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Incipient fault detection and identification (IFDI) of cutting arms is a crucial guarantee for the smooth operation of a roadheader.
However, the shortage of fault samples restricts the application of the fault diagnosis technique, and the data analysis tools should be
optimized efficiently. In this study, four machine learning tools (the back-propagation neural network based on genetic algorithm
optimization, the naive Bayes based on genetic algorithm optimization, the support vector machines based on particle swarm opti-
mization, and the support vector machines based on dynamic cuckoo) are applied to address the challenge in the IFDI of cutting arms.
)e commonly measured current and vibration data cutting arms are used in the IFDI.)e experimental results show that the support
vectormachines based on dynamic cuckoo outperform the othermethods. Besides, the performance of the fourmethods under different
operating conditions is compared.)e fault cause of cutting arms of the roadheader is analyzed and the design improvement scheme for
cutting arms is provided. )is study provides a reference for improving the fault diagnosis of the roadheader.

1. Introduction

)e roadheader is an important production equipment in coal
mining, and its operation should be monitored in real time to
ensure safe and efficient mining production [1–3]. )e arm-
type roadheader is an integrated operation machine inte-
grating cutting, walking, loading, and dust extinguishing for
roadway tunneling in the coal mine. To realize the remote
monitoring of a roadheader and improve the efficiency and
the safety of the roadheader, the monitoring of cutting arms
should be performed in real time. Due to complex occurrence
conditions of coal seams, the sudden change of coal seam
hardness is often encountered in the work of the roadheader,
leading to the abnormal working state of cutting arms, and
even the failure of the cutting teeth, the fracture of the reducer
gear, the unbalance of cutting motor rotor, and other faults. If
these problems were not timely discovered, the safety accident
of the roadheader will be caused. Considering the complexity
and maintenance demand of the roadheader, the reliability,
diagnosability, and maintainability of the systems should be

improved in the life cycle management of machines, namely,
the control, fault diagnosis, prediction and maintenance, and
other health management which should be strengthened in
the life cycle. )erefore, a fast and accurate fault diagnosis
method suitable for cutting arms is urgently required to
realize the intelligent monitoring of a roadheader.

1.1. Related Work. Studies on the status monitoring of
manipulator structures or similar structures have been
widely conducted. )rough the multisensor neural fuzzy
theory, Lang et al. designed a fault diagnosis system for an
automated industrial fish cutting machine. Signals of sound,
vibration, and visual were obtained by microphone, accel-
erometer, and digital CCD camera, respectively, and the fast
Fourier transform was used to convert the signal into the
frequency domain [4]. Caccavale et al. developed a joint
actuated fault diagnosis method for the robotic arm. )e
radial basis function neural interpolator was used to in-
terpolate the unknown faults, and the weight of the neural
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interpolator was adaptively adjusted online [5]. Capisani
et al. proposed a model-based fault diagnosis technology to
identify manipulator actuator and sensor faults. )e high-
order sliding mode unknown input observer was used to
detect actuator faults, which could provide the necessary
redundancy for analysis [6]. Grigoriev et al. studied the tool
diagnosis problem and the tool residual life prediction al-
gorithm, which was programmed in the parts processing
based on siemens.)e real-time working state of the tool was
monitored and the healthy state of the tool was calculated to
realize control of the NC system [7]. To reduce the main-
tenance time of the machine, Gangadhar et al. collected the
vibration signal of the machine tool by the accelerometer
and diagnosed the fault of the machine tool. )e machine
learning technology based on decision tree was used to
monitor the machine tool status online, with an accuracy
rate of 89.38% [8]. To detect the faults of the multi-DOF
robot arm, Piltan et al. established a stable Arx-Laguerre
fuzzy PC-derivative observation system, in which torque
signal and joint variable signal were used to identify the
sensor and actuator faults [9]. To improve the reliability of
the robot system, Cho et al. put forward a fault detection
algorithm without using the neural network of the robot
physical model to obtain an accurate robot model. )rough
the collection of torque signal and the process of data in the
neural network, effective fault detection and diagnosis were
realized [10]. Serving as a reliable tool for fault detection of
DCmotor, the convolutional network also can be adopted to
solve the problem of fault detection and identification of
incipient faults with current data [11].

In the abovementioned studies, there are two methods
for fault diagnosis: physical model-based method and data-
driven method. Since the working environment is complex
and changeable for the large equipment, an accurate physical
model is difficult to be established. Besides, the data-driven
method may find the fault earlier in the application of the
digital twin technology, which can largely reduce the loss of
the machine. )erefore, the data-driven method has been
widely used [12, 13], and new optimal strategies have been
designed to improve traditional algorithms [14–16]. Figure 1
shows the application scenario of digital twin technology in
the operation and maintenance of a roadheader. In the
digital twin technology, many functions such as fault di-
agnosis, performance prediction, and design optimization
can be realized. As a result, the fault can be found timely and
the equipment has a better performance.

At present, support vector machines (SVM), back-
propagation (BP) neural network, and naive Bayes are
common data-driven methods [17, 18]. )e data-driven
method includes three steps: (1) the sensor signals are ac-
curately collected; (2) the data preprocessed by these signals
are classified by machine learning algorithm; (3) the status
monitoring and fault judgment of the equipment are carried
out in real time.

However, the shortage of fault samples restricts the
application of data-driven methods. Generally, a lot of prior
knowledge and sufficient learning samples are required in
most data-driven methods. For the mechanical equipment
system, especially the large equipment, once the fault occurs,

there are only few fault samples, but huge economic losses.
Consequently, these excellent theoretical diagnostic
methods are difficult to perform well in practical application.
Based on the structural risk minimization principle, the
SVM theory is a new set of theory systems designed for the
machine learning with a small size of samples. Different
from the traditional statistical learning theory, the optimal
solution can be obtained from limited samples by using the
SVM method. )erefore, the SVM method may be suitable
for the IFDI of cutting arms.

Many scholars have studied the application of SVM.
Bashiri et al. applied the SVM algorithm to the water quality
monitoring and used the PCA as the data pretreatment
method. Finally, the classification accuracy of the SVM
method reached 98%, and the pattern of water eutrophi-
cation can be successfully identified [19]. Kang et al. clas-
sified hyperspectral images by the PCA and SVM. Edge
holding filters with different parameter settings were applied
to the image under consideration, standard edge-preserving
features (EPFs) were constructed, and the resulting EPFs
were stacked together. PCA-EPFs were classified by the SVM
classifier [20]. To improve traditional methods of prostate
cancer screening and classification, Siqueira et al. adopted a
combination of genetic algorithm (GA) and SVM with the
Fourier transform mid-infrared spectroscopy. )e results
showed that the new method greatly compensated for the
defects of the traditional methods [21]. Jung et al. used the
PCA-assisted SVM method for reliable channel reservoir
characterization. )e main geological characteristics of
reservoir models were figured out by PCA, and the pa-
rameters were projected into a two-dimensional plane by
multidimensional scaling based on Euclidean distances [22].
Alickovic and Subasi used the ensemble SVM method to
classify the sleep stages. )e signals taken from the electrode
were denoised using multiscale PCA, and the most infor-
mative features were extracted by the discrete wavelet
transform [23]. Arsalane et al. developed PCA-SVM algo-
rithms for the rapid prediction and identification of beef
freshness. PCA was used as a predictive model and SVMwas
used for beef classification. )e MATLAB software was used
to analyze the projection model of PCA, and three groups of
projections representing the beef freshness during the cold
storage were obtained [24]. Since traditional SVM methods
were not suitable for computing different features of dataset
features, Varatharajan et al. used the SVM model and
weighted kernel method to classify more features from input
signals. Feature selection and discretization level can affect
the classification accuracy of the SVM [25]. Tsai and Chen
examined the combination of two different sequences of
feature selection and discretization with SVM classifiers in
terms of classification accuracy and computing time [26].
Wang et al. proposed a stacked sparse autoencoder-based
network with the SVM and the principal component analysis
(PCA) method to improve the accuracy of fault diagnosis in
power systems. To improve the performance of power
system fault diagnosis, a new method was adopted, in which
PCA was used to process the characteristics after stacked
sparse autoencoder training, and the classifier of deep
learning was changed from softmax to SVM with the

2 Shock and Vibration



Gaussian kernel [27]. Mathew and Kumar applied the
multilinear PCA with SVM in the big data disease diagnosis
[28]. Lazakis et al. studied an SVM-driven method for the
state estimation of ship systems to assist the dynamic de-
tection of early faults of ship machinery and reduce the ship
downtime [29]. Rudsari et al. analyzed the fault of the HV
circuit breaker with an improved SVM classifier. )e kernel
function is first used to transfer the feature vectors to a
higher-dimensional space, and then SVM is used to classify
these features. )e classification results are greatly influ-
enced by the selection of kernel function [30].

In summary, although many efforts have been made to
optimize the pattern recognition model in the SVM, effi-
ciency and accuracy cannot be fully ensured. Besides, the
SVM has not been used in the field of mechanical cutting
arms status monitoring and fault diagnosis. In this paper, a
new SVM algorithm based on hybrid optimization of cuckoo
and particle swarm optimization (PCSVM) for fault diag-
nosis of cutting arms is proposed, which can quickly and
accurately identify cutting arms of the roadheader with
limited samples. )is study provides an idea for unmanned
monitoring of the roadheader.

1.2. Contributions. )e contributions of this paper are as
follows:

(1) )e PSO and CS are combined in a new PCSVM
method to optimize the SVM. )e new PCSVM
method is applied to the IFDI of cutting arms and it
significantly improves the IFDI capability.

(2) )e performance of PCSVM in the IFDI of cutting
arms is compared with that of other data-driven
approaches, including the BP network based on GA
optimization (GAB), naive Bayes based on GA

optimization (GANB), and SVM based on particle
swarm optimization (PSOSVM).

(3) Signals of vibration and current are collected from
experiments as the training and testing samples to
verify the effectiveness and practicability of the
proposed methods mentioned above.

(4) )e fault cause of cutting arms of the roadheader is
analyzed and the design improvement scheme for
cutting arms is provided. )ese issues have rarely
been reported in previous studies.

)is study is organized as follows. )e different oper-
ating conditions of cutting arms and the analysis tools are
introduced in Section 2. )e proposed techniques for fault
diagnosis under cutting and the noncutting conditions are
described in Section 3. )e experimental setup and data
preprocessing are introduced in Section 4. )e results on
data collected from real-life cutting arms are presented in
Section 5. )e conclusions are drawn in Section 6.

2. Preliminaries

2.1.OperatingConditions ofCuttingArms. )e roadheader is
the core equipment of underground excavation and plays a
vital role in the safe and efficient production of the coal
mine. )e cutting process of a roadheader is influenced by
many factors, and there are potential risks of software failure
and software-hardware interaction fault. Due to complex
electromagnetic conditions in the roadway, ultra-wide band
signals are vulnerable to interference or occlusion failure;
then, the nonlinear and strong interference of the whole
electro-hydraulic control system can easily lead to the in-
stability of the cutting process. Rapid and accurate fault
diagnosis of cutting arms should be performed to ensure the
accuracy of continuous operation; otherwise, the problems
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Figure 1: Application of digital twin technology in operation and maintenance of the roadheader.
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of overbreak or underbreak are easily caused. Early fault
detection helps to develop a timely maintenance plan and
avoid greater economic losses. )erefore, a fast and accurate
fault diagnosis method suitable for cutting arms is urgently
required to realize unmanned and intelligent control of a
roadheader.

Figure 2 shows the working state of a roadheader.
Cutting arms are connected to the cutting head and the
mainframe. )e cutting head directly contacts the rock and
breaks up the rock, and the vibration of cutting arms is large.
When cutting arms are in the cutting state, both the vi-
bration signal and the motor current signal peak value are
larger; when it is in the noncutting state, the signal value is
smaller. In a word, the state of the cutting arm should be
monitored and the cutting arm should be quickly and ac-
curately diagnosed.

2.2. Incipient Fault in Cutting Arms. Due to the sudden
change of coal seam hardness encountered in the work of the
roadheader, the degradation fault of cutting arms can be
caused, that is, the incipient fault.)e incipient faults mainly
have the following characteristics:

(1) Weak: when the incipient fault occurs in the early
stage, the signal is extremely weak and difficult to be
detected. )ese small faults can only be identified
after characteristic processing.

(2) Slow: incipient faults have small amplitude and slow
development. Due to the difficult detection of faults,
serious consequences can be caused over time, e.g.,
wear faults of the bearing.

(3) Sudden: incipient faults are characterized by rapid
transients. When the faults occur in components, the
local area may spread to the entire system, resulting
in the collapse of the whole system.

)ere are two types of incipient faults: the incipient
abrupt failure and time-varying failure. )e difference be-
tween incipient abrupt failures and general abrupt failure lies
in the gain percent of deviation. Compared with the actual
value under normal conditions, the incipient failure signal is
quite small. )e incipient failure of the current sensor is
expressed as follows:

If � In(1 + α), (1)

where If is the current value of the failure sensor, In is the
normal current value, and α is a tiny bias constant.

)e incipient time-varying failure is a fault with a small
amplitude at the initial stage, which may deteriorate over
time. )e resistance degradation is expressed as follows:

Rf � Rne
− ηtf, (2)

where Rf is the failure resistance value, Rn is the normal
resistance value, and η represents the attenuation index.

Figure 3 shows the time-domain vibration signals of
cutting arms. No obvious abnormal signals can be found in
the time-domain vibration waveforms, and the incipient

failure information hidden in signals is difficult to be
detected.

)rough the further analysis of Figure 3, the frequency-
domain vibration signals of cutting arms are obtained, as
shown in Figure 4. In this way, the incipient failure signals
can be clearly distinguished from the health condition.

When the roadheader is walking in the underground
roadway, cutting arms are in the noncutting state, with small
vibration and motor current. When the roadheader stops
moving forward and cuts the rock wall, the vibration am-
plitude and the motor current amplitude are relatively large
due to the large reaction force from the rock wall. If cutting
arms fail, the signal jumps. At this point, if the signal is
accurately collected and inputted into the established fault
diagnosis model, the fault can be judged immediately.
)erefore, the working state of cutting arms is divided into
cutting healthy, cutting fault, noncutting healthy, and
noncutting fault.

)e cutting part is composed of the cutting head,
stretching part, cutting reducer, and cutting motor. As the
connection between the cutting motor and cutting reducer is
manually assembled, this part is prone to failure. )e ro-
tating shaft of the motor and the rotating shaft of the reducer
are connected by rolling bearings. )e deformation and
failure of rolling bearings can result in abnormal working
state of cutting arms of the roadheader. )rough this ac-
cident experiment, the accuracy and timeliness of the rec-
ommended method are verified.

2.3. Hilbert–Huang Transform and SVM. )e Hilbert–Huang
Transform (HHT) includes the empirical mode decompo-
sition (EMD) and the Hilbert time spectrum [31, 32]. Firstly,
the signal is decomposed into several inherent mode
functions (IMF) by the EMD method. )en, the HHT is
applied to each IMF component to obtain the instantaneous
frequency and instantaneous amplitude, and then the
complete time-frequency distribution is obtained. In this
work, the HHT is employed as the feature extraction
method.

If the signal is nonstationary and does not meet IMF
conditions, it is assumed that any complex signal is com-
posed of some independent IMF components. For signal x
(t), the EMD process is performed as follows:

(1) Determine all local maximum and minimum points
of the signal.

(2) Interpolation operations are carried out for all
maximum and minimum points, respectively, and
the average value of the upper and lower envelope a1
is calculated. )e first IMF component of x (t) is b1,
and b1 � x(t) − a1.

(3) If b1 is not IMF, the above two steps are repeated as
original data for k times, and finally, is obtained. Let
b1k satisfy the condition of IMF, then b1k is IMF of
the first order and marked as c1, where a1k is the
mean of the envelopes of b1(k− 1).

(4) )e residual is calculated as d1 � x(t) − c1. )e
above steps are repeated with d1 as the original data
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to obtain the second component of x (t). Similarly,
when dn is a monotone function and cannot be used
to extract IMF components, the calculation ends and
n IMF components are obtained by

x(t) �∑n
i�1

ci + dn. (3)

)e SVM is a machine learning method based on
statistical learning theory. It is a new machine
learning method developed on the basis of statistical
learning theory, and it is the realization of structural
risk minimization principle. )e SVM can achieve
the purpose of classification and obtain a good
statistical law in the case of a small statistical sample
size. In this study, the feature is extracted from the
HHTof the vibration and current data to classify the
operating condition of cutting arms through the
SVM. In the next section, the automatic feature
extraction and classification from data are described.

Figure 5 shows the implementation of the proposed
feature extraction technique. Firstly, the collected vibration
signals are decomposed into several different IMFs by EMD.
Secondly, the IMFs and the originals are applied to feature
generation, and the most sensitive features are selected to
construct the feature vector. )e cumulative frequency
amplitude, which contains frequency features, is expressed
by the HHTmarginal spectrum across the entire measured
time. )irdly, the low-dimensional feature space is obtained
by the PCA in feature dimension reduction. Lastly, the low-
dimensional feature set is applied as the input to the
classifier.

2.4. BP Neural Networks and Naive Bayes. )e BP neural
network is composed of the input layer, hidden layer, and
output layer, including the model establishment and error
correction. According to the training results and expected
results, error analysis is carried out, and then weights and
thresholds are modified to obtain a model whose output is
consistent with expected results step by step [32, 33]. )e
neural network is composed of adaptive units connected to
simulate the interaction between the biological nervous
system and the real world. )e standard BP algorithm is
based on the principle of gradient descent; however, the
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Figure 2: Operation diagram of the roadheader.
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Figure 4: Frequency-domain vibration signals of cutting arms.
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gradient descent method has the disadvantages of easily
falling into local minimum value and slow convergence
speed. )us, the GA method is proposed to overcome the
disadvantage. )e individuals can mutate in the GA method
[34, 35], and the mutation operation is as follows:

aij �
aij + aij − amax( ) × f(g), r> 0.5,

aij + amin − aij( ) × f(g), r≤ 0.5,

 (4)

where amax denotes the upper bound of gene aij and amin

denotes the lower bound of gene aij. Besides, f(g) can be
expressed asf(g) � r2(1 − (g/Gmax)), where r2 denotes the
random number between ; [0, 1], g denotes the number of
iterations; Gmax denotes the maximum number of evolution;
and r denotes the random number between [0, 1].

Although the basic construction logic is relatively simple,
the naive Bayes classification model owns a much faster
computing speed than other similar algorithms, with smaller
space for classification problems. )e naive Bayes classifi-
cation model also follows the assumption of attribute in-
dependence, that is, under the condition of a given category,
each attribute is mutually independent [36–38]. Supposing
that the sample space {C1, C2, . . ., Cm} has m categories, in
which the dataset has n attributes A1, A2, . . ., An, given a
sample of an unknown class, X� (x1, x2, . . ., xn), where xi
represents the value of the ith attribute of the sample,
namely, xi ∈Ai. Based on this, the Bayesian formula can be
used to calculate the sample X� (x1, x2, . . ., xn) and the
probability of class Ck (1≤ k≤m) is expressed as follows:

P Ck|X( ) � P Ck( )P X|Ck( )
P(X)

∝P Ck( )P X|Ck( ). (5)

Although the independence assumption has defects, the
naive Bayes classification model has better classification

performance under some conditions. Previous studies have
shown that the performance of the classifier can be improved
through various improvements. )e GA optimization of
Bayesian algorithm is an improved algorithm based on the
Bayesian algorithm combined with the GA [39]. In this
paper, the optimal individual retention method in GA is
adopted to process the data. )e optimal individual reten-
tion method can be used to directly retain the individuals
with the highest fitness in the population without pairing
and crossover.

3. Methodology

In the proposed methods, the problem of fault detection
and isolation is performed by two steps: procedure-feature
extraction and classification. )e task of feature extraction
is performed with the HHT, while the feature classification
is performed with SVM, BP networks, and naive Bayes,
respectively. In the classification task, there are four dif-
ferent classes, namely, cutting healthy (C1), cutting fault
(C2), noncutting healthy (C3), and noncutting fault (C4).
)e proposed methods for different operating conditions of
cutting arms are described below. Figure 6 shows a gen-
eralized framework of the proposed methods.

3.1. Fault Diagnosis of Noncutting State

3.1.1. PSOSVM Approach. )e PSOSVM approach is firstly
presented, i.e., the fault diagnosis based on the extraction of
handcrafted features followed by classification. Hilbert
spectrum emphasizes the local properties of signals, which
has the intuitive physical significance, and avoids the ap-
pearance of false frequency components generated by the
Fourier transform and wavelet transform. For each IMF ci,
the Hilbert transformation is performed as follows:

ĉi �
1

π
∫∞
− ∞

ci(τ)

t − τ
dτ. (6)

)e analytical signal is expressed as zi(t) � ci(t)+
jĉi(t) � ai(t)e

jφi(t), where ai(t) is the instantaneous am-
plitude function and φi(t) is the instantaneous phase
function. )e Hilbert spectrum is calculated as follows:

H(ω, t) �∑n
i�1

ai(t)e
j∫ωidt

. (7)

After the signal extraction, analog signals are converted
into discrete digital signals through the A-D conversion, and
then the current state of the device can be judged by the
recommended algorithm in this paper. For the state rec-
ognition problem of cutting arms, an optimal SVM algo-
rithm is constructed by selecting the appropriate kernel
function according to the actual data model. However, the
selection of kernel functions and their parameters is em-
pirical with a certain degree of randomness. In addition, a
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dimensionality

Low-dimensional 
feature space
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Figure 5: Implementation of the proposed feature extraction
technique.

6 Shock and Vibration



combination of PSO and SVM for fault classification can be
used.

3.1.2. PCSVM Approach. Particle swarm optimization
(PSO) is an intelligent optimization algorithm proposed by
Kennedy and Eberhar in 1995. )is algorithm has been
widely used in the field of engineering optimization because
of its simple and fast searching capability of the optimal
value [40–42]. However, in the PSO searching process, the
current local optimal solution is continuously searched to
obtain the final optimal solution, and the local extreme point
is easily caused due to the lack of vitality in the later
searching stage; finally, the poor calculation accuracy may be
caused.)e cuckoo search (CS) algorithm proposed by Yang
et al. is a new intelligent optimization algorithm inspired by
cuckoo nesting and egg-laying behavior. )is algorithm has
the advantages of self-organization, good parallelism, strong
global search ability, and easy to be integrated with other
algorithms. In this paper, the combination of PSO and CS is
used to optimize the SVM. In the proposed method, when
PSO searches the local optimal solution and global optimal
solution of each generation, it does not directly enter the
next generation but combines with the CS algorithm to
continue the search. In this way, the original PSO search
range is enlarged and particle search vitality is enhanced,
thus effectively making up for the shortage of PSO easily
falling into the local extremum point [43, 44].

Figure 7 shows the PCSVM calculation process. PSO and
CS algorithms are used to find the best penaltyg parameter c
and kernel parameter with a high classification accuracy and
a high speed.

3.1.3. GAB Approach. )e EMD approach is also used for
automatic feature extraction, and GAB is used for classifi-
cation. )e GAB is mainly optimized from three aspects: the
determination of neural network structure, the GA opti-
mization, and the BP neural network prediction. )e GA is
used to optimize the initial weight and threshold of the BP
neural network, and the optimized BP neural network can be
used to effectively predict the function output. )e GAB is
used to obtain better initial weights and thresholds of the
network by GA. )e principle of GA algorithm is as follows:
the individual is used to represent the initial weight and
threshold of the network, and the crossover and mutation
operation initiated by individual value in the BP neural
network is used to find the optimal individual, that is, the
optimal weight and threshold of the BP neural network can
be found.

3.1.4. GANB Approach. Lastly, a combination of EMD and
naı̈ve Bayes is also used for fault classification. )e condi-
tional independence assumption of naive Bayes classifier
limits its application to real data. )e GA optimization of
Bayesian algorithm is an improved algorithm based on
Bayesian algorithm combined with the GA so that Bayesian
classifier can be applied in fault diagnosis of cutting arms.

3.2. Fault Diagnosis of Cutting State. )e characteristic
values of vibration signals can be divided into dimensional
index and dimensionless index. )e dimensional index
includes effective value, variance, square root amplitude,
mean value, and peak value; the dimensionless index
includes kurtosis index, margin index, waveform index,
peak value, and pulse index. Effective value kurtosis index
and standard deviation have been widely used in
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condition monitoring and fault diagnosis. )e intensity of
vibration energy is determined by the effective value; the
degree of impact is expressed by the kurtosis value, and
the degree of deviation from the mean value is expressed
by the root of mean square. If the vibration energy
suddenly increases under normal conditions, equipment
failure may occur. Under normal conditions, the vibration
signal is stable when the roadheader is working. Although
the fluctuation of fault signal may be very small, its vi-
bration energy, impact, and vibration deviation from the
mean value are much larger than those under normal
conditions. )erefore, the variance can be used to judge
the health degree of the vibration signal state. According
to the abovementioned analysis, the variance, effective
value, and kurtosis measure are selected as feature vectors
of vibration signal [X1, X2, X3].

As a key cutting part of a roadheader, the cutting motor
not only affects the cutting action but also causes the fault of
the cutting part directly. )erefore, the running state of the
cutting motor should be monitored. )e abnormal three-
phase current of the cutting motor, which is the external
direct manifestation of the cutting motor fault, can directly
reflect the load state of the cutting motor. )us, the three-
phase current of the cutting motor is selected as the feature
vector [Ia, Ib, Ic].

To sum up, the variance of vibration acceleration, ef-
fective value, measured peak, and three-phase current of the
cutting motor are adopted as feature vectors. )en, a
multisensor fusion mode is formed, which can be used to
accurately predict the working state of cutting arms.

3.3. Sensitivity Analysis of User-Defined Parameters. To ob-
tain the best performance of these methods, the user-defined
parameters are worth investigating. )ere are two key pa-
rameters in GAB, i.e., the number (N) of hidden layers and
the number (N1) of neurons. Obviously, N remarkably in-
fluences the computational time of the GAB. )e number of
levels for N and N1 are set as follows: four levels for N ∈ {1, 2,
3, 4}; four levels for N1 ∈ {11, 12, 13, 14}. In this experiment,
Taguchi’s method [45, 46] is used to acquire a reasonable
combination of two GAB parameters. As a result, N� 1 and
N1� 13 are obtained according to experimental results.

)ere are two key parameters in GANB, i.e., the cor-
rected parameter (λ) and the prior probability (Pc). )e
corrected parameter (λ) represents the prior knowledge of
statistics. In this experiment, the Taguchi’s method is used to
acquire a reasonable combination of two GANB parameters.
As a result, λ� 1 and Pc� 0.3 are obtained according to our
experimental results.

)ere are two key parameters in PSOSVM, i.e., the type
parameter (s) and the kernel selection parameter (t). Ob-
viously, the selection of kernel function is determined by t.
)e number of levels for s and t are set as follows: five levels
for s ∈ {0, 1, 2, 3, 4}; five levels for t ∈ {0, 1, 2, 3, 4}. In this
experiment, the Taguchi’s method is used to acquire a
reasonable combination of two PSOSVM parameters. As a
result, s� 0 and t� 2 are obtained according to our exper-
imental results.

)ere are two key parameters in PCSVM, i.e., the type
parameter (s) and the kernel selection parameter (t). Similar
to the parameters selection of PSOSVM mentioned above,
the same results of s� 0 and t� 2 are obtained.

3.4. Computation Complexity. )e calculation process of
these methods mainly consists of two parts: signal pro-
cessing and pattern recognition. )e calculation process is
implemented on the same computer with an operating
environment of MATLAB. )e running time is used to
express the complexity of the methods. Table 1 shows the
computation time of these methods, and PCSVM performs
best among the four methods.

4. Experimental Setup

)e experimental setup consists of a testbed with three-
phase asynchronous motor coupled with a gear reducer for
changing the load (Figure 8).)e fault state is the burn of the
connecting bearing of the three-phase motor and the re-
ducer, which is generally caused by poor lubrication and
excessive deflection of the shaft. In the signal, the vibration
amplitude of cutting arms is suddenly too large and the
current amplitude is suddenly changed. )e misalignment
faults were introduced manually by appropriately adjusting
the lubrication of the motor with respect to the shaft con-
nected to the reducer. )e current drawn by the motor is
measured using a Hall effect sensor that is powered by a
regulated DC supply, and the vibration signal is measured
using a digital attitude sensor at a sampling frequency of
20 kHz. PLC is used for electronically controlling the
switches that manipulate the resistive loads and for logging
data to a computer.

For each configuration (normal and faults), the motor is
operated for one minute, during which 1.2 million mea-
surements of the current and vibration are stored. )e ac-
quisition and storage of previous signals are repeated 3–5
times for each configuration. Invalid entries are contained in
these data due to sensor effects and external voltage dis-
turbances. )ese segments are identified and removed in the
data preprocessing process. )e remaining data are stan-
dardized and scaled in the region [− 1, 1] to speed up the
learning process. )ese examples are constructed for
training, validation, and testing of these approaches. Each
example is composed of 20 sets of current signals and vi-
bration signals collected, as shown in Tables 2 and 3.

As shown in Table 2, the effective values, kurtosis index,
variance, and three-phase current are selected for data
preprocessing to training classifiers. In Table 2, the data of
1–5 lines indicate that the working state is cutting healthy
(C1), the data of 6–10 lines indicate that the working state is
cutting fault (C2), the data of 11–15 lines indicate that the
working state is noncutting healthy (C3), and the data of
16–20 lines indicate that the working state is noncutting fault
(C4).

As shown in Table 3, the effective values, kurtosis index,
variance, and three-phase current are selected for data
preprocessing to verify classification results. )e data of 1–5
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lines indicate that the working state is cutting healthy (C1),
the data of 6–10 lines indicate that the working state is
cutting fault (C2), the data of 11–15 lines indicate that the

working state is noncutting healthy (C3), and the data of
16–20 lines indicate that the working state is noncutting fault
(C4).

Rock
face

Cutting arm

Cutting
head

Control
panel

Monitor

Underpan

Figure 8: Experimental setup.

Table 1: Computation complexity of methods.

Process GAB GANB PSOSVM PCSVM

Signal processing (s) 2.1 2.1 2.1 2.1

Pattern recognition (s) 6.5 5.9 5.8 5.2

Total (s) 8.6 8 7.9 7.3

Table 2: Sample data.

No. Variance Effective values Kurtosis index Current A Current B Current C

1 0.0017 0.0069 3.6634 104.30 105.00 96.80
2 0.0020 0.0092 2.5883 105.00 116.30 119.30
3 0.0018 0.0073 2.6638 113.30 117.80 111.80
4 0.0023 0.0122 2.7874 115.50 114.80 105.80
5 0.0018 0.0075 3.0039 120.80 114.80 109.50
6 0.0162 0.0657 23.9742 192.53 200.18 189.98
7 0.0180 0.0828 23.2947 178.50 197.63 202.73
8 0.0153 0.0621 32.9706 177.23 178.50 164.48
9 0.0162 0.0675 27.0351 205.28 195.08 186.15
10 0.0207 0.1098 25.0866 196.35 195.08 179.78
11 0.0007 0.0013 1.9910 24.75 24.00 23.25
12 0.0007 0.0013 2.0277 25.50 25.50 26.25
13 0.0009 0.0022 2.8295 28.50 29.25 27.00
14 0.0014 0.0043 2.8934 22.50 24.00 27.00
15 0.0008 0.0016 2.4496 24.75 25.50 25.50
16 0.0076 0.0144 22.0464 26.25 28.50 29.25
17 0.0069 0.0117 18.2493 25.50 24.00 23.25
18 0.0007 0.0013 2.1622 69.83 71.66 66.15
19 0.0013 0.0039 2.8532 60.64 58.80 56.96
20 0.0126 0.0387 26.0406 55.13 58.80 66.15
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5. Results

5.1. SimulationComparison. )eGAB is proposed to classify
and calculate the small number of the collected samples and
the test samples. Figure 9 shows the calculation results.

In the classification task, the four different classes cor-
respond to cutting healthy (Y� 1), cutting fault (Y� 2),
noncutting healthy (Y� 3), and noncutting fault (Y� 4). As
shown in Figure 9, there are large deviations in the calcu-
lation of 3 samples (i.e., points a, b, and c) of the total 20
samples. It indicates the fault diagnosis is not correct, and
the accuracy rate of GAB network is 85%.

As shown in Figure 10, the GANB is adopted to classify
and calculate the collected data. )ere is one mistake
(point a) in the calculation. )e accuracy rate of the
GANB is 95%.

As shown in Figure 11, when the PSOSVM is used to
predict the state of cutting arms, there are five prediction
errors (points a, b, c, d, and e), and the prediction accuracy is
75% under the limited samples.

As shown in Figure 12, when the PCSVM algorithm is
used tomonitor the state of cutting arms, the predicted curve
coincides exactly with the real test curve. It means that the
monitoring accuracy of the four working states of cutting
arms reaches 100%.

As shown in Table 4, the classification accuracy of the
GAB, GANB, PSOSVM, and PCSVM approaches is 85%,
95%, 75%, and 100%, respectively. In terms of precision, the
PSOSVMmethod performs the worst among these methods.
Furthermore, the GANB and GAB approaches have com-
parable performances in terms of all performance metrics.

Table 3: Test sample data.

No. Variance Effective values Kurtosis index Current A Current B Current C

1 0.0096 0.0031 3.6624 123.00 117.00 125.25
2 0.0015 0.0081 2.7834 114.00 109.50 101.25
3 0.0015 0.0074 2.7603 115.50 115.50 108.00
4 0.0015 0.0081 2.7889 114.75 114.75 107.25
5 0.0010 0.0038 2.9848 120.00 131.25 132.75
6 0.0011 0.0342 4.0286 159.90 152.10 162.83
7 0.0017 0.0089 3.0617 148.20 142.35 131.63
8 0.0017 0.0081 3.0363 150.15 150.15 140.40
9 0.0017 0.0089 3.0678 149.18 149.18 139.43
10 0.0011 0.0042 3.2833 156.00 170.63 172.58
11 0.0008 0.0021 3.0072 26.25 24.75 24.00
12 0.0013 0.0056 2.4134 27.00 25.50 26.25
13 0.0011 0.0039 2.5398 22.50 21.75 26.25
14 0.0012 0.0052 3.0413 27.75 27.75 26.25
15 0.0013 0.0057 2.9891 29.25 27.75 28.50
16 0.0014 0.0062 2.6547 35.10 33.15 34.13
17 0.0014 0.0063 3.2880 38.03 36.08 37.05
18 0.0013 0.0057 3.3454 36.08 36.08 34.13
19 0.0012 0.0043 2.7938 29.25 28.28 34.13
20 0.0009 0.0023 3.3079 34.13 32.18 31.20
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Figure 9: )e fitting diagram of GAB network.
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Table 4 clearly suggests that the PCSVM approach has a
significant superiority over others with handcrafted features.
)e best performance of the PCSVM method can be at-
tributed to its adaptive learning ability and classification of
fault features, which is not limited to classification based on
traditional optimization methods.

5.2. Experimental Analysis. In this experiment, the con-
necting bearing fault between the motor and the reducer is

used as the fault, and the 6218-2RS rolling bearing is used.
When the bearing fails, the failure reason is analyzed on-site.
It is found that the lack of lubricating oil and excessive off-
loading of the bearing are the main causes of “burning
bearing.”

As shown in Figure 13, the main reason for this fault is
the lack of lubricating oil, which causes the friction to heat
up and burns the bearing. According to the characteristics
of burns, they can be divided into mild burns, moderate
burns, and severe burns. Moreover, moderate and above
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Figure 11: )e fitting diagram of PSOSVM.
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Figure 12: )e fitting diagram of PCSVM.

Table 4: Performance comparison of methods.

Technique Eigenvector dimension Training time Accuracy (%) Rate of convergence Precision

GAB 6 1 85 0.926 0.999
GANB 6 0.966 95 0.927 0.925
PSOSVM 6 0.942 75 0.998 0.903
PCSVM 3 0.903 100 1 1
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burns are under the lower part of the cage and outer ring.
In other words, the bearing also bears too large axial load,
which may be the secondary cause of bearing failure. Due
to the use of flange installation in the maintenance process
of the motor, when the finished flange part is removed and
the damaged bearing is taken off, the motor body will tilt,
leading to difficulties in bearing replacement. Figure 14
shows the motor tilting.

To reduce the frequency of subsequent failures and
facilitate maintenance, the hybrid installation mode of
foot mounting and flange mounting should be adopted
for the motor. Specifically, an abutment plate can be
added at the bottom of cutting arms to connect with the
motor base. Figure 15 shows the detailed installation
scheme.

When the motor is fixed with the abutment plate and the
flange, once the flange is removed and the bearing is
replaced, the motor will land on the abutment plate and not
be inclined. As a result, equipment maintenance is more
convenient, and the service life of the equipment can be
increased.

6. Conclusion

In this study, the problem of incipient fault detection and
diagnosis of cutting arms under different types of conditions
is explored. Tools of signal processing (HHT) and statistical
machine learning (GAB, GANB, PSOSVM, and PCSVM) are
used for pattern extraction and fault classification by the
collected data from a DC motor.

)e PCSVM approach has the best performance, while
the PSOSVM approach has the worst performance. )e
effectiveness of the four methods is verified through ex-
periments, and the cause of the failure is obtained through
the fault mechanism analysis. Furthermore, the design
improvement scheme for the hybrid installation is given. In
this framework, other variables also can be added to extract
more information to improve the robustness of methods.
)is study provides a reference for status monitoring in
digital twin technology.

)e approaches can also be extended to other
equipment such as the robot arm, the cutting head, the
electric motor, and the hydraulic system. In future work,
with the collection of more variables, advanced methods
can be used to solve the simultaneous identification
problem of multiple faults and establish a complete
digital twin system for real-time monitoring of device
status.
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