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Abstract—The p-stable distribution is traditionally used for Approximate nearest neighbor (ANN) techniques have been
data-independent hashing. In this paper, we describe how to studied to break the bottleneck of NN search. Its key idea is t
perform data-dependent hashing based on p-stable distriion.  fi,q a1y approximate nearest neighbor rather than the exact on

We commence by formulating the Euclidean distance preserag . i . . .
property in terms of variance estimation. Based on this progrty, Locality-sensitive hashing (LSH) has been introduced fis t

we develop a projection method which maps the original data PUrpose [5] and has attracted lots of attention. Its ohjedsito
to arbitrary dimensional vectors. Each projection vector is a map the original vectov € R? to a binary stringy € {0,1}"
linear combination of multiple random vectors subject to pstable sych that neighboring samples in the original feature space
distribution, in which the weights for the linear combination are have similar binary codes in the Hamming space. However

learned based on the training data. An orthogonal matrix is . le feat imilarit h that based Euclid
then learned data-dependently for minimizing the threshaotling Simpie teafure similarity such as that based on tuclidean

error in quantization. Combining the projection method and distance in the original feature space usually cannot fully
the orthogonal matrix, we develop an unsupervised hashing capture the semantic similarity,e., the real affinity between
scheme which preserves the Euclidean distance. Comparedtii the contents of objects. For example, in CBIR applicatidins,
data-independent hashing methods, our method takes the dat hq jmages are represented as GIST descriptors, the Ealide

distribution into consideration and gives more accurate hahing tri Iti fal itive inst f .
results with compact hash codes. Different from many data- MEIC May resuit in Some faise positive INstances Tor argive

dependent hashing methods, our method accommodates multgp  duery. One possible solution for this problem is to intrddgc
hash tables and is not restricted by the number of hash functins. supervised learning based strategies into hashing, wlaeh h

To extend our method to a supervised scenario, we incorporata |ed to significant improvement of the CBIR performance.
supervised label propagation scheme into the proposed pregtion  ashing methods which only aim at preserving feature sim-

method. This results in a supervised hashing scheme which.I it lled ised hashi d th based
preserves semantic similarity of data. Experimental resuk show llanty are calfled unsupervised hashing, an ose based on

that our methods have outperformed several state-of-thera Supervised learning strategy are called supervised hgishin
hashing approaches in both effectiveness and efficiency. Alternatively, Hashing based techniques can be classi-

fied into two categories, data-dependent hashing or data-
independent hashing, depending on whether or not they em-
|. INTRODUCTION ploy a training set to learn the hash function. Data-indepai

The volume of image data has been increasing dramatica_n@,Shing does not requirPT training_data. A typicgl example
every year. The big data era has created great challenge&td'e method presented in [6], which uses data-independent
many tasks such as content-based image retrieval (CBIR). dRathematical properties to guarantee that the probalmfity
typical example is the nearest neighbor (NN) search, whi€Rllision between hash codes reflects the Euclidean distanc
finds the nearest sample for a query represented as a vectorff Samples. The performance of data-independent methods is
descriptor inR?. It requires a distance metric be defined tgobust to the data variations because the hash functions are
measure the similarity between image descriptors, and feablished subject to specific rules without the training- p
Euclidean distance is one of the most widely used metri&ESS: The randomness property enables the data-independen
In this scenario, the query time has linear dependence Hsthods to generate arpltrary number of hash functions. So
the data size, which is impractical for large scale databa§§€ can construct multiple hash tables to boost the recall
For data with relatively low dimensionality, the problemncarate. However, such methods suffer from.the high demand on
be solved using tree based methods such as binary sedh& dimensionality of binary representation;., the length
tree [1]. However, the dimensionality of most popular imaggf codesr has to be very large in order to reduce the false
descriptors, for example those constructed by the Bag-cE’IQS't'VG‘ r_at_e. This increases the storage costs and depfaele
Words [2] or GIST [3], is too large. It degrades the efficiencflUery efficiency.

of these methods to that of exhaustive search [4]. Data-dependent hashing methods, on the contrary, aim at
learning hash functions from a training set. A common objec-
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Fig. 1. The proposed method on extending p-stable distoibuheory to data-dependent hashing.

of data-dependent method is the supervised hashing whigded to assign initial binary labels for a part of data. In the
not only considers data distribution, but also incorpaatsecond stage, the labels of the rest data are induced aegordi
prior information such as class labels for supervised legtn to the unsupervised similarity. In this paper, the proposed
The disadvantages of data-dependent methods is that tiir'SH method follows a similar two-stage framework, but
performance may be too dependent on the training set amih completely different strategies in both stages. In the
they usually have limited amount of hash functions. first stage, it uses the refined projection vector based on
We can see that both data-independent and data-dependegper analysis of the p-stable property. In the secone stag
solutions have their pros and cons. An intuitive idea tyILSH incorporates different ways based on two different
overcome their shortcomings is developing an integrated-st scenarios. For unsupervised scenario, iterative qudioiiza
egy which combines both data-dependent hashing and dagaincorporated to refine the hash functions for retrieving
independent hashing, and makes them complementary to e&giglidean neighbors. For supervised scenario, the sigeetvi
other. To achieve this goal, we propose a hashing methiédel propagation procedure is used to learn the hash amti
based on p-stable distribution. The p-stable distribufit?] ~for retrieving semantically similar instances.
is traditionally used in data-independent hashing metfiélds  The contributions of this paper are summarized as follows.
It has special mathematical properties that guarantee Wiestly, based on p-stable distribution theory, we show how
distance undef,, norm to be recovered by the projections owiew the Euclidean distance preserving problem as estigati
specific random vectors. In our work, we extend the p-stalilee variance of a p-stable distribution. This observatiads
distribution to the data-dependent setting. to a novel projection method which maps the samples in the
An overview of the proposed method is illustrated in Figeriginal feature space to arbitrary dimensional real-gdluec-
ure 1. Firstly, we project one original feature vector thybu tors. For each dimension, rather than directly using onglein
multiple random vectors, and learn a single projection mectrandom vector, we generate its projection vector based on
for approximating the multiple random vectors according tapproximating the multiple random vectors for recovering t
the data distribution. The same procedure is repeated foEuclidean distance within the dataset. Secondly, basetlisn t
times, and gives projection vectors. This is different from mapping, we show how the iterative quantization method [13]
LSH, which directly uses a single random vector as eaclan be used for minimizing the loss of thresholding. Thisltea
projection vector, and we thus refer to our method as meltipio the development of the unsupervised hashing MLSH-ITQ.
locality sensitive hashing (MLSH). Based on MLSH, we theRinally, we construct an objective function which is simila
apply an orthogonal transformation [13] to the obtainedgaro to [7] but characterizes semantic similarity, and comptse i
tion vectors for preserving the Euclidean distance witrabin approximate solution by combining the proposed projection
codes. Conveniently, we refer to this process as MLSH-IT@Qethod with a coordinate descent algorithm. This results in
(MLSH with iterative quantization). Furthermore, we use thnovel supervised hashing scheme for the purpose of preservi
projection result of MLSH to assign quasi hash bits for sonibe semantic similarity, which to a certain extent elimé@sithe
training samples and perform a label propagation [14] likaconsistency of feature similarity and semantic simijain
process with respect to the semantic similarity to gendvash hashing.
bits for the rest. We refer to this supervised hashing methodin the rest of the paper, a review of relevant hashing methods
as MLSH-SLP (MLSH with supervised label propagation). is given in Section Il. The proposed unsupervised hashing
In [15], we introduced the p-stable distribution theoryointis described in Section lll, followed by the introduction of
the data-dependent hashing. This method consists of taonovel supervised hashing in Section IV. We present the
stages. In the first stage, Gaussian random vector is dire@kperimental results in Section V, then draw conclusiors an



discuss the future work in Section VI. methods have been developed based on Principal Compo-
nent Analysis (PCA) [24], including PCA-Direct [13] which
directly thresholds the results after performing PCA, PCA-
RR [25] which applies a random orthogonal transformation
Compared against its data dependent counterpart, dajefore thresholding, PCA-ITQ [13] which refines an orthogo-
independent methods are usually considered to be more ad#-transformation to reduce quantization error, and ¢gotr
tive to heterogeneous data distributions, but with the e&s® Hashing [26] which learns orthogonal transformation that
of efficiency in practice [7]. Locality sensitive hashingsed makes projected dimensions have equal variance. In [13],
on p-stable distribution (LSH) [6] is one of the most represe Gonget al. also presented a supervised hashing method CCA-
tative methods in the data independent hashing categosgBalTQ based on Canonical Correlation Analysis (CCA) and the
on the p-stable distribution, hash functions can be geeérakame iterative quantization method. LDAHash [27] intragkic
directly without any training data, and the mathematicalppr Linear Discriminant Analysis (LDA) [28] into hashing for
erties of p-stable distribution [16] guarantee that vextdose local descriptors matching. Binary Reconstructive Emliegld
to each other in the original feature space have high préibabi (BRE) [8] and Minimal Loss Hashing (MLH) [10] optimize
to generate the same output by each hash function. Each helsfective functions directly with respect to the binary eod
function is a random linear projection and is independeBRE aims to reconstruct the Euclidean distance in the Ham-
to each other because of the randomness of the projectining space, and MLH has a hinge-like loss function.
vectors. Some other data-independent hashing schemes haXarious learning settings have been explored in data de-
been proposed besides LSH. For example, in [17], a dagendent hashing. Semi-supervised hashing (SSH) [29] has
independent hashing scheme has been reported, whiclestiligeen introduced to search semantic similar instances when
random Fourier features to make the Hamming distance bely part of the data are labelled. It minimizes the empir-
related to the shift-invariant kernek.g., Gaussian kernel) ical error over the labeled data, and applies an information
between the vectors. Recently, a kernelized locality sigasi theoretic regularizer over both labeled and unlabeled.data
hashing (KLSH) [11] has been proposed. It constructs rand@®vojection learning hashing method [30] has been proposed
project vectors by using a weighted sum of data instancesiin a similar form as SSH, containing a semi-supervised
a training set to approximate the Gaussian random hypegplanethod and an unsupervised method. Beside SSH, weakly-
in a highly implicit kernel space. supervised hashing [31] and kernel-based supervisedrtashi
In many applications, the data distribution is not verygKSH) [32] are two other supervised hashing schemes that
complex and can be well learned from a training set. Imave kernel based hash functions. Kulisal. have extended
this scenario, data-dependent approaches become very l&H functions to a learned metric [33], which can also be
pealing. A representative data-dependent hashing schemeadnsidered as a supervised method. Beside these methods,
spectral hashing (SH) [7]. It transforms the problem of findseveral other hashing methods have been proposed to address
ing similarity preserving code for a given dataset to a NRifferent aspects of the modelling and computation, iniclgd
hard graph partitioning problem that is similar to Laplaciasemantic hashing [34], random maximum margin hashing [35],
eigenmaps [18]. SH relaxes this problem and solve it bylanhattan hashing [36], dual-bit quantization hashing],[37
a spectral method [7], [18]. For novel data point, SH usepherical hashing [38] and k-means hashing [39].
the Laplace-Beltrami eigenfunctions to obtain binary ode
under the hypothesis that the data is uniformly distribufed I1l. UNSUPERVISEDHASHING FORPRESERVING
address the problem when data do not meet this hypothesis, EUCLIDEAN DISTANCE

anchor graph hashing (AGH) .[9] has been prpposed. AGHlnthis section, we present our unsupervised hashing scheme
uses an anchor graph to obtain a low-rank adjacency ma

o . . . 7 tK/"f‘ﬁSH-ITQ based on p-stable distribution. As illustrated in
which is computationally feasible to approximate the samify . ure 1, there are two major parts within our scheme,

. . . Fi
matn).(. and then processes it in constant time based on Wgh one being data-independent and the other being data-
Nystr_om method [19]. Zhan@t al. proposed a Self.'taughtdependent. The core idea is to use multiple random vectors to
hashing [20] method that firstly performs Laplacian eigepsna :

. . enerate one hash function.

and then thresholds eigen-vectors to get binary code for t%e
training set. After that, it trains an SVM classifier as thastha ) . o
function for each bit. Recently, more extensions of the abof- Euclidean Distance Preserving as Variance Estimation
methods have been developed. For instance, multidimealsion We commence by reviewing basics of p-stable distribution,
spectral hashing [21] is guaranteed to maintain the a#imitiand then describe how it can be used to preserve the original
when the number of bits increases. ¢ al. extended the distance between data points. This process can be thought of
spectral hashing with semantically consistent graph if,[22s estimating the variance of a specific distribution.
which incorporates prior information into SH in a superdise A random variable has a stable distribution if a linear
manner. Furthermore, Shetial. [23] have developed a groupcombination of independent copies of the variable follows
of hashing techniques based on a wide variety of manifodd similar distribution. For a p-stable distributioR, given
learning approaches such as Laplacian eigenmaps. t real numbers;...b; and random variable&(;...X; which

Dimensionality reduction methods have been widely apre independently and identically drawn from distribution
plied into hashing problems. Several data-dependent mgsh}_, b; X; will follow the same distribution ag}", |b;/7)!/? X,

IIl. RELATED WORK



where X is a random variable with distributio andp is a By discarding the magnitude factor, we can assume #hat
parameter subject to > 0 [16]. It has been proved that stableQ! where! is a c-dimension unit vectorj.e., ||I||> = 1. So
distribution exists wherp € (0,2] [12]. Particularly, when the term||Q7v; — QT v;||*> — (ITQTv; — 1TQv;)? is always
p =1 andp = 2, the corresponding p-stable distributions araon-negative, and our objective becomes:
Cauchy distribution and Gaussian distribution, respebtiv n

Let w denote ad-dimensional random vector whose en- in (1QTv; — Qij||2 —(1TQTv; — ZTQTUj)2) (4)
tries are generated independently from a standard Gaussian ! 7
distribution D, (with zero mean and unit standard deviation
Let v; andv; be two data vectors with dimensionality and
the distribution ofw”v; — wlv; = w’(v; — v;) follows a
Gaussian distributiorD, which has zero mean and variance maxTQTVVTQI
lvi —v;||*. Let W denote ad x » matrix whose each column :
is a random vector which can be thought of a vector behaving
like w. Ther entries of the vectoiV'” (v;—v;) are independent where V' is a matrix with theith column being;.
of each other and followD,. This implies that for arbitrary
W (v;—v;), 1|WT (v; —v;)||? is an estimator of the variance
of D,. We can get the expectation of the random variab
LW (v; — v;)]|%:

)Proposition 1. Finding the optimal solution in problem (4) is
equivalent to the maximization problem:

(®)

subject to ||I||* = 1.

Proof. The minimization problem in (4) can be transformed
}8 the maximization problem as follows:

) arg max Z(ZTQTUZ' —17Q"v;)? (6)
B[ [WF (v = o)) = [loi = vsl)* €y i
The sum of the squared pairwise difference has a propofttiona

where||-| is thel, norm. Equation (1) also shows that this is apy|ation with the variance. Supposeis a matrix with theith
unbiased estimate. Furthermore, using the probabilitysithen column beingy;, and we have:

function of Gaussian distribution, we can get the varianice o
this estimator:

. ) > 0TQ v —17Q";)? o Var(i"QTV) 7)

Var[;HWT(u,- —v)|I’] = o Ll v * ) i.j

We observe that largerleads to smaller variance and givedVnere Vat.) is the sample ;?ana}nce oflelgmgnts m the vector.
more precise estimation. In LSH,corresponds to the length ™0 the zero-mean data, VarQ™ V) = S0 Q VYV QL. O

of hash code. Therefore, equation (2) also explains why LSHFinally, we transform the initial objective (4) in terms of

performs better with longer hash codes. the optimization problem (5). The optimélis obtained by
the eigen-decomposition of the mat@”VV7Q, wherel
B. Learning Projection Vectors is the eigenvector associated with the largest eigenvalue o

The LSH scheme uses one random vector to generate &heV V' Q- According to Proposition 1, this is also the optimal
hash function (hash bit). Precise characterization of LS$plution of objective (4). Therefore, the approximate sohu
requires a large number of random vector samples, whiclsled v for equation (3) is obtained by = QI. A d x r matrix
to long hash code. However, long hash code is less preferﬁéd’s then established, with its columns being vectors redulte
in practice because it leads to low recall, sparse hash ta§@M equation (5) by using different random matrices)
and decreased efficiency. An intrinsic solution to overconfgparately. We havel = —=U, and [|U” (v; — v;)||* is an
this disadvantage is to change the one-to-one correspoadexpproximation for the estimator with variangé- ||v; — v,
between random vectors and hash bits. Different from LSHg¢cording to equation (2).
we propose multiple locality sensitive hashing (MLSH) whic
usesc different Gaussian random vectors to generate one Rit. \inimizing the Error of Thresholding
By usingc x r random vectors, our MLSH generatediash

bits. In contrast, by using the same number of random VeCtoéseEg:;?tE;jthxcglumr?gIXT[r{eobt::grr]egolgesfgrcgofg;[:z \II(ZUk ;
LSH results in longer code with x r hash bits, which is less : y oo

. can be obtained by applying sign functiontfgf v;. However,
efficient. directly using si leads to considerable loss of accuracy in
For a hashing scheme withhash bits, our method can betI b'y gd g_(;_% tizai ¢ thresholdi my

implemented through estimating the variance of the Gausgg'e inary code. The quantization error ot thresholdingean

distribution D, based onc x r random samples, which is estimated as:
. . . . . . n T
motivated by the principles described in Section IlI-A. Let ZZ(Sign(UkTvi) U,
% k

(8)

Q@ be ad x ¢ matrix whose each column is a Gaussian random

vector. If our hash function is constrained to be in a linear _ o
form, then for each hash function, our objective is finding &he desired/ should have a small quantization error. Note that
d-dimensional projection vectar: in [6], Dataret al. quantized the real-valued output to discrete

N integers to maintain accuracy. Nonetheless, binary codes a
argminZ(HQTm B QTUJ_HQ _ (UTUZ_ _ uij)2>2 (3) More convenient for retrieval, which therefore, is adopted

7 this paper.



Algorithm 1: MLSH-ITQ the same way as LSH. In this setting, the Hamming distance

Data: A d x n matrix V with each column being a between binary codes ef andv; is:
feature vector in the training set; dist(v:.v:) — min d O ATAR AT 11
The length of hashing codes ist(vi, ) 1L Hamming (Yo (vi), Ye(v3)) ()
Result A d x r projection matrixU. whereY;(v;) is the binary code of; in the t-th hash table.
for m =1tor do In [41], [42], methods are presented to build hash tablels wit

Generateal x ¢ matrix (Q with each column being a
Gaussian random vector;

Perform eigen-decomposition of the matrix
QTVVTQ and letl equals the eigenvector associated

data-dependent strategy. However, these methods coatentr
on the hash tables construction process. The idea is to train
the hash functions of a data-dependent method with differen
] ) data or parameters, which leads to the generation of differe
with the largest eigenvalue; hash tables. Our method, on the other hand, focuses on the
u < QL hashing method itself and generates multiple hash tables by

dUm A random vectors subject to p-stable distribution.
en

U+ \/%[Ul,UQ...U,,A]; o o
Solver x r orthogonal matrixR in (10) by the iterative

Procrustes method in [13]; . .
U <« UR. The method presented in Section Il reconstructs the Eu-

clidean distance in the original space and learns the hash
function in an unsupervised manner. In many situations, the
Euclidean distance between feature vectgrandv; does not
reflect the real semantic similarity of objects. In this att

we present a supervised hashing method MLSH-SLP which
explores supervised pairwise similarity. The whole prared
Proof. For an arbitrary pair of feature vectors andv;, we of this method and the relation with MLSH is shown in
have: Figure 1.

IV. SUPERVISEDHASHING BY INCORPORATING
SEMANTIC SIMILARITY

Proposition 2. Given a projection matriXU and an arbitrary
orthogonalr x r matrix R, U and U R have the same power
for reconstructing the Euclidean distance.

IUR) v = (UR)"v;]1* = (UR)" (v; — v;)II?
= (vi —v;) " (UR)(UR)" (vi — vj)

A. Hashing Obijective for Semantic Similarity
LetL(7) denote the class label of the objegtand.S denote

= (vi = v)TUUT (v; = vy) a matrix whose i(j)th entry S;; represents the supervised
= [|[UTv; — UTv;]? (9) semantic similarity between two objedtand;. S;; is defined
as:
So the pairwise Euclidean distance of projection resultieun 1,L(i) = L(j);
U andUR is the same. O i = 0, otherwise (12)

According to Proposition 2U R behaves the same as Our goal is to learn binary codes subject to the requirement
U. In the light of this observation, we aim to obtain anhat neighboring samples in the same class are mapped to
optimal solutionRk* to achieve the least quantization loss o$imilar codes in the Hamming space. The neighborhood of
thresholding: object samples is measured in terms of semantic simildnty.

. o - oo this scenario, our method seeksrahit Hamming embeddinlg
R* = argmin |[|sign(UR)" V) — (UR)" V|  (10) y ¢ {0,1}"*" for n samples in the original space, and learns
r hash functiongi; 5., : RY — {0, 1}. Lety; denote theth

where|| - || r denotes the Frobenius norm. column of Y, i.e., the binary code for objeat;. We have an
We follow the iterative method described in [13] to solvéntuitive objective:

objective function (10). In each iteration, it uses the sias

Orthogonal Procrustes problem solution [40] to find an gytho arg H;in Z Sisllys — yjl? (13)
onal rotationR") (r x r orthogonal matrix) to align vector set i,J

UTV with signUTV). After updating by UR(®, it starts , 1 n

a new iteration. Aftett iterations, the final x r orthogonal subject tory; € {0,1}"* ’Zyi =35

matrix R* = RVRA REG) .R® is obtained. The proposed '

method is summarized in Algorithm 1. where every column of” should be independent of each

other. 1, is anr-dimensional vector of ones. The constraint
_ _ > ryi = 41, enables the data to be mapped into the hash
D. Constructing Multiple Hash Tables table uniformly. Minimizing (13) leads to smaly;; being
For most data-dependent hashing methods, the limitatigfisociated with large Hamming distarigg — y;(|*, and vice-
on the amount of hash functions leads to the incapabili¥f’Sa-

of constructing multiple hash tables. Sim_:e the matpixis 1Though slightly different, this definition is equivalent the previous
random, our method can construct multiple hash tables tinary output{-1,1}.



Weiss et al. [7] have shown that a similar problem tohash bits thus obtained as quasi hash bit. Furthermore, the
Equation (13) is NP hard. Their solution is relaxation of theemaining feature vectors associated with the hash priityabi
problem to that of eigen-decomposition, which is based en th.5 tend to be less distinctive in terms of the projectionwgn
similarity measured in the original feature space. In astir and we do not assign quasi hash bits to them.
we exploit semantic similarity and approximate a solution
using the p-stable distribution theory and a coordinateei®s
method.

Let 4™ be ann-dimensional row vector denoting the In this subsection, we use the coordinate descent method
mth row of Y. We transform the original problem of learn-to iteratively update the hash probabilities which are not
ing Y € {0,1}"*" to r subproblems of learning™ < associated with quasi hash bits. In each iteration, we nihgim
{0,1}"(m = 1,2...r). Then each row vectoy™ could the objective function (14) by setting the derivative with
be learned separately fon = 1,2,...,r through the same respect top\™ to be zero. Specifically, we treat oné™
learning strategy. Leg]zl("”) denote theth element iny™), we with the initial value 0.5 as a unique variable, hold all the
relax the original problem with a probabilistic form. Lgt™  other hash probabilities fixed, and updaf8” as follows:
be ann-dimensional vector with théh componenpl(”l) being
the probability fory(™ = 1, i.e., the probability ofv; having (m) - Sijpﬁ’”’

= Y N (16)

C. Coordinate Descent

the binary output 1 with respect to theth hash function. The
expectation o™ is E[y{"™] = p{™ -1+ (1—p{"™).0 = p\™.
We formulate the objective function for theth subproblem Suppose we have in total hash probabilities which are not

of all the » subproblems as follows: associated with quasi hash bits. The coordinate descehbuhet
i behaves in a way that one loop of iterations enumerate all the
ar manS“H (m) _ (m)H2 (14) ; .
gp<m> s P Pj n' hash probabilities and then starts another loop of itematio
e ) Since S;; is always non-negative, anflp\™ — pgf’”) %
subject top; " € [0, 1] is convex, problem (14) is a convex optimization problem

which means it has global optimal solution. Furthermore, th

subproblem of the coordinate descent method is also convex,

so the objective valug_, ; Sijllp{™ —p;m)||2 decreases after

. . each iteration. Figure 2 shows the convergence process of

B. Quasi Hash Bits the optimization method for solving the problem (14) on the
In this subsection, we present a strategy for initializing t CIFAR-10 dataset. Details on this dataset are presented in

hash probabilityp™, i.e., the probability for themth hash Section V.

function to map the feature vectey to 1. We commence

by generating al-dimensional vectow by using the MLSH

presented in Section Ill. Then, for samples 1,...,n in the

training set,p{"™ is initialized as follows:

The method for obtaining optimal™ satisfying (14) is
described in the following two subsections.

1, ulv; > Qs
p,ﬁ"”) =<0, uwlv;<a_; (15)
0.5, otherwise

Objective value

Here o, and «_, which represent positive and negative
threshold parameters respectively, will be set empircdlhe
initialization strategy is developed in the light of thediition ‘
that if the Euclidean distance between feature vectors of tw #Outer oops

objects is very large, then it is nearly impossible that they

are semantic neighbors. Note that we have already shown thiat2. Numerical result of the convergency of the optiniratprocess on
the difference of projections om could reflect the Euclidean M€ C!FAR-10 dataset.

distance between the original vectors. |lf; — p;||* > 0,
which means sigh” v;) # sign(u’v;), then|u?v; —uTv;| >
a4 —a_. Supposev; — a_ is large enoughg;; = 0 will be
with a high probability. When|p; — p;[|> = 0, S;; will not
influence the sum. Furthermore’ v, has a zero mean which

After p(™) converges, we get the refined hash probabilities.
Then for one sample; which is not assigned a quasi hash
bit, we generate its binary code with respect to thih hash
function as follows:

approximately satisfied ", y§m> = n/2, and the randomness (m) 1 p(m) > 0.5:

of u makesy"™ (m = 1,2..r) independent of each other. y; = {07 oltherwise, 17)
Therefore, this partial solution satisfies the constraiints ’

equation (13). Repeat this procedure times, » n-dimensional row vectors

For the time being, we set the hash {ij”) for v; to bel can be generated. Finally, thgd,1}"*" matrix Y can be
if p,g"”) =1, and set it to be) if p,g"”) = 0. We refer to these established by concatenating the-dimensional row vectors.



D. Binary Codes for Queries

Algorithm 2: MLSH-SLP

The scheme presented in Section IV-C only generates thédata: A d x n matrix V with each column being a

binary representations for samples in the training set. In

this subsection, we investigate how to generate the codes of

a query. According to the definition of hashing, one hash

feature vector in the training set;
A similarity matrix .S;
The length of hashing codes

function h,, maps a sample; in the original feature space Result Binary codesY’;

to a binary valueygm) € {0,1}. In this scenario, one hash

A set ofr hash functiong.,,,(-) form =1,2,...,r.

function can be considered as a binary classifier. Thergforefor m =1 to r do

generating the binary code for a query can be thought of as
a binary classification problem. We use the training dataset
consisting ofv; for i = 1,--- ,n and the correspondingbit
Hamming embedding” obtained in Section IV-C to traim
binary classifiers. The:th binary classifier categorizes a query
into the class with label O or 1, which is theth binary code

for the query accordingly. Therefore, it is reasonable ferre

to themth binary classifier as theath hash functiom,,,.

E. A Label Propagation View of the Proposed Framework

We consider one hash function as a binary classifier and the
hash bits as the labels of samples. For normal classification
problems, the labels of training samples are usually obthin
through human annotation. On the other hand, for a hash
function, a sample is assigned a hash bit. Specifically, the
criterion for this assignment is based on equation (13)¢ckwhi
is intrinsically similar to that of label propagation. Dsffent
from general label propagation that uses feature simylarit
to propagate the label, our method uses semantic similarity

Generate a vectat as described in Section 111-B;
Initialize p§m> according to (15);
for i =1ton do
if p"™ = 1 then
| Assign a quasi hash bit 1 t;
end
if p{™ =0 then
| Assign a quasi hash bit 0 t;
end
end
while p(™) is not convergedio
for i=1ton do
if v; does not have a quasi hash thien
m n Sm'l)('m) .
pg ) < Zj:17j¢i ZZ’:j,k;q, Sik’
end
end
end
Assigny(™ according to (17);
hn, «Classifiery/, y("™);

to propagate the hash bits. However, our method and labekng
propagation share the common underlying principle that oney _ [y(DT, y@T (7T,

classifier should assign the same class labels to neiglgoorin
samples with a high probability. Therefore, we refer to our
method described in this section as multiple locality saresi

hashing with supervised label propagation (MLSH-SLP). Tnhether it belongs to one of the 81 defined concepts. Each

detail of the whole procedure is described in Algorithm 2. image can be assigned with multiple concepts.
We extracted different image features on each dataset due to

V. EXPERIMENTS

different properties of corresponding images. For CIFAR-1

the images are too small to extract good scale invariant loca

A. Datasets and Experiments Setup

features such as SIFT [44]. Considering that images areein th

We evaluated the performance of the proposed methodssaime size, we used a 512-dimensional GIST descriptor [3] to
three popular image datasets. These datasets vary in tont@present each image. In MNIST, the digit in each image is

image sizes, class labels, and human annotations.
CIFAR-10 dataset [43] consists of 60,000 3232 color

well aligned, so the gray values of each image can be treated a
a 784-dimension feature vector. Since a major portion oflgix

images in 10 classes, with 6,000 images per class. The slass@ clean background pixels, each feature vector has aespars

include airplane, automobile, bird, cat, deer, dog, frawsh,

form. Images in NUS-WIDE are in larger size and contain

ship, and truck. Figure 3 shows some sample images randotolig of detail information. In the experiments, we used the

selected from each class.

500-dimensional Bag-of-Words [2] feature vector builtrfro

MNIST database consists of 70,000 handwritten digitSIFT descriptions for image retrieval.
images, including 60,000 examples in the training set, andThe proposed MLSH-SLP method can work with various
10,000 examples in the test set. It is a subset extracteddrorolassifiers. In the experiments, we chose linear SVM as the
larger set available from NIST. The images &&x 28 grey model of hash function in order to meet the efficiency reguire
scale. This dataset has 10 classes corresponding to~tBe OGnents of image retrieval. The linear model is efficient in the

digits, with all images being labeled.

prediction phase, which is very important to the indeximgeti

NUS-WIDE is a web image dataset created by the Lalm the implementation, we employed the LIBLINEAR [45]
for Media Search in National University of Singapore, whickvhich has low time complexity and good classification accu-
contains 269,648 images downloaded from Flickr. The greunchcy. The main parameters are set as default values provided
truth of these images are provided in multiple labels suelh thhy LIBLINEAR, i.e., costC' = 1, dual maximal violation
each image is labeled as a vector of zeros and ones to repregdarancec = 0.1.



then the precision-recall curve is plotted. As a complement
we also calculated the mean average precision (mAP), which
is the area under the precision-recall curve.

In practice, there are two major applications for the resllt
hash binary codes, i.e. Hamming ranking and hash lookup.
Hamming ranking compares the binary code of the query with
all samples in the database, which leads to linear complexit
but can be efficient thanks to the efficacy of the comparison
operator of binary codes. Hamming ranking is usually used
with longer code length. Hash lookup constructs a lookufetab
for the database. With the binary code of a query, it retgeve
samples that fall within a bucket of the Hamming radiugo
guarantee the efficiency of retrieval, the lookup table &hou
not be too sparse and the binary code should be compact. In
our experiments, we also compute the mean precision under
different hash code lengths for the Hamming radiuend the
top k£ returned samples of Hamming ranking:

Number of retrieved relevant samples for quéry
4 Total number of retrieved samples for query
Number of test samples

mean precision-

20)
Fig. 3. Random samples from the CIFAR-10 dataset. Each rowags 10 | there is nothing in the buckets.¢., no retrieved samples)
images of one class. for certain Hamming radiué and query sample, we consider

it to be zero precision.
) ) We compared our methods with some state-of-the-art unsu-

B. Evaluation Protocols and Baseline Methods pervised hashing methods, which include iterative quatitin

In the experiments, we evaluated the proposed MLSH-ITtased on PCA (PCA-ITQ) [13], k-means hashing (KMH) [39],
and MLSH-SLP methods in both unsupervised and supervisggherical hashing (SPH) [38], unsupervised sequentiaiileg
settings. In the unsupervised setting, we used the Eucliddeashing (USPLH) [30], spectral hashing (SH) [7], and Idgali
neighbors as the ground truth. Similar to [17], we used tlsensitive hashing (LSH) [6]. For supervised or semi-suiged/
average distance of all query samples to the 50th nearkathing methods, we evaluated iterative quantizationcbase
neighbor as a threshold to determine whether a point in t&A (CCA-ITQ) [13], semi-supervised hashing (SSH) [29]
dataset should be considered as a true positive for a quenyd semi-supervised sequential projection learning hgshi
In the supervised setting, we used class labels as the grog88PLH) [30]. In these methods, LSH and our method MLSH-
truth. In the CIFAR-10 dataset and the MNIST dataset, eathQ can directly construct multiple hash tables, we denote
image has a single class label, then images in the same cthgsn as LSH-m and MLSH-ITQ-m, respectively. A summary
are considered as the true neighbors to each other. While amdifferent properties of these methods is given in Table I.
NUS-WIDE dataset, we followed the protocol in [29] such that
the ground truth is determined based on whether two samples ~ Method Hash Function Learning Paradigm
share at least one semantic label. . .

We randomly chose 1000 samples from each dataset as th PCK':\/III—-:— %55]13] no“nrlli?laerar SQ:SSER:EES
qguery images, and used the rest of the dataset as the target

of the search. For MLSH-ITQ, we used all samples but the SPH [38] nqnlmear unsuperv_|sed
. . . USPLH [30] linear unsupervised
query images in the dataset as the training set. We randomly . .
. SH [7] nonlinear unsupervised
selected 2000 samples from each dataset for training MLSH- : .
. ) . : ) LSH [6] linear (data-independent)
SLP because of its relatively high computational compjexit : .
CCA-ITQ [13] linear supervised
We used the same size of training sets as described in their . ; :
original papers for all alternative methods. SSH [29] linear semi-supervised
g pap S3PLH [30] linear semi-supervised

We adopted the precision-recall curve to compare the over

all performance of all methods. In our experiments, it was TABLE |
Computed by SUMMARY OF PROPERTIES OF HASHING METHODS UNDER COMPARISQN

Number of retrieved relevant pairs

precision= Total number of retrieved pairs (18) Through Table I, we observe that hash functions in PCA-
Number of retrieved rel t pai ITQ, CCA-ITQ, LSH, SSH, USPLH and S3PLH have the
recall— ~—mber Of retrieved refevant pairs (19) linear form of hash functions, which are the same as our

Total number of relevant pairs methods. On the other hand, KMH, SPH and SH use nonlinear
For the given queries, we increase the Hamming radius frdrmash functions, but still achieve a constant time compjeit
0 to r to generater + 1 pairs of precision and recall valuescomputing binary codes.



(a) CIFAR-10 (b) MNIST

Fig. 4. The mAP of different parameter settings for MLSH-FiQon CIFAR-10 and MNIST.

C. Evaluation of Unsupervised Hashing Methods ITQ-m) outperforms all alternative methods when the code
) ) ) o length is 32. When the code length equals 64 or 128, the
Unsupervised hashing methods aim at finding the neargglformances of MLSH-ITQ-m and PCA-ITQ are very close.
neighbors of the query according to the Euclidean distane§y, method with single a hash table (MLSH-ITQ) outperforms
They were originally developed for improving the time effiy) giternatives except PCA-ITQ, and its performance igyver
ciency of nearest neighbor search. Because the class labglse 1o PCA-ITQ when the code length is greater than 64.
are not available, the results depend on the distribution @f, {he alternative methods, LSH and SPH have significant
the data. We chose two datasets,, CIFAR-10 and MNIST j5r6vement when the code length increases. USPLH, SH,
which have distinctive data distributions. GIST descripto and KMH do not work well on CIFAR-10. On MNIST. KMH
were extracted from CIFAR-10, which usually consists of-nony 4 USPLH have better performance and SPH per’forms the
zero real numbers. On the other hand, features extracted fr\‘i?/orst. Although both LSH and our method are based on the p-
MNIST are sparse vectors, with most entries being zerQgapie distribution, our method outperforms LSH signifiban
After setting the ground truth by Euclidean distance as Eucause of the data-dependent component. This supeii®rity

section V-B, we compared LSH, SH, USPLH, SPH, KMHp,qre ghvious with short code length because our method takes
PCA-ITQ and the proposed method MLSH-ITQ. There amgq gata distribution into consideration.

two parameters in our method, the number of random vectors o ) _

for one bit ¢, and the number of constructed hash tables 10 take the quantitative evaluation of the hash techniques
L. We set them with different values ranging from 1 to 9ne stgp further, we used the mean precision and recall of
and computed the mAP on each parameter setting. Figuré!@mming radiusi to evaluate different methods for hash
shows the mAP of different parameter settings on CIFAR-180Kup. Similar to many other hashing methods, we set the
and MNIST. When using multiple hash tables, we returndd@mming radiusy < 2, and computed the recall according
samples within certain Hamming distanéein all L hash © (19) and the mean precision according to (20). Figures 7
tables. Therefore, the recall always goes up with the imerend 8 illustrate these two measurements with respect to the
of L, but the precision does not. Because mAP is computldtdth of hashing codes, respectively. When the hash code
as the area under the precision-recall curve, too ldrgeill 1€ngthr goes too large, the hash table becomes too sparse.
decrease it. Largecan decrease the variance of the EuclidedrP” @ given query, the buckets within Hamming radiusiay
distance estimator according to Section IlI-A, but mayéese COntain nothing, so the precision is looked as zero. Theegfo
the approximation error in equation (4). Because we use ¢ performance with Hamming radidsmay degrade when
eigen-decomposition based method solya@oo largec will the code length increases. It is clear that our single hash table
dilute the information of the eigenvector correspondinge Method MLSH-ITQ outperforms alternative single table meth
largest eigenvalue. We can see that too large or too Sm%qs..We also observe that the MLSH-ITQ benefits from using
values for bothZ and ¢ do not lead to good p(:_.rformance_multlple hash tables for hash lookup, because MLSH-ITQ-m
Therefore, in the following experiments, we set= 7 and has demonstrated significant advantages over the altenati
¢ = 3 for both CIFAR-10 and MNIST. methods.

Figures 5 and 6 show precision-recall curves for EuclideanFurthermore, we make an empirical comparison between
neighbor retrieval on CIFAR-10 and MNIST, respectively. OMLSH-ITQ-m and LSH-m, under different number of hash
CIFAR-10, our method with multiple hash tables (MLSH4ables. Figure 9 shows the mAP for LSH-m and MLSH-ITQ-m
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Fig. 9. The mAP for LSH-m and MLSH-ITQ-m with code length 48.

with the fixed code length = 48. It is clear that our proposed methods including LSH [6], SH [7], S3PLH [30], SSH [29],
method outperforms LSH-m. And in most cases, both methoalsd CCA-ITQ [13].
have better performance with more hash tables, and the mAR=jgyre 10 shows the mean average precision under differ-
of MLSH-ITQ-m changes slightly whet > 5. ent code lengths on each dataset. The proposed MLSH-SLP
Itiis also clear from the experimental results that the datgrethod achieves the best results on all three datasets, and
independent methods perform better with longer code lenggerforms better with longer code. S3PLH gets the second-
The reason for this is that the data-independent methqgisst rank on both CIFAR-10 and MNIST. LSH performs the
rely on random projections. The larger number of proje&ioRecond-best on NUS-WIDE. For the other methods under
they have, the more precise they can recover the origingmparison, SH and SSH generate poor mAP, though SSH
distance. On the other hand, data-dependent methods €ap§dietimes performs better than SH on NUS-WIDE. The mAP
the distribution of data, so they usually have good perforrea of CCA-ITQ degrades when the code length increases. The

with relatively short code length. reason may be that CCA-ITQ is based on the Canonical
) _ ) Correlation Analysis which usually has good performance
D. Evaluation of Supervised Hashing Methods with low dimensional output. If the dimensionality of the

In some practical applications, the neighborhood of a givenutput becomes higher, the useless dimensions of output
guery is not based on simple metric such as Euclidean disay be introduced and will tarnish the useful dimensions. It
tance, but relies on the semantic similarity such as whetter should be noted that some methods do not generate consistent
samples belong to the same class. Therefore, we used tise giesformance on different dataset. On CIFAR-10 and MNIST
labels of image samples as the ground truth. We compared tiadasets, LSH has lower mean average precision than S3PLH,
proposed MLSH-SLP method with several alternative hashibgt on NUS-WIDE, LSH exceeds S3PLH. We can find that
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Fig. 11. Mean precision of top 500 Hamming neighbors on CIBAR MNIST, and NUS-WIDE, using class label ground truth.

LSH performs better than many supervised methods on NUith parallel computing because training each hash fundso
WIDE. This is because the Bag-Of-Words features used imdependent. Almost all methods require only short indgxin
NUS-WIDE can represent the content welk., the Euclidean time expect SH which has a more complex nonlinear hash
distance between the features can already give a goodvedtrigunction that takes a longer time to get the binary code.
result. When multiple hash tables are used, the training time and
We also show in Figure 11 the mean precision of top 500dexing time will be L times longer than the single hash
Hamming neighbors. The code lengtls in range(32,128]. It  table version. This can also be reduced if we generate the
is clear that MLSH-SLP outperform the alternatives methodigsh functions and binary codes in parallel.
with a large margin on all datasets. S3PLH performs well
on CIFAR-10, but has a low precision on NUS-WIDE. The
mean precision of CCA-ITQ is lower with longer code. In
general, CCA-ITQ and SSH perform better with compact hash!n this paper, we have reviewed the properties of p-stable
code than other methods which do not use the supervigéigitribution and shown how to incorporate it with training
information. data in data dependent setting. We have presented MLSH-
Fina"y’ we show Samp|es of retrieved images on the C|FAF’ZTQ which takes the distribution of data into consideration
10 dataset in Figure 12 with false positives labeled by rdticombines multiple random projections for minimizing the
rectangles. This figure gives a qualitative evaluation af tiflifferences between pairwise distances of binary codes and

retrieval performance of different methods. original vectors. Repeating the same procedurtémes, we
can generate a vector R". We have also used an orthogonal

transformation to minimize the thresholding error, making
binary codes accurately preserve the Euclidean distarara- C
Table Il shows the training and indexing time on CIFAR-1@ared with data-independent hashing such as LSH, this metho
from each method. All experiments were implemented usinigiproves the performance under compact binary codes. In
MATLAB, and ran on a PC with Core-i7 3.4GHZ CPU andpractice, we can build multiple hash tables to improve the
16GB memory. LSH does not have a training phase becauspriecision and recall rate while most data-dependent hgshin
is a data-independent method. We find that MLSH-SLP, KMEan only use a single hash table. For ANN search based on
and USPLH take the highest training time. In the trainingemantic similarity, we extend our method with supervised
procedure of MLSH-SLP, doing propagation and training thaformation. We have proposed a supervised hashing method
SVM classifier cost the majority of time. Although the traigi (MLSH-SLP), whose training procedure is similar to label
phase of MLSH-SLP is time consuming, it can be boostgaopagation. For each bit, we use the p-stable properties to

VI. CONCLUSION

E. Computational Cost
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MLSH-SLP CCA-ITQ SSH

S3PLH SH LSH

Fig. 12. Qualitative results on CIFAR-10. We retrieved 251aing neighbors of some query examples under 48-bit hastodgs using each methods, and
show the false positives in red rectangle.

TRAINING AND INDEXING TIME (SECONDY ON CIFAR-10.

Methods _ 32 bits _ _ _ 64 bits _ ' _ 128 bits _ _ _ 256 bits _ '
Training Time | Indexing Time | Training Time | Indexing Time | Training Time | Indexing Time | Training Time | Indexing Time
MLSH-SLP 58.19 0.19 115.87 0.24 230.78 0.39 463.13 0.63
MLSH-ITQ 2.81 0.04 5.8 0.08 12.66 0.18 31.59 0.41
S3PLH 18.62 0.08 36.62 0.14 73.75 0.26 147.57 0.46
USPLH 55.11 0.08 111.73 0.14 225.56 0.25 448.98 0.5
SSH 1.09 0.08 11 0.15 1.22 0.26 1.9 0.52
LSH - 0.11 - 0.16 - 0.29 - 0.53
SH 0.71 0.51 0.89 1.84 1.17 6.97 1.87 27.2
SPH 7.44 0.19 14.33 0.24 27.56 0.38 61.41 0.67
KMH 117.02 1.22 128.44 1.26 156.88 1.35 215.37 1.57
PCA-ITQ 2.55 0.12 4.87 0.23 10.69 0.39 27.91 0.84
CCA-ITQ 3.03 0.13 4.96 0.21 10.71 0.39 27.14 0.82
TABLE I

assign the quasi bits to a portion of samples in the trainingg] A. Oliva and A. Torralba, “Modeling the shape of the scerfe
set, and then optimize the assignment of hash bits to the holistic representation of the spatial envelopternational Journal

. . . Lo of Computer Visionvol. 42, no. 3, pp. 145-175, 2001.
remaining samples according to the semantic similarity. W ] R. Weber, H.-J. Schek, and S. Blott, “A quantitative s and

have evaluated these two hashing methods on three pub- performance study for similarity-search methods in highahsional

lic image data sets. Compared with several state-of-the-ar SpPaces,” inProceedings of the International Conference on Very Large
. . Data Bases1998, pp. 194-205.

hashing approaches, the proposed methods have shown tqgllr

9 - ; 3 P. Indyk and R. Motwani, “Approximate nearest neighbot@vards
superiority. MLSH-ITQ with multiple hash tables has acleidv removing the curse of dimensionality,” iRroceedings of the Annual

the best results for unsupervised cases and MLSH-SLP has ACM symposium on Theory of computiri@98, pp. 604-613.

. . 6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Loc#y-sensitive
prOduced the best performance for the SUperVISed setimg. hashing scheme based on p-stable distributionsPrioceedings of the

the future, we will expand this idea to other problems such as Annual Symposium on Computational Geome2§04, pp. 253-262.

clustering or dimensionality reduction. [7] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashimgProceedings

of the Neural Information Processing Systems Confere26068, pp.
1753-1760.

[8] B. Kulis and T. Darrell, “Learning to hash with binary mtstructive
embeddings,Proceedings of the Neural Information Processing Systems
Conferencevol. 22, pp. 1042-1050, 2009.

[9] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing witghs,”
in Proceedings of the International Conference on Machinerihieg,
2011, pp. 1-8.

[10] M. Norouzi and D. J. Fleet, “Minimal loss hashing for cpatt binary
codes,” in Proceedings of the International Conference on Machine
Learning 2011, pp. 353-360.
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