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Abstract

The most popular method for modeling count data is Poisson regression. When data

display over-dispersion, thereby deeming Poisson regression inadequate, typically negative-

binomial regression is instead used. We show that count data that appear to be equi-

dispersed or over-dispersed may actually stem from a mixture of populations with different

dispersion levels. To detect and model such a mixture, we introduce a generalization of the

Conway-Maxwell-Poisson (COM-Poisson) regression that allows for group-level dispersion.

We illustrate mixed dispersion effects and the proposed methodology via semi-authentic

data.

Keywords: Conway-Maxwell-Poisson (COM-Poisson) regression, dispersion, mixture model,

negative binomial regression, under-dispersion
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1 Introduction

Poisson regression is a popular tool for modeling count data, however, it is limiting in its

assumption that the population variance equals the expected value. Thus, it is not an ap-

propriate regression technique for most real-world data as they are usually over- or under-

dispersed. Overdispersion is a more frequent issue for a variety of reasons, e.g. excessive zero

counts, censoring, etc; as a result, it is a focus of interest among statisticians. In this case, the

negative binomial regression is a popular choice used to model the relationship between the

predictor and explanatory variables. Its popularity is illustrated through associated regression

tools being widely available in many statistical software packages, and is generally accepted as

a reasonable method for modeling overdispersed count data.

In the event that the data is actually underdispersed, however, the negative binomial

regression is not equipped to model such data. Other approaches exist that allow for over- or

under-dispersion. The restricted generalized Poisson regression of Famoye (1993), for example,

has the form

P (Yi = yi | µi, α) =

(

µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

(

−µi(1 + αyi)

1 + αµi

)

,

yi = 0, 1, 2, . . . ,

where α = 0 represents the special case of a Poisson regression; α > 0 handles overdispersion,

and −2/µi < α < 0 addresses data underdispersion. This parameter, however, is notably

restricted in the amount of underdispersion that it can model; see Famoye (1993) for discussion.

Meanwhile, the Conway-Maxwell-Poisson (COM-Poisson) regression of Sellers and Shmueli

(2010) is a regression tool that generalizes Poisson regression, and can successfully model

count data containing any sort of dispersion.

All regression models that accommodate for data dispersion stem from an underlying dis-

tribution whose mean is a function of both parameters. This is in stark contrast to a normal

model, for example, where the parameters (µ and σ) are independent. This matter is signifi-

cant particularly when one considers mixtures of these distributions and the resulting impact of

such a data structure on the regression in question. In the normal distribution, if populations
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with the same mean but different variances are mixed, the result will be a normal distribution

with the same mean and a variance that is a “compromise” between the individual variances.

In contrast, the result of mixing over- and under-dispersed count data can lead to data that

appear to have any sort of dispersion.

Given a dataset, how can one determine whether its associated dispersion (or lack thereof)

is “real” or masked when it really results from a mixture of dispersions? In this paper, we

propose a COM-Poisson regression model that allows for variable dispersion to address this

problem. The model can then be used to test for different levels of dispersion across different

groups, and to estimate the associated respective dispersion levels within each group.

Hilbe (2007) addresses the matter of apparent versus real overdispersion, arguing that ap-

parent overdispersion occurs as a result of one or more of the following: the model omitting

important explanatory predictors, outliers in the data, model consideration that does not in-

clude enough interaction terms, misrepresentation of a predictor variable in the appropriate

scale, or misspecification of the link function. This implies that correcting for any of the above

matters could produce an equidispersed dataset that can be fit via Poisson regression. In this

paper, we introduce a new important factor impacting apparent data dispersion, namely mix-

tures of dispersion levels. Data resulting from such a mixture can display apparent dispersion

of any form, when the underlying structure mixes different levels of dispersion (even a mixture

of over- and under-dispersion, as illustrated here).

The paper is organized as follows. Section 2 briefly describes the COM-Poisson distribution

and regression model, which assume a constant dispersion level across all observations. We

then extend this model to account for group-level dispersion such that different groups of

observations can have different dispersion levels. Section 3 presents a semi-authentic dataset

on elephants matings, where a sample of over-dispersed data are combined with a sample of

under-dispersed data. We then apply Poisson regression, ordinary COM-Poisson regression,

and our proposed group-level dispersion COM-Poisson model to the data to illustrate the

results of assuming a particular dispersion structure. Section 4 presents concluding remarks.
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2 COM-Poisson Regression

2.1 The COM-Poisson distribution

The COM-Poisson probability mass function takes the form

P (Yi = yi) =
λyi
i

(yi!)νZ(λi, ν)
, yi = 0, 1, 2, . . . , i = 1, . . . , n, (1)

for a random variable Yi, where Z(λi, ν) =
∑

∞

s=0
λs

i

(s!)ν . In this setting, λi = E(Y ν
i ), while

ν is the dispersion parameter. The COM-Poisson distribution includes three well-known dis-

tributions as special cases: Poisson (ν = 1), geometric (ν = 0, λi < 1), and Bernoulli (with

probability λi

1+λi
, as ν → ∞). See Shmueli et al. (2005) for details regarding this distribution.

2.2 COM-Poisson regression with constant dispersion

Taking a GLM approach, Sellers and Shmueli (2010) proposed a COM-Poisson regression model

using the link function η(E(Y )) = log λ. This function indirectly models the relationship be-

tween E(Y) and Xβ = β0 +
∑p

j=1 βjXj , and allows for estimating β and ν via associated

normal equations. Using the Poisson estimates, β(0) and ν(0) = 1 as starting values, these

equations can be solved iteratively via an appropriate iterative reweighted least squares pro-

cedure (or by maximizing the maximum likelihood directly using an optimization program) to

determine the maximum likelihood estimates for β and ν. The associated standard errors of the

estimated coefficients are derived using the Fisher Information matrix; see Sellers and Shmueli

(2010) (and the accompanying online appendix) for details. R code for estimating the COM-

Poisson regression model is available at www9.georgetown.edu/faculty/kfs7/research. Note

that this model assumes a constant dispersion level across all observations.

2.3 COM-Poisson regression with group-level dispersion

We now introduce an extension of the COM-Poisson regression which allows for different levels

of dispersion across different groups in the data. In particular, we use respective link functions
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for the COM-Poisson parameters, namely:

log(λ) = β0 +

p
∑

j=1

βjXj (2)

log(ν) = γ0 +
K−1
∑

k=1

γkGk, (3)

where Gk is a dummy variable corresponding to one of the K groups in the data.

Estimating the β and γ coefficients is done by maximizing the log-likelihood. The log-

likelihood for observation i is given by

logLi(λi, νi|yi) = yi log λi − νi log yi!− logZ(λi, νi), (4)

where

log(λi) = β0 + β1xi1 + · · ·+ βpxip
.
= Xiβ, and (5)

log(νi) = γ0 + γ1Gi1 + · · ·+ γK−1Gi,K−1
.
= Giγ. (6)

Since the COM-Poisson distribution belongs to the exponential family, we can determine ap-

propriate normal equations for β and γ. Using the Poisson estimates, β(0) and γ(0) = 0,

as starting values, coefficient estimation can again be achieved via an appropriate iterative

reweighted least squares procedure, or by using existing nonlinear optimization tools (e.g., nlm

or optim in R) to directly maximize the likelihood function. The associated standard errors of

the estimated coefficients are derived in an analogous manner to that described in Sellers and

Shmueli (2010).

2.4 Testing for Variable Dispersion

Sellers and Shmueli (2010) established a hypothesis testing procedure to determine if significant

data dispersion exists, thus demonstrating the need for a COM-Poisson regression model over a

simple Poisson regression model; in other words, they test whether ν = 1 or otherwise. We now

ask the follow-up question: is the dispersion level fixed across observations, or is it dependent
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on one or more of the K − 1 groups? More formally, we consider the set of hypotheses:

H0 : γk = 0 for k = 1, . . . ,K − 1 vs.

H1 : γk 6= 0 for at least one k ∈ {1, . . . ,K − 1}. (7)

The likelihood ratio statistic Λ and the derived test statistic C are given by

Λ =
L
(

β̂(0), γ̂0(0)

)

L
(

β̂, γ̂
) (8)

C = −2 log Λ = −2
[

logL
(

β̂(0), γ̂0(0)

)

− logL
(

β̂, γ̂
)]

, (9)

where γ̂i(0) = 0 for j = 1, . . . ,K − 1. β̂(0), γ̂(0) where ν(0) = exp(Xγ(0)) are the maximum

likelihood estimates obtained under H0, that is, they are the COM-Poisson estimates under

the constant dispersion model; and (β̂, γ̂) are the maximum likelihood estimates under the

variable dispersion model, obtained by Equations (5) and (6). Under the null hypothesis, C

has an approximate χ2 distribution with K − 1 degree of freedom. Therefore, we reject H0 in

favor ofH1 when C > χK−1(α). For small samples where the χ2 approximation is questionable,

a bootstrap procedure can be used.

3 Example: Elephant Matings

3.1 Data description

Young adult male elephants must compete with older males to mate with receptive females.

Because male elephants continue to grow in size throughout their lives, older elephants are

larger and tend to be more successful at mating. Poole (1989) collected data on the age and

number of successful matings for 41 male elephants in order to model the effect of age on the

number of matings. The raw data were obtained from Ramsey and Schafer (2002).

3.2 Poisson and COM-Poisson results

We first fit a Poisson regression model to the data, regressing the number of matings (Y ) on

age (X). The estimated coefficients are given by β̂0 = −1.579, β̂1 = 0.069. We then fit a COM-
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Table 1: Estimated regression models for elephant matings data

β0 β1 Dispersion

Poisson -1.579 0.069 Pearson GOF=1.162
COM-Poisson -1.448 0.060 ν̂=0.83 (90% CI =(0.53, 1.49))

Poisson regression model to determine whether equi-dispersion is a reasonable assumption. The

resulting coefficients are close to those from the Poisson regression (see Table 1), the Pearson

goodness-of-fit statistic is near 1, and the 90% bootstrap confidence interval for ν includes

the value 1 (using 1,000 resamples). Hence, it is reasonable to assume a Poisson regression to

model this relationship.

3.3 Simulated data

To illustrate the effect of mixing data with under- and over-dispersion, we simulated data

based on the elephants matings dataset. In particular, given the age of the elephants in the

dataset and the estimated β coefficients from the Poisson model (Table 1, second row), we

generated the number of matings according to a COM-Poisson distribution. In Scenario 1, we

generated 41 over-dispersed observations with ν1 = 0.9, and 41 under-dispersed observations

with ν2 = 2, creating a mixed sample of 82 observations. In Scenario 2, we polarized the

dispersion levels further, generating 41 over-dispersed observations with ν1 = 0.9 and 41 under-

dispersed observations with ν2 = 6. Each of the two datasets is shown in Figure 1. Note that

the under-dispersed group is concentrated at the bottom of each plot (triangles).

3.3.1 Poisson and COM-Poisson regression

We start by fitting a Poisson regression and an ordinary COM-Poisson regression to the data.

In particular, we estimate two models:

log(λ) = β0 + β1AGE (10)

and

log(λ) = β0 + β1AGE + β2G, (11)
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Figure 1: Scatterplot of Matings vs. Age for each of the two simulated datasets (left =
Simulation 1, right = Simulation 2). Triangles denote the under-dispersed group, and circles
denote the over-dispersed group. Slight jittering was used to avoid overlay of points.

where AGE denotes the elephant’s age, and G is a dummy variable denoting whether the

observation comes from the over-dispersed (G = 1) or under-dispersed (G = 0) group. Table

2 contains the parameter estimates for both simulations, considering the relationship between

the number of matings solely in relation to age, and then with the added group effect. For

Simulation 1, modeling the number of matings with age alone results in an apparent Poisson

fit (as noted by the Pearson goodness of fit statistic for the Poisson regression and the 90%

confidence interval for ν in the COM-Poisson regression; see also Figure 2). In contrast,

for Simulation 2, both models indicate over-dispersion. In other words, the mixture of two

dispersion levels can result in apparent equi-dispersion or over-dispersion even for different

realizations of the same underlying structure.

For both simulations, adding the group effect as an additional covariate in the model

results in apparent underdispersion according to the Pearson statistic (< 1), and to apparent

equi-dispersion according to the 90% confidence intervals for ν and as can be seen in the bottom

panels of Figure 2. In both cases the real dispersion structure is disguised.

In the next section, we will see that taking into account the group assignment by relating

it to the dispersion parameter helps detect the difference in group-level dispersion levels. This

is a significant issue because an analyst who considers only the results of linking group mem-
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Figure 2: Histogram of ν̂ for each of the two simulated datasets (left = Simulation 1, right =
Simulation 2), based on the 1,000 bootstrap samples. Top panels: AGE as a single covariate.
Bottom panels: AGE and G as two covariates.

Table 2: Estimated model for simulated mixed matings data via various models

Model β̂0 β̂1 (Age) β̂2 (Group) Dispersion

Simulation 1 Poisson -1.690 0.064 – Pearson GOF=1.09
COM-Poisson -1.611 0.059 – ν̂=0.89 (90% CI=(0.41, 1.02))
Poisson -2.177 0.064 0.813 Pearson GOF=0.79
COM-Poisson -2.911 1.065 0.092 ν̂=1.462 (90% CI=(0.81,1.68))

Simulation 2 Poisson -1.646 0.057 – Pearson GOF=1.13
COM-Poisson -1.508 0.047 – ν̂=0.72 (90% CI=(0.19, 0.63))
Poisson -2.577 0.057 1.405 Pearson GOF=0.55
COM-Poisson -3.141 2.133 0.082 ν̂=1.90 (90% CI=(0.81,1.83))
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Table 3: Estimated COM-Poisson models with group-level dispersion (Equations (12)-(13)) for
simulated mixed matings data.

β̂0 β̂1 γ̂0 γ̂1

Simulation 1
True estimates -1.579 0.069 log(2) = 0.693 log(0.9/2)= -0.799
Group-level dispersion -1.843 0.080 0.828 -0.725 (90% CI=(-1.044, -0.602))

Simulation 2
True estimates -1.579 0.069 log(6) = 1.792 log(0.9/6)= -1.897
Group-level dispersion -1.730 0.075 1.692 -1.561 (90% CI=(-4.632, -1.557))

bership to λ is likely to conclude that Poisson or negative binomial regression (respectively)

are adequate models, when in fact they cannot capture the underlying dispersion structure.

3.3.2 COM-Poisson regression with group-level dispersion

We now examine each of the two simulated datasets by fitting a COM-Poisson regression model

with group-level dispersion, using the following link equations:

log(λ) = β0 + β1AGE (12)

log(ν) = γ0 + γ1G. (13)

The estimated models for each of the simulated datasets are given in Table 3.

The test to show the existence of a statistically significant mixture of dispersion levels (i.e.

H0 : γ1 = 0 versus H1 : γ1 6= 0) yields respective test statistics of 29.928 and 59.250 with

associated p-values ≈ 0, indicating (in fact) that a mixture of dispersion levels exists. Due to

the small sample size, we confirmed this result by using a 90% bootstrap confidence interval

for γ1 (based on 1,000 resamples). In both cases, the interval did not contain 0. In summary,

the group-level COM-Poisson model was able to detect the mixture of dispersion levels rather

than treat the entire sample as coming from a single population mistakenly presumed to be

either equi- or over-dispersed. Moreover, the fitted model produces estimates that are quite

close to the true underlying parameters used to generate the data.

Finally, to assess the ability of the group-level dispersion COM-Poisson model to correctly
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Table 4: 90% bootstrap confidence intervals (based on 1,000 resamples) for β2 and γ1 fitting a
model with equations (14)-(15), for each of the simulations.

β2 γ1
Simulation 1 (-0.761, 0.756) (-1.330, -0.308)
Simulation 2 (-0.722, 0.886) (-5.468, -1.341)

identify that groups differ only in dispersion level but not in λ, we fit the model

log(λ) = β0 + β1AGE + β2G (14)

log(ν) = γ0 + γ1G. (15)

The results in Table 4 show that for both simulations the model identifies that the groups

differ only in dispersion level (β2 = 0 and γ1 6= 0).

4 Concluding Remarks

Identifying and fitting a mixed-dispersion dataset requires a model that can capture both

over- and under-dispersion. Although the negative binomial regression model is very popular

for modeling over-dispersed data, if the over-dispersion is a guise for an underlying mixture

of dispersion levels, it is conceptually and practically more appealing to use the COM-Poisson

regression described by Sellers and Shmueli (2010).

Mixtures of strictly over-dispersed (or strictly under-dispersed) populations generally pro-

duce an overall dataset that is likewise over-dispersed (or under-dispersed). Although one

might expect the mixed dataset to reflect a dispersion level that falls between the dispersion

levels of the different groups, we have found that mixtures of over-disperesed groups can result

in an overall over-dispersion level that is even more extreme than each of the separate groups.

Hence, apparent over-dispersion can be disguising a mixture of groups which each has a lower

over-dispersion level.

We introduced here an extension to the COM-Poisson regression model that can detect

and capture data that come from mixtures of dispersion levels. Our focus was on group-level

dispersion, assuming that we have multiple observations coming from each dispersion level. A

related model is one where the dispersion level is observation-specific, i.e. a model with link
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functions of the form,

log(λi) = β0 +

p
∑

j=1

βjXi,j (16)

log(νi) = γ0 +

q
∑

k=1

γkVk,i, (17)

where the covariates used in each of the equations can either differ or overlap. For further de-

tails on an observation-level COM-Poisson model, see Sellers and Shmueli (2009). Additional

models can be derived along these lines. For example, taking a Bayesian approach, one could

supplement the observation-level model with a distribution on ν to create group-level disper-

sion. The choice between a group-level, observation-level, or other model would depend on

knowledge about the underlying mechanism producing the data. In this paper, we focused on

the common case of data arising from mixtures of observations from populations with different

dispersion levels.
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