of

different T of the BLHMA on the 10-DNs instance is shown

in Fig. 16. Similarly, BLHMA was run 20 times, and the

length of the so-far-best tour is stored every 5s. Then the

mean value at each time is calculated. When the value of

T is small, the local search is frequently triggered, and the

algorithm tends to exploitation, which makes it easy to fall

into a local optimal solution. When the value of T is large,

the trigger frequency of the local search becomes lower, the

algorithm tends to explore, and the ability to jump out of the

local optimal solution becomes stronger, but it takes more

time to converge. As Fig. 16 shows, when T takes the value of

5, the comprehensive performance of the algorithm is better.

After analyzing the parameter setting of the BLHMA, the

parameter setting of the competitors is explained as follows.

For the transformation method, in order to get high-quality

solutions, the highest sample counts are used according to

the numerical study of Obermeyer [36]. The sample counts

of the transformation method are set as 1100, 1600, and 2100

corresponding to the 10, 20, and 30-DNs instances, respec-

tively. The mean runtimes on these three kinds of instances

are 210s, 420s, and 850s, respectively. In addition, in order

to get a better balance between position samples and heading

samples in the designed instances in this paper, the weighting

parameter which determines how many heading samples

there will be per position is set to 68. For the other algorithms,

the parameter settings are consistent with the original works

of literature, and the maximum runtime is defined as the stop

condition. Those algorithms will be terminated when the time

of the transformation method is exhausted. It is worth noting

that in order to make MA generate the cyclic data collection

tour, the optimization of the position and UAV heading at the

first DN is considered without changing the key framework

and the idea of the algorithm.

In addition, to verify the performance of the SOMAC

algorithm, the nearest neighbor rule (NNR) is used which

can also solve the ATSP quickly and stably [54], and the

bi-level hybridization-based metaheuristic algorithm with the

nearest neighbor rule (BLHMA-NNR) is formed. Because

the time complexity of the SOMAC and NNR is less than

that of calculating the Dubins distance matrix, the influence

of replacing SOMAC with NNR on the time complexity of

the collection sequence obtaining can be ignored.

A. COMPARISON IN RANDOM INSTANCES WITH

DIFFERENT MINIMUM DISTANCE CONSTRAINTS AND

SCALES

A series of random simulated UAV data collection instances

with different minimum distance constraints and scales are

designed and used for analyzing the performance of all algo-

rithms. The tested instances are labelled as n− i, where n is

the number of DNs and i is the identifier of instances. Similar

to the study [49], all DNs are randomly generated inside a

bounding box with the side 7
√
n((R + r)/2), which can

provide a relatively high density. The five algorithms were

applied to solve the 27 instances with different minimum dis-

tance constraints and scales, and the results were compared.

For each instance, the statistical results of all algorithms are

presented in Table 4.

BLHMA, BLHMA-NNR, VNS, and MA were run 20

times, and the processing time of each algorithm is the

same among all 20 attempts. Then, the length of the data

collection tours can be calculated by the objective function,

as shown in (2). The results were evaluated from four as-

pects including the mean value (avg), the maximum value

(max), the minimum value (min), and the standard deviation

(std). The Wilcoxon rank-sum test is also used for analyzing

the significance of the difference of results [55], and the

confidence level is set as 0.95. Besides, the data collection

tours obtained by the transformation method are regarded as

references.

From the statistical results, for most instances, BLHMA is

the best one as it can find high-quality data collection tours

in all aspects as compared with MA, VNS, and even the

reference value. BLHMA-NNR also performed well in most

instances. For D4-constraint instances, when the number of

DNs is small, BLHMA, BLHMA-NNR, and VNS can find

better tours than that of the reference, and BLHMA and

BLHMA-NNR outperform other algorithms with minor ad-

vantages. By comparing BLHMA-NNR and BLHMA, it can

be seen that their performances are comparable in most D4

instances, and the minimum length values of tours obtained

by BLHMA-NNR is only slightly inferior to that of the

BLHMA.

With the increase of the number of DNs and the enhance-

ment of the constraint, in most cases, data collection tours

found by MA are better than that of the VNS. In addition,

tours obtained by BLHMA are obviously better than those of

its competitors in all aspects, including BLHMA-NNR and

the other three algorithms. It can be observed that the differ-

ence between BLHMA and BLHMA-NNR is not significant

from the Wilcoxon rank-sum test results, but BLHMA can

find better tours than BLHMA-NNR in most cases.

By summarizing the results of the experiments on the sim-

ulated instances of the UAV data collection task in forest fire

monitoring, it can be obviously observed that MA is hard to

find a satisfactory data collection tour in most cases. Because

the Dubins path is relaxed, resulting in incomplete solution

space. VNS can achieve a good balance between exploration

and exploitation by using a neighborhood structure composed

of different actions to the mixed variables. However, due to

the large amount of optimization variables, the solution space

is still very complex. Supported by an efficient solver for the

ATSP, the sampling-based transformation method can find a

better approximate optimal data collection tour. However, the

extensive calculation caused by a large number of samplings

usually consumes a large amount of time, and uniform sam-

pling is not conducive to finding the optimal tour. In contrast,

BLHMA proposed in this paper can decompose the solution

space and search cooperatively in different subspaces, which

significantly reduces the difficulty of searching, and it can ob-

VOLUME x, 2021 13



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3102317, IEEE Access

H. Zhang et al. et al.: UAV Data collection task planning

TABLE 4. Statistical results about different algorithms in solving randomly generated instances

Instance
BLHMA BLHMA-NNR MA [32] VNS [45] Reference [36]

D4-constraint instances: (avg (m),max (m),min (m), std) (m)

10-1 (10247.7 10710.5 10223.3 108.9 ) (10295.8 10585.7 10223.3 148.7 )= (10697.1 11208.4 10645.1 153.8 )⇓ (10900.2 12557.8 10247.4 666.9 )⇓ 10468.8

10-2 (10781.0 11114.2 10593.8 183.8 ) (10682.6 11059.0 10593.0 162.8 )⇑ (11131.1 11408.5 10995.1 165.8 )⇓ (11270.7 12097.9 10616.2 514.7 )⇓ 10606.8

10-3 (10544.4 10988.6 10267.1 246.4 ) (10542.7 11125.4 10266.9 285.1 )= (10889.8 11175.9 10745.2 129.0 )⇓ (10961.0 12099.6 10278.5 480.5 )⇓ 10316.1

20-1 (19162.5 20179.1 18511.7 423.2 ) (19463.8 20338.7 18512.9 375.4 )⇓ (22456.8 23401.0 21259.3 617.2 )⇓ (22999.0 25228.4 20975.2 1199.0 )⇓ 18556.9

20-2 (19766.9 20530.9 19490.0 322.2 ) (19843.3 20578.8 19490.1 308.9 )= (22045.7 23320.1 20761.0 584.5 )⇓ (25337.9 27362.2 22301.0 1423.9 )⇓ 19524.5

20-3 (20210.8 21439.6 19559.4 617.5 ) (20106.9 21436.8 19560.0 530.6 )= (22816.4 24517.0 21689.5 835.1 )⇓ (24597.7 27524.7 21997.3 1631.7 )⇓ 19762.2

30-1 (28767.0 31075.6 27592.9 911.0 ) (29028.0 30409.1 28107.4 760.2 )= (38310.8 43590.3 34140.6 2578.3 )⇓ (38047.7 42417.1 35213.5 1946.1 )⇓ 27600.3

30-2 (29376.5 31094.8 28054.0 882.3 ) (29567.7 30549.0 28472.5 607.7 )= (37493.6 41643.2 33711.6 2194.5 )⇓ (39171.6 43823.8 35318.6 2587.7 )⇓ 28126.0

30-3 (27073.4 29010.7 25868.9 958.3 ) (27064.9 28839.5 25871.4 784.8 )= (37043.4 39698.4 33150.8 1716.3 )⇓ (35755.0 38480.2 32616.0 1630.4 )⇓ 25896.9

D1-constraint instances: (avg (m),max (m),min (m), std) (m)

10-1 (6250.8 6254.5 6249.2 2.4 ) (6276.4 6767.5 6249.2 115.6 )= (7151.6 7896.8 6423.4 436.8 )⇓ (7023.8 7545.5 6362.3 386.7 )⇓ 6279.8

10-2 (6925.7 7423.4 6823.5 178.6 ) (6877.8 7284.8 6823.5 122.1 )= (7494.3 7791.1 7348.4 182.9 )⇓ (7533.2 8150.5 7154.7 254.4 )⇓ 6859.8

10-3 (6631.8 6678.1 6623.6 19.9 ) (6654.0 7122.1 6623.6 111.4 )= (6939.7 7035.7 6858.5 87.5 )⇓ (7493.2 8168.5 6750.5 467.3 )⇓ 6658.1

20-1 (13461.7 15050.5 13207.6 472.3 ) (13348.2 14289.2 13207.3 271.8 )= (15284.8 16432.8 14465.7 394.0 )⇓ (17866.4 19568.7 16597.0 806.7 )⇓ 13233.5

20-2 (15201.5 16095.9 14282.2 550.5 ) (15230.7 16125.3 14473.9 426.4 )= (16343.3 17299.8 14900.9 659.1 )⇓ (19038.9 21007.8 17608.3 906.3 )⇓ 14321.2

20-3 (15363.0 16136.6 14877.4 314.2 ) (15407.2 16180.6 14967.9 359.4 )= (17975.4 19360.7 16140.9 749.7 )⇓ (19475.7 21262.0 17370.8 1029.5 )⇓ 14915.1

30-1 (23590.6 24930.0 22287.1 616.9 ) (23737.1 25526.7 22893.1 787.1 )= (29779.6 32434.1 27701.2 1342.2 )⇓ (32060.2 34576.5 27256.0 1768.4 )⇓ 22254.5

30-2 (22405.9 24322.3 21099.9 865.9 ) (22413.9 24052.6 21066.5 842.2 )= (27482.7 29711.2 25813.8 935.8 )⇓ (31717.5 35274.5 28052.7 1779.8 )⇓ 21105.3

30-3 (21008.9 21935.5 20168.4 520.3 ) (22413.9 24052.6 21066.5 842.2 )= (29574.4 33389.2 25659.1 2145.4 )⇓ (31066.8 35044.2 28034.1 1788.3 )⇓ 20233.0

D∗-constraint instances: (avg (m),max (m),min (m), std) (m)

10-1 (5987.5 6277.4 5916.0 98.1 ) (6116.8 6687.3 5914.3 250.1 )⇓ (6188.0 6379.7 6145.0 65.7 )⇓ (6854.2 7322.0 6346.7 328.5 )⇓ 6710.5

10-2 (6835.8 7208.2 6740.3 153.4 ) (7012.9 7541.9 6771.5 160.3 )⇓ (7574.7 8042.9 6990.6 312.9 )⇓ (7623.6 8389.1 6952.8 448.9 )⇓ 6779.8

10-3 (7592.8 8232.9 7502.6 167.3 ) (7577.2 8216.3 7504.9 160.6 )= (7654.7 7826.1 7570.8 68.4 )⇓ (8503.5 9186.1 7937.6 398.9 )⇓ 7934.0

20-1 (12086.0 12553.3 11536.6 282.7 ) (12264.1 13460.8 11573.9 527.8 )= (14383.3 16199.1 13484.9 962.0 )⇓ (16928.9 19978.5 15190.8 1420.7 )⇓ 11584.1

20-2 (13619.2 14310.1 13384.1 281.5 ) (13892.6 15651.2 13386.7 575.3 )= (17350.2 18402.1 16438.3 401.3 )⇓ (19115.5 22214.4 17105.1 1225.1 )⇓ 13891.4

20-3 (11075.1 12347.3 10321.2 477.5 ) (11281.4 12093.2 10352.2 390.1 )= (11672.4 13561.0 11249.5 706.6 )⇓ (14130.6 15780.8 12412.0 1011.7 )⇓ 10397.2

30-1 (20750.9 21805.9 19501.9 626.0 ) (20929.9 21656.5 20122.2 516.7 )= (26499.9 29962.6 22876.9 1622.8 )⇓ (28248.0 31104.6 25527.2 1439.3 )⇓ 21584.2

30-2 (23372.1 24425.7 22266.5 658.8 ) (23562.8 24850.8 22237.3 786.3 )= (34380.8 37601.0 26221.5 2921.8 )⇓ (31034.1 34349.3 28743.0 1422.4 )⇓ 21434.8

30-3 (22474.1 23761.9 21067.5 805.3 ) (23414.2 24484.6 22035.6 715.3 )⇓ (29571.3 34463.1 25308.4 2921.8 )⇓ (30679.5 34141.7 27533.3 1709.5 )⇓ 20911.9

” ⇑ ” indicates that the competitor performs significantly better than BLHMA in the Wilcoxon rank-sum test with a confidence level of 0.95.

” = ” indicates that the competitor have no significant difference with BLHMA in the Wilcoxon rank-sum test with a confidence level of 0.95.

” ⇓ ” indicates that BLHMA performs significantly better than the competitor in the Wilcoxon rank-sum test with a confidence level of 0.95.

tain significantly shorter data collection tours in most cases.

The data collection tours generated by BLHMA, BLHMA-

NNR, MA, VNS, and the transformation method in different

instances are presented in Fig. 17. It can be seen intuitively

that the tours generated by BLHMA, BLHMA-NNR, and the

transformation method are almost coincident in most cases,

and BLHMA wins BLHMA-NNR and the reference tours

with a slight advantage.

In addition to the simulated UAV data collection instances,

this paper also considers an instance in a real-world case.

According to historical experience, there are several high-

risk areas in the Xishuangbanna forest, and it is necessary

to implement the fire monitoring mission in these areas. As

Fig. 18 shows, 25 DNs are distributed in the high-risk areas

of the forest around the scenic spot, and a UAV is used

to perform a data collection task in forest fire monitoring.

BLHMA, BLHMA-NNR, VNS, and MA were run 20 times.

The mean runtime of the transformation method is 718s,

and BLHMA, BLHMA-NNR, VNS, and MA stop running at

718s as termination conditions. The best data collection tours

obtained by the four algorithms are 13906.2m (BLHMA),

14038.9m (BLHMA-NNR), 17986.3m (VNS), 17406.2m

(MA), and 13930.3m (Reference). The tours generated by

BLHMA, BLHMA-NNR, and the transformation method are

also almost coincident. By observing the regions marked by

the blue dot line in Fig. 18, it can be observed that BLHMA

also wins BLHMA-NNR and the reference tours with a slight

advantage, so the data collection tour obtained by BLHMA

is more conducive to the efficient mission execution and the

energy saving of the UAV.

B. CONVERGENCE AND MECHANISM ANALYSIS

In this subsection, the convergence of the BLHMA is dis-

cussed and compared with its competitors. Each algorithm

runs 20 times on a 10-DNs instance repeatedly and inde-

pendently. During the runtime, the length of the so-far-best

tour is stored every 5s, then the mean value at each time

is calculated, as shown in Fig. 19. The mean runtime of

the transformation method is 210s, and the data collection

tour obtained by the transformation method is regarded as a

reference. All the other algorithms run the same time.

It can be observed intuitively from Fig. 19 that BLHMA

converges in a very short time, and the obtained data collec-

tion tour is better than that of the transformation method. MA

also converges quickly, but due to the incomplete solution

space, it cannot converge to a better solution. It can be

seen from the mean curve that the convergence rate of the

BLHMA is the fastest. BLHMA can obtain a comparable tour

to the transformation method in a very short time.

To verify the contribution of the local search to BLHMA,

Fig. 20 shows the comparison of the BLHMA and its version

without the local search (BLHMAxLS). Each algorithm runs

20 times on a 10-DNs instance repeatedly and independently,

the length of the so-far-best tour is stored every 5s, then the

mean value at each time is calculated. It can be seen that

the mean curve of the BLHMA tends to be flat in about 15
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(a) Data collection tours in the instance D4 − 20− 1
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(b) Data collection tours in the instance D4 − 30− 1
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(c) Data collection tours in the instance D1 − 20− 1
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(d) Data collection tours in the instance D1 − 30− 1
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(e) Data collection tours in the instance D∗ − 20− 1
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(f) Data collection tours in the instance D∗ − 30− 1

FIGURE 17. The data collection tours generated by different algorithms in different instances

seconds, while BLHMAxLS reaches the same level in about

70 seconds.

For further verifying the performance of the local search,

different search strategies were used to improve a poor data

collection tour shown in Fig. 21 (black line). Fig. 21 and

Table 5 show the improvement of the tour by different search

strategies. Although multistage approximate gradient descent

strategy proposed in this paper consumes a little more time,
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FIGURE 18. UAV data collection instance in a real world case.
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FIGURE 19. Convergence curves of different algorithms on the 10-DNs

instance

TABLE 5. Local search performance of different strategies

Local search strategy Time (s) Tour length (m)

Multistage strategy 0.41 10586.07
Full-dimensional strategy 0.29 11360.93

Local-dimensional strategy 0.14 11369.77

its improvement to the tour is better than that of the two sub-

strategies.

V. CONCLUSIONS

In this paper, a bi-level hybridization-based metaheuristic

algorithm is proposed for the UAV data collection task plan-

ning in forest fire monitoring. At the first hybridization level,
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FIGURE 20. Comparison of the BLHMA and BLHMAxLS on the 10-DNs

instance

DE and the proposed SOMAC act on continuous and discrete

variables respectively to produce data collection tours in a

cooperative way, which avoids a large amount of blind search

in complex solution space. To enhance the quality of the

tours and accelerate the convergence of the algorithm, at the

second level, a local search strategy based on a multistage

approximate gradient is incorporated to improve the com-

munication position and UAV heading at each DN. Finally,

numerical results based on the simulated and real-world

UAV data collection instances demonstrate that the algorithm

proposed in this paper, compared with the state-of-the-art

algorithms, can generate shorter data collection tours in most

cases. It is conducive to the efficient execution of a UAV data
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FIGURE 21. A poor data collection tour improved by different local search

strategies

collection task in the fire monitoring, and effectively reduces

the energy consumption of the UAV. This paper provides

favorable technical support for the UAV data collection in

forest fire monitoring, and the idea can be extended to many

other applications, such as electric power inspection, pipeline

detection, mobile edge computing, etc.
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