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Abstract

This thesis studies the generalization ability of machine learning algorithms in a statisti-

cal setting. It focuses on the data-dependent analysis of the generalization performance

of learning algorithms in order to make full use of the potential of the actual training

sample from which these algorithms learn.

First, we propose an extension of the standard framework for the derivation of

generalization bounds for algorithms taking their hypotheses from random classes of

functions. This approach is motivated by the fact that the function produced by a

learning algorithm based on a random sample of data depends on this sample and is

therefore a random function. Such an approach avoids the detour of the worst-case

uniform bounds as done in the standard approach. We show that the mechanism

which allows one to obtain generalization bounds for random classes in our frame-

work is based on a “small complexity” of certain random coordinate projections. We

demonstrate how this notion of complexity relates to learnability and how one can

explore geometric properties of these projections in order to derive estimates of rates

of convergence and good confidence interval estimates for the expected risk. We then

demonstrate the generality of our new approach by presenting a range of examples,

among them the algorithm-dependent compression schemes and the data-dependent

luckiness frameworks, which fall into our random subclass framework.

Second, we study in more detail generalization bounds for a specific algorithm which

is of central importance in learning theory, namely the Empirical Risk Minimization

algorithm (ERM). Recent results show that one can significantly improve the high-

probability estimates for the convergence rates for empirical minimizers by a direct

analysis of the ERM algorithm. These results are based on a new localized notion

of complexity of subsets of hypothesis functions with identical expected errors and

are therefore dependent on the underlying unknown distribution. We investigate the

extent to which one can estimate these high-probability convergence rates in a data-

dependent manner. We provide an algorithm which computes a data-dependent upper

bound for the expected error of empirical minimizers in terms of the “complexity” of

data-dependent local subsets. These subsets are sets of functions of empirical errors

of a given range and can be determined based solely on empirical data. We then

show that recent direct estimates, which are essentially sharp estimates on the high-

probability convergence rate for the ERM algorithm, can not be recovered universally

from empirical data.
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