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Data-driven battery lifetime prediction and

confidence estimation for heavy-duty trucks
Sergii Voronov, Erik Frisk, and Mattias Krysander

Abstract—Maintenance planning is important in the automo-
tive industry as it will allow fleet owners or regular customers
to avoid unexpected failures of the components. One cause of
unplanned stops of heavy-duty trucks is failure in the lead-acid
starter battery. High availability of the vehicles can be achieved
by changing the battery frequently, but such an approach is
expensive both due to the frequent visits to a workshop and also
due to the component cost. Here, a data-driven method based
on Random Survival Forest (RSF) is proposed for predicting the
reliability of the batteries. The data set available for the study,
covering more than 50,000 trucks, has two important properties.
First, it does not contain measurements related directly to the
battery health, secondly there are no time series of measurements
for every vehicle. In this paper, the RSF method is used to predict
the reliability function for a particular vehicle using data from
the fleet of vehicles given that only one set of measurements per
vehicle is available. A theory for confidence bands for the RSF
method is developed that is an extension of an existing technique
for variance estimation in the Random Forest method. Adding
confidence bands to the RSF method gives an opportunity for
an engineer to evaluate the confidence of the model prediction.
Some aspects of the confidence bands are considered: a) their
asymptotic behavior and b) usefulness in model selection. A
problem of including time related variables is addressed in the
paper with arguments why it is a good choice not to add them
into the model. Metrics for performance evaluation are suggested
which show that the model can be used to schedule and optimize
the cost of the battery replacement. The approach is illustrated
extensively using the real-life truck data case study.

Index Terms—Battery lifetime prognostics, flexible mainte-
nance, reliability, infinitesimal jackknife confidence bands, data-
driven prediction.

I. INTRODUCTION

IN order to transport goods efficiently by heavy-duty trucks,

it is important that vehicles have a high degree of availability

and in particular avoid becoming standing by the road unable

to continue the transport mission. A severe issue of unplanned

stops is also the experienced down times, since they reduce

the vehicle’s operational hours per year. An unplanned stop

by the road does not only cost due to the delay in delivery,

but can also lead to damaged cargo. Therefore, maintenance

planning is important in the automotive industry and in the

near future car or truck manufacturers do not only produce

and deliver cars and trucks, but also provide maintenance

services that will allow fleet owners or regular customers to

avoid unexpected failures. High availability can be achieved
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by changing components frequently, but such an approach is

expensive both due to the frequent visits to a workshop and

also due to the component cost. Therefore, failure prognostics

and flexible maintenance have a significant potential in the

automotive field for the manufacturers, the commercial fleet

owners, and private customers.

In heavy-duty trucks, one cause of unplanned stops is a

failure in the electrical power system, and in particular, the

lead-acid starter battery. The main purpose of the battery is to

power the starter motor to get the diesel engine running, but

it is also used to power, for example, auxiliary units such as

cabin heating and kitchen equipment. Detailed physical models

of battery degradation are inherently difficult and require, in

addition to battery health sensing which is not available in the

given study, detailed knowledge of battery chemistry and how

degradation depends on the vehicle and battery usage profiles.

Methods for lifetime prognostics of system components can

coarsely be split into two categories: model-based and data-

driven methods [1]. Model-based methods rely on physical

laws and equations that describe degradation of the components

and for accurate predictions, accurate degradation models are

required. However, it is sometimes hard to develop an accurate

degradation model for a particular system, and then data-driven

methods can be an alternative. It is common for both approaches

to estimate the Remaining Useful Life (RUL), which is the

remaining time until component failure, i.e., the point where it

can no longer fulfill its function. In general, RUL is estimated

using sensors that give health related information of the

component, meaning, there is a possibility to track and predict

the state of the health related parameters during the lifetime of

the component. Examples of model-based prognostics are given

in [2, 3, 4] where detailed physics-based degradation models

are developed and used. Data-driven methods use machine

learning algorithms to either estimate RUL, or health of the

component, and can be categorized into parametric and non-

parametric methods. A parametric approach assumes that the

underlying degradation can be well described by a parametric

distribution where the parameters of interest are estimated

through the observations, see for example [5, 6]. In turn, non-

parametric data-driven models use machine learning methods

that do not have any basic assumption regarding underlying

degradation distribution [7]. Nowadays, hybrid methods that

fuse predictions both from the model-based and data-driven

approaches are proposed, see [8, 9]. Unlike the aforementioned

methods, where in most cases time series of sensor data is

available, the data set under study only contains information

retrieved from a vehicle during one of its workshop visits.

Vehicle usage and environmental conditions are summarized
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in a number of accumulative variables and histograms. For

this reason, an alternative approach is adopted here where

a conditional probability distribution of the battery lifetime,

referred to as the battery lifetime function, is estimated instead

of the RUL.

In recent decades, many works have been published regarding

battery health diagnostics or prognostics. Authors in [10]

and [11] give an overview of the existing methods. The

majority of methods aim at establishing a battery model

and estimating or measuring important battery properties

such as open circuit voltage, state of charge (SoC), state

of health (SoH), impedance, etc. Works cited in [12] use

electrochemical impedance spectroscopy (EIS) that measures

the impedance of batteries to estimate SoC and SoH. The

review [12] suggests that there is a potential to use EIS in

real-time systems. Examples of more data-driven methods for

battery SoC estimation and prognostics are found in [4] and

[13]. A particle filter approach is used in [4] to predict the

RUL for any given discharge cycle of the battery and a SoC

observer together with model parameter estimation and tuning

is performed with the help of recurrent neural network in [13].

This work is also data-driven but a main difference compared to

[4, 13] is that here no physical models or current measurements

are available in this study. This changes the character of the

problem significantly and is a main motivation for the work.

Given snapshots from a fleet of the vehicles coming into a

workshop, the problem of estimating the lifetime function

of the lead-acid battery, using a non-parametric approach,

for the vehicles is considered in order to decide when to

replace its battery. A lack of information directly related to the

battery health is a distinctive feature of the data set. Therefore,

battery health must be estimated using available information in

variables correlated with battery usage. Taking this into account

and considering the fact that models of battery degradation

profiles are not available, a non-parametric method, Random

Survival Forest (RSF) [7], is selected. The model is then used

to estimate the reliability function of a particular battery and

subsequently the lifetime function of the battery. Contributions

in this paper are the following: a) the lifetime function is used

instead of the RUL and the RSF model is proposed to estimate

the lifetime function, b) a variance estimate of the predictor is

suggested which uses the structure of the RSF model allowing

to judge the quality of the prediction and c) an analysis of the

predictive capabilities of the RSF model with different sets of

input variables.

II. PROBLEM FORMULATION

Prognostics for flexible maintenance of batteries in heavy-

duty vehicles is the topic of this study. A distinctive characteris-

tic of the data set is that many vehicles are not observed for the

full time to failure and this is referred to as censoring of failure

times. The definition of censoring used here is equivalent to the

one introduced in [14]. To illustrate the potential for flexible

maintenance in the case under study, consider the distribution

of failure and censoring times in Fig. 1 (time is scaled to avoid

revealing sensitive information). The shape of the distribution

of failed vehicles, the red curve in the figure, is such that it is

impossible to set up an efficient maintenance point to replace

the battery. If the maintenance point is scheduled, for instance,

around 0.5 time units, then the majority of the batteries of

the failed vehicles are replaced before failure. However, the

batteries are then not used efficiently because the majority of

the batteries of the censored vehicles are replaced as well as

indicated by the blue curve in the figure. In addition, customers

will not be satisfied with the quality of the batteries if they are

changed too soon and may shift to another battery manufacturer

who can deliver a better service. On the other hand, if the

maintenance point is scheduled around 5 time units, a majority

of the batteries are used until the end of their lives as shown

by the blue curve in Fig. 1 but at the same time, this means

significant numbers of battery failures with decreased reliability

and uptime as a result. Therefore, the figure motivates the need

for a vehicle specific prognostic model described in the paper.

Before the studied problems are explicitly stated, the vehicle

fleet data is introduced which is used to build the model.

A. Vehicle fleet data

The data source is a vehicle fleet database from an industrial

partner, Scania CV a heavy-duty truck manufacturer in Sweden.

Each vehicle has a record, called snapshot, in the database

which tells how the vehicle was used during its complete

lifetime until the snapshot time. The snapshot is comprised

of the variables where a subset of them corresponds to the

vehicle configuration, i.e., the values of the variables are fixed

for the complete life of the vehicle. Other variables are related

to the usage of the vehicle and will therefore change over time.

Information is logged in the database when a vehicle comes to

a workshop and it is noted in the data if the vehicle has had

a battery problem and a time stamp of the event. A snapshot

with no indication on battery problems is called censored,

since the future time of failure is not known. Information

present in the database is general purpose, meaning it is not

designed for battery prognostics and there is no specific battery

health indicator in the data. In addition, there are relatively

few variables that are directly related to the battery usage.

Main characteristics of the database are:

• 56,163 vehicles from 5 EU markets

• 536 variables stored in each vehicle snapshot

• One single snapshot per vehicle

• Heterogeneous data, i.e., a mixture of categorical and

numerical data

• Histogram variables

• Censoring rate about 80 percent

• Significant missing data rate about 40 percent

The data set includes both categorical and numerical vari-

ables where categorical variables have a limited number of

possible values. For example, the battery position variable has

three possible values (right, left hand side and rear frame end).

Numerical data is mostly organized in the form of histograms

but there are, so called, accumulative variables such as mileage

and age which increase with time. As an example, one of

the histogram data is a voltage histogram that has ten bins,

each showing what fraction of time the battery of the vehicle

has been operating in a particular voltage range. Ranges of
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Fig. 1. Distribution of censoring time for censored, blue curve, and failed
times for failed vehicles, red curve.

histogram bins are previously defined by engineers at Scania

CV. Here, every bin of the histograms is treated as a separate

variable and then the voltage histogram contributes with 10

variables to the study. Other examples of histograms present

in the database are atmospheric pressure, ambient temperature,

vehicle speed and fuel consumption vs speed that is a two

dimensional histogram. In the data set under study there are

26 histograms with different number of bins. As mentioned

above, the number of variables per vehicle is 536 which is the

total number formed by all categorical variables and histogram

bins. Percentage distribution of the categorical and histogram

variables are 1.5 percent for categorical and 98.5 percent for

histogram variables. The censoring rate is another distinctive

property. Only a fraction of the vehicles has problems with

batteries while all others do not, meaning that the failure times

are censored. Missing data is also an essential characteristic

of many real life data sources and the main reason in our

case is the fact that variables introduced for one type of a

vehicle are not relevant for another type. The missing data rate

is about 40% and it should be noted that missing values are

not uniformly distributed among variables. Specific variables

can have significantly higher missing rate than others. Thus,

systematic handling of missing data is important in the proposed

approach.

Another thing to notice is that there are no time series of

snapshots for the vehicles and therefore it is not possible to

track degradation of the battery over time for a given vehicle.

All characteristics of the database mentioned above significantly

influence the choice of the techniques in the proposed approach.

B. Battery lifetime function

A probabilistic framework is used to describe the battery

prognostic information corresponding to the battery health.

In model-based prognostics, a health indicator is generally

measured or modeled, and it is possible then to track the

health indicator during the whole life of a battery. Here, there

are no variables in the data set under study which correspond

directly to battery health. In addition, properties of the data set,

such as missing data rate and censoring, will add uncertainty to

the predictor. Therefore, a probabilistic model is used since it

is then possible to explicitly represent the inherent uncertainty

in the model.

Let a random variable T be the battery failure time, V the

snapshot of variables for a given vehicle taken at time point t0.

The main objective is to estimate the function, here referred

to as lifetime prediction function, of the battery defined as a

conditional reliability function,

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V). (1)

The function states the probability that a failure time T for a

battery of interest is greater than t+ t0 time units given that

it has survived t0 time units conditioning on snapshot data V .

Prediction of battery lifetime can be made, for example, in

the workshop when data is retrieved from the vehicle. The

established reliability function RV(t) = P (T ≥ t | V), [14], is

defined as a probability for a battery to survive t time units.

The relationship between the lifetime function BV(t; t0) and

the reliability function RV(t) is given directly by the definition

of conditional probabilities as

BV(t; t0) =
P (T > t+ t0 | V)
P (T ≥ t0 | V) =

RV(t+ t0)

RV(t0)
(2)

and is used throughout the paper.

C. Estimate confidence of a predictor model

As mentioned in Section II-B, the main objective is to

estimate the battery lifetime prediction function (2). To evaluate

if an estimate is reliable or not, some measure of confidence is

needed. A common approach is to use the confidence bands of

the estimator. Here, the true estimator distribution is not known

and one simple way to estimate the variance of the estimate

is to make a Gaussian assumption of estimator distribution.

This approach is used throughout the paper, but it is certainly

possible to make other distribution assumptions, or simply

form confidence bands as, e.g., ± one standard deviation.

A synthetic data set is used to show how confidence bands

to an estimator can be computed in a simpler case than

studied here. Assume that there are 5 classes of the vehicles

with different degradation profiles of the batteries. Fig. 2

demonstrates estimation of the true reliability for one of the

classes, see the magenta curve in the figure. Information about

the true reliabilities is not available in the real data set, and,

therefore, the synthetic data set is used to show statistical

properties of the estimator. When all vehicles in a class have

the same degradation profile, it is possible to compute a Kaplan-

Meier estimate, a maximum likelihood estimate of the reliability

function [15]. This is shown by the green curve in Fig. 2, and

95% confidence bands, based on a Gaussian assumption and a

standard deviation estimated by the Greenwood formula [14],

is shown by dashed blue curves. A main problem studied in

the paper is how to estimate standard errors and confidence

intervals for a battery lifetime function estimator. In contrast to

the example where basic survival analysis is directly applicable,

the data set under study has not a set of distinct degradation
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Fig. 2. True reliability function for a vehicle battery, magenta curve, Kaplan-
Meier estimate for the given class of vehicles, green curve, and 95 % confidence
bands with Gaussian assumption where variance estimated using Greenwood
formula, blue dashed curves.

classes. This is an important observation and the data set covers

a continuum of degradation profiles and therefore, the Kaplan-

Meier and Greenwood formula are not directly applicable.

D. Summary

Maintenance planning is based on the estimation of the

battery lifetime function together with the confidence bands.

The main objective is to estimate the vehicles’ individual battery

lifetime functions together with the variance estimates of the

predictor. Analysis regarding the predictive capabilities of the

RSF models with different type of variables is carried out and

properties of the estimator are analyzed on both the real data

set and synthetic data where the ground truth is known.

III. LIFETIME PREDICTION FUNCTION MODEL

An important first choice is which model should be used in

the lifetime prediction framework. In medical studies the well

known Cox regression model with the proportional hazards has

proven to be useful [6, 14]. Here, instead, a non-parametric

approach, Random Survival Forests (RSF), is used and a

main reason concerns the proportional hazards assumption.

Proportional hazards is a restrictive assumption and would limit

the generality of the approach and a main objective here is to

study and develop an approach that is applicable to also other

components than lead-acid batteries. To motivate the choice of

the non-parametric RSF model, a simple visualization of the

proportional hazards assumption is done below. For a more

systematic approach, see for example [16]. The hazard function,

i.e., the instantaneous failure rate, is properly introduced in

Section III-A, but under the proportional hazard assumption it

holds that

H(t;V1) ∝ H(t;V2)

where H(t;Vi) are the cumulative hazard functions for vehicles

V1 and V2 respectively. Fig. 3 shows the non-parametric
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Fig. 3. Etimated cumulative hazard functions for two vehicles plotted against
each other.

Nelson-Aalen estimates of cumulative hazard functions for

two representative vehicles plotted against each other. If the

proportional hazard assumption was valid, this would be a

straight line, which is clearly not the case for these two vehicles.

Therefore, a straightforward application of the Cox regression

model is not applicable and motivates our choice of the non-

parametric RSF model. Next, Random Survival Forest is briefly

summarized in Section III-A and then the approach is applied

to the battery prognostic case in Section III-B.

A. Random survival forests

Classification and regression trees are machine learning

techniques that maps/predicts a feature or variable space X into

a space of outcomes Y by means of binary trees [17] where

features and outcome for a particular case are considered as a

pair (xi, yi). Target values yi from the outcome space could

be continuous valued in case of regression and discrete in case

of a classification problem. A decision tree is a non-linear

estimator

θ̂(xi) = ŷi (3)

where θ̂(x) is built by partitioning the feature space X into the

disjoint regions Rm with some fitting model for each region.

For a regression problem, a fitting model is a real value that

fits data in a region Rm best, for instance the mean. In case

of classification fitting value is, for example the majority class

among all classes in the given region.

The aforementioned partitioning process happens at every

node of the tree. For a basic decision tree the best splitting

variable and splitting value is determined in a greedy manner,

namely, all variables and every possible splits are accessed

based on a cost function. The split with the lowest value of the

cost function is then selected. Decision trees can be applied

to the data sets with different types of variables and another

advantage is interpretability as rules can be built from a single

decision tree. A decision tree is a weak classifier and generally

performs well on the training data, however, it may generalize

poorly on unseen data.
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Therefore, ensemble of trees, a Random Forest (RF) model,

was successfully introduced by Breiman [18]. There are

different implementations of ensemble of trees such as [19]

and [20], however, the basic Breiman model is described here

since the RSF model is an extension of RF. There are two

techniques that are the distinctive features of the RF method,

namely, bootstrap aggregation, also known as bagging, and a

step that reduces correlation between trees in the forest. When

number of data samples is small, bootstrap is a powerful method

for estimating statistics, see [21]. By sampling from the given

data samples with replacement one can construct a significantly

large set of new samples that can be used to estimate target

statistics. Bootstrap aggregation is an ensemble method that

combines predictions from different machine learning models.

In the case of trees, a number of sets of bootstrap samples

are created and then a classification or regression tree model

is fitted for each of bootstrap sample. As mentioned, a single

tree model is sensitive to unseen data, but by combing outputs

from a set of trees, grown on different bootstrap samples, the

resulting output has reduced variance of a predictor compared

to the single tree model. In regression, the output from a

bootstrap aggregation model is the mean of outputs of all trees

θ̂BAGG(x) =
1

B

B∑

i=1

θ̂i(x) (4)

where θ̂i(x) is a tree model fitted to the ith bootstrap sample,

and B is the number of trees/bootstrap samples. It was

suggested by Breiman [18] that introducing randomness into the

procedure of choosing variables for splitting reduces correlation

between trees and increase performance of the aggregated

model. Therefore, instead of choosing all m available variables

for split at each node, only a fraction p of them is considered.

This step also increases speed of the algorithm as it requires

less variables to check at each split.

A key concept in survival analysis is the age-specific failure

rate, the hazard function h(t). Let T be the random failure

time and t current time, then the hazard function is defined as

h(t) = lim
δ→0+

P (t ≤ T < t+ δ|T ≥ t)

δ
. (5)

The hazard function describes the probability of failure at time

t given that it has survived until t. The relationship between

the reliability function and the hazard function can be seen by

denoting the cumulative distribution function for the random

variable T with F (t) and expanding (5) as

h(t) = lim
δ→0+

P (t ≤ T < t+ δ|T ≥ t)

δ
=

=
1

R(t)
lim

δ→0+

F (t+ δ)− F (t)

δ
=

f(t)

R(t)
=

= −
d
dt
R(t)

R(t)
= − d

dt
logR(t)

Then the relation between the hazard and reliability function is

R(t) = e−H(t) (6)

where H(t) is cumulative hazard rate.

A Random Survival Forest (RSF) model is an RF model

modified for the purpose of survival analysis [7]. Structurally,

an RSF model is similar to an RF except for the following

changes. The cost function used for splitting is so called

log-rank test [22]. It is a hypothesis test which compares

distributions of failures of the samples that are formed by

dividing data available at the splitting node into two samples

which will be the part of the two child nodes. The best split

corresponds to a variable with a value under which two samples

have as distinctive degradation profiles as possible. The log-

rank test is non-parametric and designed for censored data, a

type of data encountered in survival analysis. At each terminal

node, a node at which splitting no longer is performed, the

Nelson-Aalen estimate of the cumulative hazard rate H(t) is

computed [14]. The estimated cumulative hazard rate Ĥ(t) of

the whole forest is computed by averaging over tree hazard

rates. The estimate R̂(t) of the reliability function is directly

given by (6) as

R̂(t) = e−Ĥ(t). (7)

The estimate R̂(t) of the reliability function is the forest output.

B. Battery prediction model

The output from the RSF is an estimate of reliability function

as in (7). Then, an estimate of the lifetime function B̂V(t, t0)
can be expressed directly from (2) as

B̂V(t, t0) =
R̂V(t+ t0)

R̂V(t0)
. (8)

IV. CONFIDENCE ESTIMATE FOR THE BATTERY LIFETIME

PROGNOSTICS FUNCTION

Consider a bagged predictor (4). Such an estimator is

complex, nonlinear, and deriving an explicit expression for

the estimation covariance is infeasible. Then, one option is to

use a bootstrap technique. Since the estimator already uses

a bootstrap technique, a bootstrap strategy for estimating the

variance would require to compute bootstrap of bootstraps

which is computationally infeasible, [23]. Therefore, an ap-

proach that uses the original bootstrap samples used when

building the model also for estimating variance is desired. One

possibility for such an approach is the Infinitesimal Jackknife

(IJ) variance estimate suggested in [24] for random forests.

The basic approach is described in Section IV-A and then the

technique will be extended to RSF and the battery lifetime

function in Section IV-B. This section is technical and it is

possible to go directly to Section V and Section VI and come

back latter for the technical details.

A. Theoretical background on IJ variance estimation

To summarize results from [24], consider the ith bootstrap

sample Y ∗
i

= (y∗i1, y
∗
i2, . . . , y

∗
in) which is sampled from the

initial data set Y = (y1, y2, . . . , yn) where y∗ij represents the

number of times a particular data point, a snapshot of the

vehicle from the data set in the given study, is included in the

bootstrap sample. Introduce a resampling vector as

P = (p1, p2, . . . , pn) (9)
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where pi denotes probability of selecting yi in the bootstrap

sample. This vector belongs to a set such that

Ln =

{
P : Pi ≥ 0,

n∑

i=1

Pi = 1

}
. (10)

The resampling vector represents the weight each data point

yi from the initial sample Y = (y1, y2, . . . , yn) has in the ith

bootstrap sample. For example, the resampling vector P 0 =
( 1
n
, . . . , 1

n
) is associated with an initial sample Y where each

element of the sample has equal weight. The infinitesimal

jackknife variance estimate is based on a linearization approach.

The variance estimate V̂IJ of the true variance var
[
θ̂BAGG

]
of

the bagged predictor is

V̂IJ =
1

n2

n∑

i=1

U2
i (11)

where n is the size of the sample and Ui are the directional

derivatives

Ui = lim
ǫ→0

θ̂BAGG(P
0 + ǫ(δi − P 0))− θ̂BAGG(P

0)

ǫ
,

i = 1, . . . , n (12)

with δi being the ith coordinate vector. For a bagged estimator,

it turns out that there exists an explicit expression for the

asymptotic expression, with respect to the number of bootstrap

samples B, of the directional derivatives

V̂IJ =

n∑

i=1

Ĉov
2

i (13)

where

Ĉovi =
1

B

B∑

b=1

(y∗bi − 1)(t∗b − t̄).

Here, the bth tree grown on the bth bootstrap sample is built

with the Breiman procedure, t∗b is the output from the bth tree

and t̄ is the RF output. The estimator (13) can be proven to be

and an improved unbiased estimator can be derived as in [24]

V̂IJ-U = V̂IJ −
n

B2

B∑

b=1

(t∗b − t̄)2 (14)

B. IJ variance estimate for the lifetime function

There are two main differences between IJ variance estimate

of the RF model compared to variance estimate of lifetime

function (8). First, the output of the RF model is either a class

or regression value, but in the RSF case the output is a time

dependent function, and secondly, the lifetime function is a

ratio of the reliability estimates R̂V(t) as in (2).

For the first difference mentioned above, the reliability

function is computed on a predefined grid of time points,

i.e., time points chosen by the RSF algorithm based on the

samples in the terminal node. The variance estimate V̂ RSF
IJ (t)

of the true forest variance var
[
θ̂RSF

]
becomes

V̂ RSF
IJ (t) =

n∑

i=1

Ĉov
2

i (t) (15)

where

Ĉovi(t) =
1

B

B∑

b=1

(y∗bi − 1)(R̂V
b (t)− R̂V(t)). (16)

Here, the reliability R̂V
b (t) is the output reliability from the

bth tree for a particular vehicle with data V and R̂V(t) is the

output from the forest. These values correspond to t∗b and t̄

in (14) respectively. An unbiased IJ variance estimate V̂ RSF
IJ-U in

analogy with Efron’s estimate is then

V̂ RSF
IJ-U (t) = V̂ RSF

IJ (t)− n

B2

B∑

b=1

(R̂V
b (t)− R̂V(t))2. (17)

For the second property, the variance estimate for the lifetime

function B̂V(t, t0) from (8), which is a ratio of the outputs of

the random survival forest, is estimated and summarized next.

Theorem 1: Let BV(t, t0) in (2) be the battery lifetime

function. Then

B̂V(t, t0) =
R̂V(t+ t0)

R̂V(t0)

is the RSF estimate of BV(t, t0) and a first order IJ variance

approximation is given by

var
[
B̂V(t, t0)

]
≈
(
µX

µY

)2

·
(

var [X]

µ2
X

+

+
var [Y ]

µ2
Y

− 2
cov [X,Y ]

µXµY

)
(18)

where the random variable X is the reliability function R̂V(t+
t0), the random variable Y is the reliability function R̂V(t0),
and

µX ≈ R̂V(t+ t0)

µY ≈ R̂V(t0)

var [X] = V̂ RSF
IJ-U (t+ t0)

var [Y ] = V̂ RSF
IJ-U (t0)

cov [X,Y ] = covBias [X,Y ]− Bias.

The random forest outputs R̂V(t) and thereby µX , µY above,

and the infinitesimal jackknife estimator (14) gives var [X] and

var [Y ]. A result for the estimation of cov [X,Y ] is given in

Lemma 1.

Proof: From (2), the lifetime function can be expressed

as the ratio of the reliability functions R̂V(t) and R̂V(t+ t0).
Assume that R̂V(t+ t0) is a random variable X and R̂V(t0)
is a random variable Y . Then, the variance of the lifetime

function can be estimated using a Taylor series expansion as of

(18) where instead of µX and µY the outputs from the forest

R̂V(t+t0) and R̂V(t0) are used at time t+t0 and t0 respectively.

The variances var [X] and var [Y ] correspond to IJ variance

estimates V̂ RSF
IJ-U (t) computed at time t+ t0 and t0 respectively.

Covariance cov [X,Y ] = ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

is a co-

variance between two random variables which are represented

by the values of two points from the reliability curve R̂V(t)
at time t+ t0 and t0.
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The missing part and a main contribution is the derivation of

cov [X,Y ] = ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

using an infinitesimal

jackknife approach. This key result is summarized in the lemma

below. The proof of the lemma is given in the appendix for the

interested reader. The continuation of the paper can be read

without the technical details of the proof.

Lemma 1: Let R̂V(t) be an RSF model with B trees grown on

the original sample Y = (y1, y2, . . . , yn) with size n. Assume

that the output, R̂V
b (t), from tree b is independent from one data

point j from the ith bag, then an asymptotic expression of the

infinitesimal jackknife estimate of ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and the corresponding bias correction are

cov [X,Y ] = covBias [X,Y ]− Bias (19)

where

covBias [X,Y ] = ĉov
[
R̂V(t+ t0), R̂

V(t0)
]
=

=

n∑

i=1

Ĉovi(t0)Ĉovi(t+ t0) (20)

and

Bias =
n

B2

B∑

i=1

(R̂V
i (t0)−R̂V(t0))(R̂

V
i (t+t0)−R̂V(t+t0))

(21)

as the sample size n → ∞, the number of trees B → ∞, and

n converges to infinity faster than B.

When the prediction of the battery’s lifetime in the form of the

lifetime function BV(t, t0) together with its variance estimate

are available, we have a tool that is useful in maintenance

planning and its usefullness is demonstrated in Section IV-C.

C. Analysis of the IJ covariance estimate

Theorem 1 summarizes the expressions for the covariance

estimate of the lifetime function. This section will explore

and highlight some properties of the variance estimate. First,

consequences of the bias correction are analyzed and the im-

portance of the covariance estimate ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

is demonstrated. Then, model selection based on confidence

bands is discussed.

When ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and bias are estimated, it

is possible to plot confidence bands for an estimate of the

lifetime function BV(t, t0). Fig. 4 shows a 95% confidence

band for 4 vehicles from the validation set with a Gaussian

assumption for the lifetime function estimate. The RSF model

used for the figure had 1000 trees. To motivate the need

in estimating the ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and the estima-

tor bias, three types of confidence bands are plotted. Blue

dashed curves are 95% confidence bands computed using

the variance from (18) where biased IJ variance estimates

are used, i.e., values var
[
R̂V(t+ t0)

]
, var

[
R̂V(t0)

]
, and

cov
[
R̂V(t+ t0), R̂

V(t0)
]

are biased. It can be seen that when

biased estimates are used in (18), the confidence bands become

conservative. The black curves are 95% confidence bands

computed using the variance from (18) with the unbiased

IJ variance estimates var
[
R̂V(t+ t0)

]
and var

[
R̂V(t0)

]
of re-

liabilities and assumption that values of R̂V(t) are independent

at time point t and t+ t0, i.e., ĉov
[
R̂V(t+ t0), R̂

V(t0)
]
= 0.

The red curves are 95% confidence bands computed using

variance from (18) with the unbiased IJ variance estimates

var
[
R̂V(t+ t0)

]
and var

[
R̂V(t0)

]
of reliabilities and esti-

mated cov
[
R̂V(t+ t0), R̂

V(t0)
]
. Fig. 4 shows that for three

vehicles out of four black and red curves are close to

each other, however, for a vehicle in top right corner they

differ significantly. This indicates the importance in finding

ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and its bias.

Confidence bands can be used for the model selection. For

example, an estimate for the lifetime functions together with the

confidence bands for two RSF models, one with 100 trees and

one with 1000 trees, are presented in Fig. 5. It is not surprising

that more trees improve the variance of the predictor. However,

let us consider model selection based on the available error

metric. One of the metrics measuring error available in the RSF

framework is the error rate [7]. It relies on the Concordance

index which counts prediction as erroneous when for two

randomly selected vehicles the shorter survival time has worse

predicted value of survival function. As it is shown in the

previous work [25], the error rate curve starts to converge after

about 100 trees and the difference between the error rates for

the models with 100 and 1000 trees is negligible, and then it

is tempting to stop increasing the number of trees in the RSF

model. However, it is evident from Fig. 5 that the quality of

the prediction in the case of 1000 trees is significantly better

than in the case of 100 trees, because confidence bands are

narrower. The experiment shows that adding confidence bands

to the predictor helps to find better model than the one created

by relying only on the error rate values.

It is evident from the results above that the unbiased

covariance estimates give less conservative variance estimate of

the lifetime function and, in addition, confidence bands can be

used as a complimentary tool, for example, to the error rate for

model selection. From now on in the paper only the unbiased

covariance estimates obtained with the help of IJ technique are

used when computing the confidence bands of the predictor.

V. SYNTHETIC DATA SET STUDY

A main problem with the vehicle database is that the actual

battery degradation profiles are not known and therefore it

is hard to validate lifetime estimates and confidence bands

in, for example, Fig. 4. To corroborate the results received

in Section IV, a synthetic data set is considered where the

underlying degradation profiles are known, controllable, and

with similar properties as the vehicle data set.

A. Parameters of RSF algorithm

Before proceeding with the description of the synthetic data,

the parameters used when training the RSF model are described.

There are three main parameters when building the RSF model,

minimal node size, number of trees in the forest, and number

of splitting variables in each node. Number of trees in the
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Fig. 4. IJ variance estimates of lifetime function for 4 vehicles from validation
set. Green curve is an estimate of lifetime function BV (t, t0). Blue curves
are 95% confidence bands computed using variance from (18) with biased
IJ variance estimates of covariance of reliabilities. Black curves are 95%
confidence bands computed using variance from (18) with unbiased IJ variance

estimates of covariance of reliabilities and assumption that values of R̂V (t)
are independent at time point t and t+ t0. Red curves are 95% confidence
bands computed using variance from (18) with unbiased IJ variance estimates
of covariance of reliabilities.
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Fig. 5. Estimate of the lifetime function BV (t, t0), green curve corresponds
to the model with 100 trees and red to the model with 1000 trees, with the
95% confidence bands, blue curves correspond to the model with 100 trees
and black curves to the model with 1000 trees.

forest B is chosen to be 1000 for the experiments in Section V

and Section VI. The chosen value of the trees will guarantee

a good quality of the prediction as shown in Section IV-C.

However, number of trees in the forest can be set to values

which differ from 1000 in some cases to compare the results

from the different models. Minimal node size is set to value 200

and full motivation is given in [25]. The number of splitting

variables m in each node is set to the default value m =
√
p

where p is number of all variables. The cost function used

for splitting is a log-rank test [22] which is also the default

value for the RSF package. Readers who are interested in the

detailed description of all parameters are referred to [26].

B. Synthetic data experiments

The generated synthetic data has 6 variables and 1000

vehicles. One variable is important for prognosis as it controls

the degradation of the battery. The other five variables are noisy

in the sense that they do not influence the battery degradation.

The battery degradation is controlled by varying the hazard

rate [14], i.e., the probability of instantaneous failure at time t,

according to the one important variable. The expected lifetime

of the batteries with the selected nominal hazard rate is set to

10 years and it is assumed that the important variable v1 has

an impact on the battery hazard rate h as

h =





1 · h0, if v1 = 1

1.5 · h0, if v1 = 2

2.5 · h0, if v1 = 3

2.9 · h0, if v1 = 4

3.4 · h0, if v1 = 5

(22)

where h0 = 1
10 is the nominal hazard rate. The censoring

rate is controlled to be at 80%, which is similar to the real

dataset. Vehicles are uniformly distributed among the five

classes, meaning each class has about 200 vehicles.

Here, in contrast to the vehicle data set, the class of each

vehicle is known and then it is possible to compute the Kaplan-

Meier estimate, R̂(t), of the reliability function, which is the

maximum likelihood estimator, for every class together with

confidence bands computed using the standard Greenwood

formula. This corresponds to the estimates based on an ideal

vehicle classifier, i.e., that perfectly separates vehicles into

the 5 defined classes. The estimates for the third class of the

vehicles are presented in Fig. 2. Now, let us compare the

maximum-likelihood estimates with full class knowledge with

the estimates from the RSF model.

First, consider a prediction for one of the vehicles in the

validation set belonging to the third class. Fig. 6 shows

the predictions from the forest of 1000 trees together with

maximum-likelihood estimates. The magenta curve is the true

reliability, green and blue curves are the Kaplan-Meier estimate

and 95% confidence bands respectively, and the RSF reliability

and 95% confidence bands based on IJ variance estimate are

black and red curves respectively. It can be seen from Fig. 6

that the confidence bands based on IJ variance estimate is close

to the the ones given by the maximum likelihood estimate,

Greenwood formula. To show how variance estimate varies

with different number of trees, variance estimate is computed

for a vehicle at time point t = 0.2 and t = 0.8 for the various

numbers of the trees B. Several options are tried for number

of trees B, namely, B ∈ {100, 500, 1000, 2000, 5000, 10000}.

The result is presented in Fig. 7 showing that the variance

estimates, red and blue curves, converge to some non-zero

positive. Green and black lines are variances received using

Greenwood formula, i.e., computed under an ideal classifier
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Fig. 6. Reliability with confidence bands. Theoretical values vs estimates
from the RSF. Magenta curve is the true reliability curve, green and blue
curves are the Kaplan-Meier estimate and 95% confidence bands with Gaussian
assumption computed using Greenwood formula, black and red curves are
the RSF estimate of the reliability and 95% confidence bands with Gaussian
assumption estimated using IJ technique.

assumption. As it can be seen, the variance estimate at time

point t = 0.2, blue curve, is very close to the Greenwood

estimate. Variance estimate at time point t = 0.8, red curve,

is biased with respect to the Greenwood estimate which is

suspected due to censoring.

It should be noticed that when the number of the trees in

the forest is small, around 100 trees, the IJ variance and bias

estimates have significant variances which make it possible

that the IJ variance estimate can be negative due to the additive

bias and small value of variance of the predictor. For example,

when computing the IJ variance estimate at time point t = 0.8
for the case of B = 100 trees, it is negative for a given model

realization. A question may arise what to do in this situation.

For now, absolute value of the variance is taken as an estimate

of the true variance. It is possible to use some other value in

this case, for instance variance not defined, to show that we are

uncertain about the variance estimate. However, it is mentioned

above that the negative IJ variance estimate can happen not

only due to the small number of trees in the forest, but also

when the true variance of a predictor is small. Therefore, taking

the absolute value of the variance estimate could give an idea

about the true variance and several experiments with the RSF

model corroborates this.

As a conclusion, it is illustrated that IJ variance estimate

is a good tool in finding the true variance of a predictor and

variance estimate gives more relevant information about the

model than the error rate.

VI. PERFORMANCE EVALUATION WITH SEVERAL METRICS

Every prognostic model should be evaluated such that

their predictive performance is known. As mentioned, this

is problematic since the output from the forest model is a

survival or reliability function and there is no record of their
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Fig. 7. Theoretical values of variances vs estimates from the RSF. Green
and black lines are the true variances, the Greenwood estimates, at time point
t = 0.2 and t = 0.8 respectively. Red and blue curves are the IJ variance
estimates at time point t = 0.2 and t = 0.8 respectively for different number
of trees B.

true values in the data set. In a pure classification or regression

problem there are established metrics to evaluate performance,

however, this is not the case for survival analysis. A metric to

use in the case of the RSF framework is an error rate based on

the concordance index [7] which estimates the probability that,

when a pair of the vehicles/batteries is randomly selected, the

vehicle/battery that fails first has a worst predicted outcome.

A question is if this error rate is descriptive enough. For

example, the authors in [27] conclude that it is possible that the

error rate is not an appropriate performance measure, because

concordance index measures if the predicted survival times are

in the right order and says nothing regarding how close the

predicted and actual survival times are. The example given

below supports this observation and shows that with similar

values of the error rates models predict significantly different

survival curves.

The example relies on simulated data similar to the one used

in Section V. Degradation of the battery is controlled by the

hazard rate h0 which corresponds to 10 years mean battery

life. As in the previous example it is assumed that there is one

important variable v1 which influences hazard rate h0 such

that three classes of vehicles exist with different degradation

profiles corresponding to the new hazard rate h

h =





1 · h0, if v1 = 1

2 · h0, if v1 = 2

3 · h0, if v1 = 3

(23)

Two models with 2 and 100 noisy variables are considered

where the censoring rate is about 80% which is similar to the

value from the example in Section V. The data set is comprised

from 1000 vehicles and parameters of the RSF model are

chosen as in Section V-A. Fig. 8 shows the comparison of the

predicted survival curves from RSF model, dashed blue curves,

with theoretical values, red curves, for three randomly chosen
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vehicles that were not included in the training sets. It is evident

from the left plot in Fig. 8 that, as expected, predictions for the

model with only 2 noisy variables are significantly better than

for the model with 100 noisy variables, right plot in Fig. 8. At

the same time the values of the error rate for both models are

close, 0.4097 for the model with 2 noisy and 0.4270 for the

model with 100 noisy variables, therefore, one would expect

that forest outputs would be similar as well, but this is clearly

not the case. Thus, new evaluation techniques are needed to be

able to say more about predictive performance of the model.
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(b) 100 noisy variables

Fig. 8. RSF predictions for two models with different number of noisy
variables. Red curves are the theoretical reliabilities for three classes and blue
dashed curves are the outputs from the RSF model.

A. Performance analysis of predictive model for battery data

A vehicle used the same way should never leave its class

of similar vehicles, however, with year or mileage variables

present in the database, the model might be dominated by age

effects which is not the intention and could possibly mask

the effects of different vehicle usage. The problem of using

accumulative variables like age or mileage is addressed by

the authors in [28]. It was suggested that instead of using

accumulative variables directly it is better to preprocess them

first. For example, there are two accumulative variables in

the current data set, namely, age and mileage. First, a new

variable mileage per day is created and, then, two models are

considered, namely, a model based on all variables except

the accumulative ones and another model where the variable

mileage per day has been added.

The RSF model training and validation processes is described

next. Even though 56,163 vehicles are available for the study,

30,000 of them are randomly selected for training and validation

purposes. The reason for this is partly limited computational

resources for training an RSF model with many variables,

which is the case in our study (536 variables per vehicle).

In particular, significant memory resources are required. For

validation, data is partitioned into training and validation sets

where, out of the 30,000 vehicles, 2/3 are assigned to the

training set and the remaining 10,000 vehicles to the validation

set. Parameters of the RSF model are the same as described

in Section V-A.

One way to evaluate performance of a predictor is to look

at values of R̂V(tsurv) survival/reliability curves at the time

of either failure or censoring, and see how predictions of the

two classes of vehicles differ. Fig. 9 and Fig. 10 show the

histograms of reliabilities for failed, red color, and censored
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Fig. 9. Histograms of R̂V (tsurv) for the failed vehicles, red bins, and censored
vehicles, blue bins. Data set without mileage per day.
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Fig. 10. Histograms of R̂V (tsurv) for the failed vehicles, red bins, and censored
vehicles, blue bins. Mileage per day variable is included.

vehicles, blue color, for the two models with and without the

variable mileage per day on the validation set. On the one

hand the histograms of the two classes of vehicles are different,

however, have a big overlap on the other, therefore not much

can be said about the performance of the predictor.

Another approach for performance evaluation is to plot

lifetime functions B̂V(t; t0) where t0 = tsurv and observe how

they differ between the two classes of vehicles. The result of

the prediction for 100 randomly selected vehicles from failed

and censored classes on the validation set is depicted in Fig. 11

and Fig. 12 where red curves correspond to the failed class and

blue curves to the censored. What can be seen in the figures

is that, on average, predictions for both classes of vehicles

are different. However, the overlap between two classes is big,



IEEE TRANSACTIONS ON RELIABILITY 11

0 1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Validation set

B̂V
(t
;t

0
)

t (time units)

Fig. 11. Lifetime functions B̂V (t; t0) computed for 100 randomly selected
vehicles from censored and failed classes on validation set. Red curves
correspond to the failed vehicles and blue curves represent the censored
vehicles. Data set without mileage per day variable.

therefore, it would be good to find more informative measure

of performance. Instead of considering the predictions of the

reliability and lifetime curves at time tsurv when a vehicle is

either censored or failed, let us consider the cross section of the

respective curves at some fixed time point t which is similar

for all vehicles.

Results of reliability histograms computed on the validation

set after 3 time units for the two classes of vehicles and two

models are shown in Fig. 13 and Fig. 14. This particular time

point was selected to allow the batteries to be in operation

for some time, so their different usage patterns influence the

degradation and it is expected that the predictions for the two

classes should differ. The difference between the histograms of

the two classes is more clear now than in Fig. 9 and Fig. 10.

There is still an overlap between the two histograms and one

would expect them to be completely separated in the ideal case,

however, it is possible that some of the censored vehicles are

really close to failure, but leave the study before failure and the

problem of the battery is not recorded. Therefore, left tails of

the censored histograms with small values of reliabilities could

be not a mistake of the algorithm, but a correct indication that a

vehicle belongs to the failed class. On the other hand, a group of

vehicles from the failed class which has reliability values close

to 1, right tails of the failed histograms, experiences problem

with battery due to the reasons that cannot be explained by

information in the current data set. Thus, it is impossible for the

algorithm to see that the vehicle has potential problems with

a battery. One other thing to notice is that for the model that

includes mileage per day variable there is a peak in the failed

histogram coinciding with the peak of censored histogram, see

Fig. 14. For now, it is unclear what it represents, however the

results are affected by including or excluding the variable.

Histograms of the lifetime functions B̂V(t; t0) computed on

the validation set for two models at time point t = tsurv+1 time
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Fig. 12. Lifetime functions B̂V (t; t0) computed for 100 randomly selected
vehicles from censored and failed classes on validation set. Red curves
correspond to the failed vehicles and blue curves represent the censored
vehicles. Mileage per day variable is included.
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Fig. 13. Histograms of R̂V (t) for the failed vehicles, red bins, and censored
vehicles, blue bins, at time point t = 3 time units. Data set without mileage
per day variable.

unit and t0 = tsurv are presented in Fig. 15 and Fig. 16. Our

industrial partner Scania CV is, say, interested in predictions up

to 1 time unit to be used in their maintenance planner, therefore,

only a time point within 1 time unit in the future is selected.

Separation between histograms for failed and censored classes

is not so distinctive as in the case of the reliability curves,

nevertheless, similar behavior is seen for the model with the

mileage per day variable where the peak of the histogram of

the failed batteries coincides with the peak of the censored one,

see Fig. 16. In addition, the histogram of the failed batteries

for the model with mileage per day are skewed more to the

right than for the model without the variable.
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Fig. 14. Histograms of R̂V (t) for the failed vehicles, red bins, and censored
vehicles, blue bins, at time point t = 3 time units. Mileage per day variable
is included.
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Fig. 15. Histograms of lifetime function estimates B̂V (t; tsurv) for the failed
vehicles, red bins, and censored vehicles, blue bins, at t = 1 time unit point
in future from tsurv. Data set without mileage per day variable.

Different evaluation methods for the prognostic performance

of the RSF model are demonstrated in this section showing the

difficulty in validating the results of the model’s predictions,

especially for the case when only one snapshot of data per

vehicle is available. It is also shown in the section that

predictions of the model that includes the mileage per day

variable are different from the predictions of the model that

does not include the variable. A detailed investigation of the

differences between the two aforementioned models is given

next.
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Fig. 16. Histograms of lifetime function estimates B̂V (t; tsurv) for the failed
vehicles, red bins, and censored vehicles, blue bins, at t = 1 time unit point
in future from tsurv. Mileage per day variable is included.

TABLE I
VALUES OF VARIABLES SELECTED AMONG 50 MOST IMPORTANT GIVEN BY

VIMP FOR VEHICLE V1 WITH BEST PROGNOSIS, V2 WITH THE WORST

PROGNOSIS FOR THE MODEL EXCLUDING MILEAGE PER DAY AND VEHICLE

V3 WITH THE WORST PROGNOSIS FOR THE MODEL INCLUDING MILEAGE

PER DAY

Variables V1 V2 V3

Country 0 1 2
Bed type 0 2 0

Ambient temperature bin 3 0 1.26 0.58
Atmospheric pressure bin 7 14.23 1 4.33
Atmospheric pressure bin 8 1 4.1 3.32

Battery SOC vs Poweroff 2d bin 17 40.84 18.43 1
Battery voltage bin 6 0 1.46 82.22
Battery voltage bin 7 0 1.88 0.37

Fuel consumption vs speed 2d bin 4 3.06 1.7 1
Fuel consumption vs speed 2d bin 5 4.2 1.82 1
Fuel consumption vs speed 2d bin 6 4.1 1.50 1
Fuel consumption vs speed 2d bin 7 4.41 1.46 1
Fuel consumption vs speed 2d bin 8 3.31 1.23 1
Fuel consumption vs speed 2d bin 15 1 5.79 15.17

Vehicle speed bin 0 4.14 4.07 1
Vehicle speed bin 1 1.96 1.05 1
Vehicle speed bin 2 3.05 1 1.76
Vehicle speed bin 6 1 6.45 8.06
Vehicle speed bin 7 1 12.15 38.75

Engine Load 2d bin 30 7.91 1 1.67
Engine Load 2d bin 31 15.8 1.4 1
Engine Load 2d bin 32 76 4 1
Engine Load 2d bin 41 4.71 6.58 1
Engine Load 2d bin 42 12.25 1 1.85

B. Lifetime prognosis for vehicles with similar mileage

It is natural to do maintenance based on age and mileage

where batteries which reached the predefined period of their life

or vehicle operated predefined number of miles considered as

the ones to be replaced. To demonstrate that the RSF framework

partition vehicles into classes based on usage profiles and not

simply on age and mileage, vehicles with similar mileage are

selected. The base value of mileage m is selected and the

interval plus-minus 5% from the base value m is considered.
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From this set of vehicles with similar mileage, vehicles with

similar age is selected. There are 84 vehicles satisfying the

stated requirement on mileage in the validation set. The lifetime

function estimates B̂V(t; t0) with t0 = tsurv for the selected

vehicles are presented in Fig. 17 and Fig. 18 showing the

prediction for model with and without mileage per day variable

respectively. First notice that the difference between the best

and the worst predictions is significant which shows that how

vehicles are used is important. Next, three vehicles V1, V2

and V3 are selected from the set of the vehicles with similar

mileage. Vehicle V1 corresponds to the lifetime function with

the best prognosis and is the same vehicle for the both models,

when vehicles V2 and V3 with the worst prognosis are different

for the two models. Age of batteries for the vehicles V1, V2

and V3 are 1.3, 0.83 and 0.98 time units respectively where the

vehicle V1 with the best prognosis lived the longest among three

vehicles, therefore, vehicle usage pattern plays a significant

role.

Table I shows selected variables for three vehicles V1, V2

and V3 among 50 most important variables for the prediction

obtained using VIMP [7], Variable IMPortance, with the

most important variables at the top. VIMP can be interpreted

in terms of misclassification under the concordance index.

As mentioned above, the index estimates the probability of

correctly classifying two vehicles. Therefore, VIMP measures

the increase or decrease in the concordance index on the test

data if the given variable is not available for training the model.

Only variables that have different values for three vehicles

are left among 50 most important. First, vehicles operated

in different countries that can explain the difference in the

degradation profiles of the batteries as climate, quality of roads

can vary. Bin 3 of the ambient temperature histogram appears

important for the prediction. This bin corresponds to operation

of a vehicle under the low temperatures. Vehicles V2 and V3

have operated more time under the low temperatures which

corroborates the fact that the vehicles have worse degradation

prediction than the vehicle V1. Two bins of the atmospheric

pressure histogram are important, namely, bins 7 and 8. Vehicle

V1 has much bigger value in the 7th bin compared to the

values for the vehicles V2 and V3, at the same time has much

lower value in the 8th bin. Two bins from the battery voltage

histogram are also important. They correspond to the operation

of the battery under high voltage. It can be seen that the vehicles

with worse prediction operated more under the high voltage

that can be considered as counterintuitive at first. However,

it is possible that the generator that charges the battery has

malfunctions that lead to overcharging and faster degradation

of the battery. Overall, there is a significant amount of the

variables in Table I that indicate different usage of the vehicles.

This fact gives positive signs for using the RSF method as a

predictive tool.

It can also be seen that predictions for two models are

different, namely, lifetime function estimates for the model

with mileage per day variable are comprised of two types of

curves. One is convex and another is concave with a joint

point for both curves between 1 and 2 time units. Taking into

account that batteries by themselves are of age 1 to 2 time

units, the joint point for lifetime function estimates lie near
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Fig. 17. Lifetime functions estimates B̂V (t; t0) for 84 vehicles which mileage
values are in plus-minus 5% interval around base mileage value m and age of
batteries are within 1 to 2 time unit interval. Model does not contain mileage
per day variable.
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Fig. 18. Lifetime functions estimates B̂V (t; t0) for 84 vehicles which mileage
values are in plus-minus 5% interval around base mileage value m and age
of batteries are within 1 to 2 time unit interval. Model contains mileage per
day variable.

the peak of distribution for the failed vehicles from Fig. 1.

Now, consider the lifetime function estimates which corre-

spond to the best, worst and intermediate prediction for two

models. They can be found in Fig. 19 and Fig. 20. The lifetime

function estimates correspond to the solid lines in the figures,

and dashed curves are 95% confidence bands with Gaussian

assumption and IJ variance estimate from Section IV. It can

be seen that confidence bands for the model with mileage per

day variable are wider than for the model without which is

a surprising result. Intuitively the more variables the better

predictions, however, the result shows opposite. It means that

relying on usage profile rather than on time related variables
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Fig. 19. Lifetime function estimates B̂V (t; t0) for the best, worst and
intermediate predictions from Fig. 17, solid lines, together with 95% confidence
bands with Gaussian assumption and IJ variance estimate, dashed curves.
Without mileage per day model.
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Fig. 20. Lifetime function estimates B̂V (t; t0) for the best, worst and
intermediate predictions from Fig. 18, solid lines, together with 95% confidence
bands with Gaussian assumption and IJ variance estimate, dashed curves. With
mileage per day model.

would give more accurate predictor for the given data. More

studies should be carried out to see if incorporation of time

related variables can give better performance.

As a conclusion, RSF model applied to the given data set

gives on average different predictions for the failed and the

censored class of vehicles, results show that vehicle usage

profile is important for predicting the degradation of a battery

and that there is an indication not to include accumulative

variables into the training RSF model as it increases uncertainty

of the predictor. It is impossible to determine and validate a

failure time for a battery with the given data set, because only

one snapshot of data is available for every vehicle. When such

information becomes available to us, the methods could and

should be extended and further validated.

VII. CONCLUSION

It is shown in the paper that an RSF model can be applied

to the static data, i.e., one snapshot only per vehicle, in the

data set to predict a battery lifetime prediction function. A

key difference in the data compared to many other prognostic

approaches, e.g., [2, 5, 8], is that only one snapshot per vehicle

is available and it is not possible to track the vehicle to

predict failure time. The lifetime function (1) is proposed

as an estimate of the battery lifetime and the RSF model

output is the estimate of the reliability function which can

be used to compute the lifetime function estimate (2). The

confidence bands of the lifetime function estimate (2) are

estimated by extending the existing Infinitesimal Jackknife

(IJ) variance estimate approach for Random Forest method

to Random Survival Forest and properties of the variance

estimates are analyzed. First, confidence bands can be used for

the model selection, for example, it is shown that the prediction

for the forest model with 1,000 trees is significantly better than

for the model with 100 trees in terms of confidence bands,

however, in terms of the standard error rate, the two models are

similar. Second, IJ variance estimate starts to converge for the

forest with 1,000 trees or larger which means that the variance

estimate of the predictor with 1000 trees is appropriate. Models

with and without accumulative variables give different results

and currently it seems that excluding accumulative variables

gives better results based on the fact that the confidence bands

become narrower. Performance evaluation is done and it has

been shown that prediction for a censored and failed vehicle is

different. It is also shown that the validation of the method’s

prediction performance in the case when only one snapshot of

data per vehicle is available is difficult and requires extensive

analysis and problem insight. In general, the battery lifetime

function can be used to schedule and optimize the cost of the

battery replacement which leads to more flexible maintenance.

APPENDIX

PROOF OF LEMMA 1

This section gives the proof of Lemma 1. According to the

definition of the covariance

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]
=

= E
[(

R̂V(t+ t0)− E
[
R̂V(t+ t0)

])
·

·
(
R̂V(t0)− E

[
R̂V(t0)

])]
(24)

where E[x] is an expectation of a random variable x.

Now, let us write the estimate from the forest for a particular

time point t as θ̂RSF(P , t) = R̂V(t) which corresponds

to one point on the reliability function. An expansion of

nonlinear estimator θ̂RSF(P , t) using directional derivatives

around resampling vector P 0 keeping only a linear term gives

θ̂RSF(P , t) = θ̂RSF(P
0) + (P − P

0) ·U+

+O((P − P
0) · (P − P

0)′) (25)
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where U(t) is a column vector of directional derivatives

Ui(t) = lim
ǫ→0

θ̂RSF(P
0 + ǫ(δi − P 0), t)− θ̂RSF(P

0, t)

ǫ
,

i = 1, . . . , n. (26)

Taking the result in (25) into account, covariance of reliabilities

in (24) becomes

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]
=

= E
[(

θ̂RSF(P , t+ t0)− E
[
θ̂RSF(P , t+ t0)

])
·

·
(
θ̂RSF(P , t0)− E

[
θ̂RSF(P , t0)

])]
=

= E
[(
(P − P

0)U(t+ t0)
) (

(P − P
0)U(t0)

)]
. (27)

A resampling vector for each tree has a rescaled multinominal

distribution

P ∼ Multn(n,P
0)

n

with mean and covariance matrices(
P

0,
I

n2
− P 0′P 0

n

)
.

Covariance expression with the directional derivatives becomes

ĉov
[
R̂V(t+ t0), R̂

V(t0)
]
=

= E



(

n∑

i=1

(pi −
1

n
)Ui(t+ t0)

)


n∑

j=1

(pj −
1

n
)Uj(t0)




 =

= E

[
n∑

i=1

(
pi −

1

n

)2

Ui(t0)Ui(t+ t0) +

+
∑

i 6=j

(
pi −

1

n

)(
pj −

1

n

)
Ui(t0)Uj(t+ t0)+

+
∑

i 6=j

(
pi −

1

n

)(
pj −

1

n

)
Ui(t+ t0)Uj(t0)


 =

=

n∑

i=1

1

n2

(
1− 1

n

)
Ui(t0)Ui(t+ t0)+

+
∑

i 6=j

(
− 1

n3

)
Ui(t0)Uj(t+ t0)+

+
∑

i 6=j

(
− 1

n3

)
Ui(t+ t0)Uj(t0) =

=
1

n2

n∑

i=1

Ui(t0)Ui(t+ t0)−

− 1

n3



(

n∑

i=1

Ui(t0)

)


n∑

j=1

Uj(t+ t0)




 . (28)

Now, let us show that the sum of directional derivatives Ui(t)
is 0. First, gradient vector D is defined as

D =



D1

...

Dn


 where Di =

∂

∂pi
θ̂RSF(P , t)

∣∣∣∣
P=P 0

.

Therefore, according to the definition of directional derivative

Ui(t) in (12) can be expressed as

Ui(t) = (δi − P
0) ·D

where δi has 1 at the ith position and 0 at all others. Rewriting

Ui(t) using knowledge about the vectors’ structure gives

Ui(t) =


− 1

n
, . . . ,− 1

n︸ ︷︷ ︸
i - 1

, 1− 1

n
,− 1

n
, . . . ,− 1

n


·



D1

...

Dn


 =

=
∑

j 6=i

(
− 1

n

)
· ∂

∂pj
θ̂RSF(P , t)

∣∣∣∣
P=P 0

+

+

(
1− 1

n

)
· ∂

∂pi
θ̂RSF(P , t)

∣∣∣∣
P=P 0

.

If the sum of Ui(t)s is considered then a factor next to

every partial derivative will consist of a sum of one summand(
1− 1

n

)
and all others being

(
− 1

n

)
. Therefore, the following

can be written

n∑

i=1

Ui(t) =
n∑

i=1



(
1− 1

n

)
+

n−1∑

j=1

(
− 1

n

)
 ·

· ∂

∂pi
θ̂RSF(P )

∣∣∣∣
P=P 0

=

=

n∑

i=1

((
1− 1

n

)
−
(
n− 1

n

))
· ∂

∂pi
θ̂RSF(P )

∣∣∣∣
P=P 0

= 0.

Thus, by substituting zeroes instead of the sums of directional

derivatives in (28) we get

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]
=

1

n2

n∑

i=1

Ui(t0)Ui(t+ t0).

(29)

Following the same steps as in [24] it can be written that

Ui(t) = nĈovi(t)

which proves (20). Bias from (21) of

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]

estimate is found as follows

Bias = E
[
ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]]

−

− cov
[
R̂V(t+ t0), R̂

V(t0)
]
. (30)

Here, cov
[
R̂V(t+ t0), R̂

V(t0)
]

is a covariance between relia-

bilities when number of trees in the forest B → ∞. One can

rewrite (30) as

Bias =

n∑

j=1

(
E
[
Ĉovi(t0)Ĉovi(t+ t0)

]
−

−Covi(t0)Covi(t+ t0)) =

n∑

j=1

(
E
[
Ĉovi(t0)Ĉovi(t+ t0)

]
−

−E
[
Ĉovi(t0)

]
E
[
Ĉovi(t+ t0)

])
=

=

n∑

j=1

cov
[
Ĉovi(t0); Ĉovi(t+ t0)

]
. (31)
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Taking into account expression for Ĉovi(t0) in (16) bias

becomes

Bias =
n∑

j=1

cov

[
1

B

B∑

b=1

(y∗ij − 1)(R̂V
b (t0)− R̂V(t0));

1

B

B∑

b=1

(y∗bj − 1)(R̂V
b (t+ t0)− R̂V(t+ t0))

]
=

=
1

B2

n∑

j=1

B∑

i=1

B∑

b=1

(
E
[
(y∗bj − 1)(y∗ij − 1)·

(R̂V
i (t0)− R̂V(t0))(R̂

V
b (t+ t0)− R̂V(t+ t0))

]
−

− E
[
(y∗ij − 1)(R̂V

i (t0)− R̂V(t0))
]
·

E
[
(y∗bj − 1)(R̂V

b (t+ t0)− R̂V(t+ t0))
])

. (32)

Assuming that the original sample Y is large enough, meaning

n → ∞, it becomes possible to suppose that R̂V
i (t) and y∗ij

are independent and as the result bias simplifies to

Bias =
1

B2

n∑

j=1

B∑

i=1

B∑

b=1

(
E
[
(y∗bj − 1)(y∗ij − 1)

]
·

E
[
(R̂V

i (t0)− R̂V(t0))(R̂
V
b (t+ t0)− R̂V(t+ t0))

]
−

− E
[
(y∗ij − 1)

]
E
[
(R̂V

i (t0)− R̂V(t0))
]
·

E
[
(y∗bj − 1)

]
E
[
(R̂V

b (t+ t0)− R̂V(t+ t0))
])

. (33)

Random variable y∗ij has the following properties

E
[
(y∗ij − 1)(y∗bj − 1)

]
= cov

[
y∗ij ; y

∗
bj

]
=

1

n
→ 0,

n → ∞, b 6= j

E
[
y∗ij − 1

]
= E

[
y∗bj − 1

]
= 0

E
[
(y∗ij − 1)2

]
= var

[
y∗ij
]
= 1− 1

n
→ 1,

n → ∞, b = j.

Therefore, if it is assumed that the size of the sample n → ∞
and n converges to infinity faster than B, bias becomes

Bias =
1

B2

n∑

j=1

B∑

i=1

(
E
[
(y∗ij − 1)2

]
·

E
[
(R̂V

i (t0)− R̂V(t0))(R̂
V
i (t+ t0)− R̂V(t+ t0))

])
=

=
n

B2

B∑

i=1

(R̂V
i (t0)− R̂V(t0))(R̂

V
i (t+ t0)− R̂V(t+ t0)).

(34)

The expression in (34) is similar to the bias correction for the

RF model found in [24] and presented in (14).
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