
Noname manuscript No.
(will be inserted by the editor)

Data-Driven and Automated Prediction of Service

Level Agreement Violations in Service Compositions

Philipp Leitner · Johannes Ferner ·

Waldemar Hummer · Schahram Dustdar

Received: date / Accepted: date

Abstract Service Level Agreements (SLAs), i.e., contractually binding agree-
ments between service providers and clients, are gaining momentum as the
main discriminating factor between service implementations. For providers,
SLA compliance is of utmost importance, as violations typically lead to penalty
payments or reduced customer satisfaction. In this paper, we discuss ap-
proaches to predict violations a priori. This allows operators to take timely
remedial actions, and prevent SLA violations before they have occured. We
discuss data-driven, statistical approaches for both, instance-level prediction
(SLA compliance prediction for an ongoing business process instance) and fore-
casting (compliance prediction for future instances). We present an integrated
framework, and numerically evaluate our approach based on a case study from
the manufacturing domain.

Keywords Service Composition · Service Level Agreements · Quality
Prediction

Philipp Leitner
Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8
E-mail: leitner@infosys.tuwien.ac.at

Johannes Ferner
E-mail: johannes ferner@yahoo.de

Waldemar Hummer
Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8
E-mail: hummer@infosys.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8
E-mail: sd@infosys.tuwien.ac.at

2 Philipp Leitner et al.

1 Introduction

Service-based applications and business process management have been bloom-
ing research areas for the last years, solving many fundamental problems of
both, academic and industrial interest [37,49]. Going forward, global trends
like Everything-as-a-Service (XaaS) or Cloud Computing will further increase
the spotlight put on services engineering and related disciplines [7]. In the
wake of these developments, non-functional service aspects and Quality-of-
Service (QoS) are becoming more relevant to industrial practice, where QoS
promises are typically defined as legally binding Service Level Agreements
(SLAs) [25]. SLAs are described using languages such as WSLA [10] or OGFs
WS-Agreement [2], and contain so-called Service Level Objectives (SLOs),
numerical QoS objectives, which the service needs to fulfill. For cases of viola-
tions, SLAs often define monetary penalties, e.g., a discount that the provider
needs to grant to the client. Furthermore, frequent SLA violations detuct from
the service client’s experience, and are damaging to the image of the provider.
Hence, providers have a strong interest in reducing the number of SLA viola-
tions for their services.

Essentially, there are two approaches to achieve this. On the one hand, it
is possible to use post mortem analysis and optimization [5,51], i.e., analysing
historical cases of violation and modifying the service composition [12] (or
the business process that the composition implements), so that the same type
of violation is less likely to happen again. On the other hand, one can aim
to predict violations in advance, before they have actually happened. This is
more promising, as it allows providers to not only learn from past failures, but
actually prevent them in the first place. In this paper, the main contribution is
an extensive discussion of an approach to achieve the latter, runtime prediction
of SLA violations. We distinguish between two types of SLOs, instance-level
SLOs (which can be evaluated for each business process instance in isolation)
and aggregated SLOs (which can only be evaluated over a defined period of
time), and present data-driven statistical prediction techniques for both types
of SLO. This paper is an extension of previously published work [28]. This
earlier work introduced our approach for machine learning based prediction,
while the current paper provides a more extensive discussion of the end-to-
end framework, coverage of quantitative and aggregated SLOs, and numerical
evaluation of the approach.

The remainder of this paper is structured as follows. Firstly, in Section 2,
we introduce the domain of SLA management. Afterwards, in Section 3, the
case study used in the remainder of the paper, is introduced. The main con-
tributions of this paper are contained in Section 4 and Section 5. Section 4
introduces the general framework for predicting violations, while Section 5
details the used statistical models. Afterwards, Section 6 discusses a proto-
typical implementation of our techniques based on an existing infrastructure
for service-oriented architectures (SOAs) [35], which forms the basis of the
numerical evaluation discussed in Section 7. Section 8 gives an overview of
earlier research, and puts our work into context with regard to the research

Automated Prediction of SLA Violations 3

area at large. Finally, we conclude the paper in Section 9, summarizing the
main points of our contribution and outlining future research.

2 Background

In the following section, we introduce some important background and nota-
tion with regard to the concept of SLAs. SLAs [25] are a formalization and
contractual arrangement of QoS for composed services. Instead of assuming
that services provide the highest quality they can on a best-effort basis, SLAs
fix the minimally promised quality in various dimensions. SLAs are often seen
as legally binding contracts between one or more service clients and a service
provider. SLAs are a collection of many SLOs. An SLO is an observable quality
dimension of a service. Additionally, SLAs define penalties for non-achievement
(violation) of SLOs. Both, penalties and target values, can be different for ev-
ery SLA in which an SLO is used. At runtime, concrete values for SLOs can
be monitored. Based on the type of SLO (see below), this measured value can
be generated either per composition instance or per aggregation interval. For
clarity, the domain model of SLAs, as they are understood in this paper, is
depicted in Figure 1.

SLA SLO

Service
Provider

Service Client

Target Value

*

*

* *

Measured
Value

Composition
Instance

Aggregation
Interval

1

*

0..1

0..1

XOR

*

*

D
e

s
ig

n
 T

im
e

R
u

n
 T

im
e

Penalty

Fig. 1: Simplified SLA Model

Some different languages have been proposed to model SLAs, including
WSLA [10,25], WS-Agreement [2] and SLAng [46]. These models do not differ
so much in their expressiveness, but more in the environment they live in. For
instance, WSLA specifies a monitoring and accounting infrastructure along
with the basic language [10]. It is important to note that the work in this
paper is agnostic with regard to the used SLA language, as long as it fits the
basic model specified in Figure 1.

SLOs come in different flavors. In this paper, two distinctions are of rel-
evance. Firstly, one can differentiate between nominal and continuous SLOs.

4 Philipp Leitner et al.

For nominal SLOs, the measured value can be one of a finite number of po-
tential values. The target range (i.e., the domain of valid values as per the
agreement) is a subset of the set of potential values. Metric SLOs, which are
more prevalent, can take an infinite number of values. Target values are defined
as thresholds on the metric. Secondly, one can distinguish SLOs on composi-
tion instance level and aggregated SLOs. For composition instance level SLOs,
a decision of whether an SLA violation has happened can be made for every
single composition instance individually. Aggregated SLOs are defined over an
aggregation interval, for instance a number of composition instances or a time
interval. Decisions can be made only looking at the whole aggregation interval,
e.g., all composition instances of a month.

3 Illustrative Use Case

In the remainder of this paper, the case of a reseller of built-on-demand heavy-
duty industry robots (ACMEbot) will be used. We originally introduced
ACMEbot in [26], and the following discussion will mostly follow the same
basic notions.

A
C

M
E

b
o

t
S

c
e

n
a

r
io

A
C

M
E

b
o

t
A

s
s
e

m
b

ly
 S

e
rv

ic
e

C
u

s
to

m
e

r

Place
RFQ

Receive
RFQ

Plan
Assembling

Check
Availability of

Parts

Send
Offer

Receive
Offer

Order
Unavailable Parts

Schedule
Assembling

Ship

Create
Final Bill

Charge
Customer
Account

Send
Invoice

Generate
Offer

Receive Product Receive Invoice

Decide
on Offer

Place
Order

Receive
Order

Product
Assembled

Wait for
Finished

Assembling

Wait for
Parts

Cancel
Order

Cancel
Order

Quality
Control

Fig. 2: Use Case Illustration (from [26])

The business model of ACMEbot is as follows. Customers request a quote
(request for quotation, RFQ) for a specific robot in a specific configuration.
ACMEbot plans the steps necessary for the requested configuration, checks
whether necessary parts are not in the internal warehouse (these parts need
to be ordered from external suppliers), and generates an offer. The customer
can then either cancel the process or place the order. If the order is placed,
ACMEbot starts by getting all missing parts from external suppliers and
waits for these parts to arrive. As soon as all parts are available, the product
is scheduled for assembling. After assembling is finished, the product is subject

Automated Prediction of SLA Violations 5

to a quality control step, and, if successful, shipped to the customer. In parallel
to the shipping of the product, the customer is billed and an invoice is sent.
ACMEbot’s core business process is depicted in Figure 2.

For reasons of brevity, we concentrate on the two roles “Customer” and
“ACMEbot Assembly Service” in the figure, even though ACMEbot inter-
acts with many different external partners (e.g., suppliers of parts, shippers,
credit card companies) to implement the described functionality. ACMEbot’s
IT relies on the notion of SOA, i.e., the order process is implemented as a ser-
vice composition. Hence, activities in the process are mapped to one or more
invocations of (Web) services.

Type of SLO SLO Target Penalty Interval

Instance-
Level

Metric
Time To Offer ≤ 2 days 5% discount n/a
Delivery Time ≤ 3 days 10% discount n/a
End-To-End Dura-
tion

≤ 7 days 10% discount n/a

Nominal Quality Control Pos-
itive

Yes 80% discount,
or correction
at provider’s
expense

n/a

Aggre-
gated

Metric
Rate of Failed Ser-
vice Requests

< 1% 10% discount
on next pur-
chase

Weekly

Service Availability > 99.99% 10% discount
on next pur-
chase

Monthly

Table 1: Example SLOs in ACMEbot

Generally, customers of ACMEbot are larger business partners, typically
resellers (i.e., ACMEbot does not interact with end customers directly). For
each reseller, there are pre-established SLAs, which typically consist of a sub-
set of a number of often-seen SLOs. Some examples are depicted in Table 1,
along with target values and penalties. Evidently, these are illustrative exam-
ple values only, without claims of generality. Penalty payments are captured as
discount on the current or future purchases. Time periods are given in work-
ing days. The SLO “Quality Control Positive” is of particular interest, as it is
the only nominal SLO in the case study. The possible values of this SLO are
simply {Yes, No}, with the target being Yes.

4 Data-Driven Prediction of SLA Violations

In this section, we discuss our integrated, data-driven approach for predicting
different types of SLOs in advance.

4.1 Framework Overview

We sketch our overall framework for predicting SLA violations in Figure 3.
Essentially, three separate phases can be distinguished. Firstly, in the mon-

6 Philipp Leitner et al.

itoring phase, raw data is gathered from the running service composition,
and transformed into so-called metrics (both, QoS and Process Performance
Metrics, or PPMs, as will be explained below). We use the notion of complex
event processing [30] (CEP) to extract higher-level knowledge from low-level
monitoring events. These metrics are stored in databases, decoupling the mon-
itoring parts of the system from the actual analysis. Secondly, in the predic-

tion phase, the gathered high-level knowledge is enriched with external data,
if available, as well as with so-called estimations. All these different types of
runtime data are then fed into a prediction model, essentially a pre-trained
statistical model used for generating one or more predictions of concrete SLO
values from data. Finally, in the management phase, the predictions of SLO
values are matched to existing customer SLAs, and visualized in a dashboard
for human operators, along with collected statisical information about the past
performance of predictors.

QoS Database

SLO

Predictors

Prediction

Models

Business Process

Estimators

Complex Event Processing Engine

low-level events

QoS metrics

External
Data

Providersexternal
metrics

PPM

Database

PPM metrics

PPM metricsQoS metrics

estimations

Prediction

GUI

predictions

Fig. 3: Prediction Approach Overview

In the following, we will focus mostly on the prediction and management
phases. A deeper discussion of the monitoring is out of scope of this paper.
The interested reader may refer to [27,51] to find more information on our
ideas with regard to CEP-based monitoring.

Automated Prediction of SLA Violations 7

4.2 Input Data and Checkpoint Definition

A vital ingredient of our approach are metrics. Basically, metrics is the um-
brella term we use for all different types of data used as input of SLO predic-
tions. We present an overview of the relevant data model in Figure 4. Generally,
we distinguish between internal and external metrics. Internal metrics can be
monitored directly from the service composition, while external metrics origi-
nate in external data source, e.g., an external customer relations management
service providing customer information. We do not go into more detail about
external data providers. Internal metrics are further separated into QoS met-
rics, i.e., typical Web service QoS information [31], and PPMs [52]. PPMs are
domain-specific metrics, which are often defined recursively, and which make
business sense in the domain of the provider of the process. They are the basis
for defining the SLOs of a process. Examples of PPMs include simple metrics,
such as the customer that has ordered a product, or the number of parts that
are not in stock for a given order. A more complex PPM is the duration of
the part ordering subprocess in the ACMEbot case. QoS metrics are always
associated to exactly one service used in the service composition, while PPMs
are typically not bound to any concrete service.

Metric

Internal Metric

QoS Metric PPM Metric

Service

refers to

Estimator

*

1

estimates

0..1

1

input to

External Metric

External Data
Provider

provided by

1

1

Metric Value
value of

Composition
Instance

* 1

State

1

*

measures

Composition

1

*

measures

used in

*

*

*

*

{ fact,estimable,
unknown }

Fig. 4: Metrics Data Model

Metrics can be monitored for each composition instance. At any point in
the execution of a process, every metric can be in one of three states. (1) Input
data can be available as facts. Facts represent data which is already known
at this time. Generally speaking, this includes all data which can already

8 Philipp Leitner et al.

be monitored at this point in the execution. Typical examples of facts are
the QoS of services that have already been invoked. (2) Input data can be
unknown. Unknowns are the logical opposites of facts, in that they represent
data which is entirely unknown at this point in the composition instance. For
instance, before starting the assembling process, the assembling time will be
unknown. (3) Finally, as a kind of middle ground between facts and unknowns,
input data can also be estimable. Such estimates are produced by dedicated
estimator components, which are metric-specific. Generally, an estimator is
a function that takes any number of other metrics (typically metrics, which
are already available as facts) as input and produces an estimation for a yet
unknown metric, to serve as input to prediction. Evidently, not all metrics are
estimable. QoS metrics are often relatively easy to estimate, as techniques such
as QoS monitoring [34] can be used to create an approximation of e.g., the
response time of a service before it is actually invoked. As PPMs are generally
domain-specific, it is often harder to estimate PPMs in advance. However, in
many cases, this is possible as well. For instance, given the address of the
customer and the selected shipping option, it is possible for domain experts
to estimate the shipping time before even starting the shipping process.

Receive
RFQ

Produce
Offer

C1 C2

 Facts: {Customer, OrderedProduct, ...}

 Estimates: {QoS_ExtSupplier, QoS_Warehouse, ...}

 Unknown: {InStock, PaymentPrefs, ...}

{QoS_BankingService, ...}

 {AssemblingTime, QoS_ExtSupplier, ...}

 {PaymentPrefs, DeliveryTimeShipment}

Order
Unavailable

Parts

Assemble

Quality
Control

Ship

Charge
Customer

Prediction
Quality

Time for
Reaction

In
p

u
t

D
a

ta
S

e
rv

ic
e

C
o

m
p

o
s

itio
n

Q
u

a
lity

 / T
im

e
lin

e
s

s
T

ra
d

e
o

ff

Fig. 5: Example Checkpoints in the ACMEbot Process

It is obvious that one important decision for our approach is at which point
in the service composition we want to predict violations. We refer to this de-
cision point as the prediction checkpoint. Earlier checkpoints have access to
less data, but the remaining time for reacting to prospective faults is higher.
Conversely, generating predictions later increases the quality of the predic-
tions, but reduces the time available for reaction. This tradeoff is visualized in
Figure 5. However, note that it is also possible to define multiple checkpoints

Automated Prediction of SLA Violations 9

for a given process, generating both early (but inherently unsure) warnings
and more reliable late predictions.

4.3 Identification of Factors of Influence

Finding good prediction checkpoints at which the prediction is reasonably
accurate and still timely enough to react to problems demands for some domain
knowledge about influential factors of composition performance. Factors of
influence are rarely obvious, even to domain experts. Hence, a process has
been devised based on the principle of dependency analysis [50,51], which can
be used by business analysts to identify factors of influence. This process is
summarized here.

Generate Initial
List of Potential

Metrics

Execute
Composition /

Monitor Metrics

Dependency
Analysis

Evaluate
Training Data
Correlation

Additional

Metrics

Necessary?

Define
Additional

Metrics

[Yes] [No]

Human Input / Decision Required

Fig. 6: Factors of Influence Analysis Process

Our approach for identifying factors of influence is a semi-automated pro-
cess. It relies on the domain knowledge of a human business analyst, but
supports her with automation and knowledge discovery tools to ease repeti-
tive tasks. The high-level process is sketched in Figure 6. As a first step, an
(initial) list of potential factors of influence is defined. Typical QoS metrics
can be generated automatically (e.g., for every used service, response time and
availability metrics can be generated). Additionally, the business analyst may
include PPMs and external data, which both need to be defined manually. For
every potential factor of influence, a monitor is defined or generated, which
specifies how this metric can be measured from a running instance. For in-
stance, for QoS metrics, we define CEP expressions, which indicate how this
metric can be calculated from service composition monitoring events. To give
one trivial example, the execution time of an activity in the composition is the
timestamp of the respective “activity finished” event minus the timestamp of
the according “activity started” event. Secondly, a data set containing these
metrics needs to be generated, either by simulating the composition in a Web
service test environment, such as Genesis2 [24], or by monitoring real execu-
tions with monitoring of all potential factors of influence enabled. Afterwards,
a so-called dependency tree is generated from the data set. The dependency

10 Philipp Leitner et al.

tree is essentially a decision tree, containing the factors that best explain SLO
violations in the composition. Generating the dependency tree boils down to
training a decision tree using, e.g., the C4.5 [40] algorithm from the available
data. The third step is then to use these factors, as contained in the depen-
dency tree, to try and train a prediction model. If this prediction model has
a sufficiently high training data correlation (see Section 4.4) against the mea-
sured data set, these factors can be used as input to the prediction model.
If the correlation is not sufficient, the business analyst needs to identify the
reason for the lacking performance. Generally, she will then go on to define
additional metrics and their monitors, and repeat from the second step.

4.4 Prediction Quality Management

In the management phase, one essential activity is prediction quality manage-
ment, i.e., the process of evaluating the performance of prediction models by
comparing predictions with actual outcomes, as soon as they become available.
As different statistical methods are used to predict different types of SLOs, we
also need different quality indicators to evaluate their performance. Typically,
if the prediction perfomance as measured by these quality indicators, is not
sufficient, the prediction model needs to be re-trained, by taking into account
new monitoring data, or additional factors of influence.

4.4.1 Quality Indicators for Metric SLOs

For metric SLOs (both, on instance-level and aggregated), we mainly use the
training data correlation corr, the mean prediction error ē, and the predic-
tion error standard deviation σē for quality management. corr is a standard
machine learning approach to evaluate regression models, which captures the
statistical correlation between the actual outcomes in the training data set, and
the values that the predictor would generate if applied to the historical values.
In our approach, corr is used mainly to evaluate freshly generated prediction
models, when no actual runtime predictions have yet been carried out (e.g.,
as part of the dependency analysis process outlined in Section 4.3). This indi-
cator is inherently overconfident, as during training all estimates are replaced
for the facts that they estimate. However, a low training data correlation is
an indication that important metrics are still unknown in the checkpoint, i.e.,
that the checkpoint may be too early in the composition to do much good.
More important at runtime than corr is ē, as defined in Equation 1.

ē =

∑n

i=0 |mi − pi|

n
(1)

ē represents the average (Manhatten) difference between predicted and
monitored values, i.e., how far “off” the prediction is on average. n is the total
number of predictions, pi is a predicted value, and mi is the measured value
to prediction pi (that is, every prediction is compared to the value that has

Automated Prediction of SLA Violations 11

been measured after this instance was finished). Finally, σē is used to describe
the variability of ē, as defined in Equation 2. ei is the actual prediction error
for an instance (mi − pi). Essentially, high σē means that the actual error
for an instance can be much lower or higher than ē, which in turn makes the
prediction less reliable for the end user.

σē =

√

∑n

i=0(ei − ē)2

n
(2)

4.4.2 Quality Indicators for Nominal SLOs

For nominal SLOs, we cannot just calculate a mean distance of predictions and
actual SLO values. Instead, we need to look at each prediction individually.
To this end, confusion matrices are often used. They are essentially tables
with n rows and columns, where n is the number of different values that the
SLO can have (in the example of the “Quality Control Positive” SLO from
Section 3 n is therefore 2). Every cell xy in the confusion matrix contains
the number of cases, in which the actual SLO value turned out to be x, and
the prediction was y. Evidently, only the values on the main diagonale of the
confusion matrix contain correct predictions, while all other cases represent
some sort of prediction error.

F = 2 ·
prec · recall

prec+ recall
(3)

While the confusion matrix visualization is helpful to get a quick impression
of the prediction performance, it is hard for a human operator to objectively
compare the performance of two predictors solely based on it. For these cases,
it is better to aggregate the information contained in the confusion matrix,
for instance using the F-measure, as defined in Equation 3. In essence, the
F-measure is the harmonic mean of precision and recall [43], which can be
derived from the confusion matrix.

5 Statistical Models

In the following, we discuss our concrete instantiations of different statistical
models for prediction SLA violations. Depending on the type of SLO, we use
one of three different approaches: (1) for nominal, instance-level SLOs, we
use decision tree classifiers [39], (2) for metric, instance-level SLOs, we use
Artificial Neural Networks (ANNs) [23], and (3) for metric, aggregated SLOs,
we use Autoregressive Integrated Moving Average (ARIMA) models [6].

12 Philipp Leitner et al.

5.1 Prediction of Nominal, Instance-Level Service Level Objectives

Nominal SLOs are interesting, as many prediction approaches used in related
work (e.g., resource analysis as discussed in [21]) are not well-suited to handle
them. Essentially, predicting a nominal SLO is a classification problem. We
use J54, the WEKA [17] implementation of the well-known C4.5 algorithm [22,
40]. Note that it is also feasible to plug in other classification algorithms as
implementations of the prediction models for nominal SLOs. We have also
experimented with Bayes networks [16], but do not report on these results in
this paper for reasons of brevity.

Outsourced?

= false = true

QA Skipped?

Result: OK
= false = true

Result: OK

Priority of Construction?

< 3

Result: Failed Result: OK

>= 3

Fig. 7: Example Decision Tree for SLO Quality Control Positive

Decision trees [39] are an approach primarily used for classification of data.
The decision tree is a directed, acyclic graph with one root node and any num-
ber of leaf nodes (nodes with an out-degree of 0). Every leaf node represents
a classification to one of the classes, every other node represents a decision.
When data has to be classified using the decision tree, one reads the tree from
the root node downwards, always continuing with the edge indicated by the
outcome of every decision evaluated against the data, until a leaf is reached.
This leaf is the result of the classification. A primitive example of a decision
tree in the SLO prediction domain is depicted in Figure 7. This tree exem-
plifies, what the tree-based prediction model for the SLO Quality Control
Positive (as introduced in Table 1) could look like.

5.2 Prediction of Metric, Instance-Level Service Level Objectives

There are inherently two quite different approaches to predict metric SLOs:
(1) predict the concrete value of the metric SLO, and compare this predicted
value with the target value defined in the SLA, or (2) predict violation or
non-violation directly. The former is a regression problem, while the latter is a
binary classification problem. If one chooses to follow the latter approach, deci-
sion trees can again be used to carry out predictions. However, we have decided
to follow the former approach, as predicting the concrete SLO value provides
much more fine-grained information to the end user. For instance, using our

Automated Prediction of SLA Violations 13

approach, users also get an idea “how much” the SLA will be violated, which
may also be relevant to quantify the actual damage of the violation. Hence, a
suitable regression algorithm for generating predictions of metric SLO values
is required.

In our work, we use Artificial Neural Networks (ANNs) [23]. ANNs are
a machine learning technique inspired by the inner workings of the human
brain. Basically, ANNs consist of one or more layers of nodes (neurons) and
directed connections between neurons. Oftentimes, ANNs consist of an input
layer, output layer and one or many intermediary layers.

Input Layer

Intermediate Layer

Output Layer

Shipping Time

Time To Offer

Priority

Order Fulfillment Time

Fig. 8: Example Network for Predicting the Order Fulfillment Time

An abstracted example of a multilayer perceptron with one hidden (in-
termediary) layer for predicting the metric SLO Order Fulfillment Time is
given in Figure 8. Input values are mapped to nodes in the input layer. From
these inputs, a complex system of weights and activation functions produces
a single output value (the SLO). However, keep in mind that the number of
intermediary layers is in general not fixed.

5.3 Prediction of Aggregated Service Level Objectives

In order to predict aggregated SLOs, one needs to be able to predict how many
future instances there will be in the remainder of the aggregation interval, as
well as predict how many of those instances will violate the target value. For
both prediction problems we can use the technique of time series analysis, i.e.,
the technique of predicting future values based on the observed values of a
series of historical values. In this paper, we consider two different types of time
series, namely, those with trends and those with seasonality. Time series with
seasonality are stationary, i.e., the mean does not change over time. However,
the concrete values change significantly with the “season”. Time series with
trends are non-stationary, i.e., their mean changes with time. If we model the
evolution of an SLO’s values as a stationary process, it means that the SLO
value oscillates around a constant mean value and shows no significant trend
in any direction away from the mean. We argue that stationarity is a valid
assumption for most SLOs, at least in the short or medium run. However, over
longer periods of time, it may occur that an SLO converges against a new mean
value and shows a different oscillation scheme. Hence, an appropriate time

14 Philipp Leitner et al.

interval for the stationary process has to be considered. ARIMA models [6,45]
have emerged as a popular approach to predict future values in time series,
where the data show evidence of non-stationarity.

Similar to training of ANNs for instance-level SLOs, ARIMA models need
to be fitted to training data before they can be used for prediction. We have
devised a fitting process that uses historical instances of the service composi-
tion, however, details to this parameter optimization process are out of scope
here. Please refer to [15] for more details.

6 Implementation

To evaluate the ideas discussed in this paper, we have implemented an end-
to-end prototype dubbed E-dict (short for Event-driven prediction).

6.1 Implementation Overview

E-dict is based on Microsoft .NET 3.01 tooling and integrates various other
well-known third-party software packages. In this section, we detail the real-
ization of our prototype.

Figure 9 shows how we have practically implemented the conceptual frame-
work discussed in Section 4. As far as possible, we aimed to prevent reproduc-
ing exising work. Hence, we used, adapted and integrated a plethora of state-
of-the-art tools, algorithms and research prototypes. In the figure, we printed
such existing tools and technology in bold.

As can be seen, E-dict is heavily based on an earlier research prototype,
VRESCo (Vienna Runtime Environment for Service-Oriented Computing) [35].
VRESCo is a novel environment for building, running, and monitoring highly
dynamic composite servies based on Microsft Windows Workflow Founda-
tion (WWF) technology2. VRESCo allows for event-driven monitoring via the
VRESCo event engine (described in detail in [33]). The event data collected
by this event engine is our main interface towards the E-dict framework, which
uses the NEsper complex event processing engine3 to generate interpretable
metrics from the low-level monitoring data collected by VRESCo. NEsper is
the .NET version of the state-of-the-art open source CEP engine Esper4, and
functionally mostly equivalent. The generated metrics are then stored in a lo-
cal database, for which we use the open source database management system
MySQL 5.0 community edition5.

To implement the statistical algorithms described in Section 5, we utilize
the well-known machine learning toolkit WEKA [17], which implements both,

1 http://www.microsoft.com/download/en/details.aspx?id=31
2 http://msdn.microsoft.com/en-us/netframework/aa663328
3 http://esper.codehaus.org/about/nesper/nesper.html
4 http://esper.codehaus.org/
5 http://www.mysql.com/products/community/

Automated Prediction of SLA Violations 15

VRESCo-Enabled

Windows Workflow

VRESCo

VRESCo

Event

Database

NEsper CEP Engine

MySQL

Database

Estimators

E-dict

External
Data

Providers

RWEKA

J54 Trees
Multilayer

Perceptrons
ARIMA
Models

>_

Prediction
Console

Fig. 9: Implementation Overview

J54 decision trees (an open source implementation of C.45) and multilayer
perceptrons. As WEKA is implemented in the Java programming language
(while our E-dict tooling is .NET based), we wrapped WEKA using a RESTful
Web service [42] to integrate the tool more easily with our prototype. To
implement ARIMA models, we use the R statistical library [41] as foundation.
As with WEKA, a service wrapper was necessary to seamlessly integrate R
with the remainder of the prototype system. Finally, prediction results are
reported to the user. At the moment, E-dict is commandline-based, hence,
predictions are reported via a prediction console.

6.2 E-dict Configuration

Configuration of E-dict happens mostly via XML configuration files. While a
full discussion of the basis configuration is out of scope for this article, we will
illustrate the basic configuration instruments.

Listing 1 exemplifies the XML-based definition of a metric. Metrics are
defined as EPL (Esper Processing Language) statements on event streams,
as received from the VRESCo event engine. The complex event(s) produced

16 Philipp Leitner et al.

by this EPL statement can then be postprocessed in a number of ways. In
the example, we retrieve some payload data from the complex event via the
message path GetPartListResult/Parts. Afterwards, we apply a CS-Script6

to the retrieved property. Using such scripts, we are able to implement complex
transformations on the processed events. The result of the statement is of type
integer. As part of E-dict, we provide some tooling to generate monitoring
definitions of many often-used metrics (e.g., for the response time of each
service used in the compostion, or for each input and output message of each
service invocation). However, generally, domain experts are required to write
definitions for more domain-specific metrics (as the one depicted in Listing 1)
manually.

✞ ☎
1 <metric name="total_nr_of_items"
2 type="integer"
3 epl=
4 "select
5 _event as msg , _event.WorkflowId as id
6 from
7 AfterWFInvokeEvent _event
8 where
9 _event.ActivityName = ’get_parts_list ’"

10 messagePath="GetPartListResult/Parts"
11 script="return (input as string).Split(’;’).Length;"
12 />
✝ ✆

Listing 1: Example Metric Definition in XML

Another relevant aspect of E-dict configuration is fine tuning of the sta-
tistical models used in the SLO predictor component. For WEKA, we allow
machine learning savvy users to configure the machine learning model via the
same parameters, which are also used by the WEKA commandline interface.

7 Evaluation

We base our evaluation of the the E-dict approach on an implementation of
the actual order handling part of the ACMEbot case, i.e., the subflow start-
ing with the activity “Receive Order” until the end of the business process.
The case study has been implemented using .NET Windows Communication
Foundation7 (WCF) technology. A MySQL 5 database is used as data backend
for VRESCo, and all necessary components are deployed on the same Win-
dows server machine, in order to reduce the impact of external influences, such
as network latency. The service composition itself has been implemented as
a dynamic service composition using Microsoft WWF. The technical imple-
mentation of this case encompasses more than 40 activities. These activities
are monitored using VRESCo, and 40 different metrics are generated for each

6 http://www.csscript.net/
7 http://msdn.microsoft.com/en-us/library/ms735967(VS.90).aspx

Automated Prediction of SLA Violations 17

process instance using the CEP engine. These metrics include both QoS in-
formation, such as the response time of every used Web service, and PPMs,
such as customer identifiers or which products have been ordered. These met-
rics form the foundation, from which we will generate concrete predictions for
SLOs.

For reasons of brevity, we focus on instance-level SLOs in our evaluation.
Some numerical results with regards to prediction performance for aggregated
SLOs can be found in [15]. To evaluate the prediction mechanisms for instance-
level SLOs, we have used two representative SLOs, the Order Fulfillment Time
(i.e., the end-to-end execution duration of the implemented process) as metric
SLO, and Quality Control (true if the quality was deemed acceptable, false
otherwise) as nominal SLO.

Min Max Mean StdDev

28588 ms 49939 ms 37693 ms 4626

(a) Order Fulfillment Time

True False

2687 2266

(b) Quality Control

Table 2: Base Statistics for Case Study SLOs

In order to bootstrap our data-based prediction, we have initialized the
system with up to 5000 historical executions of the ACMEbot process. We
have summarized the basic statistics of this bootstrap data in Table 2a for the
SLO Order Fulfillment Time and Table 2b for the SLO Quality Control.

Furthermore, Figure 10 visualizes the distribution of SLO values for Order
Fulfillment Time as histogram. For illustrative purposes, we have discretized
continuous values into discrete ranges.

Fig. 10: Histogram for SLO Order Fulfillment Time

18 Philipp Leitner et al.

7.1 Performance Overhead

Two different factors are relevant for quantifying the performance overhead
of prediction. Firstly, we need to evaluate the time necessary for building the
used prediction models (training time). Secondly, we need to measure how
long the actual runtime usage (prediction) of these models takes. In Table 3,
these measures are depicted for ANNs (in milliseconds). Evidently, the training
time depends linearly on the number of historical instances that are available.
Furthermore, it can be seen that ANN training takes a significant amount
of time, even for relatively modest training data sizes. However, considering
that model rebuilding can be done sporadically and offline, this large training
times seem acceptable. Additionally, after the initial construction of the first
prediction model, there is no time when no model is available at all. Instead,
whenever retraining becomes necessary, the new model is trained offline, and
exchanged for the old model as soon as training is finished.

Instances Training [ms]

250 24436
500 49168
1000 96878
2500 240734
5000 481101

(a) Training Overhead

Instances Prediction [ms]

250 59
500 70
1000 82
2500 126
5000 209

(b) Prediction Overhead

Table 3: Overhead for Training and Prediction Using ANNs

As a second interesting performance aspect, the prediction time, i.e., the
time necessary to produce predictions at runtime, has been measured. Table 3b
again sketches these measurements for ANNs. Note that this overhead is more
significant for the runtime performance than the training time, as it refers to
the online part of prediction. Fortunately, the results depicted show that the
absolute time necessary for prediction (roughly between 60 and 200 ms) is
rather small.

Instances Training [ms]

250 183
500 219
1000 258
2500 460
5000 623

(a) Training Overhead

Instances Prediction [ms]

250 14
500 14
1000 14
2500 14
5000 13

(b) Prediction Overhead

Table 4: Overhead for Training and Prediction Using Decision Trees

Table 4 provides the same data for J54 decision trees, as used to predict
nominal SLOs. Firstly, Table 4a shows that the time required for training

Automated Prediction of SLA Violations 19

decision trees is much smaller than for ANNs. Indeed, even though the the
training time is again increasing linearly with the number of available histor-
ical instances, the absolute time required for constructing the tree stays well
below 700 ms even for 5000 instances. Using these trees for runtime prediction
is equally efficient (Table 4b). We measured a constant prediction time of ap-
proximately 14 ms, independent of the amount of data used to train the tree
in the first place.

7.2 Quality of Prediction

Even more important than the time necessary to generate prediction models or
runtime predictions is the quality of these predictions. To visualize the predic-
tion quality in the ACMEbot case, Figure 11 plots for 100 distinct instances
the predicted value for the Order Fulfillment Time (x) and the respective mea-
sured value (+). As can be seen, predictions and measured values are generally
close, i.e., the prediction quality is good. However, for some isolated instances,
the prediction is off by a larger margin (e.g., instances 82 or 91).

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 44000

 46000

 48000

 0 10 20 30 40 50 60 70 80 90 100

O
rd

e
r

F
u

lf
ill

m
e

n
t

T
im

e

Composition Instances

Fig. 11: Predicted and Actual Values for SLO Order Fulfillment Time

This more intuitive feeling for prediction quality is further substantiated
in Table 5, which contains the three basic quality indicators for prediction as
defined in Section 4 (training data correlation corr, prediction error ē, and
prediction error variance σē). With 0.98, corr is very high, indicating that
the model might even be slightly overfitted to the training data. The actual
prediction error ē is 767 (or about 2% of the mean process duration), with a
σē of 581, which indicates a generally good prediction quality, but a relatively
high variation of the error.

Furthermore, we have evaluated the quality of predictions of nominal SLOs
based on the SLO Quality Control. We provide the confusion matrix for this

20 Philipp Leitner et al.

corr ē σē

0.98 767 581

Table 5: Prediction Quality of SLO Order Fulfillment Time

SLO in Table 6a (again based on predictions and actually measured values for
100 instances of the service compositon). As we can see, only 6 of 100 instances
have been predicted inaccurately, 4 of which have been false positives (i.e., they
were predicted as violating the SLA, but have not actually done so).

Predicted
true false

Actual
true 53 2
false 4 41

(a) Confusion Matrix

prec recall F

0.9399 0.9404 0.9402

(b) Aggregated Metrics

Table 6: Prediction Quality of SLO Quality Control

Furthermore, we provide aggregated quality indicators for this SLO in Ta-
ble 6b. Precision, recall and F are in the area of 0.94, indicating a very strong
overall prediction accuracy.

8 Related Work

The problem discussed in this paper has been subject to a number of research
papers in the past. In this section, we briefly introduce this earlier research,
and compare it with our own contributions.

In general, even the earliest work on (Web) service level agreements, for
instance SLAng [46], WSLA [10] or WSOL [47,48], has acknowledged the fact
that runtime management has to be a central element of every SLA infras-
tructure. For the service provider, important runtime SLA management tasks
include (1) monitoring of SLOs (to decide if SLAs have been violated in the
past), (2) analysis of past violations (to improve the business process, so that
those violations can be prevented for the future), and, finally, (3) prediction
of future violations before they have happened.

SLA monitoring is strongly related to QoS monitoring, as SLOs can often
be broken down into lower-level QoS metrics. A plethora of different patterns
can in principle be applied to QoS monitoring [36], but, in the context of
SLA management, event-driven monitoring [53] can be considered state of the
art. In our work, we also use an event-driven monitoring approach to gather
the metrics required for prediction. Our monitoring approach is based on the
VRESCo SOA infrastructure [35], more concretely, on the eventing features
of VRESCo [33]. In this paper, a deeper description of metric monitoring was
out of scope, but details can be reviewed in [27].

Automated Prediction of SLA Violations 21

Post-mortem analysis of SLA violations is still an active research area. For
instance, Mode4SLA has recently been proposed as a framework to explain [4]
and, consequently, prevent [5] SLA violations. Mode4SLA follows a top-down
approach, and identifies dependencies of SLAs on the performance of the un-
derlying base services used in a service composition. A similar approach is
also followed by the dependency analysis approach discussed in [50,51]. This
work is particularly interesting in the context of this paper, as we have reused
dependency analysis as a foundational piece of our factors of influence identifi-
cation process (see Section 4.3). Finally, another important area of research in
post-mortem SLA analysis is the mapping of lower-level QoS metrics to SLAs.
One approach researching this kind of dependencies is the FoSSI project [13,
14], which deals mostly with SLAs in a cloud computing context.

A priori identification of SLA violations is still mostly a research topic (as
opposed to SLA monitoring, which has by now started to diffuse into industrial
practice), even though initial work in the area dates back to 2002 [9,44]. This
work uses a data-driven approach similar to the one discussed in this paper,
but mostly stays on an abstract level, without discussing concrete application
areas, algorithms or metrics. Others have consequently worked on prediction
for concrete domains, e.g., finish time prediction for (human-centric) business
processes [11] or the performance of service-based applications deployed on
top of an enterprise service bus (ESB) [29]. More recently, other researchers
have started to pick up on the idea of SLA prediction for service compositions,
including [28], which the current paper is based on. Hence, some of our basic
notions, as well as our general approach towards predicting metric, instance-
level SLOs, have originated in [28]. A similar approach has also been discussed
by [54]. These papers use a statistical approach similar to the current paper,
even though the research discussed in the latter paper focuses more on event-
based monitoring as an input to prediction than the actual prediction process.
Contrary, others have used significantly different data-driven prediction ap-
proaches, based, for instance, on online testing [18,32] or static analysis [21].

There is also some related research with regard to the application of time
series models to performance prediction, even if mostly for other domains. For
instance, [3] utilizes ARMA models to predict service quality in call centers.
Nominal, aggregated SLOs were not discussed in this paper, mostly because
of their limited practical relevance. However, existing literatur knows of ap-
proaches to apply time series analysis to nominal values (e.g., [38]), should
nominal, aggregated SLOs become practically relevant. Only very recently,
some other authors have started to explore the field with applications of
ARIMA and GARCH (generalized autoregressive conditional heteroskedas-
ticity) models to predict aggregated SLAs [1].

Finally, our work is also related to testing of service-based systems. A
good overview over this important field is given in [8]. In the past, we have
also introduced an approach for upfront testing of service compositions to
identify integration problems, and, hence, avoid SLA violations [19]. A similar
approach was also discussed in [20], where root causes of functional service
incompatibilities are detected using decision tree technology.

22 Philipp Leitner et al.

9 Conclusions

Identifying potential cases of SLA violations will increasingly become a major
priority of service providers around the world. Detecting violations before they
have happened allows providers to proactively take countermeasures, reducing
the loss associated with violations. In this paper, we have presented a general
framework for predicting SLA violations in a business process implemented
as a service composition. Our approach is grounded in the usage of statistical
models for data-driven prediction. Different types of SLOs ask for different
prediction models: metric SLOs on instance-level are predicted using ANN-
based regression, aggregated metric SLOs are covered using ARIMA models,
an implementation of time series analysis, and, finally, nominal SLOs are tack-
led via decision trees. We demonstrated the applicability of these techniques
to the problem of SLA violation prediction via numerical experiments.

While this paper presents self-contained research with little open ends,
some practical problems remain. Firstly, we do not go into much detail about
the concept of estimators. For some factors of influence, generating estimations
is trivial (e.g., for service response times). As part of our future work, we
plan to research methods and techniques for generating estimations in non-
trivial cases. We conjure that it should be possible to recursively use the same
approach that we use for generating predictions for estimation of factors of
influence, as the problem is clearly strongly related. Secondly, one limitation
of the current approach is that no notion of “doubt” about a prediction exists.
That is, while our models will always generate a prediction, it is not clear how
trustworthy this prediction really is. The prediction error standard deviation
σē helps, but obviously the concrete uncertainty can be much lower or higher
for single predictions. We need to investigate means to generate not only the
predictions, but also associated confidence intervals.

Acknowledgements The research leading to these results has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment 257483 (Indenica), as well as from the Austrian Science Fund (FWF) under project
references P23313-N23 (Audit 4 SOAs).

References

1. Amin, A., Colman, A., Grunske, L.: An approach to forecasting qos attributes of web
services based on arima and garch models. In: Proceedings of the IEEE International
Conference on Web Services (2012). To appear

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Spec-
ification (WS-Agreement). Tech. rep., Open Grid Forum (OGF) (2006).
http://www.gridforum.org/documents/GFD.107.pdf, Last Visited: 2011-07-19

3. Balaguer, E., Palomares, A., Soria, E., Mart́ın-Guerrero, J.D.: Predicting service re-
quest in support centers based on nonlinear dynamics, arma modeling and neural net-
works. Expert Syst. Appl. 34(1), 665–672 (2008). DOI 10.1016/j.eswa.2006.10.003.
URL http://dx.doi.org/10.1016/j.eswa.2006.10.003

Automated Prediction of SLA Violations 23

4. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.: Monitoring Dependen-
cies for SLAs: The MoDe4SLA Approach. In: Proceedings of the 2008 IEEE In-
ternational Conference on Services Computing (SCC’08), pp. 21–29. IEEE Com-
puter Society, Washington, DC, USA (2008). DOI 10.1109/SCC.2008.120. URL
http://portal.acm.org/citation.cfm?id=1447562.1447847

5. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Analyzing Impact Factors
on Composite Services. In: Proceedings of the 2009 IEEE International Conference on
Services Computing (SCC ’09), pp. 218–226. IEEE Computer Society, Los Alamitos,
CA, USA (2009)

6. Box, G.E.P., Jenkins, G.M.: Time Series Analysis - Forecasting and Control. Holden-
Day (1976)

7. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009). DOI
10.1016/j.future.2008.12.001. URL http://dx.doi.org/10.1016/j.future.2008.12.001

8. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning
of Composite Web Services. In: Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’05), pp. 121–129. IEEE Computer Society, Wash-
ington, DC, USA (2005). DOI http://dx.doi.org/10.1109/ICWS.2005.96. URL
http://dx.doi.org/10.1109/ICWS.2005.96

9. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: Intelligent Management of SLAs for
Composite Web Services. In: Databases in Networked Information Systems (2003)

10. Dan, A., Davis, D., Kearney, R., Keller, A., King, R.P., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web Services on Demand: WSLA-Driven
Automated Management. IBM Systems Journal 43, 136–158 (2004). DOI
http://dx.doi.org/10.1147/sj.431.0136. URL http://dx.doi.org/10.1147/sj.431.0136

11. Dongen, B.F., Crooy, R.A., Aalst, W.M.: Cycle Time Prediction: When Will This Case
Finally Be Finished? In: Proceedings of the 2008 OTM Confederated International
Conferences, pp. 319–336. Springer-Verlag, Berlin, Heidelberg (2008)

12. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International
Journal of Web and Grid Services 1(1), 1–30 (2005)

13. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level metrics to high
level slas - lom2his framework: Bridging the gap between monitored metrics and sla
parameters in cloud environments. In: Proc. Int High Performance Computing and
Simulation (HPCS) Conf, pp. 48–54 (2010). DOI 10.1109/HPCS.2010.5547150

14. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose,
C.A.F.: Towards autonomic detection of SLA violations in cloud infrastructures. Fu-
ture Generation Computer Systems (2011). DOI 10.1016/j.future.2011.08.018. URL
http://dx.doi.org/10.1016/j.future.2011.08.018

15. Ferner, J.: Using Time Series Analysis for Predicting Service Level Agreement Violations
in Service Compositions. Master’s thesis, Vienna University of Technology (2012)

16. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Ma-
chine Learning 29, 131–163 (1997). DOI 10.1023/A:1007465528199. URL
http://portal.acm.org/citation.cfm?id=274158.274161

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Ex-
plorations 11(1), 10–18 (2009). DOI 10.1145/1656274.1656278. URL
http://portal.acm.org/citation.cfm?id=1656274.1656278

18. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proactive
Self-adaptation of Service-Based Applications Based on Online Testing. In: Proceedings
of the 1st European Conference on Towards a Service-Based Internet (ServiceWave’08),
pp. 122–133. Springer-Verlag, Berlin, Heidelberg (2008)

19. Hummer, W., Raz, O., Shehory, O., Leitner, P., Dustdar, S.: Testing of Data-Centric
and Event-Based Dynamic Service Compositions. Software Testing, Verification and
Reliability p. (to appear) (2013)

20. Inzinger, Christian, Hummer, Waldemar, Satzger, Benjamin, Leitner, Philipp, Dust-
dar, Schahram: Identifying Incompatible Service Implementations using Pooled Deci-
sion Trees. In: 28th ACM Symposium on Applied Computing (SAC’13), DADS Track
(2013)

24 Philipp Leitner et al.

21. Ivanovic, D., Carro, M., Hermenegildo, M.: An Initial Proposal for Data-Aware
Resource Analysis of Orchestrations with Applications to Predictive Monitoring.
In: Proceedings of the 2009 International Conference on Service-Oriented Comput-
ing (ICSOC’09), pp. 414–424. Springer-Verlag, Berlin, Heidelberg (2009). URL
http://portal.acm.org/citation.cfm?id=1926618.1926662

22. J. R. Quinlan: C4.5: Programs for Machine Learning. Morgan-Kaufmann (1993)

23. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial Neural Networks: A Tutorial.
IEEE Computer 29, 31–44 (1996). DOI http://dx.doi.org/10.1109/2.485891. URL
http://dx.doi.org/10.1109/2.485891

24. Juszczyk, L., Dustdar, S.: Script-Based Generation of Dynamic Testbeds for
SOA. In: Proceedings of the 2010 IEEE International Conference on
Web Services (ICWS’10), pp. 195–202. IEEE Computer Society, Washing-
ton, DC, USA (2010). DOI http://dx.doi.org/10.1109/ICWS.2010.75. URL
http://dx.doi.org/10.1109/ICWS.2010.75

25. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Ser-
vice Level Agreements for Web Services. Journal on Network and Sys-
tems Management 11, 57–81 (2003). DOI 10.1023/A:1022445108617. URL
http://portal.acm.org/citation.cfm?id=635430.635442

26. Leitner, P., Hummer, W., Dustdar, S.: Cost-Based Optimization of Service Composi-
tions. IEEE Transactions on Services Computing (TSC) (2011). To appear.

27. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, Prediction and
Prevention of SLA Violations in Composite Services. In: Proceedings of the IEEE
International Conference on Web Services (ICWS’10), pp. 369–376. IEEE Computer
Society, Los Alamitos, CA, USA (2010)

28. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Ley-
mann, F.: Runtime Prediction of Service Level Agreement Violations for Com-
posite Services. In: Proceedings of the 3rd Workshop on Non-Functional
Properties and SLA Management in Service-Oriented Computing (NFPSLAM-
SOC’09), pp. 176–186. Springer-Verlag, Berlin, Heidelberg (2009). URL
http://portal.acm.org/citation.cfm?id=1926618.1926639

29. Liu, Y., Gorton, I., Zhu, L.: Performance prediction of service-oriented applications
based on an enterprise service bus. In: Proceedings of the 31st Annual Interna-
tional Computer Software and Applications Conference - Volume 01, COMPSAC
’07, pp. 327–334. IEEE Computer Society, Washington, DC, USA (2007). DOI
10.1109/COMPSAC.2007.166. URL http://dx.doi.org/10.1109/COMPSAC.2007.166

30. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional (2002)

31. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75
(2002). DOI http://dx.doi.org/10.1109/MIC.2002.1067740

32. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards Pro-Active Adap-
tation With Confidence: Augmenting Service Monitoring With Online Test-
ing. In: Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS’10), pp. 20–28. ACM, New
York, NY, USA (2010). DOI http://doi.acm.org/10.1145/1808984.1808987. URL
http://doi.acm.org/10.1145/1808984.1808987

33. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Advanced Event Processing and
Notifications in Service Runtime Environments. In: Proceedings of the 2nd Interna-
tional Conference on Distributed Event-Based Systems (DEBS’08), pp. 115–125. ACM,
New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1385989.1386004. URL
http://doi.acm.org/10.1145/1385989.1386004

34. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS Monitoring
of Web Services and Event-Based SLA Violation Detection. In: Proceedings of the 4th
International Workshop on Middleware for Service Oriented Computing (MWSOC’09),
pp. 1–6. ACM, New York, NY, USA (2009)

35. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-End Support for QoS-
Aware Service Selection, Binding, and Mediation in VRESCo. IEEE Transactions on
Services Computing 3, 193–205 (2010)

Automated Prediction of SLA Violations 25

36. Oberortner, E., Zdun, U., Dustdar, S.: Patterns for Measuring Performance-Related
QoS Properties in Distributed Systems. In: Proceedings of the 17th Conference on
Pattern Languages of Programs (PLoP) (2010)

37. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer 40(11), 38–45 (2007)

38. Pruscha, H., G”ottlein, A.: Forecasting of categorical time series using a re-
gression model. Economic Quality Control 18(2), 223 – 240 (2003). URL
http://www.heldermann-verlag.de/eqc/eqc18/eqc18014.pdf

39. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)
40. Quinlan, J.R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial

Intelligence Research 4, 77–90 (1996)
41. R Development Core Team: R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria (2008). URL http://www.R-
project.org. ISBN 3-900051-07-0

42. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)
43. Rijsbergen, C.J.V.: Information Retrieval. Butterworths (1979)
44. Sahai, A., Machiraju, V., Sayal, M., Moorsel, A.P.A.v., Casati, F.: Automated SLA

Monitoring for Web Services. In: Proceedings of the 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management (DSOM) (2002)

45. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications. Springer
(2010)

46. Skene, J., Lamanna, D.D., Emmerich, W.: Precise Service Level Agreements. In: Pro-
ceedings of the 26th International Conference on Software Engineering (ICSE’04),
pp. 179–188. IEEE Computer Society, Washington, DC, USA (2004). URL
http://portal.acm.org/citation.cfm?id=998675.999422

47. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastructure
(WSOI) – A Management Infrastructure for XML Web Services. In: Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS’04), pp. 817–830
(2004)

48. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management Applications
of the Web Service Offerings Language (WSOL). Information Systems 30(7), 564–586
(2005). DOI http://dx.doi.org/10.1016/j.is.2004.11.005

49. Van Der Aalst, W.M.P., Hofstede, A.H.M.T., Weske, M.: Business process manage-
ment: a survey. In: Proceedings of the 2003 international conference on Business pro-
cess management, BPM’03, pp. 1–12. Springer-Verlag, Berlin, Heidelberg (2003). URL
http://dl.acm.org/citation.cfm?id=1761141.1761143

50. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Mon-
itoring and Analyzing Influential Factors of Business Process Performance. In: Pro-
ceedings of the 13th IEEE International Conference on Enterprise Distributed Object
Computing (EDOC’09), pp. 118–127. IEEE Press, Piscataway, NJ, USA (2009). URL
http://portal.acm.org/citation.cfm?id=1719357.1719370

51. Wetzstein, B., Leitner, P., Rosenberg, F., Dustdar, S., Leymann, F.: Identifying Influ-
ential Factors of Business Process Performance Using Dependency Analysis. Enterprise
Information Systems 4(3), 1–8 (2010)

52. Wetzstein, B., Strauch, S., Leymann, F.: Measuring Performance Metrics of WS-BPEL
Service Compositions. In: Proceedings of the Fifth International Conference on Net-
working and Services (ICNS’09). IEEE Computer Society (2009)

53. Zeng, L., Lei, H., Chang, H.: Monitoring the QoS for Web Services. In: Proceedings
of the 5th International Conference on Service-Oriented Computing (ICSOC’07), pp.
132–144. Springer-Verlag, Berlin, Heidelberg (2007)

54. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service Predic-
tion. In: Proceedings of the 6th International Conference on Service-Oriented Comput-
ing (ICSOC’08), pp. 147–161. Springer-Verlag, Berlin, Heidelberg (2008)

