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Abstract—In this paper, we study the data collection problem in
Wireless Sensor Networks (WSNs) adopting the two interference
models: the graph model and the more realistic physical interfer-
ence model known as Signal-to-Interference-Noise-Ratio (SINR). The
main issue of the problem is to compute schedules with the minimum
number of timeslots, that is, to compute the minimum latency
schedules, such that data from every node can be collected without
any collision or interference to a sink node. While existing works
studied the problem with unit-sized and unbounded-sized message
models, we investigate the problem with the bounded-sized message
model, and introduce a constant factor approximation algorithm.
To the best known of our knowledge, our result is the first result
of the data collection problem with bounded-sized model in both
interference models.
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I. INTRODUCTION

W IRELESS sensor networks (WSNs) consist of a num-
ber of tiny wireless sensor devices (nodes). These

nodes are scheduled to turn on their power to emit signals (i.e.,
to send data), or turn it off to conserve their limited power for
specific time duration. When emitting signals, a collision or
interference can occur at a node if the data transmission is
interfered by signals concurrently sent by other nodes. In this
case, the data should be re-transmitted. Because the tiny nodes
have limited energy resources, it is crucial to reduce such
unnecessary retransmissions in order to prolong the network’s
lifetime.

One important task of a WSN is to collect data periodically
and send (forward) the data to a sink node in the network. This
type of application is commonly known as data collection.
An interesting approach for the data collection is to assign
timeslots to nodes to obtain a good schedule through which
data from every node is collected to the sink node. Here,
if nodes are assigned the same timeslot in a schedule, then
they can send data concurrently without causing any collision
or interference. The objective of the problem is to compute
schedules with the minimum number of timeslots, that is,
to compute the minimum latency schedules, such that data
from every node can be collected without any collision or
interference.

For the data collection problem, there are three models in
the literature: unit-sized, bounded-sized, or unbounded-sized
messages. In the unit-sized message model, a node can send a
single unit-sized message at a timeslot, and therefore merging

M. K. An is with Sam Houston State University, Huntsville, TX 77341,
USA (e-mail: an@shsu.edu).

(combining) messages is not allowed. In the bounded-sized
message model, a node can merge messages up to some
limit before it sends, whereas in the unbounded-sized message
model, there is no limit on the length of the merged message
[1].

The data collection problem has been widely investigated by
researchers in two interference models: the graph model and
the physical interference model. In the graph model, given
a transmission range r(u) for every node u (i.e., the radius
of the broadcasting disk covered by the signal sent by u
using its transmission power p(u)), the interference range of
u is defined as ρ · r(u), where ρ ≥ 1 is the interference
factor [2]. When ρ = 1, it is called a collision-free graph
model that concerns collision only, and when ρ ≥ 1, it is
called a collision-interference-free graph model that concerns
both collision and interference. Although the traditional graph
model has been widely used in many studies, it is not an
adequate model since cumulative interference caused by all the
other concurrently transmitting nodes is ignored [2]. Thus, the
more realistic physical interference model which is known as
the Signal-to-Interference-Noise-Ratio (SINR) has been used
by many researchers for investigating problems in WSNs since
its introduction by Gupta et al. in [3].

In the graph model, Bermond et al. [9] and Coleri et al.
[23] proved the NP-hardness of the data collection problem
when ρ ≥ 1 and ρ = 1, respectively, with the unit-sized
message model. With the unbounded-sized message model,
the data collection is also known as data aggregation, and
Chen et al. [24] and An et al. [22] proved the NP-hardness
of the problem with ρ = 1 and ρ ≥ 1, respectively. Because
of the NP-hardness of the problem, many researchers have fo-
cused on proposing approximation algorithms, and the existing
approximation algorithms with the unit-sized and unbounded-
sized message models are summarized in the Table I. Note
that results in [4]–[6], [8]–[10] apply to special topologies or
general graphs only. Lastly, with the bounded-sized message
model, there currently exist no studies which investigated
the data collection problem, to the best of our knowledge.
There exist few studies [25], [26] which investigated a related
application called gossiping assuming that messages can be
merged into a single message whose size is bounded by log n,
where n is the number of nodes in a network.

In the SINR model, few researchers have investigated the
data collection problem with the unit-sized message model,
whereas there exists several studies which proposed approxi-
mation algorithms with the unbounded-sized message model,
and Lam et. al [16], [17] showed the first result of the NP-
hardness of the problem with the model. Like the graph model,



TABLE I: Existing Approximation Algorithms for Data Collection.

Message Model Graph Model Physical Interference Model
Unit-sized [2], [4]–[6]: 3-approximation (ρ = 1) [2], [7]: O(1)-approximation

[8]: 2-approximation (ρ = 1)
[5]: 4-approximation (ρ > 1)
[2]: O(1)-approximation (ρ > 1)
[9]: 4-approximation (ρ ≥ 1)
[6]: 4-approximation (ρ = 2)
[10]: (1 + 2

ρ
)-approximation (ρ ≥ 2)

Bounded-sized This paper: O(1)-approximation (ρ ≥ 1) This paper: O(1)-approximation
Unbounded-sized [11]–[14]: O(1)-approximation (ρ = 1) [15]–[20]: O(1)-approximation

[21], [22]: O(1)-approximation (ρ ≥ 1)

there currently exists no studies investigating the problem with
the bounded-sized message model. Existing approximation
algorithms for the data collection in the SINR model are also
summarized in the Table I.

In this paper, we continue the study of the data collection
problem in both the graph and SINR models. While existing
works studied the problem with the unit-sized and unbounded-
size message models only, we investigate the problem with the
bounded-sized message model, and introduce a constant factor
approximation algorithm which can be used not only for the
graph model, but also for the SINR model.

This paper is organized as follows. Section II describes
our network models and defines the data collection problem.
In Section III, we introduce a constant factor approximation
algorithm for the problem, and analyze it in Section IV.
Finally, Section IV contains some concluding remarks.

II. PRELIMINARIES

A. Network Models

In this paper, we consider a wireless sensor network (WSN)
that consists of a set V of sensor nodes deployed in a plane.
Each node u ∈ V is assigned a transmission power level p(u),
and its transmission range r(u) is defined as the radius of the
broadcasting disk covered by the signal sent by u using its
power p(u). Accordingly, a directed edge (u, v) exists from
node u to node v, if v resides in u’s broadcasting disk (i.e.,
d(u, v) ≤ r(u), where d(u, v) denotes the Euclidean distance
between u and v.)

1) Graph Model: Let Cu = {v | v ∈ V, d(u, v) ≤ r(u)}
denote the set of nodes that reside in u’s transmission range.
Then two nodes u and v can communicate each other if u ∈
Cv and v ∈ Cu. Next, let Iu denotes the set of nodes that
reside in u’s interference range ρ · r(u), where ρ ≥ 1 is the
interference factor. Then, the collision is said to occur at node
w if there exist other concurrently sending nodes u and v such
that w ∈ Cu ∩ Iv , where ρ = 1 (i.e., Cu = Iu). Also, the
interference is said to occur at node w if there exist other
concurrently sending nodes u and v such that w ∈ Cu ∩ Iv ,
where ρ > 1 (i.e., Cu ⊂ Iu).

In the graph model, we model a communication graph as
a directed graph G = (V,E) where E = {(u, v) |u, v ∈
V, d(u, v) ≤ r(u) and d(v, u) ≤ r(v)}.

2) SINR Model: In the SINR model, when a node u sends
data using its power level p(u), the signal sent to a receiver
v may not be strong enough to be received and hence the

transmitted data is lost. It is because the signal sent by u fades
and v is interfered by the cumulative interference caused by
all the other concurrently transmitting nodes.

In this model, the received power at the receiver v is defined
as p(u) · d(u, v)−α, where α > 2 is the path loss exponent,
and v can receive the data transmitted by the sender u without
any interference only if the ratio of the received power at v
to the total interference caused by all the other concurrently
transmitting nodes and background noise is beyond an SINR
threshold β ≥ 1.

Formally, node v can successfully receive data via the
communication edge (u, v) only if

SINR(u,v) =

p(u)
d(u,v)α

N +
∑
w∈X\{u,v}

p(w)
d(w,v)α

≥ β ≥ 1 (1)

where N > 0 is the background noise, and X is the set of
other concurrently transmitting nodes.

As u can send its data to the nodes within the distance
(p(u)Nβ )

1
α (i.e., r(u) = (p(u)Nβ )

1
α ) only, we model the communica-

tion graph as a directional disk graph G = (V,E), where E =

{(u, v) |u, v ∈ V, d(u, v) ≤ (p(u)Nβ )
1
α and d(v, u) ≤ (p(v)Nβ )

1
α },

as in [2].

B. Problem Definition

We define the Minimum Latency Collection Scheduling
(MLCS) problem as follows. Given a set of nodes for a
network in a plane, we assign every node a timeslot such that
nodes assigned the same timeslot, say t, can send data to their
receivers simultaneously, satisfying the following condition:
• (Graph Model) Neither collision nor interference occurs

at any receiver.
• (SINR Model) The SINR inequality (1) is satisfied for

every receiver.
A schedule is defined as a sequence of such timeslots, (t1,
t2, · · · , tL), where L denotes the latency of the schedule. A
schedule is successful if all data of every node v ∈ V − {s}
is collected to a sink node s ∈ V .

See Table II for notations.

III. CONSTANT FACTOR APPROXIMATION ALGORITHM

In this section, we introduce our constant factor approxima-
tion algorithm for the MLCS problem with the bounded-sized
message model where each node can merge messages into a
single message up to size of K before it sends. We further



TABLE II: Notations

Symbol Definition
r(u) Transmission range of node u
p(u) Transmission power of node u
ρ Interference factor
ρ · r(u) Interference range of node u, ρ ≥ 1
Cu The set of nodes that reside in r(u)
Iu The set of nodes that reside in ρ · r(u)
V The set of nodes
E The set of edges
G A directed graph with V and E (Section II)

A undirected graph with V and E (Section III)
(u, v) A directional edge from u to v (Section II)

A undirectional edge between u and v (Section III)
d(u, v) The Euclidean distance between two nodes u and v
n The number of nodes
α Path loss exponent
β SINR Threshold
N Background noise
X The set of concurrently sending nodes
B(u) The buffer storage of node u
m(u) The message of u
M A merged message
K The limit of the size of a combined message
T A collection tree
`(u) The level of u on T
h The height of T
Si The set of sender nodes whose level is i on T , 1 ≤ i ≤ h
parent(v) A parent node of v on T
t A timeslot
L Latency (i.e., the length of schedule)
ti The i-th timeslot (1 ≤ i ≤ L)

assume that every node u has its buffer storage B(u) whose
size is unlimited, and is assigned the transmission power level
P , i.e., for every u ∈ V , p(u) = P .

A. Interference Models

We consider both graph and physical interference (SINR)
models with the following assumptions as in [2]:

1) Graph Model: We set the maximum link length (i.e., the
maximum transmission range) r to be the given P , and make
the assumption that the undirected unit disk graph G, where
E = {(u, v) | d(u, v) ≤ r}, is connected and its interference
factor ρ ≥ 1.

2) SINR Model: From the SINR inequality (1) (Section
II), we can compute the possible maximum link length as
rmax = ( P

Nβ )
1
α . We do not consider the links whose length

is rmax because only node u can be a sender to send its
data to some receiver v, where d(u, v) = rmax (i.e., other
nodes cannot transmit concurrently). Thus, we consider the
links (u, v), where d(u, v) ≤ δ( P

Nβ )
1
α , for some constant

δ ∈ (0, 1) as in [15] thereby setting r to be δ( P
Nβ )

1
α . We

also make the assumption that the undirected graph G, where
E = {(u, v) | d(u, v) ≤ r}, is connected and α > 2 [3].

B. Algorithm

The Minimum Latency Collection Scheduling (MLCS) al-
gorithm starts by constructing a collection tree T which is
a breadth-first-search (BFS) tree (cf. [27]) on G rooted at the
sink node s. Then, a number of iterations are performed to find

a schedule based on T . Assigning timeslots for data collection
is based on a constant value H . The value H guarantees that
for any two sender nodes u and u’s descendant node v on T ,
if |`(u)− `(v)| ≥ H , then they can send data simultaneously
without interference, where `(u) denotes the level of u on
the T . The constant value H is set as follows in the two
interference models (See Lemmas 1 and 2):
• Graph Model: H = dρ+ 2e
• SINR Model: H = d{( P ·2π

N(δ−α−1)(α−2) )
1

α−2 } · r−1 + 1e
The details of data collection scheduling are contained in

Algorithms 1 and 2.

Algorithm 1 MLCS
Input: A set V of nodes and a starting time slot t
Output: Length of schedule

1: Construct a collection tree T .
2: for each u ∈ V − {s} do
3: `(u)← level of u on T
4: B(u)← {m(u)}
5: Si ← Si ∪ {u} where i = `(u)
6: end for
7: repeat
8: for j = H downto 1 do
9: S ← {Si | i%H = j%H, 1 ≤ i ≤ h}

10: t← CS(S, t)
11: end for
12: until |B(u)| = 0 for every u ∈ V − {s}
13: return t− 1

Once the collection tree T is constructed (Step 1 in Al-
gorithm 1), `(u) and B(u) are initialized for every node
u ∈ V −{s}. Then nodes are grouped by each level as S1, S2,
· · · , Sh, where h is the height of T (Steps 2-6 in Algorithm
1).

Algorithm 2 Collection Scheduling (CS)
Input: A set S and a starting time slot t
Output: Timeslot t

1: for each Si ∈ S do
2: Pick one node u ∈ Si whose |B(u)| is largest.
3: if |B(u)| 6= 0 then
4: if 0 < |B(u)| ≤ K then
5: Extract all the |B(u)| messages from B(u) and

combine those message into a single message M .
6: else if |B(u)| > K then
7: Extract only |B(u)| messages from B(u) and

combine those messages into a single message
M .

8: end if
9: Assign timeslot t to u to send M to parent(u).

10: Store each message in M in parent(u)’s buffer
B(parent(u)).

11: end if
12: end for
13: return t+ 1

Next, each main iteration (Steps 7-12 in Algorithm 1) are



repeated until the sink node s collects messages from all the
other nodes, i.e., |B(u)| = 0 for every u ∈ V −{s}. In details,
each main iteration repeats the following H submain iterations
(Steps 8-11 in Algorithm 1):
• The first submain iteration examines S = {SH , S2H , S3H ,
S4H , · · · }

• The second submain iteration examines S = {SH−1,
S2H−1, S3H−1, S4H−1, · · · }

• · · ·
• The H-th submain iteration examines S = {SH−(H−1),
S2H−(H−1), S3H−(H−1), S4H−(H−1), · · · }

The details of each of the H submain iteration is as follows
(Algorithm 2). For each of the sender sets in S, only one node,
say u, whose |B(u)| is largest, is chosen. If there are less than
or equal to K messages in its buffer, then extract all the |B(u)|
messages from the buffer, otherwise, if there are more than
K messages in its buffer, then extract only |B(u)| messages
from the buffer. Then the extracted messages are merged into
a single message M , and the node u is scheduled to forward
M to its parent node parent(u) on T at the timeslot t. At the
timeslot t, M is unmerged and the unmerged messages are
buffered at parent(u)’s buffer.

IV. ANALYSIS

In this section, we analyze the Minimum Latency Collection
Scheduling (MLCS) algorithm (Algorithm 1) and bound the
latency of schedules produced by it.

First, we set the constant value H for the graph and SINR
models.

Lemma 1 (Graph Model): For an interference factor ρ ≥ 1,
let H = dρ + 2e. In MLCS algorithm, for any two nodes u
and u’s descendant v on T , if |`(u) − `(v)| ≥ H , then they
can send data simultaneously without interference.

Proof: Consider a pair of sender and receiver, denoted
by s1 and r1, and let s2 be the closest sender to r1 that does
not interfere with r1. Without loss of generality, let us assume
r1 is a descendant of s1 and s2 is a descendent of r1 on T .
Then, d(r1, s2) > ρ · r. In order to bound the shortest number
of hops between r1 and s2, assume a straight line between r1
and s2, and relay nodes with the power level P on the line.
As we are assuming that r1 and s2 are connected with the
shortest number of hops, we need at least dρ·rr e = dρe relay
nodes for the connection. This implies that there are at least
dρ+1e hops between r1 and s2. Thus, in the MLCS algorithm,
we can set H = dρ+ 2e.

Lemma 2 (SINR Model): For SINR threshold β ≥ 1, path
loss exponent α > 2, background noise N > 0, and
some constant δ ∈ (0, 1), let H = dτ · r−1 + 1e, where
τ = ( P ·2π

N(δ−α−1)(α−2) )
1

α−2 and r = δ( P
Nβ )

1
α . In the MLCS

algorithm, for any two nodes u and u’s descendant v on T ,
if |`(u)− `(v)| ≥ H , then they can send data simultaneously
without interference.

Proof: Consider a sender s1 trying to send its data to its
farthest possible receiver r1, and let s2 be the closest sender to
r1 that does not interfere with r1. Without loss of generality,
let us assume r1 is a descendant of s1 and s2 is a descendent

of r1 on T . Then τ =
Ä

P ·2π
N(δ−α−1)(α−2)

ä 1
α−2 is a lower bound

for the shortest distance between r1 and s2 [28], and therefore
d(r1, s2) ≥ τ .

Next, let us bound the shortest number of hops between r1
and s2 as follows. Assume a straight line between r1 and s2,
and relay nodes with the power level P on the line. As we
are assuming that r1 and s2 are connected with the shortest
number of hops, we need at least dτ · r−1 − 1e relay nodes
for the connection. This implies that there are dτ · r−1e hops
between r1 and s2. Thus, in the MLCS algorithm, we can set
H = dτ · r−1 + 1e.

Next, we bound the latency of the data collection schedules
produced by the algorithm.

Lemma 3 (Lower Bound): If n is the number of nodes in
a network, then every data collection schedule with bounded-
sized model where several messages can be merged into a
single message whose size is bounded by K takes at least
bn−1K c timeslots.

Proof: Consider a node u, and n − 1 messages that
the node u has to receive. As a node can merge up to
K messages, the node must receive at least bn−1K c distinct
messages. Therefore, any data collection schedule allowed
to merge messages up to size of K needs at least bn−1K c
timeslots.

Theorem 4: The MLCS algorithm collects data from all the
other nodes successfully to sink node s with at most H ·dn−1K e
timeslots, and it is a constant-factor approximation with the
factor of 2H .

Proof: First note that there are n − 1 messages that
the sink node s must receive. In the MLCS algorithm, s
receives single merged message every H timeslot, and as
the subroutine, Collection-Scheduling algorithm (Algorithm
2), merges messages up to size of K, s receives at most dn−1K e
messages to collect data without collision or interference
(Lemmas 1 and 2). Therefore, it takes at most H · dn−1K e
timeslots.

Next, letting SOL denote the upper bound of the latency
of the algorithm, and OPT be the lower bound (Lemma 3),
we get SOL

OPT ≤
H·dn−1

K e
bn−1
K c

≤ 2H . Thus, it is an approximation
algorithm with the constant-factor of 2H .

V. CONCLUSION

In this paper, we focused on the Minimum Latency Col-
lection Scheduling (MLCS) problem of Wireless Sensor Net-
works (WSNs) in the graph model as well as the more realistic
physical interference model known as Signal-to-Interference-
Noise-Ratio (SINR). We proposed a O(1)-approximation algo-
rithm that works in both the interference models with bounded-
sized message model. To the best known of our knowledge,
our result is the first result of the problem with bounded-sized
model in both interference models. For future work, we plan
to study another related problem, gossiping, adopting both the
interference models with bounded-sized message model.
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