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Abstract. Digital Breast Tomosynthesis (DBT) emerges as a new 3D
modality for breast cancer screening and diagnosis. Like in conventional
2D mammography the breast is scanned in a compressed state. For ori-
entation during surgical planning, e.g., during presurgical ultrasound-
guided anchor-wire marking, as well as for improving communication
between radiologists and surgeons it is desirable to estimate an un-
compressed model of the acquired breast along with a spatial map-
ping that allows localizing lesions marked in DBT in the uncompressed
model. We therefore propose a method for 3D breast decompression
and associated lesion mapping from 3D DBT data. The method is en-
tirely data-driven and employs machine learning methods to predict the
shape of the uncompressed breast from a DBT input volume. For this
purpose a shape space has been constructed from manually annotated
uncompressed breast surfaces and shape parameters are predicted by
multiple multi-variate Random Forest regression. By exploiting point
correspondences between the compressed and uncompressed breasts, le-
sions identified in DBT can be mapped to approximately corresponding
locations in the uncompressed breast model. To this end, a thin-plate
spline mapping is employed. Our method features a novel completely
data-driven approach to breast shape prediction that does not necessitate
prior knowledge about biomechanical properties and parameters of the
breast tissue. Instead, a particular deformation behavior (decompression)
is learned from annotated shape pairs, compressed and uncompressed,
which are obtained from DBT and magnetic resonance image volumes,
respectively. On average, shape prediction takes 26 s and achieves a sur-
face distance of 15.80±4.70 mm. The mean localization error for lesion
mapping is 22.48±8.67 mm.

1 Introduction

According to the World Cancer Report 2008 (globocan.iarc.fr, 2012/01/23) breast
cancer is the most frequent cancer diagnosis in women among all specifiable
kinds of cancer. Early detection is assumed to significantly improve outcomes.
That is why breast cancer screening is recommended by many national organiza-
tions for most older women, e.g., the American Cancer Society (www.cancer.org,
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(a) (b) (c)

Fig. 1. The MLO image acquisition (a), a 3D DBT scan (b), and a 3D rendering of
an uncompressed breast with mapped lesions (c). Radiographic image with courtesy of
University Hospital Erlangen.

2012/05/31) recommends yearly screening mammography for women aged 40
and above as long as they are in good health.

Recently, Digital Breast Tomosynthesis (DBT) increasingly replaces common
2D mammography for differential diagnosis and is in discussion for screening [1].
It provides 3D image volumes of the compressed breast (see Fig. 1 (b)) that are
reconstructed from multiple 2D projections acquired at varying angles. Being a
3D imaging modality DBT naturally allows superior spatial localization of sus-
picious lesions. For a mediolateral-oplique (MLO) scan the breast is compressed
as sketched in Fig. 1 (a). Typically, a second scan is acquired in craniocaudal
(CC) direction during an examination. For surgical planning it is common clin-
ical practice to mark the lesions in the scans and to communicate the rough
localization of suspicious findings in the uncompressed breast via schematic 2D
drawings. The latter naturally suffers from inaccuracies and can often only be
dissolved by additional, potentially ionizing and costly, imaging. Providing more
accurate lesion localization in the uncompressed breast, e.g., in terms of a 3D
rendering view (see Fig. 1 (c)), without additional imaging has the potential to
facilitate surgical planning and related procedures, e.g., placing pre-operative
markers, at low cost.

We therefore propose a method for estimating uncompressed 3D breast shapes
from 3D DBT MLO scans. The reconstructed uncompressed shape and the orig-
inal compressed shape depicted in the DBT scan establish a reference frame
that can be used to map lesions found in the image of the compressed breast to
the corresponding location in the uncompressed breast. Essentially, our method
consists of two major steps: shape prediction and lesion mapping. For shape
prediction the input data is transformed to a representation suitable for mul-
tiple multi-variate regression. This is done by fully-automatically detecting the
nipple (or papilla) from the DBT images, segmenting the breast area, extracting
the breast surface, and canonically re-sampling it. For lesion mapping we make
use of the point correspondences established by applying the same canonical
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re-sampling to the uncompressed shapes used for predictor training and shape
model construction. This allows us to compute a thin-plate spline (TPS) inter-
polation for lesion mapping.

Despite the huge body of literature on biomechanical breast modeling [2,3]
and its applications in the context of 2D mammography [4] there are few pub-
lications dealing with DBT. As a notable exception van Schie et al. [5] match
corresponding regions from ipsilateral DBT views (MLO and CC). Unlike in
our case, the behavior of breasts—that are assumed to be hemispheres—under
compression/decompression is explicitly modeled by approximating breast tissue
properties. Regions are mapped by intermediately mapping them to a decom-
pressed version of the initial geometric model that has been matched to the
compressed breast before. The matching region in the ipsilateral view is finally
found after rotation and repeated compression. This is different from our ap-
proach as we predict the shape of the uncompressed breast directly without
intermediate steps and without explicitly modeling tissue behavior. We rather
rely on a purely data-driven approach inherently capturing tissue behavior as it
is present in the available training data.

2 Methods

2.1 Input Data and Feature Extraction

For shape prediction feature vectors x ∈ R
K of uniform length K have to be

extracted from the 3D DBT image volumes. For this we first segment the breast
tissue area by thresholding and region growing, then extract the breast surface
using Marching Cubes [6], and canonically re-sample it starting from the nipple
to a fixed number of surface points. This re-sampling scheme is also relevant
to lesion mapping, which will be discussed in more detail later. Finally, a high-
dimensional feature vector suitable for machine learning-based shape prediction
is obtained by composing the distances between every individual surface point
and the nipple. Here, the nipple position is automatically determined by a ma-
chine learning-based landmark detection algorithm using 3D Haar-like features
[7,8]. It has been rapidly prototyped using an Integrated Detection Network
(IDN) [9]. Note that, for processing, any breast is treated as a left breast, i.e.,
right breast images are mirrored.

2.2 Target Shape Model and 3D Shape Reconstruction

For the purpose of shape prediction we construct a statistical shape model [10]
of the target shapes, i.e., the uncompressed breasts, from real patient data for
the following two reasons. First, we are interested in a realistic but smooth
estimate of the uncompressed breast shape omitting artefactual shape variations
of individual examples. Second, the statistical shape model significantly reduces
the number of shape parameters to be estimated (see below). From a statistical
point of view, this simplifies the prediction problem, allowing successful training
with less training data. Thus we strive for capturing as much shape information
as possible in as few parameters as possible.
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Fig. 2. The fraction of total shape variance
plotted against the number of used shape pa-
rameters

Here, we employ a simple lin-
ear shape model [10]: a shape s =
(xn, yn, zn)n=1,...,N consisting of
N points is described as linear
combination s = s̄ + Py where
P is a matrix formed by base vec-
tors of the shape space, s̄ is the
mean shape, and y = (y1, . . . , yL)
are the shape parameters. The
base vectors are found by Prin-
cipal Component Analysis (see
reference [10]). The amount of
variation captured by the model is
determined by the number of
principal components L included
in the model. Here, it turns out
that only L = 5 shape parameters are sufficient for preserving 90% of the total
variance in a sample of 74 breasts (see Fig. 2). After verifying the shape space
projections of these 74 breasts and given our training base for shape prediction
we consider 5 shape parameters to be sufficient for our current system. This re-
striction also leverages the problem of the imperfect ground-truth at hand, i.e.,
larger uncompressed breasts within our data collection are occasionally deformed
by the coils used for MR scanning as depicted in Fig. 4 (c). Note that in order to
align the model shapes and establish point correspondence we re-sample relative
to the same anatomical entities as for the compressed DBT shapes.

2.3 3D Shape Prediction by Multiple Multi-variate Random Forest
Regression

Predicting L = 5 real-valued shape coefficients from a K-dimensional feature
vector can be cast as the multiple multi-variate regression problem f : X → Y
with y = f(x), x ∈ X = R

K , y ∈ Y = R
L.

Here, we have chosen to use a Random Forest (RF) regressor [11] since it
can capture linear as well as nonlinear dependencies and is known to achieve
good generalization performance in general. While the more popular RF clas-
sifier employs randomized decision trees, RF regression uses an ensemble of M
randomized regression trees. Like classification trees, regression trees partition
the domain Y of response variables y into J regionsR = {Rj |j = 1, . . . , J } with
Y =

⋃J
j=1 Rj and

⋂J
j=1 Rj = ∅. Unlike classification trees, regression trees model

the distribution of response variables for any region Rj as a joint normal distri-
bution with constant mean μj and covarianceΣj . Since the response variables y
are the shape parameters of a linear statistical shape model here, they are uncor-
related by construction [10]. Hence, we assume that Σj = diag(σ2

j1
, σ2

j2
, . . . , σ2

jL
)
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Fig. 3. The anatomical entities and the contours of the surface re-sampling planes in
the MLO plane (a), and the canonical surface re-sampling scheme applied to a DBT
scan (b) and an MR scan (c) of a compressed and uncompressed breast, respectively.
Radiographic images with courtesy of University Hospital Erlangen.

is a diagonal matrix with determinant |Σj | =
∏L

l=1 σ
2
jl
. Randomized regres-

sion tree induction can be summarized as follows: given a training sample T =
{(xi,yi)|i = 1, . . . , I } ⊂ X × Y with cardinality T , regions Rν are recursively
split into Rν = Rν1 ∪Rν2 with Rν1 ∩Rν2 = ∅, where each region Rν is associ-
ated with a node ν of a binary tree and a subset Tν ⊂ T of the training sample
with cardinality Tν . Each split is defined by a threshold t and an index m to
one of the features. It partitions Tν into subsets Tν1 = {(xi,yi) ∈ Tν |xim ≤ t}
and Tν2 = {(xi,yi) ∈ Tν |xim > t}. The optimal split is chosen among randomly
selected features as to maximize the decrease in sample entropy

	i(ν) = Tν · ln |Σν | − (Tν1 · ln |Σν1 |+ Tν2 · ln |Σν2 |) .

During application, i.e., shape prediction, a feature vector x is passed to appro-
priate tree leaf nodes νm according to the induced feature thresholds for each
regression tree m ∈ { 1, . . . ,M }. Finally, the mean values μj = μνm ∈ Y from
the leaf nodes (corresponding to a region Rj) are averaged for prediction.

2.4 Thin-Plate Spline-Based Lesion Mapping from Corresponding
Surface Points

A TPS mapping [12], which is computed based on two input shapes s and s′,
is a function fTPS : R3 → R

3 that maps each point of the input shape to its
corresponding point in the target shape, i.e., fTPS(xn, yn, zn) = (x′

n, y
′
n, z

′
n). Its

parameters are based on closed-form solutions minimizing the integral quadratic
variation for each coordinate axis. Being a continuous mapping it interpolates
between the known data points and can therefore be used for mapping lesions
p = (x, y, z)T from within the compressed breast s to within the predicted
uncompressed breast s′ = s̄+ Py.
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Fig. 4. Exemplary results for shape prediction on unseen data (a–e). The contour of
the predicted shape is depicted in green, the one of the ground-truth annotation in red.
Radiographic images with courtesy of University Hospital Erlangen.

For that reason we establish point correspondences between compressed and
uncompressed shapes s and s′. Both the source shapes and the target shapes
are parameterized relative to common anatomical entities that are identifiable
in both cases. Figure 3 (a) summarizes the scheme with respect to an MLO scan.

• The first entity used is the nipple. It is automatically detected in the DBT
images and has been manually annotated in the uncompressed breast shapes.

• The second entity is the chest plane, which we define as the plane orthogonal
to the MLO plane intersecting with the inframammary fold and its counter-
part at the top of the DBT MLO scan. Both points are detected in the image
slice aligning with the MLO plane and going through the nipple of the 3D
MLO scan by analyzing the surface contour for curvature characteristics. In
the uncompressed breast shapes these points have been manually annotated.

• The rotation axis for surface re-sampling is the axis orthogonal to the MLO
plane intersecting with the nipple’s projection onto the chest plane.

• Further surface points within the MLO plane through the nipple are equidis-
tantly sampled between the nipple and the inframammary fold and between
the nipple and the top delineation of the breast. Then, intersection contours
between the surface and the planes rotated around the rotation axis defined
before and passing through the re-sampled points in the MLO plane are
extracted. Equidistant re-sampling of these contours yields the remaining
points of the re-sampled surface. This is done the same way for surfaces
originating from DBT scans as well as uncompressed breast surfaces.

Figure 3 (b+c) shows a compressed/uncompressed breast pair where the de-
scribed canonical re-sampling scheme has been applied.

3 Experimental Setting and Results

Nipple detection has been trained and evaluated on 122 annotated training
data sets, i.e., DBT scans. The 8-fold cross-validated mean position error is
5.89±6.56mm, which reflects the annotation uncertainty.

The shape model has been computed from a population of 74 surface breast
shapes. They all have been manually annotated in MR data showing hanging
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breasts as the patients all lay prone at the time of image acquisition. Evalua-
tion of shape prediction has been carried out on 24 breast shape pairs (com-
pressed/uncompressed). For these 24 shapes, DBT images and associate input
shapes as well as ground-truth uncompressed target shapes from MR are avail-
able as the patients underwent both types of examination. However, none of the
MR scans of these 24 patients has been used for shape model generation. For
evaluation of lesion mapping, an expert radiologist has annotated 49 correspond-
ing points inside the breast both in the DBT scan and in the accompanying MR
scan. These expert annotations are used to assess accuracy of lesion mapping.
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Fig. 5. The histogram of localization errors
achieved for lesion mapping

The projection of the orig-
inal breast shapes into the
5-dimensional shape space yields
nice and smooth shapes but also
a mean average surface distance
of already 10.57±4.36mm. Using
fully-automatic nipple detection
and the proposed regression
approach, the mean average
surface distance slightly increases
to 15.80±4.70mm (result from 8-
fold cross-validation). Exemplary
results are depicted in Fig. 4,
which also demonstrates the
desired smoothing behavior of
our method (see Fig. 4(c)). The
evaluation of the final lesion mapping step yields a mean localization error of
22.48±8.67mm (see Figs. 5 and 6). Note, however, that this error also includes
the intentional discrepancy between the smoothed breast surface after shape
space projection and the annotated breast surface in MR. Thus, it cannot
be compared with accuracies obtained by methods that have access to the
exact target shape. Feature extraction takes 26 s on average where 86% of the
time is spent detecting the nipple. Shape prediction takes 36ms. Comparison
of our results to existing methods for lesion mapping is difficult due to the lack of

(a) (b) (c) (d) (e) (f)

Fig. 6. Lesion mapping results. The images show ground-truth annotations (a, c, and
e) and associated locations estimated by our method (b, d, and f). Radiographic images
with courtesy of University Hospital Erlangen.
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competing methods addressing exactly the same problem. In spite of this, van
Schie et al. [5] report position errors for lesion mapping between ipsilateral DBT
scans in a comparable range, which they consider reasonably accurate. Further
improvement is certainly desirable for clinical application of our method.

4 Conclusions

In this paper we have presented a novel method for uncompressed breast shape
prediction from 3D DBT image volumes. As a core contribution, the method does
not involve any explicit biomechanical modeling of deformations, e.g., induced
by gravity or compression. Instead, we make use of data-driven multiple multi-
variate RF regression to immediately predict uncompressed target shapes in
terms of their shape parameters describing them in a statistical shape space.
We apply a TPS mapping to map lesions identified in the input data to the
corresponding location in the predicted uncompressed breast. For that, breast
surface point correspondences have been defined relative to anatomical entities
that are identifiable both in the compressed and in the uncompressed breast.
These entities are fully-automatically detected in the DBT scans. Processing
one data set takes less than half a minute where most of the time is due to
feature extraction. The achieved lesion mapping accuracy is encouraging and
supports further refinement of the proposed data-driven approach.
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