
Data-Defined Problems and Multiversion

Neural-Net Systems

Derek Partridge & William Β Yates

Department of Computer Science

University of Exeter, Exeter EX4 4PT, UK

derek@dcs. exeter. ac. uk

ABSTRACT

Data-defined problems are not restricted to any particular problem

domain, and are common. Data-defined problems, as the name suggests, are

defined by a set of input-output mappings, and for the problems of particular

interest the full details of how the inputs are related to the outputs are

unknown. Such problems present the traditional programmer, whether using

AI techniques or not, with a difficult task. This is because programming

requires a prerequisite understanding of the mechanisms relating input and

output such that an algorithmic solution can be devised. Automatic

induction techniques demand no such prerequisite information. Neural

computing is one such induction technique. And, moreover, it is one that

can outperform more traditional AI induction techniques, such as IF-THEN

rule systems. Neural computing can do better because it can follow a well-

defined path to an optimal result, and because multiple, alternative versions

can be cheaply generated to permit exploitation of certain properties of the

resultant version set - in particular, 'diversity'. We define a valuable

extension to previous definitions of this quantity, and exploit it to produce

significant system performance enhancements. In addition, because our

neural computing is an approximating technique, it is also amenable to

exploitation of diversity through averaging multiple versions. An example

of letter recognition is used to illustrate these ideas.

KEYWORDS

data mining, neural computing, software diversity, multiversion software,

voting, averaging

19

Vol.yxwvutsrqponmlkjihgfedcbaWTSPMIHECBA 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

1. INTRODUCTION

Computational solutions to problems typically rely on the existence of an

abstract specification of the problem to be tackled. But where do such

specifications come from? With the important, but unrepresentative,

exception of abstract technical problems (such as greatest common divisor,

or prime numbers), the specification is generated by someone (perhaps

system analyst) from the real-world manifestation of the problem.

This specification may be a 'good' one (i.e. accurate and useful), or a

'bad' one. It is, however, both a fiction and an approximation of reality. But

it can be an invaluable stepping stone from the problem to an effective

computational solution. In traditional software engineering, the specification

is expected to be complete and accurate, whereas in AI it is more acceptable

for the specification to be known to be both incomplete and in some ways no

more than a rough guide (which is developed and refined using evolutionary

programming techniques, see Partridge, 1994). But in either case, there is a

prerequisite need for some reasonable understanding of the input-output

relationships of the problem in order to guide the programming task.

Many problems, however, are manifest as little more than sets of input-

output data. They exist in systems of high complexity where our knowledge

of the underlying mechanisms is both crude and fragmentary. Some

examples of such data-defined problems are: human face recognition;

signature recognition; prediction of periodic fluctuations in water

consumption or electricity demand for a city; optimal control of complex

chemical processes and manufacturing plants; adjustment of treatment

dosage on the basis of bodily response to last dosage, etc. In all of these

cases, it is far easier to collect examples of the problem data (both good and

bad examples) than it is to determine in more than a very rough and

fragmentary manner precisely how the output depends on the input.

Effective computational solutions to such problems must come tlirough

data-driven techniques such as automatic induction. An induction algorithm

constructs a general solution (such as a decision tree, a rule set, or a neural

network) from a set of examples. To be useful the induction techniques must

interpolate between and extrapolate beyond the given examples.

Supervised learning in neural computing is one such induction

technique, and one that appears to be more powerful than the more

traditional AI induction techniques, such as rule-based classifier systems

(e.g. Holland et al., 1986).

20

D. Partridge and W.B. Yates Journal of Intelligent Systems

2. WHY NEURAL COMPUTING IS DIFFERENT

There are many different manifestations of neural computing. In this

paper we are only concerned with supervised learning in parallel distributed

neural-net systems. The classic example (but by no means the only one) is

the training of multilayer perceptrons (MLPs) using the backpropagation

(BP) algorithm (Rumelhart and McClelland, 1986).

A conventional program is a symbolic structure with special properties

(apart from being machine executable). Programs exhibit a compositionality

of both syntax and semantics such that the meaning of the whole program

can be composed systematically from the meanings of the individual

components. And, moreover, the components themselves relate directly to

the elements of the conceptual solution to the problem.

Thus if we program a system to recognize handwritten letters, then

components of the program will map onto elements of our conceptual

solution. For example, if we believe that the proportion of vertical to

horizontal line is an important determinant, then the program will contain

components that prescribe precisely how to compute the proportion of

vertical line in any character image, and in what way it is used in the

recognition process. Not only will components of the program relate to our

understanding of how to solve the problem, but the dynamic processes

prescribed in the program will also similarly reflect elements of the same

understanding. The result of this is that we can rationalize the operation of

the program in terms of our understanding of how the problem should be

solved.

A trained MLP offers none of these useful correspondences. There is no

known way to directly relate components of a trained MLP to elements

(either static or dynamic) of our conceptualization of the problem that the

trained network solves. This absence of useful (some might say, essential)

relationships is not thought to be beneficial, and many researchers are

endeavouring to elicit some valuable correspondences between problems and

MLP implementations. However, for data-defined problems, when we don't

even possess a substantial conceptualization of the problem anyway, such

efforts might seem rather pointless - unless they facilitate the development

of a better conceptualization of the problem. But if we still believe that

computerization of such problems can be useful, then neural computing

provides an appropriate technology.

21

Vol.zyxwvutsrqponmlkjihgfedcbaTRPOMLIFB 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

3. NEURAL COMPUTING AS A SOFTWARE TECHNOLOGY

Inductive programming using MLPs is radically different from

conventional programming (see Partridge, 1995). Because it is a

programming novelty, new possibilities for software engineering emerge.

Ready applicability to data-defined problems (as mentioned above) is just

one such possibility; several others are introduced below

3.1. MLP Implementations

In order to generate an MLP implementation of a problem we require a

representative sample of the input-output data, a training set, and an initial

network that is capable of learning this set. The main architectural decision

in regard to the initial network is how many hidden units (i.e. units

connecting input units to outputs units) to use (and perhaps how many layers

of hidden units, but we restrict our system to just one layer of hidden units).

This decision, which only needs to be approximately correct (especially in

the context of the multiversion strategy we employ), is usually reached by

the application loose guidelines together with some preliminary training

experiments (which can also serve to investigate and to set the few

parameters required by the BP algorithm).

Other architectural decisions are not pressing, although there is

increasing recognition that considerable benefits can accrue if problem-

specific knowledge can be used to pre-structure the network. The numbers of

input and output units are largely determined by the complexity of the input

and output of the problem being implemented. Finally, such initial networks

are usually totally connected (i.e. each input unit has a link to every hidden

unit, and each hidden unit links to every output unit), and the initial link

weights are randomly assigned (usually within a small range centred on

zero).

The network is then trained using the BP algorithm (which iteratively

adjusts all the link weight values) to correctly compute the training set of

examples. This is achieved when some predefined convergence criterion is

attained - e.g. 95% of training-set data each learned to within 10% of the

ideal result. The link weights are then fixed, and the trained MLP is a

deterministic implementation of some generalization of the training-set data.

The training process does not always converge, and even when it does, it

does not always converge on a significant generalization of the training set.

In either case, it is usual to re-examine the parameter settings and network

22

D. Partridge and W.B. Yates Journal of Intelligent Systems

architecture, and to retrain under some modification. It may be that all that

needs altering is the random initialisation of the link weights. The nature of

the trained network (in terms of correctness of performance on a test data

set) is known to be highly sensitive to the initial conditions of training. It is

thus usual to train more than one version, and to then select the best based

on test-set results - i.e. it is accepted that single-net training is not a robust

technique. We exploit this feature of the technology and turn it into an

advantage rather than accept it as a drawback.

3.2. Exploiting the Economics of Automatic Approximation

Because it is an algorithmically determined, automatic process, training

MLPs is relatively cheap and quick. It can involve considerable computer

time, especially when the massive parallelism must be simulated

sequentially on a conventional computer, but very little programmer time.

This radical change in the nature of the 'programming' task produces a

similarly profound change in the economics of programming.

Because all practical programming technologies are error prone, it has

long been accepted that by programming the same problem in several

different ways a set of alternative versions can be obtained, and that this set

can be used as ayvutsronmlied multiversion system to deliver a more accurate performance

than any of the component versions. In traditional software engineering,

which has toyed with this idea but generally shied away from it as too

expensive for day-to-day programming tasks, the multiversion system is

conceived of in conjunction with a voting strategy. Thus all component

versions may be surveyed on their individual decisions, and a majority vote

taken to determine the overall result. The efficacy of such a voting strategy

relies on diversity within the version set - i.e. the individual versions have a

minimum of failures in common, if one version is incorrect then the others

are likely to be correct.

Inability to justify the large increase in costs that multiversion software

systems demand, is reinforced by the fact that empirical studies show that

the usefully high levels of diversity are not forthcoming. Even when the

multiple systems are developed quite independently of each other,

statistically they do not feil independently - i.e. if one version is incorrect on

a given input then the others are also likely to be incorrect. So, not only is it

prohibitively expensive to manually program multiple versions of a problem,

it is also impossible to control the various programming exercises such that

23

Vol. 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

the resultant versions are diverse enough to deliver a reasonable reliability

increase that might offset the very substantial extra costs.

But, in our current neural computing context, the development of

multiple versions is cheap, and the error characteristics of the trained

versions are determined solely by the initial conditions for training - the

nature of the training set, of the network architecture, and of the few

parameter settings. This latter feature means that we have the opportunity to

systematically engineer high diversity levels into a multiversion neural-net

system. We have developed diversity measures (Krzanowski and Partridge,

1995), explored the sensitivity of important features of the initial conditions

to version-set diversity (Partridge, 1996), and developed systematic

strategies for generating highly diverse version sets (Partridge and Yates,

1996).

The final point that needs to be made about the use of MLPs as a

software engineering technology concerns that fact that they are continuous

approximators rather than discrete computational devices like conventional

programs. This feature suggests that they will not be good for, say, precise

numerical computation where anything other than the precisely correct

answer is totally wrong. But on the positive side, it opens a new option for

multiversion decision strategies, in addition to voting we can use averaging.

Previous studies of multiversion techniques have been based on the

distinction between success and failure, between correct and incorrect

computations on test inputs. We shall expand on this basis in two ways:

first, we differentiate among incorrect computations to exploit diversity

among wrong answers, and second, we explore a strategy of shading the

hard distinction between correct and incorrect into a continuum of

approximate correctness.

In order to provide a source of concrete illustrations for the theoretical

framework to be developed, a specific example problem will be introduced.

4. LETTER RECOGNITION: AN EXAMPLE APPLICATION

A difficult data-defined problem is that of letter recognition as presented

by Frey and Slate (1991). The data that defines this problem consists of

20,000 unique letter images composed of the letters A to Ζ from 20 different

fonts (publically available aha@ics.uci.edu). Each was distorted both

horizontally and vertically but still remained "recognizable to humans".

24

D. Partridge and W.B. Yates Journal of Intelligent Systems

Sixteen features were then defined to capture specific characteristics of the

letter images, characteristics concerning the 'strokes' that constitute a letter

and how they are interrelated. The value of each feature in each image was

linearly scaled to an integer in the range 0 to 15 (inclusive). Each of the

original letter images was thus transformed into a list of 16 such integer

values. It was a file of 20,000 such integer vectors, each associated with its

correct letter, that was the data that defined this problem.

Notice that this data-defined problem would pose enormous problems for

the wholly conventional programmer. Before development of an algorithm

could begin, a comprehensive and detailed understanding of the actual

relationships between the 16 features and the 26 letters would, somehow,

need to be generated. It is not at all clear how such an understanding, which

is a necessary prerequisite of the programming task, could be obtained at all.

This is clearly a problem better suited to an inductive implementation

technology such as the field of AI offers.

Frey and Slate use the first 16,000 image vectors to develop a rule-

classifier system which they then tested on the remaining 4,000 image

vectors. They report a comprehensive study of a variety of options for

controlling the development of their systems. They obtain a few

combinations of options which result in systems that exhibit greater than

80% correctness on the test set - actually, 80.8%, 81.6% and 82.7% are the

three best. In an earlier study (Partridge and Yates, 1995), we showed that a

simple neural computing approach to this problem delivered a better

performance - just over 90%, and up to 86% using only 12% of the 16,000

training resources - using less resources, and with no parameter tuning. In

this study, we define a new measure of diversity and use it to systematically

engineer an optimal neural-net implementation. The new measure is an

extension of the previous ones, an extension that is designed to measure the

diversity among incorrect results.

5. DIVERSITY AMONG DISTINCT ERRORS

Previous studies that have defined measures of diversity (e.g. Littlewood

and Miller, 1986; Partridge, 1996; Krzanowski and Partridge, 1995) have

all collapsed the variety of possible error to a single error category. The

resultant diversity measures are then based upon the property of whether

alternative versions are likely to be in error coincidently or not, and this is

25

Vol.zyxwvutsrqponmlkjihgfedcbaTPKIHBA 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

used as a crucial determinant of multiversion system potential. However, if

the problem is one that admits variety among the erroneous results (i.e. more

than 1 distinct error category), then further scope for multiversion diversity

(and subsequent exploitation) appears. The previous diversity measures can

be extended to include this 'distinct error' diversity as well as the

'coincident failure' diversity, CFD of Krzanowski and Partridge (1995).

5.1. Distinct-error Diversity Definition

Assume that we have a set of Ν versions, each trained to implement a

categorization problem in which there are c distinct categories, and that this

set is subjected to Μ test cases. In the situation in which all versions are not

identically perfect (otherwise CFD=0 by definition), coincident-failure

diversity has been defined as:

where f the number of tests that fail on exactly η versions ^

total number of tests that fail on at least one version

probability that a test will fail on exactly η versions. Thus the less coincident

failures in the version set, the higher the values of f„ for small n, and hence

the higher the (coincident-failure) diversity of the set.

The CFD measure ranges from 0 when fx = 1.0 (i.e. all failures are

common to all versions, hence no diversity) to 1.0 when f = 1.0 (i.e. all

versions fail uniquely, no coincident failures, hence maximum diversity).

But in a situatiton of more than 1 distinct possible errors, the CFD

measure, which does not distinguish whether η failures are all distinct or all

identical, represents a lower bound on the diversity of the version set.

In order to measure the diversity generated within the (c-1) distinct

failure categories associated with any output (it is (c-1) because one

category will be the correct output), we define a new probability, t„, the

probability that exactly η versions will fail identically on a test case.

^ _ the number of times that exactly η versions fail identically on a test

the total number of times that at least one version fails distinctly

26

D. Partridge and W.B. Yates Journal of Intelligent Systems

This probability can then be used to provide a measure of distinct-failure

diversity, DFD (again provided not all versions are perfect, otherwise DFD

which has a minimum value of 0.0 when tN = 1.0 (i.e. all versions fail

identically), and a maximum value of 1.0 when tt = 1.0 (i.e. all failures are

uniquely distinct).

However, notice that if c N, then all failures may be distinct but all

versions may feil on all tests! To rectify this unsatisfactory situation, the

overall diversify must include both CFD and DFD. One possible

combination is simply the geometric mean. Overall diversify, OD =

JCFD χ DFD.

This measure still ranges from 0.0 to 1.0, and moreover in the awkward

case pointed out above, i.e. all versions fail distinctly on all tests, DFD= 1.0

but CFD=0.0 (because fN = 1.0) and so OD=0.0 as it should. Notice that in

situations of no distinct failures f„ = t„, and so DFD = CFD. Hence OD =

ylCFD
2
 = CFD which is in accord with the earlier observation that

coincident-failure diversity is a minimum diversity that can be increased by

consideration of the distribution of system failures among a set of distinct

errors.

6. EMPIRICAL STUDY

In this section we present the results of our attempts to engineer and

exploit the maximum diversity within sets of networks trained on the letter

recognition problem which offers the potential of 25 distinct failures to

exploit. We employ a technique of 'over produce and choose' (Yates and

Partridge, 1996) in which we generate a 'space' of trained versions and then

choose a maximally diverse subset as the final multiversion system.

As a result of training networks, both MLPs and Radial Basis Function

(RBF, see Partridge and Yates, 1996, for details) nets, under a variety of

initial conditions, we obtained a 'space' of 132 (68 MLPs and 65 RBFs)

alternative trained versions for the OCR problem - a version space.

= 0).

27

Vol.zyxwvutsrponmlkjihgfedcbaYUTRPMLIFEDBA 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

Using a procedure designed to select a subset of versions from this space

under the constraint that some version-set measure should be maximized,

three version sets, each containing nine networks, were selected. This

selection procedure, known as the pick heuristic (Partridge and Yates,

1996), has been extended to favour selection of diverse versions that also

succeed on 'difficult' inputs. "The difficulty in processing input x" (the θ(χ)

term in Littlewood and Miller's (1986) model, p. 1597) is derived from the

number of versions, in the complete version space, that fail to compute a

correct result for each input. Thus modified, the pick heuristic was used to

select from the complete version space in accordance with the maximization

of three different measures:xvtronmjieaOFDC OD, CFD, and DFD. In this way three

multiversion systems, pickoa pickCFD and pickDFD respectively, were

available for assessment using the final 4000 data items in the original

database. A 'success' was recorded when a single maximum output category

was that of the target, otherwise a 'failure' (for that test on that version) was

recorded. The initial results are given in Table 1. The pickDFD system was

composed of 4 RBF nets and 5 MLPs, pickOD contained 2 RBF nets, and

pickcFD contained only 1 RBF which was common to all three systems. The

three systems had 6 nets in common.

Table 1

Test results on the 9-version systems selected

OD CFD DFD aver max min maj. vote

pickcFD 0.890 0.836 0.948 79.81% 88.62% 33.77% 85.87%

(0.875) (0.814) (0.942)

pickDFD 0.842 0.730 0.972 69.92% 88.62% 3377% 81.57%

(0.829) (0.709) (0.969)

pickoD 0.887 0.815 0.966 66.95% 88.62% 36.68% 84.47%

(0.874) (0.794) (0.961)

Each diversity measure has two values recorded: diversity with respect to

the 'picking' set of 16,000 items, and in parentheses diversity with respect to

the test set of 4,000 items. The column headed "aver" gives the average

percent correct over the nine versions, "max" indicates the percent correct of

the best network (which is the same network in all systems), "min" is the

worst network (an RBF in all systems, and the same one in pickCm and

pickDFD), and "maj. vote" gives the system performance under a simple

28

D. Partridge and W.B. Yates Journal of Intelligent Systems

majority-vote strategy that considers all incorrect answers as failures, so it is

the majority of successes over failures.

The results reveal high levels of both types of diversity within the

multiversion systems, and moreover, the highest DFD value is found in

system pickDFD and the highest CFD value is exhibited by system pickCm

which is as expected. The highest OD value is not exhibited by the pickOD

system, and this is possible because the 'pick' procedure is a heuristic one

which does not guarantee an optimum result. Notice that although the

diversity values generated during the 'pick' process are always higher than

those exhibited during testing, the DFD values are the least affected.

The success/failure majority-vote performance is 4% to 7% worse than

the performance of the single best network in each system. This is despite

the fact that the diversity values are high. However, these majority-vote

performances are 6% to 17% better than the system averages. The

conclusion is that the diversity potential of the systems (the sole basis on

which they were selected) is being undermined by the low performance level

of some of the component versions. It should be noted, however, that single-

net performances can be highly dependent on specific test sets while

multiversion system performances tend to be more robust in this respect.

Exploitation of distinct-failure diversity requires that detailed results,

rather than just success or failure, are recorded and fed into the final

decision strategy. Three different ways of doing this were explored:

averaging: The raw values computed in each output category was summed

over all eight versions, and the output category with the maximum value

was selected as the system result,

thresholding: The raw values for each version were thresholded at 0.5, to

give the subset of categories that each version 'voted for.' These category

votes (from 0 to 26 per version per test input) were surveyed over all nine

versions, and the category with the most votes was selected as the system

result.

winner-takes-all: The maximum value of the raw results for each version

was used as that version's vote. These category votes (exactly one per

version per test input) were surveyed over all nine versions, and the

category with the most votes was selected as the system result.

All cases of no single maximum were treated as test failures.

29

Vol. 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

The results obtained by exploiting distinct-failure diversity in these three

ways are given in Table 2 using the same 4,000-item test set as previously.

Table 2

Test results from exploitation of distinct-failure diversity

averaging thresholding winner-takes-all

pickcFD 92.95% 92.00% 91.10%

pickoFD 93.47% 89.57% 89.42%

pickoD 92.85% 91.12% 90.85%

The first point to notice is that all results are an improvement on any in

Table 1. They range from 12% improvement over simple majority vote for

pickDFD, to less than 1% improvement of the winner-takes-all strategy over

the best individual network in the same system. Secondly, the averaging

strategy is consistently superior to thresholding which tends to be better than

winner-takes-all.

In the above strategies for exploiting distinct-failure diversity, all

component versions are treated equally as contributors to the final system

outcome. It seems reasonable to expect that some versions are 'better'

overall than others and therefore should be given more 'say' in the overall

result. In order to test this possibility, a decision net (DN) was constructed

by means of a weighted link from each component net to the final decision

strategy. Each version's contribution to the overall system outcome is then

proportional to its weight Using the original 16,000 training items (it would

have been preferable to use a totally new set, but no such set was available

and the 4,000-item set was strictly reserved for final testing), the nine link-

weights were adjusted using Widrow-Hoff learning to achieve an optimal

performance under the best of the three decision strategies - averaging. The

resultant three decision-net systems were then tested using the averaging

decision strategy. The results are given in Table 3.

30

D. Partridge and fV.B. Yates Journal of Intelligent Systems

Table 3

Test results from learned priorities

94.62%

D N

P / < * Z > « >
94.07%

™pickoD
94.55%

These final results illustrate that there are also non-trivial improvements

to be made by properly weighting the contributions from each of the

component networks in a multiversion system. An approximately 1%

additional improvement is also a further 15% reduction in the residual error

in the systems.

7. CONCLUSIONS

The results serve to confirm the previous conclusion that neural

computing is a more effective technology than traditional AI techniques,

such as rule induction, for application to data-defined categorization

problems exemplified by the letter recognition task. The current results

clearly demonstrate how much more effective this technology can be when

the full diversity potential is generated and exploited.

Notice, however, that 'standard' BP is all that has been used to generate

these results. There are many 'improved' versions of BP, and use of one of

these may well produce a further significant increase in overall performance.

The measure of distinct-failure diversity was defined (DFD) and appears to

be a valuable extension of the previously defined coincident-failure diversity

measure (CFD). High levels of this diversity were shown to be obtainable.

More significantly, it was demonstrated that proper exploitation of this

diversity 'extension' can result in significant system performance

enhancements (approximately 10% improvement eliminating two thirds of

the residual error). This diversity measure was effectively exploitable using a

majority-in-agreement voting strategy instead of the more usual

success/failure majority-vote strategy.

The results indicate that the most effective exploitation of distinct-failure

diversity is to delay thresholding decisions, by averaging individual version

31

Vol.zyxwvutsrqponmlkihgfedcbaYWUTSRPONMLKJIHFEDCBA 7, 1-2, 1997 Data-Defined Problems and Multiversion Neural-Net Systems

performances, thus capitalizing on the approximating nature of this

particular inductive technology. Furthermore, this averaging strategy yields

a further non-trivial performance improvement as a result of optimizing the

relative contribution of each version to the overall system outcome.

8. REFERENCES

1. Frey, P.W. & Slate, D.J. 1991. Letter recognition using Holland-style

adaptive classifiers, Machine Learning, 6, 161-182.

2. Holland, J.H., Holyoak, K.J., Nisbett, RE. & Thagard, P.R. 1986.

Induction: Processes of Inference and Discovery, Cambridge, MA:

MIT Press.

3. Krzanowski, W.J. & Partridge, D. 1995. Software diversity: practical

statistics for its measurement and exploitation, Res. Rep. 324, Dept. of

Computer Science, University of Exeter (submitted to Information &

Software Technology).

4. Littlewood, B. & Miller, D.R. 1986. A conceptual model of coincident

failure in multiversion software engineering, IEEE Trans, on Software

Engineering, 15, 1596-1614.

5. Partridge, D. 1994. Engineering AI Software, Intellect Books: Oxford,

UK or Ablex Pub. Corp., NJ, USA.

6. Partridge, D. 1995. On the difficulty of really considering a radical

novelty, Minds and Machines, 5, 391-410.

7. Partridge, D. 1996. Network generalization differences quantified,

Neural Networks, 9, 263-271.

8. Partridge, D. & Yates, W.B. 1995. Letter recognition using neural net-

works: a comparative study, Res. Rep. 334, Dept. of Computer Science,

University of Exeter.

9. Partridge, D. & Yates, W.B. 1996. Engineering multiversion neural-

net systems, Neural Computation, 8, 869-893.

10. Yates, W.B. & Partridge, D. 1996. Use of methodological diversity to

improve neural network generalisation, Neural Computing <£ Appli-

cations, 4, 2, 114-128.

11. Rumelhart, D.E. & McClelland, J.L. 1986. Parallel Distributed Pro-

cessing, MIT Press: Cambridge, MA.

32

