
Data Consistency Properties and the Trade­offs in
Commercial Cloud Storages: the Consumers’ Perspective

Hiroshi Wada∗ †, Alan Fekete‡, Liang Zhao† ∗, Kevin Lee∗and Anna Liu∗ †

∗ National ICT Australia – NICTA
† School of Computer Science and Engineering, University of New South Wales

‡ School of Information Technologies, University of Sydney
∗ {firstname.lastname}@nicta.com.au

‡ {firstname.lastname}@sydney.edu.au

ABSTRACT
A new class of data storage systems, called NoSQL (Not
Only SQL), have emerged to complement traditional database
systems, with rejection of general ACID transactions as one
common feature. Different platforms, and indeed differ-
ent primitives within one NoSQL platform, can offer var-
ious consistency properties, from Eventual Consistency to
single-entity ACID. For the platform provider, weaker con-
sistency should allow better availability, lower latency, and
other benefits. This paper investigates what consumers ob-
serve of the consistency and performance properties of vari-
ous offerings. We find that many platforms seem in practice
to offer more consistency than they promise; we also find
cases where the platform offers consumers a choice between
stronger and weaker consistency, but there is no observed
benefit from accepting weaker consistency properties.

1. INTRODUCTION
Cloud computing is attracting interest through the poten-

tial for low cost, unlimited scalability, and elasticity of cost
with load [7, 8, 11, 33]. A wide variety of offerings are typi-
cally categorized as Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS).
IaaS is exemplified by Amazon Web Services (AWS), and
provides the capability to execute existing programs on a
virtual machine that is essentially the same as a standard
box with a standard operating system. The consumer has
control over the virtual resources. Each PaaS system offers
a distinctive set of functionalities as an API, that allow pro-
grams to be written specially to execute in the cloud; Google
AppEngine (GAE) is an example of this approach.
In PaaS systems, a persistent and scalable storage plat-

form is a crucial facility. In an IaaS environment, one could
simply install an existing database engine such as MySQL in
one’s virtual machine instance, but the limitations (perfor-
mance, scale, and fault-tolerance) of this approach are well-
known, and the traditional database systems can become

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro­
vided that you attribute the original work to the author(s) and CIDR 2011.
CIDR’11 Asilomar, California, January 2011

a bottleneck in a cloud platform [2, 27]; thus novel stor-
age platforms are commonly offered within IaaS clouds too.
These storage platforms operate within the cloud platform,
and take advantage of the scale-out from huge numbers of
cheap machines; they also internally have mechanisms to tol-
erate the faults that are inevitable with so many unreliable
machines. Examples include Amazon SimpleDB1, Microsoft
Azure Table Storage2, Google App Engine datastore3, and
Cassandra4. A term often applied to these storage platforms
is NoSQL (Not Only SQL). NoSQL database systems are
designed to achieve high throughput and high availability
by giving up some functionalities that traditional database
systems offer such as joins and ACID transactions. NoSQL
data stores may offer weaker consistency properties, for ex-
ample eventual consistency [32]. A client of such a store
may observe values that are stale, not from the most re-
cent write. This design feature is explained by the CAP
theorem, which states that a partition-tolerant distributed
system can guarantee only one of the following two proper-
ties: data consistency, or availability [17]. Many of NoSQL
database systems aim for availability and partition tolerance
as their primary focus and thus they relax the data consis-
tency constraints.

It is a new challenge for developers to write applications
that use storage offering weak consistency. For example, re-
cent work by Hellerstein [19] has identified a class of mono-
tonic programs that give correct results on eventual consis-
tent data. The application designer therefore tries to express
their computational task using only monotonic operations.
Further complicating the programmer’s task, there are vari-
ant consistency properties that may or may not be provided,
such as read-your-writes, monotonic reads, or session con-
sistency, each changing the set of possible situations, and
thus what the code must be written to handle. The effort
of coding for a weak consistency model is typically justi-
fied by pointing to corresponding tradeoffs, such as better
availability, lower latency, etc [16].

We have experimentally investigated these issues, from
the view of the consumer of the storage facilities. That is,
we try to see what kinds of inconsistency are seen in the
results returned from operations, and how frequently these
situations arise. This contrasts with research on cloud-based

1aws.amazon.com/simpledb/
2www.microsoft.com/windowsazure/
3code.google.com/appengine/
4cassandra.apache.org/

134

storage platforms [9, 10, 12] that takes the view of the plat-
form owner and focuses on algorithms and the properties of
the data held in various replicas within the platform.
Our main contributions are detailed measurements over

several storage platforms, that show how frequently, and in
what circumstances, different inconsistency situations are
observed, and what impact the consumer sees on perfor-
mance properties from choosing to operate with weak con-
sistency mechanisms. The overall methodology of our exper-
iments, for measuring consistency as seen by a consumer, is
another contribution. In Section 2 we report on the exper-
iments that investigate how often a read sees a stale value.
For several platforms, data is always, or nearly always, up-
to-date. For one platform (SimpleDB), we often see stale
data, and so in Section 3 we investigate more deeply the con-
sistency properties of this platform, covering issues such as
consistency among multiple data elements, and cases where
operations on one element impact on reads of another ele-
ment. Section 4 then explores the performance of different
consistency options; in particular, we investigate whether
the consumer is offered any tradeoff in cost or performance,
to compensate for using weak consistency operations. Sec-
tion 5 discusses some limitations to generalising our results.
In Section 6 we connect and contrast our work with other re-
search related to this topic. Section 7 gives some conclusions
and suggests directions for further study.

2. STALENESS OF DATA
We first investigate the probability of a consumer observ-

ing stale data in an item.
Figure 1 illustrates the architecture of the benchmark ap-

plications in this study. There are three cloud-deployed
roles: the data store, and two computations, writer and
reader. A writer repeatedly writes 14bytes of string data
into a particular data element; the value written is the cur-
rent time, so that we can easily check which write is ob-
served in a read. In most of the experiments we report,
writing happens once every three seconds. A reader role re-
peatedly reads the contents from the data element and also
notes the time at which the read occurs; in most experiments
reading happens 50 times every second. In some of our ex-
periments, we use one thread for the writer role and one
or multiple threads each implementing the reader role, in
other experiments we have a single thread that takes both
roles. We refer to one “measurement” of the experiment
as running the writing and reading for 5 minutes, doing 100
writes and 15,000 reads. We repeated the measurement once
every hour, for at least one week, in October and Novem-
ber 2010. In a post-processing data analysis phase, each
read is determined to be either fresh (if the value observed
has a timestamp from the closest preceding write operation,
based on the times of occurrence) or stale; also each read
is placed in a bucket based on how much clock-time has
elapsed since the most recent write operation. By examin-
ing all the reads within a bucket, from a single measurement
run, or indeed aggregating over many runs, we calculate the
probability that a read which occurs a given time after the
write, will observe the freshest value. Repeating the exper-
iment through a week ensures that we will notice any daily
or weekly variation in behavior.

2.1 Amazon SimpleDB
SimpleDB is a distributed key-value store offered by Ama-

Writer Reader
Prepare and send a req.Receive and parse a resp.Read data from a DB

Write data into a DBNoSQLtime t time t+x

Deployed in a process, within a data center,or across data centers
Figure 1: The Architecture of Benchmark Apps

zon. Each key has associated a collection of attributes, each
with a value. For these experiments, we take a data element
to be a particular attribute kept for a particular key (a key
identifies what SimpleDB calls an item). SimpleDB supports
(among other calls) a write operation (PutAttributes) and
two types of read operations, distinguished by a parameter
in the call to GetAttributes: eventual consistent read and
consistent read. The consistent read is supposed to ensure
that the value returned always comes from the most recently
completed write operation, while an eventually consistent
read does not give this guarantee. Our study investigates
how these differences appear to the consumer of data.

SimpleDB is currently operated in four geographic regions
independently (i.e., US West, US East, Ireland and Singa-
pore) and each of them offers a distinct URL as its access
point. For example, https://sdb.us-west-1.amazonaws.
com is the URL of SimpleDB operated in US West. We
used this as the data store for our experiments. Writer and
reader are implemented in Java and run in EC2; they access
SimpleDB in US West through its REST interface.

2.1.1 Accessing from a Single Thread
In the first study, we run the writer and reader in the same

single thread on an m1.small instance provided by EC2 with
Ubuntu 9.10. The writer/reader process is deployed in US
West. We cannot be sure that the SimpleDB data store will
be in the same physical data center as the computation [5],
but using the same geographic region is the consumer’s best
mechanism to reduce network latency.

We executed a measurement run once every hour for 11
days from Oct 21, 2010. In total 26,500 writes and 3,975,000
reads were performed. Since we use only one thread in this
study, the average throughput of reading and writing are
39.52 per second and 0.26 per second, respectively. (Each
measurement runs at least five minutes.) The same set of
measurements was performed with eventual consistent read
and with consistent read.

2.1.1.1 Read­Your­Write Consistency.
Figure 2 and Table 1 show the probability of reading the

fresh value plotted against the time interval that elapsed
from when the write begins, to the time when the read is
submitted. Each data point in the graph is an aggregate over
all the measurements for a particular bucket containing all
time intervals that agree to millisecond granularity; in the
Table we aggregate further, placing all buckets whose time
is in a broad interval together, and here we also show actual
numbers as well as percentages. With eventual consistent
read the probability stays about 33% from 0ms to 450ms. It

135

jumps up sharply between 450ms and 500ms, and it reaches
98% at 507ms. A spike and a valley in the first 10ms are
perhaps random fluctuation due to a small number of data
points. With consistent read, the probability is 100% from
about 0ms onwards.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 200 400 600 800 1000

P
ro

b.
 to

 r
ea

d
fr

es
he

st
 v

al
ue

s

Time elapsed from completing write until starting read (ms)

Consistent Read Eventual Consistent Read

Figure 2: Probability of Reading Freshest Value

Table 1: Probability of Reading Freshest Value

Time Elapsed from
Starting Write Until
Starting Read

Eventual Consistent
Read

Consistent Read

[0, 450)
33.40%

(168,908/505,821)
100.00%

(482,717/482,717)

[500, 1000)
99.78%

(1,192/541,062)
100.00%

(509,426/509,426)

A relevant consistency property is “read-your-writes”, which
says that when the most recent write is from the same thread
as the reader, then the value seen should be fresh. As we find
that stale eventual consistent reads are possible with Sim-
pleDB within a single thread, so we conclude that eventual
consistent reads do not satisfy read-your-writes; however,
consistent reads of course do have this property.
We now consider the variability of the time when fresh-

ness is possible or highly likely, among different measure-
ment runs. For eventual consistent reads, Figure 3 shows
the first time when a bucket has freshness probability that
is over 99%, and the last time when the probability is less
than 100%. Each data point is obtained from a five minutes
measurement run, so there are 258 data points in each time-
series. The median of the time to exceed 99% is 516.17ms
and coefficient of variance is 0.0258. There does not seem to
be any regular daily or weekly variation, rather the outliers
seem randomly placed. Out of the 258 measurement runs,
2 runs (0.78%) and 21 runs (8.14%) show a non-zero prob-
ability of stale read after 4000ms and 1000ms, respectively.
Those outliers are considered to be generated by network
jitter and similar effects.

2.1.1.2 Monotonic Read Consistency.
One consistency property that has been considered impor-

tant [32] is “monotonic read”, where a following operation
sees data that is at least as fresh as what was seen before.
This property can be examined across multiple data ele-
ments, or for a single element as we consider here. We find
that consistent reads are monotonic as they should be, since
each read should always see the most recent value. However,
eventual consistent reads are not monotonic, and indeed the

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Thu, O
ct 21

Fri, O
ct 22

Sat, O
ct 23

Sun, O
ct 24

M
on, O

ct 25
Tue, O

ct 26
W

ed, O
ct 27

Thu, O
ct 28

Fri, O
ct 29

Sat, O
ct 30

Sun, O
ct 31

T
im

e
el

ap
se

d
fr

om
 s

ta
rt

in
g

w
rit

e
(m

s)

First Time P >= 99% Last Time P < 100%

Figure 3: Time to See Freshness (Eventual Consis-
tent Read)

freshness of a successive operation seems essentially inde-
pendent of what was seen before. Thus eventual consistent
reads also do not have stronger properties like causal con-
sistency.

Table 2 shows the probability of observing fresh or stale
values in each pair of successive eventual consistent reads
performed during the range from 0ms to 450ms after the
time of a write. The table also shows the actual number
of observations out of 475,575 of two subsequent reads per-
formed in this measurement study. The monotonic read
condition is violated (that is, the first read returns a fresh
value but the second read returns a stale value) in 23.36%
of pairs. This is reasonably close to what one would expect
of independent operations, since the probability of seeing a
fresh value in the first read is about 33% and the probability
of seeing a stale value in the second read is about 67%. The
Pearson correlation between the outcomes of two successive
reads is 0.0281, which is very low, and we conclude that
eventual consistent reads are independent from each other.

Table 2: Successive Eventual Consistent Reads
hhhhhhhhhhhFirst Read

Second Read
Stale Fresh

Stale 39.94% (189,926) 21.08% (100,1949)
Fresh 23.36% (111,118) 15.63% (74,337)

2.1.2 Accessing from Multi Threads and Processes
In the previous results, all read and write requests origi-

nate from the same thread. We did measurements for four
other configurations:

1. A writer and a reader run in different threads in the
same process,

2. A writer and a reader run in different processes on the
same virtual machine in the same geographic domain
as the data storage (US West),

3. A writer and a reader run on different virtual machines
in US West, or

4. A writer and a reader run on different virtual ma-
chines, one in US West and one in Ireland.

In the first two cases, read and write requests are origi-
nated from the same IP address. In the third case, requests
are originated from different IP addresses but from the same

136

geographical region. In the last case, requests are originated
from different IP addresses in different regions.
Each experiment was run for 11 days as well. In all four

cases the probability of reading updated values shows a sim-
ilar distribution as in Figure 2. We conclude that consumers
of SimpleDB see the same data consistency model regardless
of where and how clients are placed.

2.2 Amazon S3
A similar measurement study was conducted on Amazon

S3 for 11 days. In S3, storage consists of objects within
buckets, so our writer updates an object in a bucket with
the current timestamp as its new value, and each reader
reads the object. In this experiment, we did measurements
for the same five configurations as SimpleDB’s case, i.e., a
write and a reader run in a single thread, different threads,
different processes, different VMs or different regions. Ama-
zon S3 two types of write operations: standard and reduced
redundancy. A standard write operation stores an object so
that its probability of durability is at least 99.999999999%,
while a reduced redundancy write aims at giving at least
99.99% probability of durability. The same set of measure-
ments was performed with standard write and reduced re-
dundancy write.
Documentation states that Amazon S3 buckets provide

eventual consistency for overwrite put operations [4]; how-
ever, no stale data was ever observed in our study regardless
of write redundancy options. It seems that staleness and in-
consistency might be visible to a consumer of Amazon S3
only in executions such that there is a failure in the partic-
ular nodes of platform where the data is stored, during the
time of their access; this seems a very low probability event.

2.3 Azure Table and Blob Storage
The experiment was also conducted on Windows Azure

table and blob storages for eight days. Since it is not possi-
ble to start more than one process on a single VM (Web Role
in this experiment), we did measurements for four configu-
rations: a write and a reader run in a single thread, different
threads, different VMs or different regions. On Azure table
storage a writer updates a property of a table and a reader
reads the same property. On Windows blob storage a write
updates a blob and a reader reads it.
The measurement study observed no stale data at all. It

is known that all types of Windows Azure storages support
strong data consistency [24] and our study confirms it.

2.4 Google App Engine Datastore
Similar to SimpleDB, Google App Engine (GAE) datas-

tore keeps key-accessed entities with properties, and it of-
fers two options for reading: strong consistent read and
eventual consistent read. However, the behavior we ob-
served for eventual consistent read in GAE datastore is com-
pletely different from that of SimpleDB. It is known that
the eventual consistent read of GAE datastore reads from
a secondary replica only when a primary replica is unavail-
able [18]. Therefore, it is expected that consumer program-
mers see consistent data in most reads, regardless of the
consistency option they choose.
We ran our benchmark application coded in Java and de-

ployed in GAE. In GAE applications are not allowed to cre-
ate threads; a thread automatically starts upon an HTTP
request and it can run no more than 30 seconds. Therefore,

each measurement on GAE runs for 27 seconds and we run
measurements every 10 minutes for 12 days. The same set
of measurements was performed with strong consistent read
and eventual consistent read. Also, GAE offers no option
to control the geographical location of applications. There-
fore, we did measurements for two configurations: a writer
and a reader run in the same application (i.e., thread), or a
writer and a reader run in different applications. Each mea-
surement consists of 9.4 writes and 2787.9 reads on average,
and in total 3,727,798 reads and 12,791 writes happened on
average for each configuration.

With strong consistent read no stale value was observed.
With eventual consistent read and both roles in the same
application, no stale value was observed. However 11 out of
3,311,081 readings (3.3E−4%) observed stale values when a
writer and an eventual consistent reader are run in different
applications. We cannot conclude for certain whether stale
values might sometimes be observed when a writer and a
reader run in the same application; however, it suggests the
possibility that GAE offers read-your-writes eventual con-
sistency. In any case, consistency errors are very rare.

3. CONSISTENCY MODEL OF SIMPLEDB
We do not have a public description of the implementa-

tion approach used by SimpleDB. However our data from
Section 2 shows that eventual consistent read of SimpleDB
does not support monotonic reads or read-your-writes. This
section investigates in more detail, what the consumer can
determine about the data consistency model of SimpleDB
eventual consistent read. Section 3.1 investigate the support
of monotonic write consistency and Section 3.2 investigates
the consistency among multiple data elements.

This section discusses the observations obtained in vari-
ous studies; we speculate in Section 4.3 on mechanisms that
might lead to these observations.

3.1 Monotonic Write Consistency
Vogels [32] has advocated the importance of the “mono-

tonic write” property, because programming is notoriously
hard if this is missing. The monotonic write property guar-
antees to serialize the writes by one process. It is not clear
whether a consumer can test this, through looking at the
values received in reads. To gain some insight, we ran a
similar benchmark to the one which is described in Section
2, except it has only one thread which performs 100 repeti-
tions of a small cycle, each of which updates a data element
twice in a row and then reads the element repeatedly for
three seconds; each read is placed in a bucket depending on
the time interval from the start of the cycle till the read is
submitted. We ran a measurement once every hour for nine
days, and aggregated all the buckets from a given time after
the cycle starts.

We refer to the value in the element before the cycle starts
as v0, the value placed there in the first write as v1 and
then v2 is written immediately afterwards. Figure 4 shows
the probability of reading v0, v1 or v2 against the time from
the start of the cycle. The total probability of reading v0, v1
or v2 at times between 50ms to 400ms are 0.097%, 66.339%
and 33.564%, respectively. It appears that the second write
is enough to ensure that no replica any longer contains the
value from before the cycle started, even though we are still
well below the period of 500ms from the first write, which
our earlier data showed was the time till that write would be

137

visible in all replicas. We say that the second write “flushes”
the first write to consistency.
When we modify the experiment to write three different

values v1, v2 and v3 consecutively, the probability of reading
v0, v1, v2 or v3 is 0.051%, 0.028%, 66.650% and 33.272%,
respectively. Again, each write except the last seems to
have been flushed, and this measurement suggests that each
replica almost always contains a value that is no more than
one write behind the latest.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700

P
ro

ba
bi

lit
y

Time invoking read op. after an invocation of the first write op. (ms)

Reading a previous value (v0)
Reading first write (v1)
Reading second write (v2)

Figure 4: Consecutive Writes to One Item

Another study shows even more complexity in the con-
sistency model that the consumer sees for SimpleDB, be-
cause flushing behavior varies depending on the content be-
ing written. This is just like the previous experiment, except
that the same value is written in both writes of a cycle, that
is v1 = v2. Figure 5 shows the probability of reading v0

or v1 over time. The total probability of reading v0 or v1,
through the period between 50ms to 400ms after the write,
is 66.526% and 33.474%, respectively. Note that this is quite
different from what one would see if one just combined the
curves for v1 and v2 in Figure 4. In particular, when v1 =
v2, after the second write some replicas clearly continue to
hold the value from before the cycle, which is not so when
v1 ̸= v2. This suggests that the second write is ignored, and
does not cause a flush of previous writes, if v1 = v2.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700

P
ro

ba
bi

lit
y

Time invoking read op. after an invocation of the first write op. (ms)

Reading a previous value (v0)
Reading a new value (v1)

Figure 5: Writing the Same Value Twice

The SimpleDB data model is comprised of domains, items,
attributes and values [5]. A domain is a set of items. An
item is a set of attribute-value pairs. The write operation
of SimpleDB can update multiple attribute-value pairs in
an item at once. We use this fact to explore more closely
the cases when a second write flushes the value in an earlier
write. Our experiment is just like the previous one, except
that the first write puts v1 in two attributes, A1 and A2,

at once, and the second write puts v2 in only A1. As in
the previous experiments, one experiment writes different
values, v1 ̸= v2, in the first and second writes. The other
experiment writes the same value, v1 = v2, in both writes.

Figure 6 shows the probability of reading v1 or v2 when
v1 ̸= v2. The probability of reading a previous value (v0) is
not zero; however, they are very small (less than 0.1%) and
not shown in this figure. A1 shows similar probability to the
one shown in Figure 4. However, A2 shows the complexity in
the consistency model. Although A2 is updated only once,
by the first write, the probability of reading v1 is very close
to 100%. It indicates that the second write (i.e., writing v2

on A1) affects the data consistency of A2, flushing the earlier
write, despite the fact that it does nothing in A2.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700
P

ro
ba

bi
lit

y

Time invoking read op. after an invocation of the first write op. (ms)

Reading first write (v1) from A1
Reading second write (v2) from A1
Reading first write (v1) from A2

Figure 6: Writing in Two Attributes then in One

When v1 = v2, the probability of reading v1 from A1 and
that of reading v1 from A2 draw similar curves as the one
in Figure 5. This suggests that the second write is ignored
as it is redundant, delivering a subset of the information in
the first write.

3.2 Inter­Element Consistency
NoSQL database systems usually provide limited support

of transactions; in particular, there is typically avoidance of
two-phase commit, and so the platform will typically not
allow transactional update to elements that might be stored
on different physical nodes. We explore this by having a
writer thread modify two data elements (placing the cur-
rent timestamp in each), and each reader examines those
two locations. The SimpleDB data model is comprised of
domains, items, attributes and values. We explore the effect
of how closely the elements are related in the data model:
they might be two attributes within one item, or attributes
that are in different items within the same domain, or they
might be in different items in different domains.

SimpleDB provides several operations to write and read
values from elements; we also explore the effect of using
various combinations of these to do writing and reading.

• PutAttributes updates attribute-value pairs in a cer-
tain item.

• BatchPutAttributes performs multiple PutAttribute
operations in a single call.

• GetAttributes returns all attribute-value pairs in a
certain item.

• Select returns a set of attribute-value pairs in a cer-
tain domain that match a query statment.

Table 3 shows the probability observed under different
ways to write/read the values in two attribute-value pairs X

138

Table 3: Write and Read Two Elements in SimpleDB

two GetAttributes one GetAttributes one Select
A (%) B (%) C (%) D (%) A (%) B (%) C (%) D (%) A (%) B (%) C (%) D (%)

Values in
same item

two PutAttributes 34.459 65.142 0.138 0.262 33.593 66.246 0.000 0.161 33.559 63.808 0.000 2.633
one PutAttributes 12.050 21.820 22.554 43.576 33.859 0.000 0.000 66.141 33.756 0.000 0.000 66.244
one BatchPutAttributes 11.789 21.964 22.507 43.740 33.649 0.000 0.000 66.351 33.610 0.000 0.000 66.390

Values in diff
items in a domain

two PutAttributes 34.443 65.138 0.149 0.271 N/A N/A N/A N/A 32.908 66.832 0.000 0.260
one BatchPutAttributes 11.872 21.918 22.471 43.738 N/A N/A N/A N/A 33.763 0.000 0.000 66.237

Values in
diff domains

two PutAttributes 14.097 24.882 20.740 40.282 N/A N/A N/A N/A N/A N/A N/A N/A
two BatchPutAttributes 14.187 24.924 20.740 40.149 N/A N/A N/A N/A N/A N/A N/A N/A

and Y. N/A means this combination is infeasible; for exam-
ple, it is impossible to read two values from different domains
by one GetAttributes call. For each approach we show 4
probabilities: A for when the values of X and Y are both
fresh, B when X is fresh but the value of Y is stale, C for
the case where the value of X is stale but the value of Y is
fresh, and finally D when both X and Y are stale. We run a
measurement once every hour for seven days and obtained
the total probability for reads that occur from 0ms to 450ms
after the time of a write.
There are three distinct patterns observed. The first pat-

tern is that the probabilities of A, B, C and D are about
12%, 22%, 22% and 44%, respectively. The second pattern
is that the probabilities are about 34%, 0%, 0% and 66%.
The third pattern is that the probabilities are about 34%,
66%, 0% and 0%.
The first pattern is what one would expect given indepen-

dence between the items, based on the 33% probability for a
single read seeing a fresh value. For example, when updating
two attribute-value pairs with a single call of PutAttributes
or BatchPutAttributes and then reading them with two
consecutive calls of GetAttributes, the probability of read-
ing fresh X and Y is about 12% (close to 33% × 33%).
The second pattern shows interaction between the items;

both X and Y are stale or both are fresh. For example, it is
observed when updates are done with one PutAttributes,
and reading with a single call of GetAttributes or Select.
The third pattern holds when two operations are used to do
the writing; no matter how the reading is done, we see here
that the first item has almost 100% chance of freshness, and
the second has about 34% chance of freshness. This is the
same phenomenon observed in Figure 6 with data no more
than one write behind the current value.

4. TRADE­OFF ANALYSIS OF SIMPLEDB
The previous sections show the behavior of SimpleDB for

different read options. For the platform provider, there are
added costs for stronger consistency options (less availabil-
ity, higher latency) [1]. We wish to see however what the
consumer experiences, as this is what will guide the users of
SimpleDB make a well-informed decision about which con-
sistency option to ask for when reading.
We used the benchmark architecture described in Section

2. The measurement ran between 1 and 25 virtual machines
in US West to write and read one attribute (which is a
14bytes string data) from an item in SimpleDB. Each vir-
tual machine runs 100 threads, i.e., emulated clients, each of
which executes one read or write request every second in a
synchronous manner. Thus, if all requests’ response time is
below 1,000ms, the throughput of SimpleDB can be reported
as 100% of the potential load. Three different read-write ra-
tios were studied: 99% read and 1% write, 75% read and

25% write, and 50% read and 50% write cases. We run a
measurement, which runs for five minutes with a set number
of virtual machines, once every hour for one day.

4.1 Response Time and Throughput
The benefit of eventual consistent read in SimpleDB is

explained as follows [5].

The eventually consistent read option maximizes
your read performance (in terms of low latency
and high throughput).

Since a consistent read can potentially incur higher
latency and lower read throughput it is best to
use it only when an application scenario man-
dates that a read operation absolutely needs to
read all writes that received a successful response
prior to that read.

To test this advice, we investigated the difference in re-
sponse time, throughput and availability of the two options,
as offered load increased. Figure 7 shows the average, 95
percentile and 99.9 percentile response time of eventual con-
sistent reads and consistent reads at various levels of load.
The result is obtained from the case of 99% read ratio and
all failed requests are excluded. The result shows no visible
difference in average response time; however, consistent read
slightly outperforms eventual consistent read in 95 percentile
and 99.9 percentile response time.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

 0 500 1000 1500 2000 2500

R
ea

d
R

T
T

 (
se

c)

Number of Emulated Clients (Threads)

Average

95.0 percentile

99.9 percentile

Consistent Read Eventual Consistent Read

Figure 7: Response Time of Read on SimpleDB

Figure 8 and 9 show the average response time of reads
and writes at various read-write ratios, plotted against the
number of emulated clients. We conclude that changing the
level of update-intensity does not have a marked impact.

Figure 10 shows the absolute throughput, the average
number of processed requests per second. We also place
whiskers surrounding each average with the corresponding

139

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 R
ea

d
R

T
T

 (
se

c)

Number of Emulated Clients (Threads)

Consistent - 99% read
Consistent - 75% read
Consistent - 50% read

Eventual Consistent - 99% read
Eventual Consistent - 75% read
Eventual Consistent - 50% read

Figure 8: Response Time of Read on SimpleDB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 W
rit

e
R

T
T

 (
se

c)

Number of Emulated Clients (Threads)

Consistent - 99% read
Consistent - 75% read
Consistent - 50% read

Eventual Consistent - 99% read
Eventual Consistent - 75% read
Eventual Consistent - 50% read

Figure 9: Response Time of Write on SimpleDB

minimum and maximum throughput. Similar to what we
saw for response time, the result that consistent read slightly
outperforms eventual consistent read, though the difference
is not significant. Figure 11 shows the throughput as a per-
centage of what is possible with this number of clients. As
the response time increased, each client sent less than one
request every second and, therefore, the throughput percent-
age decreased.

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

 0 500 1000 1500 2000 2500

A
bs

ol
ut

e
T

hr
ou

gh
pu

t (
re

q/
se

c)

Number of Emulated Clients (Threads)

Consistent Read

Eventual Consistent Read

Figure 10: Processed Requests of SimpleDB

We observed that SimpleDB often returns exceptions (with
status code 503: ”Service is currently unavailable”) under
heavy load. Figure 12 shows the average failure rates of
eventual consistent reads and consistent reads; each data
point has whiskers to the corresponding maximum and min-
imum failure rates. Clearly the failure rate increased as
offered load increased, but again we find that eventual con-
sistent read does less well than consistent read, though the
difference is not significant.

40.0

50.0

60.0

70.0

80.0

90.0

100.0

 0 500 1000 1500 2000 2500

T
hr

ou
gh

pu
t P

er
ce

nt
ag

e
(%

)

Number of Emulated Clients (Threads)

Consistent Read

Eventual Consistent Read

Figure 11: Throughput Percentage of SimpleDB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 0 500 1000 1500 2000 2500

F
ai

lu
re

 R
at

e
(%

)

Number of Emulated Clients (Threads)

Consistent Read

Eventual Consistent Read

Figure 12: Request Failure Rate of SimpleDB

4.2 Financial Cost
Another way people sometimes view the consistency choice

in cloud platforms is as a trade-off against financial cost [22].
In US West region, SimpleDB charges $0.154 per SimpleDB
machine hour, which is the amount of SimpleDB’s server
capacity used to complete requests, and which can vary de-
pending on factors such as operation types and the amount
of data to access. We compared the financial cost of two read
consistency options for the runs described above; Amazon
reports the SimpleDB machine hour usage, so one can cal-
culate the financial charge incurred for each request. The
cost of read operations is constant, at $1.436 per 106 re-
quests, regardless of the consistency options or workload.
Also, the cost of write operations is constant at $3.387 per
106 requests as well.

4.3 Implementation Ideas
While our study takes a consumer view of the storage,

we have ideas about the implementation based on our ex-
periments. It seems feasible that SimpleDB maintains each
item stored in 3 replicas, one primary and two secondaries.
We suspect that an eventually consistent read chooses one
replica at random, and returns the value found there, while a
consistent read will return the value from the primary. This
aligns with our experiments showing the same latency and
computational effort for the two kinds of read. We are told
(James Hamilton, personal communication) that an update
is sent synchronously to all replicas. We conjecture that the
update is applied to the data immediately at the primary
replica, but that it remains buffered at the secondaries for
a while, explaining the 66% probability of seeing a stale
value in an eventual consistent read. Perhaps a write that

140

has been buffered at a replica is applied immediately when
any subsequent write operation arrives (even one that is for
a different data element), or when a timeout expires (usu-
ally 500ms after the write itself). This would explain the
experiments of section 3.1 and 3.2, if we assume that all
items within one domain are replicated at the same physical
nodes, and items in different domains are replicated else-
where. Further, maybe the system has an optimization that
detects redundant write operations, and suppresses them.
This must be sophisticated enough to detect not only re-
peated put requests, but also cases where one put is merely
a subset of the previous update. We also suggest, from Table
3, that when multiple attributes are modified within a single
operation such as PutAttributes or BatchPutAttributes,
the activity happens with a single message, since in these
cases we do not see any immediate application of the writes,
but we do see that a following read always observes the same
freshness status for each attribute.

5. CAN CONSUMERS RELY ON OUR RE­
SULTS?

Our paper reports on the properties and performance of
various cloud-based NoSQL storage platforms, as we ob-
served them during some experiments. A natural concern is
whether our results can be extrapolated to predict what the
consumer will experience when using one of the platforms.
We really can’t say!
All the usual caveats of benchmarks measurements apply

to us. For example, the workload may be unrepresentative
for the consumer’s needs, perhaps because in our tests the
size of the writes is so small, and the number of data ele-
ments is small. Similarly, the metrics quoted may not be
what matters to the consumer, the consumer’s staff may be
more or less skilled in operating the system than we were,
perhaps the experiments were not run for long enough and
the figures might reflect chance rather than system funda-
mentals, etc.
As well, there is a particular issue when measuring cloud

systems: the vendor might change any aspect of hardware
or software without notice to the consumer. For example,
even if the algorithm used by a platform currently provides
read-your-writes, the vendor could shift to a different imple-
mentation that lacked this guarantee. As another example,
a vendor that currently places all replicas within a single
data center might implement geographical distribution, with
replicas stored across data centers for better reliability. Such
a change could happen without notice to the consumers,
but it might lead to a situation where eventual consistent
reads have observably better performance than consistent
reads. Similarly, the background load on the vendor’s sys-
tems might have a large impact, on latency or availability or
consistency, but the consumer cannot control or even mea-
sure what that load is at any time [29]. For all these reasons,
our observations that eventual consistent reads are no better
for the consumer, might not hold in the future.
The observations reported in this paper were mainly ob-

tained in October and November, 2011. We had conducted
similar experiments in May, 2011. Most aspects were sim-
ilar between the two sets of experiments, in particular the
500ms latency till SimpleDB reached 99% chance for a fresh
response to a read, the high chance of fresh data in even-
tual consistent reads in S3, Azure and GAE, and the lack

of performance difference between SimpleDB for reads with
different consistency. Other aspects had changed, for exam-
ple in the earlier measurements there was less variation in
the response time seen by reads on SimpleDB.

6. RELATED WORK
A broad survey of database replication techniques is given

in [21].
Many papers have described particular architectures and

algorithms for storage in the cloud. These owe much to ear-
lier designs for distributed and especially mobile systems.
The concept of eventual consistency arose in work on dis-
connected operation [13]. Saito and Shapiro offer a valuable
survey of techniques that keep replicas loosely synchronized,
such as those that provide eventual consistency [28]. Specif-
ically dealing with the cloud, we note several papers from
the past five years that describe particular systems: Yahoo!’s
PNUTS [10], Amazon’s Dynamo [12], Google’s Bigtable [9].
The algorithms may be similar to those used in some of the
consumer-accessible storage services.

Much research has investigated the performance and cost
effectiveness of cloud computation platforms [20,22,30], us-
ing benchmark applications simulating typical web applica-
tions. For example Kossmann et al use the TPC-W work-
load with platforms that provide both storage and compu-
tation service, and report on throughput (accepted requests
per second), financial cost per throughput achieved, and also
the variability of the cost. In contrast, our paper focuses di-
rectly on NoSQL storage systems, and especially on their
consistency properties.

Some previous papers have measured consistency aspects
of storage platforms. For a single SQL-interface database en-
gine, Fekete et al [14] define a benchmark that reports how
often a consistency condition is violated. They observe rates
that depend on the amount of contention between items,
and the spacing of read and write operations within a trans-
action. Considering cloud platforms, Florescu and Koss-
man [16] argued for the importance of including consistency
among the features that are measured, and they suggested
that system evaluation should identify the tradeoff between
consistency and other properties such as financial cost.

The CloudCmp [25] project benchmarks many features of
cloud computing. It includes a measure of “time to consis-
tency” of the storage layer. CloudCmp shows a very differ-
ent pattern to what we found, and they indicate that the
median time to consistency is only about 80 milliseconds.
This seems to be because they report the delay from the
write until the first time that a read returns the up-to-date
value, whereas we note that such a read may be followed by
others that show stale values; thus we measure the period
till almost all reads see the recent write. Another difference,
though probably not the reason for the different outcomes,
is that CloudCmp does an insertion of a new key as the write
operation, while we update the value in an existing element.
Our work also goes further than CloudCmp by considering
more aspects than just reading the recent write; we mea-
sure for example properties like monotonicity of reads and
inter-element consistency.

A blog [26] reported results, like ours in Section 4, that
eventual consistent and consistent reads have similar latency
and throughput in SimpleDB. They did not explore the fi-
nancial costs.

A different approach to measuring consistency of cloud

141

storage platforms is taken by Anderson et al [6], where they
record lengthy traces with interleaved operations, and after
the fact they check for cycles in various conflict graphs to
determine whether various properties hold. The properties
they analyse are those that are important in parallel hard-
ware design, such as regular or safe registers, rather than the
properties usual in cloud storage platforms such as eventual
consistency with monotonic reads.
There is also work on formally defining weak consistency

properties. Usually eventual consistency is defined in terms
of internal properties such as the state of the replicas, but
Fekete and Ramamritham [15] have proposed a definition
based only on the results that are returned to the con-
sumer. Extra properties such as session properties, that
can strengthen the programmability of eventual consistency,
were identified by Terry et al [31]. Awareness of these was
spread by the important advocacy of Vogels [32]. Aiyer et
al [3] define “consistability” based on the percentage of the
operating period in which different consistency models are
present.
Kraska et al. [23] consider having a layer above the stor-

age, where different consistency models are supported with
different performance properties, and then the client can
choose dynamically what is appropriate. They build a the-
oretical model to analyze the impact of the choice of consis-
tency model in terms of performance and cost, and propose
a framework that allows for specifying different consistency
guarantees on data. The results discussed in our paper could
be used as inputs, i.e., actual behavior, performance and
cost of different consistency models, to complement Kraska’s
work.
In contrast to the NoSQL databases we have studied, Mi-

crosoft Azure SQL5 aims to support the traditional rela-
tional model and transactional guarantees in the cloud. It
provides strong consistency in reads. However, it has a re-
striction on the size of the data (a database can grow up to
50GB) and does not support distributed transactions.

7. CONCLUSION
To achieve high availability and low latency, many cloud

data storage platforms (or particular operations within a
platform) use techniques that avoid two-phase commit and/or
synchronous access to a quorum of sites. Thus they can’t
guarantee strong consistency. It is commonly said that de-
velopers should program around this by designing applica-
tions that can work with eventual consistency or similar
weak models. We have examined the experience of the con-
sumer of cloud storage, in regard to weak consistency and
possible performance tradeoffs to justify it. This informa-
tion should help a developer who is seeking to understand
the properties of the new NoSQL storage platforms for the
cloud, and who needs to make sensible choices about which
storage platform to use.
We found that platforms differed widely in how much

weak consistency is seen by consumers. On some platforms,
we found that the consumer did not observe any inconsis-
tency or stale data, over several million reads through a
week. While inconsistency is presumably possible, it seems
very rare; perhaps only happening if there is a failure of one
of the nodes or communication links actually used in the
computation. Since replication of storage is typically done

5www.microsoft.com/windowsazure/sqlazure/

on 3 or at most 4 nodes, such a failure is unlikely during the
computation. Here the risks from inconsistency seem less
important compared to other sources of data corruption,
such as bad data entry, operator error, customers repeat-
ing input, fraud by insiders, etc. Any system design needs
to have recourse to manual processes to fix the mistakes
and errors from these other sources, and the same processes
should be able to cover rare inconsistency-induced difficul-
ties. On these platforms, we wonder whether the developer
might sensibly choose to treat eventual consistent reads as
if they are consistent, and accept the rare errors as part of
doing business.

On Amazon SimpleDB, the consumer who requests even-
tual consistent reads experiences frequent stale reads and
inter-item inconsistency. Also, this choice does not provide
other desirable properties like read-your-writes and mono-
tonic reads. Thus the programmer who uses eventual con-
sistent reads must take great care in application design, to
code around the dangers of this. However, we found no
compensating benefit to the programmer: no reduction in
latency, increase in observed availability or lower financial
cost, for eventual consistent reads compared to using consis-
tent reads (which are also offered as an option in SimpleDB).
There may be benefits to the platform provider when even-
tual consistent reads are done, but at present these gains
seem not to be passed on to the consumer. Thus on this
platform in its current implementation, we see no reason for
a developer to code with eventual consistent reads.

This work highlights the importance of a research agenda
to expand the scope of the service level agreement between
cloud provider and customer, to describe more carefully and
quantitatively the consistency properties that a platform of-
fers. Tool support for monitoring service levels should also
include reporting on consistency aspects. We plan to pursue
these ideas.

Acknowledgement
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program. We
thanks Sherif Sakr and Shirley Goldrei for proofreading.

8. REFERENCES
[1] D. Abadi. Problems with CAP, and Yahoo’s little

known NoSQL System.
dbmsmusings.blogspot.com/2010/04/

problems-with-cap-and-yahoos-little.html.
[Accessed: Oct 1, 2010].

[2] R. Agrawal et al. The Claremont Report on Database
Research. SIGMOD Record, 37(3):9–19, 2008.

[3] A. S. Aiyer, E. Anderson, X. Li, M. A. Shah, and J. J.
Wylie. Consistability: Describing usually consistent
systems. In Usenix Workshop on Hot Topics in
Systems Dependability (HotDep’08), 2008.

[4] Amazon Web Services. S3 FAQs.
aws.amazon.com/s3/faqs/. [Accessed: July 6, 2010].

[5] Amazon Web Services. SimpleDB FAQs.
aws.amazon.com/simpledb/faqs/. [Accessed: July 6,
2010].

[6] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J.
Wylie. What consistency does your key-value store

142

actually provide? In Usenix Workshop on Hot Topics
in Systems Dependability (HotDep’10), 2010.

[7] M. Armbrust et al. Above the Clouds: A Berkeley
View of Cloud Computing. Technical report,
University of California, Berkeley, Feb 2009.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud Computing and Emerging IT
Platforms: Vision, Hype, and Reality for Delivering
Computing as the 5th Utility. Future Generation
Computer Systems, 25(6):599–616, 2009.

[9] F. Chang et al. Bigtable: A Distributed Storage
System for Structured Data. In USENIX Sym. on
Operating Systems Design and Implementation, 2006.

[10] B. F. Cooper et al. Pnuts: Yahoo!’s hosted data
serving platform. In Proc Very Large Databases
(VLDB’08), pages 1277–1288, 2008.

[11] M. Creeger. Cloud Computing: An Overview. ACM
Queue, 7(5):3–4, 2009.

[12] G. DeCandia et al. Dynamo: Amazon’s Highly
Available Key-Value Store. Operating Systems Review,
41(6):205–220, 2007.

[13] A. J. Demers et al. Epidemic algorithms for replicated
database maintenance. In Proc ACM Conference on
Principles of Distributed Computing (PODC’87),
pages 1–12, 1987.

[14] A. Fekete, S. Goldrei, and J. P. Asenjo. Quantifying
isolation anomalies. In Proc Very Large Databases
(VLDB’09), pages 467–478, 2009.

[15] A. Fekete and K. Ramamritham. Consistency models
for replicated data. In Replication (LNCS 5959), pages
1–17. Springer Verlag, 2010.

[16] D. Florescu and D. Kossmann. Rethinking cost and
performance of database systems. SIGMOD Record,
38(1):43–48, 2009.

[17] S. Gilbert and N. Lynch. Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant
Web Services. SIGACT News, 33(2):51–59, 2002.

[18] Google. Datastore Python API Overview.
code.google.com/appengine/docs/python/

datastore/overview.html. [Accessed: Jul 22, 2010].

[19] J. M. Hellerstein. Datalog redux: experience and
conjecture. In Proc. ACM Principles of Database
Systems (PODS’10), pages 1–2, 2010.

[20] Z. Hill, M. Mao, J. Li, A. Ruiz-Alvarez, and
M. Humphrey. Early Observations on the Performance
of Windows Azure. In AMC Workshop on Scientific
Cloud Computing, June 2010.

[21] B. Kemme, R. Jiménez-Peris, and M. Patiño
Mart́ınez. Database Replication (Synthesis Lectures on
Data Management 7). Morgan and Claypool, 2010.

[22] D. Kossmann, T. Kraska, and S. Loesing. An
Evaluation of Alternative Architectures for
Transaction Processing in the Cloud. In ACM
International Conference on Management of Data,
pages 579–590. ACM, 2010.

[23] T. Kraska, M. Hentschel, G. Alonso, and
D. Kossmann. Consistency Rationing in the Cloud:
Pay only when it matters. International Conference
on Very Large Data Bases, August 2009.

[24] S. Krishnan. Programming Windows Azure:
Programming the Microsoft Cloud. O’Reilly, 2010.

[25] A. Li, X. Yang, S. Kandula, and M. Zhang.
CloudCmp: Comparing Public Cloud Providers. In
Internet Measurement Conference, page to appear,
2010.

[26] H. Liu. The cost of eventual consistency.
http://huanliu.wordpress.com/2010/03/03/%EF%

BB%BFthe-cost-of-eventual-consistency/.
[Accessed Oct 12, 2010].

[27] S. Malkowski et al. Empirical Analysis of Database
Server Scalability using an N-tier Benchmark with
Read-Intensive Workload. In ACM Symposium on
Applied Computing, pages 1680–1687. ACM, 2010.

[28] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, 2005.

[29] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: Observing, analyzing, and
reducing variance. In Proc Very Large Databases
(VLDB’10), pages 460–471, 2010.

[30] W. Sobel et al. Cloudstone: Multi-Platform,
Multi-Language Benchmark and Measurement Tools
for Web 2.0. In Workshop on Cloud Computing and its
Applications, October 2008.

[31] D. B. Terry et al. Session guarantees for weakly
consistent replicated data. In Proc of International
Conference on Parallel and Distributed Information
Systems (PDIS’94)., pages 140–149. IEEE Computer
Society, 1994.

[32] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, 2009.

[33] A. Weiss. Computing in the Clouds. netWorker,
11(4):16–25, 2007.

143

