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ABSTRACT In order to solve the problem of low recognition rate and low real-time performance of vehicle

detection in complex road environment, a data-driven forward vehicle detection algorithm based on improved

tiny-YOLOv3 is proposed. Based on tiny-YOLOv3, the context feature information is combined to increase

the two scale detections of tiny-YOLOv3 to three. The spatial pyramid pooling (SPP) module is added to

increase the number of feature channels to improve the network feature extraction ability. According to the

dense arrangement of vehicles on the horizontal axis in the road image ahead, we change the grid size of

tiny-YOLOv3 and increase the number of candidate boxes on the horizontal axis. In addition, combined

with the characteristics of the vehicle size in the road image ahead, K-means clustering method is used to

select the appropriate number and size of target candidate boxes. We obtain the optimal detection model by

multi-scale training of the improved network. The experimental results show that the average accuracy of

the improved algorithm on the KITTI datasets is 91.03%, which is 7.12% higher than that of tiny-YOLOv3.

And the detection speed of improved network is 144 frames/s, which meets the real-time requirements.

INDEX TERMS Data-driven, convolutional neural network, k-means, spatial pyramid pooling, vehicle

detection.

I. INTRODUCTION

Intelligent vehicle will be the inevitable trend of the future

development of automobile industry. With the development

of artificial intelligence, autonomous driving has attracted

extensive attention of researchers [1]. As an important

premise of automatic driving, the perception of the road

environment ahead has become the research focus in the

field of intelligent vehicles. To ensure safe driving, intelligent

vehicles should deeply understand the vehicle behavior

in front of them according to the rich dynamic target

parameters [2]. Accurate and real-time detection of vehicles

in front can be used to determine the automatic driving

path of the vehicle, which is crucial in environmental

perception [3]. Vehicle detection methods mainly include

traditional detection algorithm and deep learning method.

Traditional vehicle detection methods include optical

flow method, background subtraction method, and detection

method based on appearance features. Horn and Schunck [4]

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangdong Tian .

proposed a determining optical flowmethod to detect moving

objects. However, the target detection based on optical flow

method is easily affected by noise and light source changes,

resulting in poor robustness in different scenes. Background

subtraction algorithm is only suitable for monitoring video

with static background, and it can’t identify vehicles with

static or slow-moving speed [5]. The vehicle detection

method based on appearance featuresmainly detects the edge,

symmetry and color [6]–[8] of the vehicle. For example,

van Leeuwen and Groen [9] proposed a vehicle detection

method based on the characteristics of vehicle shadow and

vehicle symmetry. However, when the moving target is

deformed or the scene perspective changes, the effect of

feature representation will become worse, which will make

the detection effect worse.

The traditional vehicle detection algorithm can be divided

into three steps: Firstly, the region of interest is selected,

and the entire image is scanned through a multi-scale sliding

window [10] according to the position and size characteristics

of the vehicle in the picture. Although it can get more

accurate vehicle position and size, this method requires a
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huge amount of calculation and will produce redundant

marking box because of treating each area indiscriminately.

Secondly, features are extracted from the candidate regions,

and commonly used are manual features such as HOG [11],

har-like [12] and LBP [13]. Due to the influence of target

occlusion, illumination changes, and background interfer-

ence, the artificially designed image features are poorly

robust and it is difficult to express the target features in all

cases. Reference [14] shows that a vehicle detection method

based on HOG feature is proposed, which has 88% detection

accuracy, but it is easy to cause false detection and poor

robustness. Finally, according to ANN neural networks [15],

SVM [16], Adaboost [17], and other methods to classify,

and complete vehicle detection. However, the traditional

vehicle detection method has poor adaptability to the change

of environment and vehicle target, which cannot meet the

requirements of unmanned driving.

With the development of deep learning and GPU, target

detection technology based on deep learning [18]–[20] is

more and more widely used, which has better detection

effect than traditional methods. The basic idea of using

convolutional neural network for vehicle detection is to

analyze the underlying features and corresponding target tags

of images by means of supervised learning. Instead of using

the characteristics of artificial design, a group of network

weights with the minimum loss function are obtained. The

weight of the trained network is loaded into the network, and

the vehicle target in the image is identified by the forward

reasoning of the network. The vehicle detection algorithm

based on convolutional neural network has better robustness.

It can overcome the influence of light change, shadow noise,

and obstacle occlusion, and becomes the research trend of

vehicle detection field. This method can be divided into two

categories, one is based on the two-step method of regional

recommendation. The R-CNN [21] generates candidate

regions by Region recommendation, then uses CNN to extract

features in each candidate region and sends the features to

the SVM. The classifier determines the target category, and

finally R-CNN uses linear ridge regression to adjust the

position of candidate regions. In recent years, this method has

been improved continuously. SPP-net [22], Fast R-CNN [23],

Faster R-CNN [24], Mask R-CNN [25], and other target

detection methods are proposed, which have achieved better

detection results. However, due to the complexity of the

two-step network structure and poor real-time performance,

it is difficult to realize the application [26].

The other type is a one-step approach based on regression

methods. Representatives include YOLO [27], SSD [28]

etc. The YOLO (You Only Look Once) algorithm improves

the accuracy of obtaining local information of image. The

false detection rate of background is reduced and the

detection speed is accelerated. Its lightweight version, tiny-

YOLO [29], has achieved a detection speed of 155 frames/s.

However, the accuracy is relatively low and it is not good at

detecting small objects. To solve the problem of low detection

accuracy and recall rate, Redom and others improve YOLO

by regularization and dimensional clustering, and propose

YOLOv2 [30]. The mAP (mean Average Precision) is 76.8%

on the VOC2007 datasets, and the test speed is 67 frames/s.

In April 2018, the third improved version YOLOv3 [31]

was published, and the mAP on the COCO datasets was

increased from 44.0% to 57.9% of YOLOv2, achieving high

accuracy under the premise of guaranteed speed. At the same

time, due to the deepening of the network and the increase

of the amount of calculation, the requirements of hardware

were higher and higher. For the convenience of deployment,

the corresponding convolutional network is simplified, such

as Mobile-Net [32], tiny-YOLO, and tiny-SSD [33] and so

on. There are fewer convolution layers in these networks. The

detection accuracy is sacrificed to a certain extent, but the

detection speed is faster.

To achieve accurate and real-time detection of front

vehicles in complex environment, the first part of this paper

reviews the research status of vehicle detection methods and

puts forward problems. In the second part, the principle of

the series of YOLO algorithms is described. In the third

part, a vehicle detection algorithm based on improved tiny-

YOLOv3 is proposed. Based on the tiny-YOLOv3 network,

the vehicle in the road image ahead is taken as the target.

To improve the detection ability of small targets, the tiny-

YOLOv3 prediction layer is improved. The detection scale is

increased by combining the low-level and high-level feature

map of context information fusion, and the spatial pyramid

pooling is introduced to increase the number of feature map

channels to retain more target information. At the same

time, to ensure the real-time performance and improve the

detection accuracy to meet the actual needs, the grid size,

the selection of candidate boxes, and network training are

improved. The fourth part we compare the improved tiny-

YOLOv3 with the previous series of YOLO algorithms and

analyze the experimental results, which verifies that the

proposed method has better detection ability.

II. THE PRINCIPLE OF TINY-YOLOV3 ALGORITHM

YOLO is an end-to-end target detection algorithm, which

transforms the problem of target detection into a regression

problem. The classification task and location task are unified

in a network. The location and category probability of

candidate frame are predicted directly, which meets the

real-time requirements.

TheYOLOdetectionmodel is shown in Fig. 1. The original

image is divided into S×S cells after zooming. If the cell

has the center of the object to be detected, the location

information and category information of the object to be

detected are predicted by the cell. Each cell predicts the

conditional probability of categories C, bounding boxes B

and their confidence scores. Each bounding box predicts

information, including coordinates (x, y), width w and height

h of the target and confidence, which are recorded as tx , ty,

tw, th, and obj_conf . The confidence formula is:

obj_conf = Pr (obj) × IOU truth
pred (1)
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FIGURE 1. The detection model of YOLO.

where IOU truth
pred is the intersection ratio of prediction box

and real value, which is used to judge the accuracy of target

position. Pr (obj) is whether there is a target in the prediction

bounding box corresponding to the cell. If there is no target,

it means 0. If there is one, it means 1. The confidence formula

reflects whether the cell contains the target or not and the

accuracy when the prediction bounding box contains the

object. (cx , cy) is the horizontal and vertical offset of the cell

of the target center to be detected from the upper left corner of

the image. The candidate box has a width of pw, and a height

of ph. The coordinate calculation formula of the inspection

bounding box are as following.

bx = σ (tx) + cx (2)

by = σ
(

ty
)

+ cy (3)

bw = pwe
tw (4)

bh = phe
th (5)

where tx , ty, tw, and th represent the predicted values of the

center, width and height of the detection box on the candidate

box. σ (•) is the sigmoid activation function, which is used

to limit the center point of the detection box within the

grid. bx , by, bw, and bh are the horizontal, vertical, width

and height of the detection box center. When more than

one bounding box detects the same target, YOLO uses non

maximum suppressionmethod to filter the bounding boxwith

lower threshold to get the best target prediction box.

Although YOLO has faster detection speed than Faster

R-CNN, its detection accuracy is lower. To solve this

problem, YOLOv2 improves the network structure and

replaces the full connection layer in the output with

convolutional layer. YOLOv2 also introduces batch nor-

malization, high-resolution classifier, dimensional clustering,

fine-grained features, multi-scale training, and other meth-

ods. However, there are still shortcomings of poor detection

of small targets. YOLOv3 is based on YOLO and YOLOv2.

Using the idea of deep residual network for reference, a resid-

ual module is built between convolution layers. The jump

connection is set, and a deeper convolution neural network

Darknet-53 is designed. The complete network structure has

106 layers, which has better feature extraction effect and

improves the positioning and classification accuracy of target

detection. Tiny-YOLOv3 is a simplified target detection

algorithm based on the version of YOLOv3, which reduces

the amount of calculation and greatly improves the speed.

At the same time, this method reduces the requirements of

hardware and increases the possibility of application. As

shown in Table 1, the backbone network consists of 7-layer

convolutional and 6-layer pooling.

TABLE 1. Tiny-YOLOv3 backbone network structure.

III. THE PRINCIPLE OF IMPROVED DETECTION

ALGORITHM

A. SPP-NET

SPP-net is a kind of pyramid network, which is connected

to Gaussian pyramid pooling layer after the last convolution

layer. Pyramid pooling layer can transform any size feature

map into fixed size feature vector, then match with full

connection layer. With this method, any size image can be

used as the input of neural network, and a fixed size output

can be generated [34], [35]. SPP-net completes multi-level

feature extraction through spatial pyramid pooling, enhances

the robustness of the network and improves the detection

accuracy and speed. In the same way, SPP-net extracts

characteristic graphs of different sensory field sizes by

pooling layers of different sizes to combine global and sub-

regional information. Furthermore, the number of channels

in the feature graph is widened to provide effective global

context information. Therefore, it has a stronger ability

of detail feature description, and improves the detection

accuracy of different types of targets.

In this paper, two sets of SPP-net spatial pyramid pooling

modules are integrated, and SPP-net is adjusted to introduce

four pooling layers, whose dimensions are 1×1, 2×2, 3×3,

4× 4, and 1× 1, 5× 5, 9× 9, 13× 13. The specific structure

is shown in the Fig. 2.

B. CONSTRUCTION OF FRONT VEHICLE DETECTION

MODEL

Since the size and proportion of the vehicles in the road

image in front are not fixed, it is easy to miss or judge
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FIGURE 2. Adjusted SPP-net structure with dimensions of 1 × 1, 2 × 2,
3 × 3, 4 × 4.

the vehicle as another type of target object when the target

is far away or the vehicles overlap each other. The tiny-

YOLOv3 network is a simplified network for multi-category

target detection. It has achieved good real-time performance

in detecting road vehicles in front, but the number of layers in

the network is small, and it is difficult to extract the vehicle

target features. The position and probability of the target

object are predicted only in the high-level feature map of

two scales, so there are problems such as poor positioning

accuracy for small targets, low target recognition rate of the

vehicle, false detection or repeated detection. In order to

further enhance the detection capability of the target, the tiny-

YOLOv3 network was improved.

In the basic neural network, the amount of feature

information obtained by the target is different at the final

output because the size of the target in the image is different.

Low-level and large-scale feature maps have high resolution

and they can describe more accurate position information, but

less semantic information; high-level feature maps contain

richer semantic information, but the location information

of the target points is sketchy. Therefore, the shallower

convolutional layer can well represent the small-sized target,

and the feature map is representative of the small target’s

position. That is, the large-scale feature map corresponds

to the small target, and the deeper convolution layer has

better features. In short, the convolutional layer features of

different scales are selected according to different target sizes,

and the features of high and low layers are integrated to

obtain more semantic information, so as to predict targets,

which can have better adaptability to targets of different

sizes.

In this paper, based on the tiny-YOLOv3 network, the

low-level features are fused with the high-level features

through the upper sampling. One detection scale is added, and

three feature layers of different scales are used for detection.

At the same time, the spatial pyramid pooling module of

SPP-net is integrated, and the grid size is changed. The

vehicle detection model in complex environment is proposed,

and more suitable candidate frames are allocated to small

target vehicles in the increased scale. We call this network

structure PPt-YOLOv3. The specific network structure of the

model is shown in Fig. 3.

FIGURE 3. The structure of PPt-YOLOv3 network caption.

When the size of the input detection image is 416 × 416,

the characteristic images of 52 × 52 × 128, 26 × 26 × 256,

and 13× 13× 1024 are obtained after a series of convolution

pooling. After that, the feature map of 13 × 13 × 256 is

obtained by one-time convolution, at this time we access it to

SPP-net. In the feature map, four pooling modules of 1 × 1,

5 × 5, 9 × 9, and 13×13 are introduced. The maximum

pooling is used to retain more target texture information in the

corresponding scale feature map as much as possible. Then,

the feature map of 13×13 × 1024 is obtained by splicing.

In order to help the network learn fine-grained features, on the

original tiny-YOLOv3 network structure, the feature maps

of 13 × 13 × 128 and 26×26 × 128 are sampled twice to

obtain the feature maps of 26 × 26×128 and 52×52 × 128.

Combined with the context information the feature maps with

384 and 256 channels are obtained. At this time, the second

SPP-net, and four pooling modules with the dimensions of

1 × 1, 2 × 2, 3 × 3, 4 × 4 are introduced. After pooling,

the characteristic diagram of 52×52 × 1024 is obtained by

splicing. After another convolution calculation, the character-

istic figure of 52×52 × 128 is obtained. The whole network

finally obtains the feature maps of 13× 13, 26×26, 52× 52.

The feature maps of three scales are respectively predicted

and output through a convolutional layer, whose channel

is (5 + 4) × 3 = 27.
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C. GRID SIZE

In the YOLO detection algorithm, the images are divided into

S×S networks, and the horizontal vertical detection weights

are the same. When detecting the vehicles on the road ahead,

it can be found that the vehicle targets are closely arranged

in the horizontal direction and sparsely distributed in the

vertical direction in the image, and the original candidate

frame distribution rules are difficult to apply. To solve this

problem, we change the length width ratio of the network

model input. As shown in Fig. 4, we increase the number

of horizontal grids and the number of candidate frames in

the horizontal direction, and refine the grid to ensure that

the vehicle center falls into the correct Cell. The original

network input image size is 416 × 416. In order to avoid the

influence of input image resolution on the network, we select

768 × 384 resolution image as the network input, that is,

the number of meshes is 24 × 12, which can have better

horizontal feature extraction effect. In a word, we improve

the positioning accuracy of the model and further increase

the detection accuracy by changing the grid size.

FIGURE 4. Grid scale.

D. SELECTION OF CANDIDATE BOX AND NETWOEK

TRAINING

In this paper, the detection scale of tiny-YOLOv3 is increased

to three. The feature layers of different scales need to

allocate the corresponding size of candidate frame to play

the advantages and improve the detection ability. Taking

the Mean Intersection over Union (MIOU) as the evaluation

standard, K-means clustering method is used to get the

dimension of the candidate frame for the dimension of the

training set of the vehicle in front. The larger the value of

K is, the more classes are clustered, the more accurate the

classification of candidate box size is. However, the larger the

value of K is, the more the total number of candidate frames

in the network is, which means that the more computation is,

the more complex the model is.

We choose 768 × 384 as the model input size, and use the

incremental method to select the K value. The relationship

between MIOU and the value of K is shown in Fig. 5.

As the number of K increases from 1 to 15, the MIOU

increases gradually. When K is greater than 8, the MIOU

value rises slowly and is basically stable. Considering the

amount of computation of the network, and the improved

FIGURE 5. Relationship between the number of cluster centers and the
MIOU.

method of prediction on three scales in the tiny-YOLOv3

network, the clustering result of K=9 is finally adopted. The

dimensions of the 9 candidate boxes are respectively (20, 25),

(35, 39), (66, 46), (50, 71), (92, 81), (141, 116), (99, 173),

(199, 183), and (228, 325). Each cell on each scale predicts

three check boxes with three candidate boxes. In other words,

candidate boxes of size (99, 173), (199, 183), and (228, 325)

are assigned to feature graphs with a sampling resolution

of 13×13 at 32 times, which are used to detect large-size

vehicles. The (50, 71), (92, 81), and (141, 116) size candidate

boxes are allocated to the feature map with 16 times down

sampling resolution of 26 × 26. A candidate boxes of size

(20, 25), (35, 39), and (66, 46) is allocated to the feature map

with 8 times lower sampling resolution of 52 ×52 to detect

the small target vehicle in the distance.

Based on the open source deep learning framework Dark-

net, the improved tiny-YOLOv3 model combines clustering

analysis and multi-scale training methods to train vehicle

detectors. The initial learning rate of the model during

training is set to 0.001. After 25 000 and 35 000 iterations,

the learning rate is multiplied by 0.1. The momentum

coefficient is 0.9, and the weight attenuation coefficient is

0.0010. The maximum number of iterations is 50,000. In the

training, image random adjustment of exposure, saturation,

tone, and other methods to expand the data. In addition,

during the training, the multi-scale training strategy is

adopted to enhance the robustness of images of different

sizes. Each 10 batches of training randomly select new image

sizes for training, so that the model has better detection effect

for images of different sizes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATA SET

The vehicle detection data in this paper are from the KITTI

datasets. The KITTI datasets contain real-world image data
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from scenes such as urban, rural, and highways, with up to

15 vehicles and 30 pedestrians per image, as well as varying

degrees of occlusion and truncation images including intense

lighting and blurred images, insufficient lighting, background

noise, etc. According to the actual application scenario,

we process the original 8 types of label information of the

KITTI datasets, and retain the 4 category labels required

for the experiment, namely: Van, Car, Truck, and Tram, and

selects 7481 images in the datasets as experimental data.

According to the experimental requirements, it is marked as

PASCAL VOC2007 data set format, 80% of which are used

as training set and 20% as verification set.

B. EXPERIMENTAL PLATFORM

The experimental platform configuration in this paper is

shown in Table 2.

TABLE 2. The hardware and software configuration of experimental
platform.

C. RESULTS AND ANALYSIS

In order to detect the rapidity, accuracy and robustness of the

algorithm, we adopt four indexes: mean Average Precision

(mAP), recall R, Intersection over union (IOU) and detection

Precision P. The calculation formula of some measurement

indexes are as follows:

P =
TP

TP+ FP
(6)

R =
TP

TP+ FN
(7)

IOU =
A ∩ B

A ∪ B
(8)

where TP means true positive, FN means false negative,

FP means false positive, TN means true negative.

Table 3 shows the experimental results of YOLOv2, tiny-

YOLOv2, tiny-YOLOv3 and PPt-YOLOv3 proposed in this

paper. All of these methods are trained and tested using

the KITTI datasets. It can be seen from the table that the

PPt-YOLOv3 obtains 91.03% mAP, and the precision of the

network is improved by 7.12% comparedwith that of the tiny-

YOLOv3 network, and the speed is reduced by 44 frames/s.

The convolutional layer number of tiny-YOLOv2 and tiny-

YOLOv3 are relatively small, and the vehicle feature

extraction is insufficient. PPt-YOLOv3 network solves this

problem by adding detection layer and spatial pyramid

pooling, so it has excellent expression ability for vehicle

TABLE 3. The test results of different methods on KITTI test set.

features; while ensuring the accuracy, the detection speed is

faster because fewer convolution layers are used.

FIGURE 6. PR curve of different methods on KITTI.

Fig. 6 shows the PR curves of the three methods on the

KITTI, in particular, where the precision is the average of

the four vehicle types. It can be seen from the figure that by

comparing the area under the curve, the method in this paper

obtains the best performance, which shows that the improved

network structure in this paper is effective. In addition,

it can be seen from table 3 that although the speed of PPt-

YOLOv3 is not the highest, the speed 144 frames/s is far

beyond the requirements of real-time detection.

Mean Intersection over union (MIOU) is used as the index

for evaluation to verify the positioning accuracy of PPt-

YOLOv3 network designed in this paper. YOLOv3 network

and tiny-YOLOv3 network are trained as the comparison of

PPt-YOLOv3 network on the data set, and theMIOU is tested

in the test set. The comparison results are shown in Table 4.

The results show that the MIOU of PPt-YOLOv3 is

5.24% higher than that of YOLOv3 and 8.38% higher

than that of tiny-YOLOv3. This shows that on the test
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FIGURE 7. The comparison of detection results of images in KITTI dataset with tiny-YOLOv3 and PPt-YOLOv3. Four pictures on the left were detected with
tiny-YOLOv3, and four pictures on the right were detected with PPt-YOLOv3. A group of horizontal pictures are the same scene.

TABLE 4. The hardware and software configuration of experimental
platform.

set, PPt-YOLOv3 produces a higher overlap rate between

the prediction box and the original tag box, and has a

better accuracy for vehicle positioning. The reason is that

through K-means clustering analysis of data sets to select the

appropriate size of the candidate box and improve the grid

size, we can better improve the positioning accuracy of the

model.

In order to reflect the contribution value of each step

of improvement to the results, on the basis of the above

experiments, several groups of comparative experiments are

carried out to analyze the effect of each step of improvement.

TABLE 5. The Influence of grid size on detection speed and mAP.

In order to study the impact of improving the input size

of the network PPt-YOLOv3 on the average accuracy and

detection speed, this experiment set up three different sizes of

input pictures for test training. As can be seen from Table 5,

increasing the number of horizontal grids and changing

the grid size can improve the detection accuracy. However,

because of the fine mesh division, the number of candidate

boxes increases. At the same time, the amount of calculation

increases, and the detection speed also decreases.
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FIGURE 8. The comparison of detection results of images collected from roads with tiny-YOLOv3 and PPt-YOLOv3. Four pictures on the left were detected
with tiny-YOLOv3, and four pictures on the right were detected with PPt-YOLOv3. A group of horizontal pictures are the same scene.

TABLE 6. The Influence of the number of feature maps on detection
accuracy.

Table 6 shows the effect of the number of feature maps

on the average detection accuracy of the algorithm when

the input size is fixed. For a model of 768 × 384 input,

tiny-YOLO with 2 and 3 feature maps gets 85.41% and

88.08% mAP, respectively, which is much higher than

tiny-YOLOv2 with only 1 feature map (tiny-YOLOv3-3L

means that the detection scale is increased to three, but

SPP-net is not introduced). Based on the 3-layer feature map,

the spatial pyramid pooling module was added, and mAPwas

increased to 91.03%. At the same time, the increase of feature

maps and the addition of the spatial pyramid module have a

certain impact on the detection speed of the model.

In order to test the effectiveness of ppt-yolov3 network

more intuitively, we select the images in the KITTI datasets

and the images collected by the road for detection by two

methods, and select eight groups of images in different

scenes. Fig. 7 (a) shows the detection results of tiny-

YOLOv3 on the test set image, and Fig. 7 (b) shows the

detection results of PPt-YOLOv3 on the test set image. For

the input picture of the first line, tiny-YOLOv3 recognizes

the blocked van incorrectly, while PPt-YOLOv3 recognizes
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correctly and positions the three long-distance vehicles in

the middle of the picture with higher accuracy; for the

picture of the second and third lines, tiny-YOLOv3 repeatedly

detects van and tram and misses the blocked car, while

PPt-YOLOv3 all detects correctly. In the fourth line, PPt-

YOLOv3 recognizes the blocked truck in the distance,

tiny-YOLOv3 does not recognize it, which increases the

security risk. Through the analysis and comparison of the

experimental results, PPt-YOLOv3 detection is better in

the test set.

Fig. 8 (a) shows the detection results of tiny-YOLOv3 on

the real vehicle road acquisition image, and Fig. 8 (b) shows

the detection results of PPt-YOLOv3 on the real vehicle

road acquisition image. For the first group of pictures, PPt-

YOLOv3 detected and recognized the van in the distance,

while tiny-YOLOv3 failed to do so. In the third group

of pictures, tiny-YOLOv3 missed car in the picture; in

the second and fourth group of pictures, tiny-YOLOv3 failed

to detect the blocked car. However, PPt-YOLOv3 was

detected correctly. For the four images collected from the

road, PPt-YOLOv3 can detect the small target and the

occluded target better than tiny-YOLOv3. Based on the above

detection results, two kinds of networks have similar detec-

tion capabilities for the large-scale non occluded vehicles

in the image. For the small-scale vehicles and the occluded

vehicles, tiny-YOLOv3 will have missed detection, wrong

detection and repeated detection. But the PPt-YOLOv3

proposed in this paper can solve the problem well and detect

the vehicle correctly. Therefore, PPt-YOLOv3 has better

detection performance.

V. CONCLUSION

Based on the improved tiny-YOLOv3, we propose a

new method of vehicle detection, PPt-YOLOv3. Com-

pared with the previous series of YOLO algorithms, PPt-

YOLOv3 inducing SPP-net to improve the size of the

receptive domain, which has better performance in accuracy,

recall, handover and merging ratio and mAP. In particular,

it has obvious advantages in mAP, which is 7.12% higher than

the original tiny-YOLOv3. The detection speed is reduced by

44 frames/s, but it still far exceeds the real-time requirement.

This is because PPt-YOLOv3 increases the detection scale

and the number of channels in the feature maps, and changes

the input size of the image, which to some extent increases

the amount of calculation. Considering the needs of the scene

in this paper, in the aspect of vehicle driving in the road

environment, it is more important to accurately identify the

target. Therefore, it is necessary to sacrifice a small amount of

detection speed for the higher detection accuracy. At the same

time, because of the simple network structure, the model size

of this method is only 51.6MB, which is more convenient for

deployment.

PPt-YOLOv3 combines the context features, increases

the detection scale, and introduces SPP-net spatial pyramid

pooling module in the two detection scales. Increasing the

number of feature map channels keeps more target texture

features. The new detection scale of 52× 52 is more suitable

for detecting similar small targets of occluded vehicles,

which is very helpful for the detection of distant vehicles.

In addition, this method increases the number of transverse

grids, refines the grid, and uses K-means clustering method

to automatically generate candidate boxes to enhance the

characterization ability of the feature map. At the same

time, it improves the positioning accuracy of the model, and

improves the accuracy of vehicle detection in front of tiny-

YOLOv3 network, and has real-time detection speed. PPt-

YOLOv3 training is limited by the KITTI data set. Due to

the lack of training samples, the detection effect of vehicles in

different environments needs to be improved. The futurework

should be focused on enhancing the generalization ability of

the model.
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