
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Mechanical Engineering Faculty Publications Mechanical Engineering Department

Spring 1990

Data Communication Between an Expert System Shell and a Data Communication Between an Expert System Shell and a

Conventional Algorithmic Program With Application to Cam Conventional Algorithmic Program With Application to Cam

Motion Specification Motion Specification

Paul P. Lin
Cleveland State University, p.lin@csuohio.edu

An-Jen Yang
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enme_facpub

 Part of the Computer-Aided Engineering and Design Commons, and the Computer and Systems

Architecture Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Publisher's Statement
The final publication is available at Springer via http://dx.doi.org/10.1007/BF01200243

Original Citation Original Citation

Lin, P. P., , & Yang, A. J. (1990). Data communication between an expert system shell and a conventional

algorithmic program with application to cam motion specification. Engineering with Computers, 6(2), 113

- 119. doi:10.1007/BF01200243

This Article is brought to you for free and open access by the Mechanical Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Mechanical Engineering Faculty Publications by
an authorized administrator of EngagedScholarship@CSU. For more information, please contact
library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enme_facpub
https://engagedscholarship.csuohio.edu/enme
https://engagedscholarship.csuohio.edu/enme_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenme_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=engagedscholarship.csuohio.edu%2Fenme_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenme_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenme_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
mailto:library.es@csuohio.edu

Data Communication Between an Expert System Shell and a Conventional
Algorithmic Program with Application to Cam Motion Specification

P.P. Lin and A.J. Yang
Mechanical Engineering Department, Cleveland State University, Cleveland, OR, USA

Abstract. Although more and more expert system shells have
begun to provide communication interlaces to conventional pro-
cedural languages, the interlaces are basically shell- and lan-
guage-dependent. This paper presents a simple, shell- and lan-
guage-independent data communication technique between a
shell and a procedural language via a concept analogous to the
handshake data transmission used in microprocessors. A control
file is used for the action of handshake. The communication
interlace is between two data files in two different language envi-
ronments. A program written in a LISP-based expert system
shell, OPS 5, and one written in a procedural language,
FORTRAN, were tested to verify the presented technique.

An expert system for cam motion specification, which needs
the following three tasks-symbolic representation, numerical
computation, and their communication-is described as one of
the possible applications of the technique. These three tasks are
essential to automated engineering design and analysis.

1 Introduction

The term "expert system" is used in artificial intel-
ligence to refer to a computer program that per-
forms a task in a specific domain at the level of a
human expert. The primary difference between ex-
pert and nonexpert systems is that expert systems
deal with knowledge processing for reasoning or in-
ference, whereas nonexpert systems deal with nu-
merical and nonnumerical data processing for com-
putation or information retrieval.

The name OPS 5 stands for official production sys-
tem, version 5. It is a widely used rule-based expert
system shell, namely, production system. A pro-
duction system is appropriate when the knowledge
to be programmed naturally occurs in rule form,
when a program's control is extremely complex, or
when a program is expected to be significantly mod-
ified over a long period of time. Programs in a pro-
duction system have complex control structures

and greater flow of control variations caused by cur-
rent data. In a production system more separation
of knowledge (in the rules) from the control (pro-
vided by the executer) is allowed [1]. A conse-
quence of this separation is that the executer in the
production system model is a more complex object
than the executer in the procedural model. A pro-
duction system program may be compiled to create
an efficient representation for the rules. Even if the
program is compiled, it can execute only in an envi-
ronment that includes a complex language executer,
the inference engine.

A conventional computer program is developed by
explicitly stating all applicable rules and their pre-
cise sequence of execution. The expected behavior
of a conventional algorithmic program, such as in
the procedural language FORTRAN, is embedded
in a code. One can read the code and see the behav-
ior. More specifically, in procedural computation of
a conventional algorithmic program, knowledge
about the problem domain is mixed with instruc-
tions about the flow of control. With a procedural
language, a set of instructions may be compiled into
an object-language program that can be executed
without further need for the compiler.

The OPS 5, written in an artificial intelligence lan-
guage LISP, does not provide a direct interface with
a procedural language program. However, the OPS
5 does provide a mechanism, called the result ele-
ment, through which working memory elements can
be communicated to a LISP function. From LISP
any compiled object code (including compiled
FORTRAN subroutines) can be called. Such an in-
direct interface is very much shell-dependent,
which requires the programmer to understand and
follow the interface procedure carefully and cor-
rectly.

TOPSI, the personal computer version of OPS 5
written in C language uses the relocatable object
files to allow users to link with external functions

Offprint requests: P.P. Lin, Mechanical Engineering Depart- and call them through the normal OPS 5 external
ment, Cleveland State University, Cleveland, OR 44115, USA. mechanism. The external.c file contains the source

code for the functions that provide the interface be-
tween the TOPSI and the user-supplied external
functions. Mter compiling the new external.c and
any other files with external functions, they are
linked using the batch command file. Another C-
based expert system shell designed for personal
computer users provides the option of source code
generation in FORTRAN so that an interface to
FORTRAN callable external functions becomes
possible. However, the data is transmitted through
an external function to the FORTRAN program one
at a time.
It may be desirable for a user to run an expert

system shell and a conventional algorithmic pro-
gram simultaneously, and to communicate data
whenever necessary. The presented communica-
tion technique is based on the concept of the hand-
shake data transmission technique used in micro-
processors. With this technique, linking two
different compiled source codes and communicat-
ing data between them through external functions
are not required.

2 Methodology of Data Communication

2.1 Structure of OPS 5

OPS 5 is more suitable to forward-chaining control
flow. It contains three major components: (1) data
memory or working memory, (2) production mem-
ory or rule memory, (3) an inference engine that
executes the rules. The way the inference mecha-
nism functions is that the rules in the production
memory (knowledge base) are compared to ele-
ments in the data memory (data base) until a rule is
instantiated and new information is placed in the
latter. The iteration continues until no production
rule fires.

The main advantage of using OPS 5 is its stability,
efficiency, and file action capabilities [2]. The main
disadvantage is its lack of a well-developed user
interface. In particular, it lacks editing or explana-
tion facilities and provides no aids for maintaining
test-case libraries [1].

2.2 Handshake Type ofData Communication

Handshake data transmission is used in micropro-
cessors. For instance, the 8-bit M6800 microproces-
sor uses a peripheral control line (CA2) in the pe-
ripheral interface adapter (PIA) [3]. This control
line can be programmed to function as an interrupt
input line or a peripheral output line. The function

of this line is programmed with control register A.
The status of bits 3, 4, and 5 of control register A
determine how it is to function. Bit 5 determines
whether the CA2 line is to be an input line or an
output line. The handshake mode is used when a
peripheral is transmitting data to the microproces-
sor (MPU). The peripheral must tell the MPU when
it has some data, and the MPU must tell the periph-
eral when it has taken the data.

Analogous to the aforementioned handshake data
transmission is the developed two-way data com-
munication technique, which is described as fol-
lows. A program written in OPS 5 (program A) and
one written in FORTRAN (program B) have data
files A and B, respectively. A control file (file C) is
used to control the action of communication. Pro-
grams A and B continue to read the updated value
of N in file C. Here file C and the data of N are
analogous to the control line and the data register in
a microprocessor, respectively. The N value can be
set to 1, 2, or 3 depending on what action is to be
taken. Initially, N is set to 2. Whenever numerical
computation is needed, N is set to 1, In this case
program B (FORTRAN) is activated. After the nu-
merical computation has been performed, N will be
set to 2. In this case program A (OPS 5) will be
activated and program B will be inactivated. If N

has not been set to 1 yet (i.e., program B remains
inactivated), the program will continue to run and
check the updated value of N. However, the FOR-
TRAN program will stop when the program pointer
reaches the end-of-file. In order to keep the pro-
gram continued to read the N value, the end-of-file
needs to be detected first and the pointer is then
instructed to go to a designated statement as soon
as it reaches the end-of-file. When there is a need to
terminate these two programs, N will be set to 3 in
either program depending on the user's stopping
criterion.

2.3 Data Communication Between Two

Data Files

Data communication between two data files is de-
scribed as follows. Program A writes its output to
data file A and program B reads the data in data file
A as the input. Likewise, program B writes its out-
put to data file B and program A reads the data in
data file B as the input. Control file C is used to tell
program A when it has some data to read from data
file B and to tell program B when it has some data to
read from data file A. It should be noted that these
two programs continue to run all the time until N is
set to 3. When one program is active, the other one

r-----------,
rr!o.:e~a~d~s~f'"'r_"O""rn _ _;' Da ta F~::: _~ J__-"-Wr,,,l"-O't",e=s_t=o~

N = 1

Check
N in Control

file C ?

N = 2

r----- -----,
Lw~r""i"'"t""e2..s -!t",o,------;' Data File A;-'_r"'e""ad""s.......f,=.r""om"-J

Fig. 1. Schematic diagram of data communication,

must be inactive, The inactive program does noth-
ing but check the value of N continuously. The
schematic diagram of data communication between
program A (in OPS 5) and program B (in FOR-
TRAN) is shown in Fig. 1. The flowchart of pro-
gram A is shown in Fig. 2. The structure of program
B is very similar to that of program A,

2.4 User Interface

In using a VAX computer (11/780) with the UNIX
operating system, two different programs can open
the same file without using the command SHARE.
More conventionally, the user can run both pro-
grams in the same computer terminal using a multi-
task or multiwindow technique. For instance, the
user can use the upper half of the screen (the first
window) and the lower half of the screen (the sec-
ond window) to monitor the results of these pro-
grams. Two small programs were written to verify
the presented data communication technique. Table
1 shows the intermediate results of these two pro-
grams in a terminal screen with the use of multi win-
dow display. Although in these two programs only
the data of a parameter was communicated, the pre-
sented technique can be used for the communica-
tion between two data files.

3 Expert System for Cam Motion Specification

3.1 Introduction to Cam Motion

Traditionally, a cam designer has to look over many
standard cam motions in order to specify the seg-
ments of a complete cam rotation. The procedure

N = 2 N = 1 N = 3

Fig. 2. Flowchart of program A.

Table 1. The result of data communication between two pro-
grams'

-1--
50. loop-action 94
51. result-test 96 95
52. out-put-to-screen 98

The result from the OPS 5 program is 35.0
53. starting 99
54. loop-action 101
55. loop-action 103
57. out-put-to-screen 107Interrupt:
Break nil
(I):
-2--
$ fort

The result from the FORTRAN program is . 6.0
The result from the FORTRAN program is . 12.0
The result from the FORTRAN program is . 18.0
The result from the FORTRAN program is . 24.0
The result from the FORTRAN program is . 30.0
The result from the FORTRAN program is . 36.0

• Two test programs were written in OPS 5 and FORTRAN,
respectively. The initial input for the OPS 5 to read is O. Then 5 is
added to this value each time the program is executed. Thus, the
initial output is 5, which will be read by the FORTRAN program
as the input. Then 1 is added to this value each time the
FORTRAN program is executed. Thus, the first result from the
program is 6. The process is repeated until both programs are
interrupted or stopped. The intermediate results listed here are
from these two programs with the use of multiwindow display.
The first window shows the result from the OPS 5 after six exe-
cutions. The second window shows the result from the
FORTRAN program after six executions.

--

a Translating Roller Follower

Total Follower Travel L

Normal to-Cam

Pressure Angle

~o /CamShaft

P,tch Point

Pitch Curve
Prime Circle

b I : C'" Developed Prime Clfcle

c----Ri;e--~

Station Point Numbers

Fig. 3. (a) Disk cam and radial follower; (b) the corresponding
follower profile.

may become tedious and time-consuming when
there exists five or more segments within a com-
plete rotation. Thus, it is desirable to build an ex-
pert system for cam motion specification.

A cam is a mechanical element used to drive an-
other element, called the follower, through a speci-
fied motion by direct contact. Figure 3 shows a disk
cam and the corresponding follower profile [4]. The
follower motions can have almost any desired char-
acteristics. In performing cam design, one needs to
specify cam motions first, in particular, standard
cam motions. They are constant velocity, para-
bolic, simple harmonic, modified harmonic, cycloi-
dal, trapezoidal acceleration and modified trapezoi-
dal acceleration, and so on [5,6]. The nonstandard
approach in designing cams is to synthesize appro-
priate motion curves with polynomial equations. In
the polynomial cam design the fifth-order polyno-
mial (known as the 3-4-5 polynomial) and the
eighth-order polynomial are commonly used.

Many equations might be used to represent the
different segments of a cam's displacement dia-
gram. The task for a cam designer to perform is to
join the segments together to form the motion speci-
fication for a complete cam rotation. More specifi-
cally, derivatives of displacement diagrams need to
be matched on the boundary of any two consecutive
segments. In cam motion specification, lift (maxi-
mum rise) L and cam rotation angle BETA for each

IY
_~3~ __________~~D~
[~-+- ___________CL

-2

-,

-- ---- ---?"-t----i

b -6-

o --- -----~--____1

-2 -

-4

-6c

Fig.4. (a) Displacement diagram; (b) velocity diagram; (c) accel-
eration diagram.

segment are to be solved. The procedure can be
stated as follows [6]:

1. The motion requirements of the particular appli-
cation are met.

2. The displacement, velocity, and acceleration di-
agrams are continuous across the boundaries of
the segments.

3. The maximum magnitudes of the velocity and
acceleration peaks are kept as low as possible
consistent with the previous two conditions.

3.2 Illustrative Example

In order to illustrate the specification of a complete
displacement diagram, an example given in Ref. [6]
is used here. The problem is stated as follows.

A plate cam with a reciprocating follower is to be
driven by a constant-speed motor at 150 rpm. The
follower is to start from a dwell, accelerate to a
uniform velocity of 25 in./sec, maintain this veloc-
ity for 1.25 in. of rise, decelerate to the top of the
lift, return, and then dwell for 0.067 sec. As shown
in Fig. 4, only segments Be and EF are known. In

Table 2. Characteristics of various types of cam motions

Type of motion Equation number Velocity factor Acceleration factor Cam speed application

Constant velocity 1 1.00 Infinite Low
Parabolic 2 2.00 4.00 Medium
Simple harmonic 3 \.57 4.93 Medium
Cycloidal 4 2.00 6.28 High
Cubic curve # 1 5 3.00 12.00 Low
Cubic curve # 2 6 1.50 6.00 Low
Cubic curve # 3 7 2.00 8.00 Low
3-4-5 polynomial 8 1.88 5.77 High
Trapezoidal 9 2.00 5.33 High
Modified trapezoidal 10 2.00 4.89 High

specifying the motion for segment AB, the require-
ment is that all diagrams (displacement, velocity,
and acceleration) begin with zeros at point A and
end with nonzeros for the first two diagrams, and
zero for the third diagram. It was found that only
half-cycloidal rise motions can meet such a require-
ment. However, there are at least two possible can-
didates for segment CD. They are half-harmonic
rise and half-cycloidal rise motions. In this segment
the displacement diagram should start from 0 and
end at a positive number. The velocity diagram
should start from a positive number and end at O.
There is no restriction on the acceleration. How-
ever, the chosen acceleration will affect the selec-
tion of the next segment. For example, if half-har-
monic rise motion were chosen, then the full-return
modified harmonic motion may have to be used for
segment DE.

3.3 User-Interactive Programming

The procedure for selecting the possible cam mo-
tions and matching the displacement, velocity, and
acceleration curves is often tedious. Characteristics
of various types of cam motions with the recom-
mended cam speed applications are shown in Table
2 [7]. When using the OPS 5 program, the designer
is first asked to specify the output file name, then
select the cam speed. The available speeds are low,
medium, and high. In high-speed applications the
rate of change of acceleration that is the third deriv-
ative of the displacement (known as jerk) should be
taken into account. Jerk is an indication of the im-
pact characteristics of the loading. It may be said
that impact has jerk equal to infinity [8]. Once the
speed has been selected, the number of possible
candidates will be reduced. Notice that parabolic
and simple harmonic motions are recommended for
use at medium speed. In this case velocity and ac-
celeration factors will be compared. The designer

can select a cam motion with lower peak value of
velocity and higher peak value of acceleration.
However, for the purpose of minimizing peak dy-
namic loads, it is important to minimize the peak
value of acceleration. Thus, the parabolic motion
will be recommended by the expert system pro-
gram. The acceleration curve with abrupt changes
in the parabolic motion will, however, exert
abruptly changing contact stresses at the bearings
and on the cam surface and lead to noise, surface
wear, and eventual failure [8]. This explains why
the parabolic motion should not be used for high-
speed applications. The expert system at this stage
will make recommendations and provide reasoning
in cam motion selection to the user.

3.4 Motion Diagram Classification

Each diagram of a specific cam motion is designated
to an equation number. Under the number, any dia-
gram is classified as 0 to 1, 0 to -1, 1 to 0, and -1 to
owhere -1, 0, and 1 represent the low (negative),
zero, and high (positive) levels, respectively. If, for
instance, the displacement diagram for the second
segment is 0 to 1, then the one for the first and third
segments may be selected by the OPS 5 program
with -1 to 0 and 1 to 0, respectively. After the
appropriate equation number for each segment has
been selected in the OPS 5 program, the
FORTRAN program will perform numerical com-
putation for the lift and the cam rotation angle for
each segment. The computed data (in a data file) is
then transmitted to the OPS 5 program.

4 Conclusions

The use of control files and data files was found to
be a simple and efficient way to communicate data.
The presented communication technique is analo-

gous to the handshake data transmission technique
used in microprocessors. The main advantage is
that the communication interface does not require
linking two different source codes and communicat-
ing data through external functions. The technique
is shell- and language-independent.

Cam motion specification, an important task in
cam design, is usually performed by an experienced
cam designer. It is desirable to build an expert sys-
tem for cam motion specification as the first step of
automated cam design. The expert system will rec-
ommend the appropriate cam motion for the se-
lected cam speed; match the motion diagrams at the
connections between two adjacent segments; calcu-
late the follower's lifts and the cam rotation angles;
and finally, return to the user for making a decision
on the cam motion specification.

Recently, some efforts toward automated design
have been made by researchers such as Dixon and
his colleagues [9] who developed expert systems for
mechanical design. The term "mechanical design"
is most often defined as the creative decision-mak-
ing process for specifying or creating physical de-
vices to fulfill a stated need [10]. This definition
describes what mechanical design is but gives no
indication as to how it is done. The actual process
of mechanical design is not so well understood,
even though there are a number of books on the
subject [11,12]. The first phase of the design process
as stated in Ref. [10] is to transform the problem
into a well-formed set of design specifications. In
this phase symbolic representation and numerical
computation are needed in building a complete ex-
pert system for design. Of equal importance, two-
way data communication technique between them
can make the system more friendly and convenient
to use. In particular, the user of an expert system

Appendix-The OPS 5 and FORTRAN Programs

;---
This is the OPS 5 program designed to demonstrate the
data communication with a FORTRAN program

NOTE: In this program the data received from the
output of the FORTRAN program is added by
5 each time

File designation
C: the control file for both OPS 5 and

FORTRAN program
C1: the output file of the OPS 5

program (for the FORTRAN
program to read)

shell does not have to exit and enter so frequently.
Moreover, the user can make on-line decisions
while programs are running.

References

1. Brownston, L., Farrel, R., Kant, E., Martin N (1986) Pro-
gramming Expert Systems in OPS 5: An Introduction to
Rule-Based Programming. Reading, PA: Addison-Wesley
Publishing

2. Waldron, K.J., Waldron, M.B., Wang, M. (1986) An expert
system for initial bearing selection. Presented at the Design
Engineering Technical Conference in Columbus, OH.
ASME Paper No. 86-DET-125

3. Bishop R. (1979) Basic Microprocessors and the 6800. Ro-
chelle Park, NJ: Hayden Book Co. pp. 164-175

4. Erdman, A.G., Sandor, G.N. (1984) Mechanism Design:
Analysis and Synthesis. Vol. 1. Englewood Cliffs, NJ: Pren-
tice-Hall, 275-276

5. Rothbart, H.A. (1956) Cams: Design, Dynamics, and Accu-
racy, New York: John Wiley & Sons, pp. 182-213

6. Shigley, J.E., Uicker, J.J. (1980) Theory of Machines and
Mechanisms. New York: McGraw-Hill Book Co., pp. 193-
240

7. Jensen, P.W. (1987) Cam Design and Manufacture. Second
Edition. New York: Mercel Dekker, Inc.

8. Mabie, H.H., Reinholtz, C.F. (1987) Mechanisms and Dy-
namics of Machinery. Fourth Edition. New York: John Wi-
ley & Sons, pp. 71-127

9. Dixon J.R., Libardi E.C., Luby S.C., Vaghul, M. (1987)
Expert systems for mechanical design: Examples of sym-
bolic representations of design geometries. Eng. Comput.
2(1), 1-10

10. Ullman, D.G., Dietterich, T.A. (1987) Mechanical design
methodology: Implications on future developments of com-
puter-aided design and knowledge-based systems. Eng.
Comput. 2(1), 21-29

11. Love, S.F. (1980) Planning and Creating Successful Engi-
neered Designs. Advanced Professional Development, Inc.,
Los Angeles

12. Ostrofsky, B. (1977) Design, Planning, and Development
Methodology. Englewood Cliffs, NJ: Prentice-Hall

C2: the input file of the OPS 5 program
(generated by the FORTRAN
program)

,---
(literalize start)
(literalize loop)
(literalize result answer)
(literalize out-put -to-screen data)

; # 1. starting: ========================
(p starting
(start)

(make result 'answer 1)
(make loop))

; # 2. loop-action: ======================
read data from control file C

(p loop-action)
(loop)

- (result 'answer 2)

(openfile input :c: in)
(make result 'answer (accept input))
(closefile input)
(make loop))

3. result-test: =======================
read data from control file C2 (generated by the
Fortran program)

(p result-test)
(loop)
{ (result 'answer 2) (n3>}

(remove (n3»
(openfile date-from-fortran :c2: in)
(make out-put-to-screen 'data (accept
date-from-fortran))
(closefile date-from fortran))

; # 4. output-to-screen ====================
show the result on screen and put it into file C I,
update the data in control file C

(p out-put-to-screen)
(out-put-to-screen 'data (value»

(bind (value> (compute (value> + 5))
(write (crlt) (crlt)
The result from the OPS 5 program is .
.. (value»
(openfile output :c: out)
(write output (value> (crlt))
(closefile output)
(openfile reope :c: out)
(write reope I (crlt))
(closefile reope)
(make start))
(make start)
(run)

c==================================
c This is the FORTRAN program designed to demonstrate
c the data communication with an OPS 5 program
c
c NOTE: In this program the data received from the
c output of the OPS 5 program is added by

I each time

c
c File designation
c C : the control file for both FORTRAN
c and OPS 5 programs
c CI: the input file of the FORTRAN
c program (generated by the DPS 5

c program)
c C2: the output file of the FORTRAN

program (for the OPS 5 program
to read)

c==================================
integer a

51 open (unit=8, file='C', status='old')
rewind 8
read (8,*,end=31) N
close (8)

c
c. · read data from the control file C
c

if (N. eq. 1) then
open (unit=9, file ='Cl' ,status= 'old')
read (9,*) x
close (9)

c. · . . computation example
x=x+l

c. · . . the computation is now completed
c. · . . set the data in the control file C to 2

write (6, *) 'The result from the FORTRAN program is
.. .', x

open (unit = 10, file='C2', status='old')
write (10, *) x
close (10)
open (unit=8, file ='C', status='old')
write (8, *) 2
close (8)
go to 51
else if (N. eq. 2) then

c. . use the command SLEEP for 3 seconds
c to save CPU time (optional)

a=sleep (3)
go to 51
else if (N. eq. 3) then
go to 100
end if

c
31 close (8)

go to 51
c

100 stop
end

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

	Data Communication Between an Expert System Shell and a Conventional Algorithmic Program With Application to Cam Motion Specification
	Publisher's Statement
	Original Citation

	Data communication between an expert system shell and a conventional algorithmic program with application to cam motion specification

