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Abstract—The p-stable distribution is traditionally used for
data-independent hashing. In this paper, we describe how to
perform data-dependent hashing based on p-stable distribution.
We commence by formulating the Euclidean distance preserving
property in terms of variance estimation. Based on this property,
we develop a projection method which maps the original data
to arbitrary dimensional vectors. Each projection vector is a
linear combination of multiple random vectors subject to p-stable
distribution, in which the weights for the linear combinati on are
learned based on the training data. An orthogonal matrix is
then learned data-dependently for minimizing the thresholding
error in quantization. Combining the projection method and
the orthogonal matrix, we develop an unsupervised hashing
scheme which preserves the Euclidean distance. Compared with
data-independent hashing methods, our method takes the data
distribution into consideration and gives more accurate hashing
results with compact hash codes. Different from many data-
dependent hashing methods, our method accommodates multiple
hash tables and is not restricted by the number of hash functions.
To extend our method to a supervised scenario, we incorporate a
supervised label propagation scheme into the proposed projection
method. This results in a supervised hashing scheme which
preserves semantic similarity of data. Experimental results show
that our methods have outperformed several state-of-the-art
hashing approaches in both effectiveness and efficiency.

I. I NTRODUCTION

The volume of image data has been increasing dramatically
every year. The big data era has created great challenges to
many tasks such as content-based image retrieval (CBIR). One
typical example is the nearest neighbor (NN) search, which
finds the nearest sample for a query represented as a vectorized
descriptor inRd. It requires a distance metric be defined to
measure the similarity between image descriptors, and the
Euclidean distance is one of the most widely used metrics.
In this scenario, the query time has linear dependence on
the data size, which is impractical for large scale database.
For data with relatively low dimensionality, the problem can
be solved using tree based methods such as binary search
tree [1]. However, the dimensionality of most popular image
descriptors, for example those constructed by the Bag-of-
Words [2] or GIST [3], is too large. It degrades the efficiency
of these methods to that of exhaustive search [4].

X. Bai and H. Yang are with School of Computer Science and
Engineering, Beihang University, Beijing 100191, China. (e-mail: baix-
iao.buaa@googlemail.com.)

J. Zhou is with School of Information and Communication Technology,
Griffith University, Nathan, QLD 4111, Australia.

P. Ren is with College of Information and Control Engineering, China
University of Petroleum, Qingdao 257061, China.

J. Cheng is with National Lab of Pattern Recognition, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing 100190, China.

Approximate nearest neighbor (ANN) techniques have been
studied to break the bottleneck of NN search. Its key idea is to
find an approximate nearest neighbor rather than the exact one.
Locality-sensitive hashing (LSH) has been introduced for this
purpose [5] and has attracted lots of attention. Its objective is to
map the original vectorv ∈ R

d to a binary stringy ∈ {0, 1}r

such that neighboring samples in the original feature space
have similar binary codes in the Hamming space. However,
simple feature similarity such as that based on Euclidean
distance in the original feature space usually cannot fully
capture the semantic similarity,i.e., the real affinity between
the contents of objects. For example, in CBIR applications,if
the images are represented as GIST descriptors, the Euclidean
metric may result in some false positive instances for a given
query. One possible solution for this problem is to introducing
supervised learning based strategies into hashing, which have
led to significant improvement of the CBIR performance.
Hashing methods which only aim at preserving feature sim-
ilarity are called unsupervised hashing, and those based on
supervised learning strategy are called supervised hashing.

Alternatively, Hashing based techniques can be classi-
fied into two categories, data-dependent hashing or data-
independent hashing, depending on whether or not they em-
ploy a training set to learn the hash function. Data-independent
hashing does not require training data. A typical example
is the method presented in [6], which uses data-independent
mathematical properties to guarantee that the probabilityof
collision between hash codes reflects the Euclidean distance
of samples. The performance of data-independent methods is
robust to the data variations because the hash functions are
established subject to specific rules without the training pro-
cess. The randomness property enables the data-independent
methods to generate arbitrary number of hash functions. So
one can construct multiple hash tables to boost the recall
rate. However, such methods suffer from the high demand on
the dimensionality of binary representation,i.e., the length
of codesr has to be very large in order to reduce the false
positive rate. This increases the storage costs and degrades the
query efficiency.

Data-dependent hashing methods, on the contrary, aim at
learning hash functions from a training set. A common objec-
tive is to explicitly make the similarity measured in the original
feature space be preserved in the Hamming space [7], [8], [9],
[10]. Some methods, such as kernelized locality sensitive hash-
ing (KLSH) [11], do not have an explicit objective function but
still require a training set. Compared with data-independent
counterpart, data-dependent hashing methods allow compact
coding, which is very feasible in practice. A typical kind
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Fig. 1. The proposed method on extending p-stable distribution theory to data-dependent hashing.

of data-dependent method is the supervised hashing which
not only considers data distribution, but also incorporates
prior information such as class labels for supervised learning.
The disadvantages of data-dependent methods is that their
performance may be too dependent on the training set and
they usually have limited amount of hash functions.

We can see that both data-independent and data-dependent
solutions have their pros and cons. An intuitive idea to
overcome their shortcomings is developing an integrated strat-
egy which combines both data-dependent hashing and data-
independent hashing, and makes them complementary to each
other. To achieve this goal, we propose a hashing method
based on p-stable distribution. The p-stable distribution[12]
is traditionally used in data-independent hashing methods[6].
It has special mathematical properties that guarantee the
distance underlp norm to be recovered by the projections on
specific random vectors. In our work, we extend the p-stable
distribution to the data-dependent setting.

An overview of the proposed method is illustrated in Fig-
ure 1. Firstly, we project one original feature vector through
multiple random vectors, and learn a single projection vector
for approximating the multiple random vectors according to
the data distribution. The same procedure is repeated forr
times, and givesr projection vectors. This is different from
LSH, which directly uses a single random vector as each
projection vector, and we thus refer to our method as multiple
locality sensitive hashing (MLSH). Based on MLSH, we then
apply an orthogonal transformation [13] to the obtained projec-
tion vectors for preserving the Euclidean distance with binary
codes. Conveniently, we refer to this process as MLSH-ITQ
(MLSH with iterative quantization). Furthermore, we use the
projection result of MLSH to assign quasi hash bits for some
training samples and perform a label propagation [14] like
process with respect to the semantic similarity to generatehash
bits for the rest. We refer to this supervised hashing method
as MLSH-SLP (MLSH with supervised label propagation).

In [15], we introduced the p-stable distribution theory into
the data-dependent hashing. This method consists of two
stages. In the first stage, Gaussian random vector is directly

used to assign initial binary labels for a part of data. In the
second stage, the labels of the rest data are induced according
to the unsupervised similarity. In this paper, the proposed
MLSH method follows a similar two-stage framework, but
with completely different strategies in both stages. In the
first stage, it uses the refined projection vector based on
deeper analysis of the p-stable property. In the second stage,
MLSH incorporates different ways based on two different
scenarios. For unsupervised scenario, iterative quantization
is incorporated to refine the hash functions for retrieving
Euclidean neighbors. For supervised scenario, the supervised
label propagation procedure is used to learn the hash functions
for retrieving semantically similar instances.

The contributions of this paper are summarized as follows.
Firstly, based on p-stable distribution theory, we show howto
view the Euclidean distance preserving problem as estimating
the variance of a p-stable distribution. This observation leads
to a novel projection method which maps the samples in the
original feature space to arbitrary dimensional real-valued vec-
tors. For each dimension, rather than directly using one single
random vector, we generate its projection vector based on
approximating the multiple random vectors for recovering the
Euclidean distance within the dataset. Secondly, based on this
mapping, we show how the iterative quantization method [13]
can be used for minimizing the loss of thresholding. This leads
to the development of the unsupervised hashing MLSH-ITQ.
Finally, we construct an objective function which is similar
to [7] but characterizes semantic similarity, and compute its
approximate solution by combining the proposed projection
method with a coordinate descent algorithm. This results ina
novel supervised hashing scheme for the purpose of preserving
the semantic similarity, which to a certain extent eliminates the
inconsistency of feature similarity and semantic similarity in
hashing.

In the rest of the paper, a review of relevant hashing methods
is given in Section II. The proposed unsupervised hashing
is described in Section III, followed by the introduction of
a novel supervised hashing in Section IV. We present the
experimental results in Section V, then draw conclusions and
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discuss the future work in Section VI.

II. RELATED WORK

Compared against its data dependent counterpart, data-
independent methods are usually considered to be more adap-
tive to heterogeneous data distributions, but with the decrease
of efficiency in practice [7]. Locality sensitive hashing based
on p-stable distribution (LSH) [6] is one of the most represen-
tative methods in the data independent hashing category. Based
on the p-stable distribution, hash functions can be generated
directly without any training data, and the mathematical prop-
erties of p-stable distribution [16] guarantee that vectors close
to each other in the original feature space have high probability
to generate the same output by each hash function. Each hash
function is a random linear projection and is independent
to each other because of the randomness of the projection
vectors. Some other data-independent hashing schemes have
been proposed besides LSH. For example, in [17], a data-
independent hashing scheme has been reported, which utilizes
random Fourier features to make the Hamming distance be
related to the shift-invariant kernel (e.g., Gaussian kernel)
between the vectors. Recently, a kernelized locality sensitive
hashing (KLSH) [11] has been proposed. It constructs random
project vectors by using a weighted sum of data instances in
a training set to approximate the Gaussian random hyperplane
in a highly implicit kernel space.

In many applications, the data distribution is not very
complex and can be well learned from a training set. In
this scenario, data-dependent approaches become very ap-
pealing. A representative data-dependent hashing scheme is
spectral hashing (SH) [7]. It transforms the problem of find-
ing similarity preserving code for a given dataset to a NP-
hard graph partitioning problem that is similar to Laplacian
eigenmaps [18]. SH relaxes this problem and solve it by
a spectral method [7], [18]. For novel data point, SH uses
the Laplace-Beltrami eigenfunctions to obtain binary codes
under the hypothesis that the data is uniformly distributed. To
address the problem when data do not meet this hypothesis,
anchor graph hashing (AGH) [9] has been proposed. AGH
uses an anchor graph to obtain a low-rank adjacency matrix
which is computationally feasible to approximate the similarity
matrix and then processes it in constant time based on the
Nyström method [19]. Zhanget al. proposed a self-taught
hashing [20] method that firstly performs Laplacian eigenmaps
and then thresholds eigen-vectors to get binary code for the
training set. After that, it trains an SVM classifier as the hash
function for each bit. Recently, more extensions of the above
methods have been developed. For instance, multidimensional
spectral hashing [21] is guaranteed to maintain the affinities
when the number of bits increases. Liet al. extended the
spectral hashing with semantically consistent graph in [22],
which incorporates prior information into SH in a supervised
manner. Furthermore, Shenet al. [23] have developed a group
of hashing techniques based on a wide variety of manifold
learning approaches such as Laplacian eigenmaps.

Dimensionality reduction methods have been widely ap-
plied into hashing problems. Several data-dependent hashing

methods have been developed based on Principal Compo-
nent Analysis (PCA) [24], including PCA-Direct [13] which
directly thresholds the results after performing PCA, PCA-
RR [25] which applies a random orthogonal transformation
before thresholding, PCA-ITQ [13] which refines an orthogo-
nal transformation to reduce quantization error, and Isotropic
Hashing [26] which learns orthogonal transformation that
makes projected dimensions have equal variance. In [13],
Gonget al. also presented a supervised hashing method CCA-
ITQ based on Canonical Correlation Analysis (CCA) and the
same iterative quantization method. LDAHash [27] introduces
Linear Discriminant Analysis (LDA) [28] into hashing for
local descriptors matching. Binary Reconstructive Embedding
(BRE) [8] and Minimal Loss Hashing (MLH) [10] optimize
objective functions directly with respect to the binary code.
BRE aims to reconstruct the Euclidean distance in the Ham-
ming space, and MLH has a hinge-like loss function.

Various learning settings have been explored in data de-
pendent hashing. Semi-supervised hashing (SSH) [29] has
been introduced to search semantic similar instances when
only part of the data are labelled. It minimizes the empir-
ical error over the labeled data, and applies an information
theoretic regularizer over both labeled and unlabeled data.
Projection learning hashing method [30] has been proposed
in a similar form as SSH, containing a semi-supervised
method and an unsupervised method. Beside SSH, weakly-
supervised hashing [31] and kernel-based supervised hashing
(KSH) [32] are two other supervised hashing schemes that
have kernel based hash functions. Kuliset al. have extended
LSH functions to a learned metric [33], which can also be
considered as a supervised method. Beside these methods,
several other hashing methods have been proposed to address
different aspects of the modelling and computation, including
semantic hashing [34], random maximum margin hashing [35],
Manhattan hashing [36], dual-bit quantization hashing [37],
spherical hashing [38] and k-means hashing [39].

III. U NSUPERVISEDHASHING FORPRESERVING

EUCLIDEAN DISTANCE

In this section, we present our unsupervised hashing scheme
MLSH-ITQ based on p-stable distribution. As illustrated in
Figure 1, there are two major parts within our scheme,
with one being data-independent and the other being data-
dependent. The core idea is to use multiple random vectors to
generate one hash function.

A. Euclidean Distance Preserving as Variance Estimation

We commence by reviewing basics of p-stable distribution,
and then describe how it can be used to preserve the original
distance between data points. This process can be thought of
as estimating the variance of a specific distribution.

A random variable has a stable distribution if a linear
combination of independent copies of the variable follows
a similar distribution. For a p-stable distributionD, given
t real numbersb1...bt and random variablesX1...Xt which
are independently and identically drawn from distributionD,
∑

i biXi will follow the same distribution as(
∑

i |bi|
p)1/pX ,
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whereX is a random variable with distributionD andp is a
parameter subject top ≥ 0 [16]. It has been proved that stable
distribution exists whenp ∈ (0, 2] [12]. Particularly, when
p = 1 andp = 2, the corresponding p-stable distributions are
Cauchy distribution and Gaussian distribution, respectively.

Let w denote ad-dimensional random vector whose en-
tries are generated independently from a standard Gaussian
distributionDs (with zero mean and unit standard deviation).
Let vi andvj be two data vectors with dimensionalityd, and
the distribution ofwT vi − wT vj = wT (vi − vj) follows a
Gaussian distributionDg which has zero mean and variance
‖vi − vj‖

2. Let W denote ad× r matrix whose each column
is a random vector which can be thought of a vector behaving
like w. Ther entries of the vectorWT (vi−vj) are independent
of each other and followDg. This implies that for arbitrary
WT (vi−vj), 1

r‖W
T (vi−vj)‖

2 is an estimator of the variance
of Dg. We can get the expectation of the random variable
1
r‖W

T (vi − vj)‖
2:

E[
1

r
‖WT (vi − vj)‖

2] = ‖vi − vj‖
2 (1)

where‖·‖ is thel2 norm. Equation (1) also shows that this is an
unbiased estimate. Furthermore, using the probability density
function of Gaussian distribution, we can get the variance of
this estimator:

Var[
1

r
‖WT (vi − vj)‖

2] =
2

r
‖vi − vj‖

4 (2)

We observe that largerr leads to smaller variance and gives
more precise estimation. In LSH,r corresponds to the length
of hash code. Therefore, equation (2) also explains why LSH
performs better with longer hash codes.

B. Learning Projection Vectors

The LSH scheme uses one random vector to generate one
hash function (hash bit). Precise characterization of LSH
requires a large number of random vector samples, which leads
to long hash code. However, long hash code is less preferred
in practice because it leads to low recall, sparse hash table
and decreased efficiency. An intrinsic solution to overcome
this disadvantage is to change the one-to-one correspondence
between random vectors and hash bits. Different from LSH,
we propose multiple locality sensitive hashing (MLSH) which
usesc different Gaussian random vectors to generate one bit.
By using c × r random vectors, our MLSH generatesr hash
bits. In contrast, by using the same number of random vectors,
LSH results in longer code withc× r hash bits, which is less
efficient.

For a hashing scheme withr hash bits, our method can be
implemented through estimating the variance of the Gaussian
distribution Dg based onc × r random samples, which is
motivated by the principles described in Section III-A. Let
Q be ad×c matrix whose each column is a Gaussian random
vector. If our hash function is constrained to be in a linear
form, then for each hash function, our objective is finding a
d-dimensional projection vectoru:

argmin
u

n
∑

i,j

(‖QT vi −QT vj‖
2 − (uT vi − uT vj)

2)2 (3)

By discarding the magnitude factor, we can assume thatu =
Ql where l is a c-dimension unit vector,i.e., ‖l‖2 = 1. So
the term‖QTvi −QT vj‖

2 − (lTQT vi − lTQT vj)
2 is always

non-negative, and our objective becomes:

min
l

n
∑

i,j

(‖QT vi −QT vj‖
2 − (lTQT vi − lTQT vj)

2) (4)

Proposition 1. Finding the optimal solution in problem (4) is
equivalent to the maximization problem:

max
l

lTQTV V TQl

subject to ‖l‖2 = 1.
(5)

whereV is a matrix with theith column beingvi.

Proof. The minimization problem in (4) can be transformed
to the maximization problem as follows:

argmax
l

n
∑

i,j

(lTQT vi − lTQT vj)
2 (6)

The sum of the squared pairwise difference has a proportional
relation with the variance. SupposeV is a matrix with theith
column beingvi, and we have:

n
∑

i,j

(lTQT vi − lTQT vj)
2 ∝ Var(lTQTV ) (7)

where Var(·) is the sample variance of elements in the vector.
For the zero-mean data, Var(lTQTV ) = 1

n l
TQTV V TQl.

Finally, we transform the initial objective (4) in terms of
the optimization problem (5). The optimall is obtained by
the eigen-decomposition of the matrixQTV V TQ, where l
is the eigenvector associated with the largest eigenvalue of
QTV V TQ. According to Proposition 1, this is also the optimal
solution of objective (4). Therefore, the approximate solution
of u for equation (3) is obtained byu = Ql. A d× r matrix
Û is then established, with its columns being vectors resulted
from equation (5) by usingr different random matricesQ
separately. We haveU = 1√

c×r
Û , and‖UT (vi − vj)‖

2 is an
approximation for the estimator with variance2c×r‖vi − vj‖

4

according to equation (2).

C. Minimizing the Error of Thresholding

For thed × r matrix U obtained in Section III-B, letUk

denote itskth column. The binary code for a feature vectorvi
can be obtained by applying sign function toUT

k vi. However,
directly using sign(·) leads to considerable loss of accuracy in
the binary code. The quantization error of thresholding canbe
estimated as:

n
∑

i

r
∑

k

(sign(UT
k vi)− UT

k vi)
2 (8)

The desiredU should have a small quantization error. Note that
in [6], Dataret al. quantized the real-valued output to discrete
integers to maintain accuracy. Nonetheless, binary codes are
more convenient for retrieval, which therefore, is adoptedin
this paper.
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Algorithm 1: MLSH-ITQ
Data: A d× n matrix V with each column being a

feature vector in the training set;
The length of hashing codesr.

Result: A d× r projection matrixU .
for m = 1 to r do

Generated× c matrix Q with each column being a
Gaussian random vector;
Perform eigen-decomposition of the matrix
QTV V TQ and letl equals the eigenvector associated
with the largest eigenvalue;
u← Ql;
Um ← u;

end
U ← 1√

c×r
[U1, U2...Ur];

Solver × r orthogonal matrixR in (10) by the iterative
Procrustes method in [13];
U ← UR.

Proposition 2. Given a projection matrixU and an arbitrary
orthogonalr × r matrix R, U andUR have the same power
for reconstructing the Euclidean distance.

Proof. For an arbitrary pair of feature vectorsvi and vj , we
have:

‖(UR)Tvi − (UR)T vj‖
2 = ‖(UR)T (vi − vj)‖

2

= (vi − vj)
T (UR)(UR)T (vi − vj)

= (vi − vj)
TUUT (vi − vj)

= ‖UTvi − UT vj‖
2 (9)

So the pairwise Euclidean distance of projection results under
U andUR is the same.

According to Proposition 2,UR behaves the same as
U . In the light of this observation, we aim to obtain an
optimal solutionR∗ to achieve the least quantization loss of
thresholding:

R∗ = argmin
R
‖sign((UR)TV )− (UR)TV ‖2F (10)

where‖ · ‖F denotes the Frobenius norm.
We follow the iterative method described in [13] to solve

objective function (10). In each iteration, it uses the classic
Orthogonal Procrustes problem solution [40] to find an orthog-
onal rotationR(i) (r×r orthogonal matrix) to align vector set
UTV with sign(UTV ). After updatingU by UR(i), it starts
a new iteration. Aftert iterations, the finalr × r orthogonal
matrix R∗ = R(1)R(2)R(3)...R(t) is obtained. The proposed
method is summarized in Algorithm 1.

D. Constructing Multiple Hash Tables

For most data-dependent hashing methods, the limitation
on the amount of hash functions leads to the incapability
of constructing multiple hash tables. Since the matrixQ is
random, our method can construct multiple hash tables in

the same way as LSH. In this setting, the Hamming distance
between binary codes ofvi andvj is:

dist(vi, vj) = min
t=1..L

dHamming(Yt(vi), Yt(vj)) (11)

whereYt(vi) is the binary code ofvi in the t-th hash table.
In [41], [42], methods are presented to build hash tables with

data-dependent strategy. However, these methods concentrate
on the hash tables construction process. The idea is to train
the hash functions of a data-dependent method with different
data or parameters, which leads to the generation of different
hash tables. Our method, on the other hand, focuses on the
hashing method itself and generates multiple hash tables by
random vectors subject to p-stable distribution.

IV. SUPERVISEDHASHING BY INCORPORATING

SEMANTIC SIMILARITY

The method presented in Section III reconstructs the Eu-
clidean distance in the original space and learns the hash
function in an unsupervised manner. In many situations, the
Euclidean distance between feature vectorsvi andvj does not
reflect the real semantic similarity of objects. In this section,
we present a supervised hashing method MLSH-SLP which
explores supervised pairwise similarity. The whole procedure
of this method and the relation with MLSH is shown in
Figure 1.

A. Hashing Objective for Semantic Similarity

Let L(i) denote the class label of the objectvi andS denote
a matrix whose (i,j)th entry Sij represents the supervised
semantic similarity between two objectsi andj. Sij is defined
as:

Sij =

{

1,L(i) = L(j);

0, otherwise.
(12)

Our goal is to learn binary codes subject to the requirement
that neighboring samples in the same class are mapped to
similar codes in the Hamming space. The neighborhood of
object samples is measured in terms of semantic similarity.In
this scenario, our method seeks anr-bit Hamming embedding1

Y ∈ {0, 1}r×n for n samples in the original space, and learns
r hash functionsh1,2,...,r : R

d → {0, 1}. Let yi denote theith
column ofY , i.e., the binary code for objectvi. We have an
intuitive objective:

argmin
Y

∑

i,j

Sij‖yi − yj‖
2 (13)

subject to:yi ∈ {0, 1}r×1,
n
∑

i

yi =
n

2
1r

where every column ofY should be independent of each
other. 1r is an r-dimensional vector of ones. The constraint
∑n

i yi = n
2 1r enables the data to be mapped into the hash

table uniformly. Minimizing (13) leads to smallSij being
associated with large Hamming distance‖yi−yj‖

2, and vice-
versa.

1Though slightly different, this definition is equivalent tothe previous
binary output{-1,1}.
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Weiss et al. [7] have shown that a similar problem to
Equation (13) is NP hard. Their solution is relaxation of the
problem to that of eigen-decomposition, which is based on the
similarity measured in the original feature space. In contrast,
we exploit semantic similarity and approximate a solution
using the p-stable distribution theory and a coordinate descent
method.

Let y(m) be an n-dimensional row vector denoting the
mth row of Y . We transform the original problem of learn-
ing Y ∈ {0, 1}r×n to r subproblems of learningy(m) ∈
{0, 1}1×n(m = 1, 2...r). Then each row vectory(m) could
be learned separately form = 1, 2, ..., r through the same
learning strategy. Lety(m)

i denote theith element iny(m), we
relax the original problem with a probabilistic form. Letp(m)

be ann-dimensional vector with theith componentp(m)
i being

the probability fory(m)
i = 1, i.e., the probability ofvi having

the binary output 1 with respect to themth hash function. The
expectation ofy(m)

i is E[y(m)
i ] = p

(m)
i ·1+(1−p

(m)
i )·0 = p

(m)
i .

We formulate the objective function for themth subproblem
of all the r subproblems as follows:

argmin
p(m)

∑

i,j

Sij‖p
(m)
i − p

(m)
j ‖2 (14)

subject top(m)
i ∈ [0, 1]

The method for obtaining optimalp(m) satisfying (14) is
described in the following two subsections.

B. Quasi Hash Bits

In this subsection, we present a strategy for initializing the
hash probabilityp(m)

i , i.e., the probability for themth hash
function to map the feature vectorvi to 1. We commence
by generating ad-dimensional vectoru by using the MLSH
presented in Section III. Then, for samplesi = 1, ..., n in the
training set,p(m)

i is initialized as follows:

p
(m)
i =











1, uT vi > α+ ;

0, uT vi < α− ;

0.5, otherwise.

(15)

Here α+ and α−, which represent positive and negative
threshold parameters respectively, will be set empirically. The
initialization strategy is developed in the light of the intuition
that if the Euclidean distance between feature vectors of two
objects is very large, then it is nearly impossible that they
are semantic neighbors. Note that we have already shown that
the difference of projections onu could reflect the Euclidean
distance between the original vectors. If‖pi − pj‖

2 > 0,
which means sign(uT vi) 6= sign(uT vj), then|uT vi−uTvj | >
α+−α−. Supposeα+−α− is large enough,Sij = 0 will be
with a high probability. When‖pi − pj‖

2 = 0, Sij will not
influence the sum. Furthermore,uT vi has a zero mean which
approximately satisfies

∑

i y
(m)
i = n/2, and the randomness

of u makesy(m)(m = 1, 2...r) independent of each other.
Therefore, this partial solution satisfies the constraintsin
equation (13).

For the time being, we set the hash bity
(m)
i for vi to be1

if p
(m)
i = 1, and set it to be0 if p

(m)
i = 0. We refer to these

hash bits thus obtained as quasi hash bit. Furthermore, the
remaining feature vectors associated with the hash probability
0.5 tend to be less distinctive in terms of the projection onu,
and we do not assign quasi hash bits to them.

C. Coordinate Descent

In this subsection, we use the coordinate descent method
to iteratively update the hash probabilities which are not
associated with quasi hash bits. In each iteration, we minimize
the objective function (14) by setting the derivative with
respect top(m)

i to be zero. Specifically, we treat onep(m)
i

with the initial value 0.5 as a unique variable, hold all the
other hash probabilities fixed, and updatep

(m)
i as follows:

p
(m)
i =

n
∑

j=1,j 6=i

Sijp
(m)
j

∑n
k=1,k 6=i Sik

. (16)

Suppose we have in totaln′ hash probabilities which are not
associated with quasi hash bits. The coordinate descent method
behaves in a way that one loop of iterations enumerate all the
n′ hash probabilities and then starts another loop of iterations.

Since Sij is always non-negative, and‖p(m)
i − p

(m)
j ‖2

is convex, problem (14) is a convex optimization problem
which means it has global optimal solution. Furthermore, the
subproblem of the coordinate descent method is also convex,
so the objective value

∑

i,j Sij‖p
(m)
i − p

(m)
j ‖2 decreases after

each iteration. Figure 2 shows the convergence process of
the optimization method for solving the problem (14) on the
CIFAR-10 dataset. Details on this dataset are presented in
Section V.
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Fig. 2. Numerical result of the convergency of the optimization process on
the CIFAR-10 dataset.

After p(m) converges, we get the refined hash probabilities.
Then for one samplevi which is not assigned a quasi hash
bit, we generate its binary code with respect to themth hash
function as follows:

y
(m)
i =

{

1, p
(m)
i > 0.5;

0, otherwise.
(17)

Repeat this procedurer times, r n-dimensional row vectors
can be generated. Finally, the{0, 1}r×n matrix Y can be
established by concatenating ther n-dimensional row vectors.
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D. Binary Codes for Queries

The scheme presented in Section IV-C only generates the
binary representations for samples in the training set. In
this subsection, we investigate how to generate the codes of
a query. According to the definition of hashing, one hash
function hm maps a samplevi in the original feature space
to a binary valuey(m)

i ∈ {0, 1}. In this scenario, one hash
function can be considered as a binary classifier. Therefore,
generating the binary code for a query can be thought of as
a binary classification problem. We use the training dataset
consisting ofvi for i = 1, · · · , n and the correspondingr-bit
Hamming embeddingY obtained in Section IV-C to trainr
binary classifiers. Themth binary classifier categorizes a query
into the class with label 0 or 1, which is themth binary code
for the query accordingly. Therefore, it is reasonable to refer
to themth binary classifier as themth hash functionhm.

E. A Label Propagation View of the Proposed Framework

We consider one hash function as a binary classifier and the
hash bits as the labels of samples. For normal classification
problems, the labels of training samples are usually obtained
through human annotation. On the other hand, for a hash
function, a sample is assigned a hash bit. Specifically, the
criterion for this assignment is based on equation (13), which
is intrinsically similar to that of label propagation. Different
from general label propagation that uses feature similarity
to propagate the label, our method uses semantic similarity
to propagate the hash bits. However, our method and label
propagation share the common underlying principle that one
classifier should assign the same class labels to neighboring
samples with a high probability. Therefore, we refer to our
method described in this section as multiple locality sensitive
hashing with supervised label propagation (MLSH-SLP). The
detail of the whole procedure is described in Algorithm 2.

V. EXPERIMENTS

A. Datasets and Experiments Setup

We evaluated the performance of the proposed methods on
three popular image datasets. These datasets vary in content,
image sizes, class labels, and human annotations.

CIFAR-10 dataset [43] consists of 60,000 32×32 color
images in 10 classes, with 6,000 images per class. The classes
include airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. Figure 3 shows some sample images randomly
selected from each class.

MNIST database consists of 70,000 handwritten digit
images, including 60,000 examples in the training set, and
10,000 examples in the test set. It is a subset extracted froma
larger set available from NIST. The images are28× 28 grey
scale. This dataset has 10 classes corresponding to the 0∼9
digits, with all images being labeled.

NUS-WIDE is a web image dataset created by the Lab
for Media Search in National University of Singapore, which
contains 269,648 images downloaded from Flickr. The ground-
truth of these images are provided in multiple labels such that
each image is labeled as a vector of zeros and ones to represent

Algorithm 2: MLSH-SLP
Data: A d× n matrix V with each column being a

feature vector in the training set;
A similarity matrix S;
The length of hashing codesr.

Result: Binary codesY ;
A set of r hash functionshm(·) for m = 1, 2, ..., r.

for m = 1 to r do
Generate a vectoru as described in Section III-B;

Initialize p
(m)
i according to (15);

for i = 1 to n do
if p

(m)
i = 1 then
Assign a quasi hash bit 1 tovi;

end
if p

(m)
i = 0 then
Assign a quasi hash bit 0 tovi;

end
end
while p(m) is not convergeddo

for i = 1 to n do
if vi does not have a quasi hash bitthen

p
(m)
i ←

∑n
j=1,j 6=i

Sijp
(m)
j∑

n
k=1,k 6=i

Sik
;

end
end

end
Assigny(m) according to (17);
hm ←Classifier(V , y(m));

end
Y = [y(1)T , y(2)T , ..., y(r)T ]T .

whether it belongs to one of the 81 defined concepts. Each
image can be assigned with multiple concepts.

We extracted different image features on each dataset due to
different properties of corresponding images. For CIFAR-10,
the images are too small to extract good scale invariant local
features such as SIFT [44]. Considering that images are in the
same size, we used a 512-dimensional GIST descriptor [3] to
represent each image. In MNIST, the digit in each image is
well aligned, so the gray values of each image can be treated as
a 784-dimension feature vector. Since a major portion of pixels
are clean background pixels, each feature vector has a sparse
form. Images in NUS-WIDE are in larger size and contain
lots of detail information. In the experiments, we used the
500-dimensional Bag-of-Words [2] feature vector built from
SIFT descriptions for image retrieval.

The proposed MLSH-SLP method can work with various
classifiers. In the experiments, we chose linear SVM as the
model of hash function in order to meet the efficiency require-
ments of image retrieval. The linear model is efficient in the
prediction phase, which is very important to the indexing time.
In the implementation, we employed the LIBLINEAR [45]
which has low time complexity and good classification accu-
racy. The main parameters are set as default values provided
by LIBLINEAR, i.e., cost C = 1, dual maximal violation
toleranceǫ = 0.1.
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Fig. 3. Random samples from the CIFAR-10 dataset. Each row contains 10
images of one class.

B. Evaluation Protocols and Baseline Methods

In the experiments, we evaluated the proposed MLSH-ITQ
and MLSH-SLP methods in both unsupervised and supervised
settings. In the unsupervised setting, we used the Euclidean
neighbors as the ground truth. Similar to [17], we used the
average distance of all query samples to the 50th nearest
neighbor as a threshold to determine whether a point in the
dataset should be considered as a true positive for a query.
In the supervised setting, we used class labels as the ground
truth. In the CIFAR-10 dataset and the MNIST dataset, each
image has a single class label, then images in the same class
are considered as the true neighbors to each other. While on
NUS-WIDE dataset, we followed the protocol in [29] such that
the ground truth is determined based on whether two samples
share at least one semantic label.

We randomly chose 1000 samples from each dataset as the
query images, and used the rest of the dataset as the target
of the search. For MLSH-ITQ, we used all samples but the
query images in the dataset as the training set. We randomly
selected 2000 samples from each dataset for training MLSH-
SLP because of its relatively high computational complexity.
We used the same size of training sets as described in their
original papers for all alternative methods.

We adopted the precision-recall curve to compare the over-
all performance of all methods. In our experiments, it was
computed by:

precision=
Number of retrieved relevant pairs

Total number of retrieved pairs
(18)

recall=
Number of retrieved relevant pairs

Total number of relevant pairs
(19)

For the given queries, we increase the Hamming radius from
0 to r to generater + 1 pairs of precision and recall values,

then the precision-recall curve is plotted. As a complement,
we also calculated the mean average precision (mAP), which
is the area under the precision-recall curve.

In practice, there are two major applications for the resulted
hash binary codes, i.e. Hamming ranking and hash lookup.
Hamming ranking compares the binary code of the query with
all samples in the database, which leads to linear complexity
but can be efficient thanks to the efficacy of the comparison
operator of binary codes. Hamming ranking is usually used
with longer code length. Hash lookup constructs a lookup table
for the database. With the binary code of a query, it retrieves
samples that fall within a bucket of the Hamming radiusδ. To
guarantee the efficiency of retrieval, the lookup table should
not be too sparse and the binary code should be compact. In
our experiments, we also compute the mean precision under
different hash code lengths for the Hamming radiusδ and the
top k returned samples of Hamming ranking:

mean precision=

∑

i
Number of retrieved relevant samples for queryi

Total number of retrieved samples for queryi

Number of test samples
(20)

If there is nothing in the buckets (i.e., no retrieved samples)
for certain Hamming radiusδ and query sample, we consider
it to be zero precision.

We compared our methods with some state-of-the-art unsu-
pervised hashing methods, which include iterative quantization
based on PCA (PCA-ITQ) [13], k-means hashing (KMH) [39],
spherical hashing (SPH) [38], unsupervised sequential learning
hashing (USPLH) [30], spectral hashing (SH) [7], and locality
sensitive hashing (LSH) [6]. For supervised or semi-supervised
hashing methods, we evaluated iterative quantization based on
CCA (CCA-ITQ) [13], semi-supervised hashing (SSH) [29]
and semi-supervised sequential projection learning hashing
(S3PLH) [30]. In these methods, LSH and our method MLSH-
ITQ can directly construct multiple hash tables, we denote
them as LSH-m and MLSH-ITQ-m, respectively. A summary
on different properties of these methods is given in Table I.

Method Hash Function Learning Paradigm

PCA-ITQ [13] linear unsupervised
KMH [39] nonlinear unsupervised
SPH [38] nonlinear unsupervised

USPLH [30] linear unsupervised
SH [7] nonlinear unsupervised

LSH [6] linear (data-independent)
CCA-ITQ [13] linear supervised

SSH [29] linear semi-supervised
S3PLH [30] linear semi-supervised

TABLE I
SUMMARY OF PROPERTIES OF HASHING METHODS UNDER COMPARISON.

Through Table I, we observe that hash functions in PCA-
ITQ, CCA-ITQ, LSH, SSH, USPLH and S3PLH have the
linear form of hash functions, which are the same as our
methods. On the other hand, KMH, SPH and SH use nonlinear
hash functions, but still achieve a constant time complexity for
computing binary codes.
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Fig. 4. The mAP of different parameter settings for MLSH-ITQ-m on CIFAR-10 and MNIST.

C. Evaluation of Unsupervised Hashing Methods

Unsupervised hashing methods aim at finding the nearest
neighbors of the query according to the Euclidean distance.
They were originally developed for improving the time effi-
ciency of nearest neighbor search. Because the class labels
are not available, the results depend on the distribution of
the data. We chose two datasets,i.e., CIFAR-10 and MNIST
which have distinctive data distributions. GIST descriptors
were extracted from CIFAR-10, which usually consists of non-
zero real numbers. On the other hand, features extracted from
MNIST are sparse vectors, with most entries being zeros.
After setting the ground truth by Euclidean distance as in
section V-B, we compared LSH, SH, USPLH, SPH, KMH,
PCA-ITQ and the proposed method MLSH-ITQ. There are
two parameters in our method, the number of random vectors
for one bit c, and the number of constructed hash tables
L. We set them with different values ranging from 1 to 9,
and computed the mAP on each parameter setting. Figure 4
shows the mAP of different parameter settings on CIFAR-10
and MNIST. When using multiple hash tables, we returned
samples within certain Hamming distanceδ in all L hash
tables. Therefore, the recall always goes up with the increase
of L, but the precision does not. Because mAP is computed
as the area under the precision-recall curve, too largeL will
decrease it. Largec can decrease the variance of the Euclidean
distance estimator according to Section III-A, but may increase
the approximation error in equation (4). Because we use the
eigen-decomposition based method solvel, too largec will
dilute the information of the eigenvector corresponding tothe
largest eigenvalue. We can see that too large or too small
values for bothL and c do not lead to good performance.
Therefore, in the following experiments, we setL = 7 and
c = 3 for both CIFAR-10 and MNIST.

Figures 5 and 6 show precision-recall curves for Euclidean
neighbor retrieval on CIFAR-10 and MNIST, respectively. On
CIFAR-10, our method with multiple hash tables (MLSH-

ITQ-m) outperforms all alternative methods when the code
length is 32. When the code length equals 64 or 128, the
performances of MLSH-ITQ-m and PCA-ITQ are very close.
Our method with single a hash table (MLSH-ITQ) outperforms
all alternatives except PCA-ITQ, and its performance is very
close to PCA-ITQ when the code length is greater than 64.
For the alternative methods, LSH and SPH have significant
improvement when the code length increases. USPLH, SH,
and KMH do not work well on CIFAR-10. On MNIST, KMH
and USPLH have better performance and SPH performs the
worst. Although both LSH and our method are based on the p-
stable distribution, our method outperforms LSH significantly
because of the data-dependent component. This superiorityis
more obvious with short code length because our method takes
the data distribution into consideration.

To take the quantitative evaluation of the hash techniques
one step further, we used the mean precision and recall of
Hamming radiusδ to evaluate different methods for hash
lookup. Similar to many other hashing methods, we set the
Hamming radiusδ < 2, and computed the recall according
to (19) and the mean precision according to (20). Figures 7
and 8 illustrate these two measurements with respect to the
length of hashing codes, respectively. When the hash code
length r goes too large, the hash table becomes too sparse.
For a given query, the buckets within Hamming radiusδ may
contain nothing, so the precision is looked as zero. Therefore,
the performance with Hamming radiusδ may degrade when
the code lengthr increases. It is clear that our single hash table
method MLSH-ITQ outperforms alternative single table meth-
ods. We also observe that the MLSH-ITQ benefits from using
multiple hash tables for hash lookup, because MLSH-ITQ-m
has demonstrated significant advantages over the alternative
methods.

Furthermore, we make an empirical comparison between
MLSH-ITQ-m and LSH-m, under different number of hash
tables. Figure 9 shows the mAP for LSH-m and MLSH-ITQ-m
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Fig. 5. Precision-recall curves on CIFAR-10, using Euclidean ground truth.
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Fig. 6. Precision-recall curves on MNIST, using Euclidean ground truth.
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Fig. 7. Mean precision in Hamming radiusδ < 2 on CIFAR-10 and MNIST, using Euclidean ground truth.
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Fig. 8. Recall in Hamming radiusδ < 2 on CIFAR-10 and MNIST, using Euclidean ground truth.
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Fig. 9. The mAP for LSH-m and MLSH-ITQ-m with code length 48.

with the fixed code lengthr = 48. It is clear that our proposed
method outperforms LSH-m. And in most cases, both methods
have better performance with more hash tables, and the mAP
of MLSH-ITQ-m changes slightly whenL ≥ 5.

It is also clear from the experimental results that the data-
independent methods perform better with longer code length.
The reason for this is that the data-independent methods
rely on random projections. The larger number of projections
they have, the more precise they can recover the original
distance. On the other hand, data-dependent methods capture
the distribution of data, so they usually have good performance
with relatively short code length.

D. Evaluation of Supervised Hashing Methods

In some practical applications, the neighborhood of a given
query is not based on simple metric such as Euclidean dis-
tance, but relies on the semantic similarity such as whethertwo
samples belong to the same class. Therefore, we used the class
labels of image samples as the ground truth. We compared the
proposed MLSH-SLP method with several alternative hashing

methods including LSH [6], SH [7], S3PLH [30], SSH [29],
and CCA-ITQ [13].

Figure 10 shows the mean average precision under differ-
ent code lengths on each dataset. The proposed MLSH-SLP
method achieves the best results on all three datasets, and
performs better with longer code. S3PLH gets the second-
best rank on both CIFAR-10 and MNIST. LSH performs the
second-best on NUS-WIDE. For the other methods under
comparison, SH and SSH generate poor mAP, though SSH
sometimes performs better than SH on NUS-WIDE. The mAP
of CCA-ITQ degrades when the code length increases. The
reason may be that CCA-ITQ is based on the Canonical
Correlation Analysis which usually has good performance
with low dimensional output. If the dimensionality of the
output becomes higher, the useless dimensions of output
may be introduced and will tarnish the useful dimensions. It
should be noted that some methods do not generate consistent
performance on different dataset. On CIFAR-10 and MNIST
datasets, LSH has lower mean average precision than S3PLH,
but on NUS-WIDE, LSH exceeds S3PLH. We can find that
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Fig. 10. The mAP on CIFAR-10, MNIST, and NUS-WIDE, using class label ground truth.
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Fig. 11. Mean precision of top 500 Hamming neighbors on CIFAR-10, MNIST, and NUS-WIDE, using class label ground truth.

LSH performs better than many supervised methods on NUS-
WIDE. This is because the Bag-Of-Words features used in
NUS-WIDE can represent the content well,i.e., the Euclidean
distance between the features can already give a good retrieval
result.

We also show in Figure 11 the mean precision of top 500
Hamming neighbors. The code lengthr is in range[32, 128]. It
is clear that MLSH-SLP outperform the alternatives methods
with a large margin on all datasets. S3PLH performs well
on CIFAR-10, but has a low precision on NUS-WIDE. The
mean precision of CCA-ITQ is lower with longer code. In
general, CCA-ITQ and SSH perform better with compact hash
code than other methods which do not use the supervised
information.

Finally, we show samples of retrieved images on the CIFAR-
10 dataset in Figure 12 with false positives labeled by red
rectangles. This figure gives a qualitative evaluation of the
retrieval performance of different methods.

E. Computational Cost

Table II shows the training and indexing time on CIFAR-10
from each method. All experiments were implemented using
MATLAB, and ran on a PC with Core-i7 3.4GHZ CPU and
16GB memory. LSH does not have a training phase because it
is a data-independent method. We find that MLSH-SLP, KMH
and USPLH take the highest training time. In the training
procedure of MLSH-SLP, doing propagation and training the
SVM classifier cost the majority of time. Although the training
phase of MLSH-SLP is time consuming, it can be boosted

with parallel computing because training each hash function is
independent. Almost all methods require only short indexing
time expect SH which has a more complex nonlinear hash
function that takes a longer time to get the binary code.

When multiple hash tables are used, the training time and
indexing time will beL times longer than the single hash
table version. This can also be reduced if we generate the
hash functions and binary codes in parallel.

VI. CONCLUSION

In this paper, we have reviewed the properties of p-stable
distribution and shown how to incorporate it with training
data in data dependent setting. We have presented MLSH-
ITQ which takes the distribution of data into consideration.
It combines multiple random projections for minimizing the
differences between pairwise distances of binary codes and
original vectors. Repeating the same procedurer times, we
can generate a vector inRr. We have also used an orthogonal
transformation to minimize the thresholding error, making
binary codes accurately preserve the Euclidean distance. Com-
pared with data-independent hashing such as LSH, this method
improves the performance under compact binary codes. In
practice, we can build multiple hash tables to improve the
precision and recall rate while most data-dependent hashing
can only use a single hash table. For ANN search based on
semantic similarity, we extend our method with supervised
information. We have proposed a supervised hashing method
(MLSH-SLP), whose training procedure is similar to label
propagation. For each bit, we use the p-stable properties to
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Fig. 12. Qualitative results on CIFAR-10. We retrieved 25 Hamming neighbors of some query examples under 48-bit hashingcodes using each methods, and
show the false positives in red rectangle.

Methods 32 bits 64 bits 128 bits 256 bits
Training Time Indexing Time Training Time Indexing Time Training Time Indexing Time Training Time Indexing Time

MLSH-SLP 58.19 0.19 115.87 0.24 230.78 0.39 463.13 0.63
MLSH-ITQ 2.81 0.04 5.8 0.08 12.66 0.18 31.59 0.41

S3PLH 18.62 0.08 36.62 0.14 73.75 0.26 147.57 0.46
USPLH 55.11 0.08 111.73 0.14 225.56 0.25 448.98 0.5

SSH 1.09 0.08 1.1 0.15 1.22 0.26 1.9 0.52
LSH - 0.11 - 0.16 - 0.29 - 0.53
SH 0.71 0.51 0.89 1.84 1.17 6.97 1.87 27.2

SPH 7.44 0.19 14.33 0.24 27.56 0.38 61.41 0.67
KMH 117.02 1.22 128.44 1.26 156.88 1.35 215.37 1.57

PCA-ITQ 2.55 0.12 4.87 0.23 10.69 0.39 27.91 0.84
CCA-ITQ 3.03 0.13 4.96 0.21 10.71 0.39 27.14 0.82

TABLE II
TRAINING AND INDEXING TIME (SECONDS) ON CIFAR-10.

assign the quasi bits to a portion of samples in the training
set, and then optimize the assignment of hash bits to the
remaining samples according to the semantic similarity. We
have evaluated these two hashing methods on three pub-
lic image data sets. Compared with several state-of-the-art
hashing approaches, the proposed methods have shown their
superiority. MLSH-ITQ with multiple hash tables has achieved
the best results for unsupervised cases and MLSH-SLP has
produced the best performance for the supervised setting. In
the future, we will expand this idea to other problems such as
clustering or dimensionality reduction.
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