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Data Communication Between an Expert System Shell and a Conventional 
Algorithmic Program with Application to Cam Motion Specification 

P.P. Lin and A.J. Yang 
Mechanical Engineering Department, Cleveland State University, Cleveland, OR, USA 

Abstract. Although more and more expert system shells have 
begun to provide communication interlaces to conventional pro-
cedural languages, the interlaces are basically shell- and lan-
guage-dependent. This paper presents a simple, shell- and lan-
guage-independent data communication technique between a 
shell and a procedural language via a concept analogous to the 
handshake data transmission used in microprocessors. A control 
file is used for the action of handshake. The communication 
interlace is between two data files in two different language envi-
ronments. A program written in a LISP-based expert system 
shell, OPS 5, and one written in a procedural language, 
FORTRAN, were tested to verify the presented technique. 

An expert system for cam motion specification, which needs 
the following three tasks-symbolic representation, numerical 
computation, and their communication-is described as one of 
the possible applications of the technique. These three tasks are 
essential to automated engineering design and analysis. 

1 Introduction 

The term "expert system" is used in artificial intel-
ligence to refer to a computer program that per-
forms a task in a specific domain at the level of a 
human expert. The primary difference between ex-
pert and nonexpert systems is that expert systems 
deal with knowledge processing for reasoning or in-
ference, whereas nonexpert systems deal with nu-
merical and nonnumerical data processing for com-
putation or information retrieval. 

The name OPS 5 stands for official production sys-
tem, version 5. It is a widely used rule-based expert 
system shell, namely, production system. A pro-
duction system is appropriate when the knowledge 
to be programmed naturally occurs in rule form, 
when a program's control is extremely complex, or 
when a program is expected to be significantly mod-
ified over a long period of time. Programs in a pro-
duction system have complex control structures 

and greater flow of control variations caused by cur-
rent data. In a production system more separation 
of knowledge (in the rules) from the control (pro-
vided by the executer) is allowed [1]. A conse-
quence of this separation is that the executer in the 
production system model is a more complex object 
than the executer in the procedural model. A pro-
duction system program may be compiled to create 
an efficient representation for the rules. Even if the 
program is compiled, it can execute only in an envi-
ronment that includes a complex language executer, 
the inference engine. 

A conventional computer program is developed by 
explicitly stating all applicable rules and their pre-
cise sequence of execution. The expected behavior 
of a conventional algorithmic program, such as in 
the procedural language FORTRAN, is embedded 
in a code. One can read the code and see the behav-
ior. More specifically, in procedural computation of 
a conventional algorithmic program, knowledge 
about the problem domain is mixed with instruc-
tions about the flow of control. With a procedural 
language, a set of instructions may be compiled into 
an object-language program that can be executed 
without further need for the compiler. 

The OPS 5, written in an artificial intelligence lan-
guage LISP, does not provide a direct interface with 
a procedural language program. However, the OPS 
5 does provide a mechanism, called the result ele-
ment, through which working memory elements can 
be communicated to a LISP function. From LISP 
any compiled object code (including compiled 
FORTRAN subroutines) can be called. Such an in-
direct interface is very much shell-dependent, 
which requires the programmer to understand and 
follow the interface procedure carefully and cor-
rectly. 

TOPSI, the personal computer version of OPS 5 
written in C language uses the relocatable object 
files to allow users to link with external functions 
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code for the functions that provide the interface be-
tween the TOPSI and the user-supplied external 
functions. Mter compiling the new external.c and 
any other files with external functions, they are 
linked using the batch command file. Another C-
based expert system shell designed for personal 
computer users provides the option of source code 
generation in FORTRAN so that an interface to 
FORTRAN callable external functions becomes 
possible. However, the data is transmitted through 
an external function to the FORTRAN program one 
at a time. 
It may be desirable for a user to run an expert 

system shell and a conventional algorithmic pro-
gram simultaneously, and to communicate data 
whenever necessary. The presented communica-
tion technique is based on the concept of the hand-
shake data transmission technique used in micro-
processors. With this technique, linking two 
different compiled source codes and communicat-
ing data between them through external functions 
are not required. 

2 Methodology of Data Communication 

2.1 Structure of OPS 5 

OPS 5 is more suitable to forward-chaining control 
flow. It contains three major components: (1) data 
memory or working memory, (2) production mem-
ory or rule memory, (3) an inference engine that 
executes the rules. The way the inference mecha-
nism functions is that the rules in the production 
memory (knowledge base) are compared to ele-
ments in the data memory (data base) until a rule is 
instantiated and new information is placed in the 
latter. The iteration continues until no production 
rule fires. 

The main advantage of using OPS 5 is its stability, 
efficiency, and file action capabilities [2]. The main 
disadvantage is its lack of a well-developed user 
interface. In particular, it lacks editing or explana-
tion facilities and provides no aids for maintaining 
test-case libraries [1]. 

2.2  Handshake Type ofData Communication 

Handshake data transmission is used in micropro-
cessors. For instance, the 8-bit M6800 microproces-
sor uses a peripheral control line (CA2) in the pe-
ripheral interface adapter (PIA) [3]. This control 
line can be programmed to function as an interrupt 
input line or a peripheral output line. The function 

of this line is programmed with control register A. 
The status of bits 3, 4, and 5 of control register A 
determine how it is to function. Bit 5 determines 
whether the CA2 line is to be an input line or an 
output line. The handshake mode is used when a 
peripheral is transmitting data to the microproces-
sor (MPU). The peripheral must tell the MPU when 
it has some data, and the MPU must tell the periph-
eral when it has taken the data. 

Analogous to the aforementioned handshake data 
transmission is the developed two-way data com-
munication technique, which is described as fol-
lows. A program written in OPS 5 (program A) and 
one written in FORTRAN (program B) have data 
files A and B, respectively. A control file (file C) is 
used to control the action of communication. Pro-
grams A and B continue to read the updated value 
of N in file C. Here file C and the data of N are 
analogous to the control line and the data register in 
a microprocessor, respectively. The N value can be 
set to 1, 2, or 3 depending on what action is to be 
taken. Initially, N is set to 2. Whenever numerical 
computation is needed, N is set to 1, In this case 
program B (FORTRAN) is activated. After the nu-
merical computation has been performed, N will be 
set to 2. In this case program A (OPS 5) will be 
activated and program B will be inactivated. If N 

has not been set to 1 yet (i.e., program B remains 
inactivated), the program will continue to run and 
check the updated value of N. However, the FOR-
TRAN program will stop when the program pointer 
reaches the end-of-file. In order to keep the pro-
gram continued to read the N value, the end-of-file 
needs to be detected first and the pointer is then 
instructed to go to a designated statement as soon 
as it reaches the end-of-file. When there is a need to 
terminate these two programs, N will be set to 3 in 
either program depending on the user's stopping 
criterion. 

2.3  Data Communication Between Two 

Data Files 

Data communication between two data files is de-
scribed as follows. Program A writes its output to 
data file A and program B reads the data in data file 
A as the input. Likewise, program B writes its out-
put to data file B and program A reads the data in 
data file B as the input. Control file C is used to tell 
program A when it has some data to read from data 
file B and to tell program B when it has some data to 
read from data file A. It should be noted that these 
two programs continue to run all the time until N is 
set to 3. When one program is active, the other one 
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Fig. 1. Schematic diagram of data communication, 

must be inactive, The inactive program does noth-
ing but check the value of N continuously. The 
schematic diagram of data communication between 
program A (in OPS 5) and program B (in FOR-
TRAN) is shown in Fig. 1. The flowchart of pro-
gram A is shown in Fig. 2. The structure of program 
B is very similar to that of program A, 

2.4 User Interface 

In using a VAX computer (11/780) with the UNIX 
operating system, two different programs can open 
the same file without using the command SHARE. 
More conventionally, the user can run both pro-
grams in the same computer terminal using a multi-
task or multiwindow technique. For instance, the 
user can use the upper half of the screen (the first 
window) and the lower half of the screen (the sec-
ond window) to monitor the results of these pro-
grams. Two small programs were written to verify 
the presented data communication technique. Table 
1 shows the intermediate results of these two pro-
grams in a terminal screen with the use of multi win-
dow display. Although in these two programs only 
the data of a parameter was communicated, the pre-
sented technique can be used for the communica-
tion between two data files. 

3 Expert System for Cam Motion Specification 

3.1 Introduction to Cam Motion 

Traditionally, a cam designer has to look over many 
standard cam motions in order to specify the seg-
ments of a complete cam rotation. The procedure 

N = 2 N = 1 N = 3 

Fig. 2. Flowchart of program A. 

Table 1. The result of data communication between two pro-
grams' 

-1----------------------------------------------
50. loop-action 94 
51. result-test 96 95 
52. out-put-to-screen 98 

The result from the OPS 5 program is ........... 35.0  
53. starting 99 
54. loop-action 101 
55. loop-action 103 
57. out-put-to-screen 107Interrupt:  
Break nil  
(I):  
-2----------------------------------------------
$  fort 

The result from the FORTRAN program is . 6.0 
The result from the FORTRAN program is . 12.0 
The result from the FORTRAN program is . 18.0 
The result from the FORTRAN program is . 24.0 
The result from the FORTRAN program is . 30.0 
The result from the FORTRAN program is . 36.0 

• Two test programs were written in OPS 5 and FORTRAN, 
respectively. The initial input for the OPS 5 to read is O. Then 5 is 
added to this value each time the program is executed. Thus, the 
initial output is 5, which will be read by the FORTRAN program 
as the input. Then 1 is added to this value each time the 
FORTRAN program is executed. Thus, the first result from the 
program is 6. The process is repeated until both programs are 
interrupted or stopped. The intermediate results listed here are 
from these two programs with the use of multiwindow display. 
The first window shows the result from the OPS 5 after six exe-
cutions. The second window shows the result from the 
FORTRAN program after six executions. 
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may become tedious and time-consuming when 
there exists five or more segments within a com-
plete rotation. Thus, it is desirable to build an ex-
pert system for cam motion specification. 

A cam is a mechanical element used to drive an-
other element, called the follower, through a speci-
fied motion by direct contact. Figure 3 shows a disk 
cam and the corresponding follower profile [4]. The 
follower motions can have almost any desired char-
acteristics. In performing cam design, one needs to 
specify cam motions first, in particular, standard 
cam motions. They are constant velocity, para-
bolic, simple harmonic, modified harmonic, cycloi-
dal, trapezoidal acceleration and modified trapezoi-
dal acceleration, and so on [5,6]. The nonstandard 
approach in designing cams is to synthesize appro-
priate motion curves with polynomial equations. In 
the polynomial cam design the fifth-order polyno-
mial (known as the 3-4-5 polynomial) and the 
eighth-order polynomial are commonly used. 

Many equations might be used to represent the 
different segments of a cam's displacement dia-
gram. The task for a cam designer to perform is to 
join the segments together to form the motion speci-
fication for a complete cam rotation. More specifi-
cally, derivatives of displacement diagrams need to 
be matched on the boundary of any two consecutive 
segments. In cam motion specification, lift (maxi-
mum rise) L and cam rotation angle BETA for each 
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Fig.4. (a) Displacement diagram; (b) velocity diagram; (c) accel-
eration diagram. 

segment are to be solved. The procedure can be 
stated as follows [6]: 

1.  The motion requirements of the particular appli-
cation are met. 

2.  The displacement, velocity, and acceleration di-
agrams are continuous across the boundaries of 
the segments. 

3.  The maximum magnitudes of the velocity and 
acceleration peaks are kept as low as possible 
consistent with the previous two conditions. 

3.2 Illustrative Example 

In order to illustrate the specification of a complete 
displacement diagram, an example given in Ref. [6] 
is used here. The problem is stated as follows. 

A plate cam with a reciprocating follower is to be 
driven by a constant-speed motor at 150 rpm. The 
follower is to start from a dwell, accelerate to a 
uniform velocity of 25 in./sec, maintain this veloc-
ity for 1.25 in. of rise, decelerate to the top of the 
lift, return, and then dwell for 0.067 sec. As shown 
in Fig. 4, only segments Be and EF are known. In 



Table 2. Characteristics of various types of cam motions 

Type of motion Equation number Velocity factor Acceleration factor Cam speed application 

Constant velocity 1 1.00 Infinite Low 
Parabolic 2 2.00 4.00 Medium 
Simple harmonic 3 \.57 4.93 Medium 
Cycloidal 4 2.00 6.28 High 
Cubic curve # 1 5 3.00 12.00 Low 
Cubic curve # 2 6 1.50 6.00 Low 
Cubic curve # 3 7 2.00 8.00 Low 
3-4-5 polynomial 8 1.88 5.77 High 
Trapezoidal 9 2.00 5.33 High 
Modified trapezoidal 10 2.00 4.89 High 

specifying the motion for segment AB, the require-
ment is that all diagrams (displacement, velocity, 
and acceleration) begin with zeros at point A and 
end with nonzeros for the first two diagrams, and 
zero for the third diagram. It was found that only 
half-cycloidal rise motions can meet such a require-
ment. However, there are at least two possible can-
didates for segment CD. They are half-harmonic 
rise and half-cycloidal rise motions. In this segment 
the displacement diagram should start from 0 and 
end at a positive number. The velocity diagram 
should start from a positive number and end at O. 
There is no restriction on the acceleration. How-
ever, the chosen acceleration will affect the selec-
tion of the next segment. For example, if half-har-
monic rise motion were chosen, then the full-return 
modified harmonic motion may have to be used for 
segment DE. 

3.3 User-Interactive Programming 

The procedure for selecting the possible cam mo-
tions and matching the displacement, velocity, and 
acceleration curves is often tedious. Characteristics 
of various types of cam motions with the recom-
mended cam speed applications are shown in Table 
2 [7]. When using the OPS 5 program, the designer 
is first asked to specify the output file name, then 
select the cam speed. The available speeds are low, 
medium, and high. In high-speed applications the 
rate of change of acceleration that is the third deriv-
ative of the displacement (known as jerk) should be 
taken into account. Jerk is an indication of the im-
pact characteristics of the loading. It may be said 
that impact has jerk equal to infinity [8]. Once the 
speed has been selected, the number of possible 
candidates will be reduced. Notice that parabolic 
and simple harmonic motions are recommended for 
use at medium speed. In this case velocity and ac-
celeration factors will be compared. The designer 

can select a cam motion with lower peak value of 
velocity and higher peak value of acceleration. 
However, for the purpose of minimizing peak dy-
namic loads, it is important to minimize the peak 
value of acceleration. Thus, the parabolic motion 
will be recommended by the expert system pro-
gram. The acceleration curve with abrupt changes 
in the parabolic motion will, however, exert 
abruptly changing contact stresses at the bearings 
and on the cam surface and lead to noise, surface 
wear, and eventual failure [8]. This explains why 
the parabolic motion should not be used for high-
speed applications. The expert system at this stage 
will make recommendations and provide reasoning 
in cam motion selection to the user. 

3.4 Motion Diagram Classification 

Each diagram of a specific cam motion is designated 
to an equation number. Under the number, any dia-
gram is classified as 0 to 1, 0 to -1, 1 to 0, and -1 to 
owhere -1, 0, and 1 represent the low (negative), 
zero, and high (positive) levels, respectively. If, for 
instance, the displacement diagram for the second 
segment is 0 to 1, then the one for the first and third 
segments may be selected by the OPS 5 program 
with -1 to 0 and 1 to 0, respectively. After the 
appropriate equation number for each segment has 
been selected in the OPS 5 program, the 
FORTRAN program will perform numerical com-
putation for the lift and the cam rotation angle for 
each segment. The computed data (in a data file) is 
then transmitted to the OPS 5 program. 

4 Conclusions 

The use of control files and data files was found to 
be a simple and efficient way to communicate data. 
The presented communication technique is analo-



gous to the handshake data transmission technique 
used in microprocessors. The main advantage is 
that the communication interface does not require 
linking two different source codes and communicat-
ing data through external functions. The technique 
is shell- and language-independent. 

Cam motion specification, an important task in 
cam design, is usually performed by an experienced 
cam designer. It is desirable to build an expert sys-
tem for cam motion specification as the first step of 
automated cam design. The expert system will rec-
ommend the appropriate cam motion for the se-
lected cam speed; match the motion diagrams at the 
connections between two adjacent segments; calcu-
late the follower's lifts and the cam rotation angles; 
and finally, return to the user for making a decision 
on the cam motion specification. 

Recently, some efforts toward automated design 
have been made by researchers such as Dixon and 
his colleagues [9] who developed expert systems for 
mechanical design. The term "mechanical design" 
is most often defined as the creative decision-mak-
ing process for specifying or creating physical de-
vices to fulfill a stated need [10]. This definition 
describes what mechanical design is but gives no 
indication as to how it is done. The actual process 
of mechanical design is not so well understood, 
even though there are a number of books on the 
subject [11,12]. The first phase of the design process 
as stated in Ref. [10] is to transform the problem 
into a well-formed set of design specifications. In 
this phase symbolic representation and numerical 
computation are needed in building a complete ex-
pert system for design. Of equal importance, two-
way data communication technique between them 
can make the system more friendly and convenient 
to use. In particular, the user of an expert system 

Appendix-The OPS 5 and FORTRAN Programs 

;-----------------------------------------------
This is the OPS 5 program designed to demonstrate the 
data communication with a FORTRAN program 

NOTE:  In this program the data received from the 
output of the FORTRAN program is added by 
5 each time 

File designation 
C:  the control file for both OPS 5 and 

FORTRAN program 
C1: the output file of the OPS 5 

program (for the FORTRAN 
program to read) 

shell does not have to exit and enter so frequently. 
Moreover, the user can make on-line decisions 
while programs are running. 

References 

1.  Brownston, L., Farrel, R., Kant, E., Martin N (1986) Pro-
gramming Expert Systems in OPS 5: An Introduction to 
Rule-Based Programming. Reading, PA: Addison-Wesley 
Publishing 

2.  Waldron, K.J., Waldron, M.B., Wang, M. (1986) An expert 
system for initial bearing selection. Presented at the Design 
Engineering Technical Conference in Columbus, OH. 
ASME Paper No. 86-DET-125 

3.  Bishop R. (1979) Basic Microprocessors and the 6800. Ro-
chelle Park, NJ: Hayden Book Co. pp. 164-175 

4.  Erdman, A.G., Sandor, G.N. (1984) Mechanism Design: 
Analysis and Synthesis. Vol. 1. Englewood Cliffs, NJ: Pren-
tice-Hall, 275-276 

5.  Rothbart, H.A. (1956) Cams: Design, Dynamics, and Accu-
racy, New York: John Wiley & Sons, pp. 182-213 

6.  Shigley, J.E., Uicker, J.J. (1980) Theory of Machines and 
Mechanisms. New York: McGraw-Hill Book Co., pp. 193-
240 

7.  Jensen, P.W. (1987) Cam Design and Manufacture. Second 
Edition. New York: Mercel Dekker, Inc. 

8.  Mabie, H.H., Reinholtz, C.F. (1987) Mechanisms and Dy-
namics of Machinery. Fourth Edition. New York: John Wi-
ley & Sons, pp. 71-127 

9.  Dixon J.R., Libardi E.C., Luby S.C., Vaghul, M. (1987) 
Expert systems for mechanical design: Examples of sym-
bolic representations of design geometries. Eng. Comput. 
2(1), 1-10 

10.  Ullman, D.G., Dietterich, T.A. (1987) Mechanical design 
methodology: Implications on future developments of com-
puter-aided design and knowledge-based systems. Eng. 
Comput. 2(1), 21-29 

11.  Love, S.F. (1980) Planning and Creating Successful Engi-
neered Designs. Advanced Professional Development, Inc., 
Los Angeles 

12.  Ostrofsky, B. (1977) Design, Planning, and Development 
Methodology. Englewood Cliffs, NJ: Prentice-Hall 

C2:  the input file of the OPS 5 program 
(generated by the FORTRAN 
program) 

,-----------------------------------------------
(literalize start)  
(literalize loop)  
(literalize result answer)  
(literalize out-put -to-screen data)  

; # 1.  starting: ======================== 
(p starting 
(start) 

(make result 'answer 1) 
(make loop) ) 

; # 2. loop-action: ====================== 
read data from control file C 



(p loop-action) 
(loop) 

- (result 'answer 2) 

(openfile input :c: in)  
(make result 'answer (accept input) )  
(closefile input)  
(make loop) )  

# 3.  result-test: ======================= 
read data from control file C2 (generated by the 
Fortran program) 

(p result-test)  
(loop)  
{ (result 'answer 2) (n3>}  

(remove (n3»  
(openfile date-from-fortran :c2: in)  
(make out-put-to-screen 'data (accept  
date-from-fortran) )  
(closefile date-from fortran) )  

; # 4.  output-to-screen ==================== 
show the result on screen and put it into file C I, 
update the data in control file C 

(p out-put-to-screen)  
(out-put-to-screen 'data (value»  

(bind (value> (compute (value> + 5) )  
(write (crlt) (crlt)  
The result from the OPS 5 program is .  
.. (value»  
(openfile output :c: out)  
(write output (value> (crlt) )  
(closefile output)  
(openfile reope :c: out)  
(write reope I (crlt) )  
(closefile reope)  
(make start) )  
(make start)  
(run) 

c================================== 
c This is the FORTRAN program designed to demonstrate 
c the data communication with an OPS 5 program 
c 
c NOTE: In this program the data received from the 
c output of the OPS 5 program is added by 

I each time 

c 
c File designation 
c C : the control file for both FORTRAN 
c and OPS 5 programs 
c CI: the input file of the FORTRAN 
c program (generated by the DPS 5 

c program) 
c C2: the output file of the FORTRAN 

program (for the OPS 5 program 
to read) 

c================================== 
integer a 

51  open (unit=8, file='C', status='old') 
rewind 8 
read (8,*,end=31) N 
close (8) 

c 
c.  · . . . . read data from the control file C 
c 

if (N. eq. 1) then 
open (unit=9, file ='Cl' ,status= 'old') 
read (9,*) x 
close (9) 

c.  · . . computation example 
x=x+l 

c.  · . . the computation is now completed 
c.  · . . set the data in the control file C to 2 

write (6, *) 'The result from the FORTRAN program is 
# .. .', x 

open (unit = 10, file='C2', status='old') 
write (10, *) x 
close (10) 
open (unit=8, file ='C', status='old') 
write (8, *) 2 
close (8) 
go to 51 
else if (N. eq. 2) then 

c.  . use the command SLEEP for 3 seconds 
c  to save CPU time (optional) 

a=sleep (3) 
go to 51 
else if (N. eq. 3) then 
go to 100 
end if 

c 
31 close (8) 

go to 51 
c 

100 stop 
end 

libuser
Typewritten Text
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