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Abstract: Concrete is one of the most popular materials for building all types of structures, and it
has a wide range of applications in the construction industry. Cement production and use have a
significant environmental impact due to the emission of different gases. The use of fly ash concrete
(FAC) is crucial in eliminating this defect. However, varied features of cementitious composites
exist, and understanding their mechanical characteristics is critical for safety. On the other hand, for
forecasting the mechanical characteristics of concrete, machine learning approaches are extensively
employed algorithms. The goal of this work is to compare ensemble deep neural network models,
i.e., the super learner algorithm, simple averaging, weighted averaging, integrated stacking, as well
as separate stacking ensemble models, and super learner models, in order to develop an accurate
approach for estimating the compressive strength of FAC and reducing the high variance of the
predictive models. Separate stacking with the random forest meta-learner received the most accurate
predictions (97.6%) with the highest coefficient of determination and the lowest mean square error
and variance.

Keywords: compressive strength; fly ash concrete; machine learning; ensemble learner algorithm; cement

1. Introduction

Concrete is one of the most widely used substances in the word [1]. This is owing
to the widespread usage of concrete in the buildings and civil engineering industries [2].
It is composed of a variety of elements such as coarse aggregate, fine aggregate, water,
and binder, among others [3]. Its widespread use as a building material may be seen
worldwide. The mechanical characteristics of concrete must be evaluated to effectively
assess its performance and for use in design methods [4]. The concrete compressive
strength (CCS) is treated as one of the most important parameters in the design and study
of concrete structures. Because computation of the compressive strength of concrete takes a
long time [5], needs a lot of material [6], and requires a lot of effort, artificial intelligence
(AI) methods, as dynamic, applicable, accurate and easy-to-use technologies, have been
successfully used to get around these issues [7]. Apart from these issues, AI methods
have been highlighted as the main and ultimate solutions for problems in science and
engineering [8,9].

Ashrafian et al. [10] used different models, including random forest (RF), M5 rule
model tree, M5 prime model tree, and chi-square automatic interaction detection, for
the mechanical characteristic prediction of roller-compacted concrete pavement. They
concluded that RF outperformed other models. Paji et al. [11] investigated the impact of
fresh and saline water on concrete samples’ compressive strength. To estimate the CCS, two

Buildings 2022, 12, 132. https://doi.org/10.3390/buildings12020132 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12020132
https://doi.org/10.3390/buildings12020132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-0161-4488
https://orcid.org/0000-0001-8171-6403
https://orcid.org/0000-0003-4306-3274
https://doi.org/10.3390/buildings12020132
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12020132?type=check_update&version=2


Buildings 2022, 12, 132 2 of 16

hybrid algorithms, namely neuro-swarm and neuro-imperialism, were presented. Particle
swarm optimization and the imperialist competitive algorithms were employed to adjust
the weights and biases of the neural network in these two hybrid models, resulting in better
prediction accuracy. Naderpour et al. [12] predicted the compressive strength of the recycled
aggregate concrete (RAC) using an artificial neural network (ANN). Shaban et al. [13]
utilized a multi-objective metaheuristic algorithm to create a reliable method for calculation
of the compressive strength of the RAC with pozzolanic materials. Mohammed et al. [14]
assessed the ability of neuro-swarm and neuro-imperialism models for the prediction of
the compressive strength of concrete modified with fly ash. Li et al. [15] adopted a back
propagation (BP)-ANN model to establish a relationship between the cube compressive
strength and the RAC strength. The 30 percent integration rate was indicated as an ideal
incorporation rate after examining all parameters, including mechanical strength and
replacement ratio, in terms of the maximum usage of recycled aggregates. Imam et al. [16]
computed different concrete properties using ANN, which was trained using three different
regularization algorithms, including the scaled conjugate gradient, Levenberg–Marquardt,
and Bayesian regularized algorithms. The best results were obtained using an ANN
tuned with a Bayesian regularization algorithm. Korouzhdeh et al. [17] used the ANN
with biogeography-based optimization to enhance the prediction accuracy of the different
properties of cement mortar exposed to freezing/thawing.

Fly ash has been widely used in the development of fly ash concretes (FACs) in
recent years. This concrete has taken the place of traditional concrete without sacrificing
strength. For new concrete types, such as FAC and high-performance concrete, since
the significant variables are more intricate, and there are even interconnections between
many factors, the simple regression model is no longer applicable and often needs a
detailed nonlinear law [18]. Toufigh and Jafaristudied [19] studied the application of the
Bayesian regression algorithm for the calculation of the compressive strength of fly-ash-
based concrete. They used a dataset of 162 samples, and the coefficient of determination (R2)
of their model was 0.69. Ahmad et al. [20] utilized a decision tree with a bagging technique
with 270 experimental results for the estimation of the compressive strength of fly-ash-based
concrete. Their ensemble model had an R2 value of 0.91. Farooq et al. [21] used the ANN,
support vector machine, and gene expression programming with 300 experimental results
to develop a model for the compressive strength of self-compacting fly-ash-based concrete.
The best predictive model was the ANN with an R2 value of 0.92. The research of Dao
et al. [22] was based on adaptive neuro fuzzy inference (ANFIS). They used ANFIS with a
total number of 210 samples and developed a model for the prediction of the compressive
strength of FAC. Their results showed that the ANFIS model has an R2 value of 0.87. Mai
et al. [23] studied the compressive strength of concrete containing fly ash and blast-furnace
slag using the ANN and 1274 data samples of experiments. They reported the ANN has an
R2 value of 0.94.

On the other hand, deep neural networks are used in various fields, such as damage
detection [24], strength prediction of concrete [25,26], response estimation of concrete
building elements [27], structural reliability analysis [28], among others, since they are
nonlinear approaches that provide more flexibility [29]. One disadvantage of this flexibility
is that they gain knowledge using a stochastic training technique, which implies they
are vulnerable to the training data’s peculiarities and may find a different set of weights
each time they are trained, resulting in different predictions [30]. They also suffer from
the high variance problem [29,31]. This is sometimes known as “high variance neural
networks” [32], and it can be troublesome when seeking to construct a final model to
utilize for making predictions. Training many models instead of just a single model and
combining the outputs from these models is an effective strategy to reduce the variance
of neural network models. This is known as “ensemble learning”, because it can not only
minimize forecast variance but also produces results that are superior to any single model.
In addition, machine learning (ML) models are still essentially black boxes, despite their
ubiquitous use. Explainability is critical in this setting because it is frequently overlooked.
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In order to describe the predictions of ML models, a unified framework known as the
Shapley Additive exPlanations (SHAP) technique was recently established. To the best
of the author’s knowledge, no research has been published on the explainability and
competence of ML algorithms in predicting the compressive strength of FAC.

In light of the above discussion, the present study took advantage of ensemble learners
and ensemble deep neural networks, including super learner, simple averaging, weighted
averaging, integrated stacking, and separate stacking ensemble models, to provide an
accurate model for forecasting the compressive strength of FAC. The SHAP technique was
utilized to explain the best model’s predictions, rank the input features in order of relevance,
and find the most important variables on the prediction of the compressive strength of FAC.
This paper is structured as follows. A brief summary of the experimental database is given
in Section 2. Ensemble learning models are presented in Section 3. Section 4 provides the
predictions obtained with the ensemble learning models. The importance and contribution
of the input variables is given in Section 5. The final section (Section 6) concludes the paper
and discusses the scope for future work.

2. Experimental Database

The collection and preprocessing of the dataset are the first steps in the building
of an ML model. Here, the experimental database of FACs (a total of 270 samples) was
obtained from the University of California, Irvine (UCI) machine learning repository [33].
The UCI machine learning repository is a library of databases, domain theories, and data
providers that the machine learning community uses to test machine learning algorithms
effectively. David Aha and fellow PhD students at UCI launched the archive as an online
repository in 1987. Since then, it has been widely employed as a key source of machine
learning resources by students, instructors, and researchers worldwide. The parameters
of 270 samples include cement, fly ash, water, super plasticizer, coarse aggregate, fine
aggregate, days, and water-to- cement ratio, abbreviated as C, FA, W, SP, CA, FAG, D, and
WC, respectively. Table 1 presents characteristics of the dataset and min, max, and STD
are the minimum, maximum, and standard deviation of variables, respectively. A split of
20–80% of the data were used for the training and testing of models. The data were also
normalized so that all values were within a range of −1 and 1. Figure 1 shows a correlation
matrix of the inputs. The water-to-cement ratio did seem to correlate with the cement. The
cement and fine aggregate also correlated with each other. The cement and fly ash were
also correlated. Days did not seem to significantly correlate with other input parameters.
Fly ash appeared to correlate well with super plasticizer. Moreover, water also negatively
correlated with the super plasticizer.

Table 1. Characteristics of dataset.

C FA W SP CA FAG D WC Strength

Unit kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 - - MPa

Mean 361.4 28.2 184.1 3.7 996.9 775.9 53.3 0.5 36.1

STD 85.5 48.4 19.3 5.9 77.3 79.9 76.1 0.1 15.0

Min 246.8 0.0 140.0 0.0 801.0 594.0 1.0 0.3 6.3

Max 540.0 142.0 228.0 28.2 1125.0 899.8 365.0 0.7 80.0
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Figure 1. Correlation matrix.

3. Ensemble Model

In the current study, the compressive strength of FAC was predicted using ensemble
neural network (ENN) models and the super learner approach. Deep neural networks are
employed as base/basic models (sub-models) in ENN models, including simple averaging,
weighted averaging, integrated stacking, and separate stacking ensemble models. However,
bagging and boosting methods are utilized as sub-models in super learner ensembles.
Models and their components are described in detail in the following sections.

3.1. Sub-Models

There are several hidden layers in a deep neural network (DDN). The term “deep”
alludes to the more complex structure (layers and nodes), which raises the weights and
bias parameters significantly, resulting in a more logical aspect mapping from the input
parameters to the output. DDNs are utilized as basic learners in the ENN models. Six
DDNs are used as the basic learners in this case. Using a trial-and-error approach and
the GridSearchCV methodology, the number of basic learners and their attributes are
determined. “Tanh” and “Adam” are also the activation functions and optimizer for all
DDNs, respectively. Other attributes of the basic learners are listed in Table 2. These
sub-models (basic models) are used to generate the basic averaging, weighted averaging,
integrated stacking, and separate stacking ensemble models. As an example, Table 3
presents the results of the various activation functions and optimizers for sub-model 6.
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Table 2. Characteristics of the basic models.

Sub-Models 1 2 3 4 5 6

R2 (training set) 0.94 0.95 0.97 0.97 0.98 0.98

Number of neurons

Layer 1 25 15 10 15 15 15

Drop rate 0.01 0.02 0.01 0.01 0.01 0.01

Layer 2 25 35 25 20 20 20

Drop rate - - - - - -

Layer 3 - 15 30 20 30 40

Drop rate - - 0.01 0.01 0.01 0.01

Layer 4 - - 15 20 35 30

Drop rate - - - 0.02 0.02 0.02

Layer 5 - - - 15 35 30

Layer 6 - - - - 20 20

Layer 7 - - - - - 15

Table 3. Results of the various activation functions and optimizers for sub-model 6.

Activation Fun. Optimizers R2 Activation Fun. Optimizers R2

relu SGD 0.759 sigmoid SGD 0.849

relu RMSprop 0.802 sigmoid RMSprop 0.797

relu Adam 0.763 sigmoid Adam 0.806

relu Adadelta 0.797 sigmoid Adadelta 0.669

relu Adagrad 0.903 sigmoid Adagrad 0.460

relu Adamax 0.797 sigmoid Adamax 0.810

relu Nadam 0.797 sigmoid Nadam 0.805

relu Ftrl 0.797 sigmoid Ftrl 0.310

softplus SGD 0.799 softsign SGD 0.376

softplus RMSprop 0.882 softsign RMSprop 0.630

softplus Adam 0.797 softsign Adam 0.707

softplus Adadelta 0.348 softsign Adadelta 0.489

softplus Adagrad 0.894 softsign Adagrad 0.255

softplus Adamax 0.797 softsign Adamax 0.686

softplus Nadam 0.797 softsign Nadam 0.621

softplus Ftrl 0.292 softsign Ftrl 0.458

selu SGD 0.706 elu SGD 0.493

selu RMSprop 0.602 elu RMSprop 0.676

selu Adam 0.696 elu Adam 0.774

selu Adadelta 0.580 elu Adadelta 0.488

selu Adagrad 0.467 elu Adagrad 0.553

selu Adamax 0.527 elu Adamax 0.780

selu Nadam 0.732 elu Nadam 0.735

selu Ftrl 0.310 elu Ftrl 0.332

tanh SGD 0.533 softmax SGD 0.330

tanh RMSprop 0.626 softmax RMSprop 0.339

tanh Adam 0.981 softmax Adam 0.331

tanh Adadelta 0.331 softmax Adadelta 0.331

tanh Adagrad 0.660 softmax Adagrad 0.331

tanh Adamax 0.738 softmax Adamax 0.331

tanh Nadam 0.744 softmax Nadam 0.331

tanh Ftrl 0.347 softmax Ftrl 0.331



Buildings 2022, 12, 132 6 of 16

3.2. Simple Averaging Ensemble

Averaging is perhaps the most common and basic combining strategy for numerical
outcomes. Because of its flexibility and usefulness, the simple averaging ensemble (SAE) is
one of the most commonly utilized techniques, and it is the first option in many real-world
situations. Simple averaging generates the entire result by directly averaging the outputs
of the sub-models. For the development of the SAE, six DDN base learners (Table 2) are
taken into account. Figure 2 depicts the SAE procedure in diagram form.
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3.3. Weighted Averaging Ensemble

It is easy to recognize how simple averaging can be construed as assigning equal
weight to all sub-models. The weighted averaging ensemble (WEA) generates a composite
output by averaging the result of each basic model with varied weights, which indicates
different levels of significance. Because finding the weights is a computationally challenging
task, optimization algorithms are commonly employed. Differential evolution (DE) is used
in the WEA. DE is a vector-based methodology that resembles trend searching and genetic
algorithms [34], due to its use of crossover and mutation. DE is a self-organizing search
algorithm that does not rely on derivative data. As a result, the strategy is population-
based and derivative-free. The existing population’s directional data are used by DE. Each
individual of the current generation is allowed to breed by mating with other individuals
of the population selected at random. Three additional members are chosen randomly from
the community for each individual. As a result, a parent group of four individuals is created
in order to breed an offspring. DE employs mutation to create a mutated vector linked
to each population group after initialization, and then arithmetic hybridization to create
a target vector in the current generation. The process for producing the changed vector
distinguishes one DE scheme from another. In DE, mutation happens before crossover,
whereas mutation takes place after crossover in genetic algorithms. Furthermore, whereas
mutation is rarely utilized in genetic algorithms, it is used frequently in DE. The WAE-DE
method is depicted in Figure 3 as a conceptual diagram.

3.4. Stacking Ensemble

Stacking ensemble is another ensemble technique that uses a meta learner to merge a
large number of the basic models into a single model to offer a more precise and reliable
final prediction. To put it another way, the basic models’ forecast are then combined by
training a meta learner model based on the various sub-model outputs. When the meta
learner is a neural network, the phrase-integrated stacking ensemble (ISE) is employed;
otherwise, the separate stacking ensemble (SSE) is used. Figure 4 summarizes the stacking
ensemble concept.
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3.4.1. Separate Stacking Ensemble (SSE)

The support vector machine (SVM), AdaBoostRegressor, RandomForestRegressor, Bag-
gingRegressor (BR), and GradientBoostingRegressor are employed to build SSEs with basic
models (Table 2). The support vector machine was first created to classify distinct classes.
A linear/non-linear transformation is employed to turn the data samples (input) into a
higher-dimensional space. After that, the classification is described using a hyperplane.
Because it depends on kernel functions, SVM regression is often viewed as a nonparametric
approach. A kernel facilitates the search for a hyperplane in higher-dimensional space
while lowering the computational cost. The Adaptive Boosting (AdaBoost) Regressor is
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a group of several decision trees, each of which is a weak learner and only slightly better
than random guessing [35]. In order to decrease the error of the prior tree, the AdaBoost
algorithm transmits the gradient of previous trees to succeeding trees. As a result, the next
trees learn at each phase to aid in the establishment of a strong learner. A weighted average
of each tree’s predictions yields the final prediction. Because of its flexibility, AdaBoost is
more robust to outliers and noisy inputs. Bootstrap aggregation is a shortened version of
bagging. It is an ensemble strategy that divides a dataset into m sample sets. Following that,
each of the m samples is individually developed into m different ML models. The results of
all the individual models are then combined into a single outcome via voting or averaging.
RF is a bagging version that incorporates stochastic feature extraction [36]. At each phase
of split selection in the creation of a decision tree, RF selects a subset of characteristics at
random. The usual split selection procedure is then applied within the specified feature
subset. Other methods of boosting are comparable to gradient boosting [37]. Gradient
boosting, unlike AdaBoost, which consists of adding a new learner after raising the weight
of weakly anticipated data, includes training a new model which is based on residual errors
from the previous forecast since it requires the incremental increase or strengthening of
ineffective learners.

3.4.2. Integrated Stacking Ensemble (ISE)

A neural network may be a better option as a meta learner when using deep neural
networks as the basic models. In other words, a neural network is employed as a meta
learner in the ISE method. The basic models can be introduced into a bigger network,
and the meta learner will learn how to optimally mix the sub-models’ outputs. As the
meta learner, a shallow neural network with only one hidden layer and six neurons is
employed. A trial-and-error procedure is used to identify the number of neurons in the
hidden layer. “Tanh” and “Adam” are the activation function and optimizer of the meta
learner, respectively.

3.5. Super Learner (SL)

The SL technique is a type of ensemble method that applies stacked generalization
to k-fold cross-validation, also known as the cross-validation ensemble, in which all base-
models (sub-models) take the identical k-fold divides of the datasets and a meta-model is
fitted to each model’s out-of-fold results. Here, base-models are SVM, AdaBoost, eXtreme
Gradient Boosting (XGB), RF, BR, and ExtraTrees (ET) regressor. XGB employs the boosting
strategy, in which decision trees are produced in a sequential pattern to create a strong
learner. To fit the negative gradient of the preceding loss functions, each learner is joined
to the total strong learner, resulting in a reduction in the overall model’s loss. RF and ET
algorithms constituted a large number of decision trees. RF utilizes bootstrap replicas,
which means it subsamples the inputs with replacement, whereas ET employs the entire
sample. In addition, RF finds the optimum division, whereas ET picks it randomly. The
procedure of the SL technique is shown in Figure 5. After splitting data to training and
test sets, the training set is divided to a k-fold split (usually, k is 10). Then, each of the
base-models is evaluated using the k-fold split and predictions are recorded. Additionally,
each of base-models is trained using the whole training set. In addition, a meta-model is
trained on the k-fold predictions result in SL creation. Then, each base-model is evaluated
on a test dataset and SL uses their perdition as input to make the final prediction.
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3.6. Performance Index

Model accuracy assesses how successfully the predictive model established in this
research matches the input data. In examining model accuracy, the difference between
the predicted and observed values is determined by calculating four metrics. The mean
square error (MSE, Equation (1)), coefficient of variation (COV, Equation (3)), a-20 index
(a-20, Equation (4)), and the correlation coefficient (R2, Equation (2)) were selected to assess
the performance of different ensemble methods.

MSE =
1
n

n

∑
i=1

(yi −
_
y i)

2 (1)

R2 = 1−

n
∑

i=1
(yi −

_
y i)

2

n
∑

i=1
(yi − y)2

(2)

COV =
σ

y
(3)

a-20 =
m20

n
(4)

where n denotes the total number of samples, yi is the observed result,
_
y i is the predicted

result, y is the mean of the total of samples, σ is the results’ standard deviation, and m20
is the number of the value of the observed-to-predicted compressive strength ratio in the
range of 0.8–1.2.
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4. Result and Discussion

One of the most crucial characteristics of the SAE is the range of the number of basic
models. For that reason, the impact of expanding the SAE to include more basic models
should be explored. Using the first and second basic models (sub-models 1 and 2, Table 2),
an SAE model is created and tested, after which another basic model is appended to the
previous set and the model’s performance is re-evaluated. Figure 6 shows R2 vs. the
number of basic models. It can be seen that when the SAE model includes the basic models
1 and 2 to basic models 1–3, the R2 value of the SAE models has a slight decrease. Figure 6
also shows an improvement of the accuracy from 3 to 5 sub-models. It seems the SAE
model with six members converges to 0.965 since there is a marginal change in the R2 value.
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The WAE-DE is the second ensemble model. The DE algorithm is used to calculate
the weight of the sub-models, as previously stated. Table 4 summarizes the findings. The
results reveal that basic model 5 is given higher weight. Weight values for sub-models 4
and 6 are close. For the testing phase, the R2 value of the WAE-DE model is 0.973.

Table 4. Weight of the sub-models.

Sub-Models 1 2 3 4 5 6

Weight 1.11 × 10−8 2.72 × 10−8 9.88 × 10−2 2.42 × 10−1 4.01 × 10−1 2.56 × 10−1

In Table 5, the forecast MSE and R2 values of the model for testing phase are demon-
strated. For the test set, the prediction accuracy with the largest R2 (0.976) and smallest
MSE (0.0041) is obtained using the SSE-RandomForest algorithm among all of the given
models. Meanwhile, the SSE-GradientBoosting model gives the best prediction compared
to the other models, with the result of MSE and R2 being 0.005 and 0.997, respectively, for
the training phase. The results show that although the coefficient of determination for the
SL model is very high in the learning mode, in the test mode, the model has the lowest
coefficient of determination among all models. Except for the SL model, the coefficient of
determination value of other models is very close, and there is a maximum difference of
1.6% between the lowest and highest value of coefficient of determination. However, in
the same case, the difference for MSE reaches 65.8%. Table 6 shows the mean, standard
deviation, COV, and a-20 index of the measured-to-predicted values for all models using
test set. It can be seen that the SSE-RandomForest has the lowest COV and highest a-20
index among all models. However, ranking of the developed prediction models is difficult.
A simple ranking system is utilized to analyze the efficiency of the developed models for
testing datasets using the performance criteria. The total ranking index is utilized to assess
the ensemble models. All models are ranked considering each indicator separately. The
resulting ranking is then added together. Table 7 shows the ranking of the various ensemble
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models. As can be seen in the table, SSE-RandomForest ranks first, SSE-Bagging and ISE
rank second, and WAE ranks third. When it came to estimating the compressive strength of
FAC, both the SSE-RandomForest and SSE-Bagging algorithms performed well, although
SSE-RandomForest outperformed SSE-Bagging in terms of the COV and the a-20 index.

Table 5. Performance evaluation of the models.

Model
Train Test

MSE R2 MSE R2

SAE 0.005 0.966 0.0060 0.965

WAE 0.004 0.976 0.0050 0.973

SL 0.028 0.995 0.1310 0.880

ISE 0.005 0.967 0.0060 0.964

SSE

SVM 0.0043 0.973 0.0068 0.960

AdaBoost 0.0021 0.987 0.0060 0.963

RandomForest 0.0009 0.995 0.0041 0.976

Bagging 0.0010 0.994 0.0049 0.971

GradientBoosting 0.0005 0.997 0.0045 0.972

Table 6. Properties of the measured-to-predicted values for test set.

Model Mean Standard Deviation COV a-20 Index

SAE 1.209 0.977 0.808 0.593

WAE 1.401 3.22 2.30 0.640

SL 3.030 5.672 1.872 0.10

ISE 0.962 0.394 0.409 0.648

SSE

SVM 1.113 0.955 0.858 0.593

AdaBoost 1.704 4.489 2.63 0.537

RandomForest 1.087 0.704 0.648 0.700

Bagging 1.161 0.987 0.850 0.611

GradientBoosting 1.156 1.029 0.891 0.593

Table 7. Final ranking of the various models.

Model
Rank for

Total Rank
R2 MSE COV a-20

SAE 5 5 3 5 18

WAE 2 4 8 3 17

SL 9 9 7 9 34

ISE 6 6 1 2 15

SSE

SVM 8 8 5 6 27

AdaBoost 7 7 9 8 31

RandomForest 1 1 2 1 5

Bagging 4 3 4 4 15

GradientBoosting 3 2 6 7 18

A single- run process may produce a noisy model performance assessment. Different
data divisions can produce quite different findings. Repeated k-fold cross-validation is
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a strategy for better evaluating a machine learning model’s predicted performance. The
cross-validation technique is repeated several times and returns the mean value throughout
all folds from all runs. This average result should be a more accurate representation of the
model’s genuine underlying mean performance on the dataset. Figure 7 shows plots of
R2 vs. repeats for 10-fold cross-validation. The orange line and the green triangle indicate
the median and the arithmetic mean, respectively. The graph illustrates that the average
fluctuates slightly around 0.97. It should be noted that for each input, the model predicts
a value as an output. If the input is not in the data range, this predicted value may be
associated with more error than stated.
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5. SHAP (SHapely Additive exPlanations)

The black-box feature of many ML algorithms, like that of other applications, limits
their usefulness. As a result, ways to describe ML models are required. In particular, there
are two common reasons for describing ML models. One goal is to gain confidence in the
model’s decisions. The other option is to use the model’s insights to guide human data
analysis. Engineers, on the other hand, want to be directed to elements or combinations
of factors that can help them understand and decrease production faults. To meet this
demand, we look at the current and new tool, which is the SHAP method [38,39]. SHAP
helps to understand the effect of each parameter on the prediction using game theory and
Shapley values (Equation (5)).

φi = ∑
S⊆M

|S|!(M− |S|)!
M!

[ν(S ∪ {j})− ν(S)] (5)

where M is the players’ number, ν(S) is the contribution function, |S| is coalition size, and
φi is Shapley value. For a more extensive discussion of the SHAP and the supporting proof,
interested readers should refer to [38,39].

Here, the predictions of the SSE-RandomForest algorithm are explained. Figure 8
shows the feature importance using mean SHAP values in estimating the compressive
strength of FAC. The y-axis presents input parameters (Section 2), and x-axis is mean
Shapley values. D has the highest feature importance in the compressive strength prediction
of FAC. It can be seen that the mean SHAP value of D is approximately twice the value of the
second and third variables (C and W). Interestingly, FAG, SP, and CA have the lowest and
almost same feature importance in the compressive strength prediction. Figure 9 displays
the overall SHAP values. A red dot implies a positive effect, while blue represents a negative
effect. The term “positive effect” refers to a growth in prediction as the variable value is
increased. D and C are prominent parameters with positive influence in the compressive
strength prediction. Furthermore, W and WC have negative impacts on the compressive
strength of FAC. For CA, SP, and FAG, it is hard to discuss their positive/negative effect
since the dots are mixed.
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6. Sensitivity Analysis

The sensitivity Analysis Library (SALib) [40] in Python is used to investigate how
the uncertainty in a model’s outcome can be allocated to various sources of uncertainty in
its variables [41]. A bar graph of the indices is illustrated in Figures 10 and 11. Figure 10
indicates that D, C, W, and WC are the dominant parameters that contribute to the com-
pressive strength of FAC. It is interesting to note that SP and CA appear to have the same
influence on the compressive strength of FAC. Figure 11 shows the first-order indices.
Higher-order interactions are likely to occur if the total-order indices are significantly
greater than the first-order indices. As an example, the sensitivity of the FAG and W is
significantly increased by higher-order interactions between multiple variables.
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7. Future Studies

The SSE-RandomForest algorithm can be used to predict the compressive strength of
FAC without using too many experimental works. This study does, however, have some
limitations that should be explored and addressed in future studies. Other ML algorithms
should be employed to compare their accuracy in predicting outcomes. It is also suggested
that the results of the durability issue for FAC be factored into the models’ execution.
To compare the outcomes of different methods, it is also proposed that the use of ML
algorithms be examined for FACs cured with different kinds of curing methods, such as
heat curing, lime curing, and steam curing, among others. Furthermore, the dataset’s range
is slightly limited. Hence, experiments, field testing, and other numerical studies using
various methodologies should be used in future study to enhance data points. Despite
several limitations, the findings of this study show that the method has a lot of potential
in forecasting the performance of FACs. It could be a valuable tool for designing the mix
proportion of FACs.

8. Conclusions

FACs replace standard Portland cement with industrial or agricultural by-product
ashes as the principal binder; as a result, FAC is an eco-efficient and ecologically benefi-
cial construction product. Compressive strength (CS) is the most significant mechanical
attribute for all types of concrete. However, in the realm of design/construction, the CS
of concrete at 28 days is critical. As a result, in order to save time, energy, and money, an
authoritative model for forecasting the CS of the concrete is required. The objective of this
study was to explore how ensemble learner (i.e., ML) techniques may be implemented to
estimate the CS of FAC. Super learner, simple averaging, weighted averaging, integrated
stacking, and separate stacking ensemble models were employed to predict the CS of FAC.
The following are some of the inferences that can be drawn:

• The separate stacking ensemble with the random forest algorithm was more accurate
in the prediction of the CS than the other approaches, as evidenced by a higher linear
R2 and lower mean square error.

• Other statistical indicators, including the coefficient of variation and a-20 index, have
also demonstrated that a separate stacking ensemble with Bagging and integrated
stacking ensemble algorithms work satisfactorily.

• Days, cement, and water contributed most to the estimation of the outcomes according
to an interpretation analysis of the model’s input parameters using the SHAP method,
whereas the other input variables contributed less.

• According to sensitivity results, days and cement contributed significantly, while
water and water-to-cement ratio were the next highest contributors for the prediction
of the output.



Buildings 2022, 12, 132 15 of 16

Author Contributions: Conceptualization, M.S.B., D.J.A., A.S.M. and D.V.U.; methodology, M.S.B.,
D.J.A., A.S.M. and D.V.U.; software, M.S.B.; validation, M.S.B.; formal analysis, M.S.B. and D.J.A.;
writing—original draft preparation, M.S.B., D.J.A., A.S.M. and D.V.U.; writing—review and editing,
M.S.B., D.J.A., A.S.M. and D.V.U.; visualization, M.S.B.; supervision, D.J.A., A.S.M. and D.V.U. All
authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by Act 211 Government of the Russian Federation, contract
No. 02.A03.21.0011.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Possan, E.; Thomaz, W.A.; Aleandri, G.A.; Felix, E.F.; dos Santos, A.C. CO2 uptake potential due to concrete carbonation: A case

study. Case Stud. Constr. Mater. 2017, 6, 147–161.
2. Barkhordari, M.S.; Tehranizadeh, M.; Scott, M.H. Numerical modelling strategy for predicting the response of reinforced concrete

walls using Timoshenko theory. Mag. Concr. Res. 2021, 73, 988–1010. [CrossRef]
3. Venkateswarlu, K.; Deo, S.; Murmu, M. Effect of Super absorbent polymer on workability, strength and durability of Self

consolidating concrete. Int. J. Eng. 2021, 34, 1118–1123.
4. Joel, S. Compressive strength of concrete using fly ash and rice husk ash: A review. Civ. Eng. J. 2020, 6, 1400–1410.
5. Biswas, R.; Bardhan, A.; Samui, P.; Rai, B.; Nayak, S.; Armaghani, D.J. Efficient soft computing techniques for the prediction of

compressive strength of geopolymer concrete. Comput. Concr. 2021, 28, 221–232.
6. Ahmad, A.; Chaiyasarn, K.; Farooq, F.; Ahmad, W.; Suparp, S.; Aslam, F. Compressive strength prediction via gene expression

programming (GEP) and artificial neural network (ANN) for concrete containing RCA. Buildings 2021, 11, 324. [CrossRef]
7. Armaghani, D.J.; Asteris, P.G. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar

materials compressive strength. Neural Comput. Appl. 2021, 33, 4501–4532. [CrossRef]
8. Armaghani, D.J.; Harandizadeh, H.; Momeni, E.; Maizir, H.; Zhou, J. An optimized system of GMDH-ANFIS predictive model by

ICA for estimating pile bearing capacity. Artif. Intell. Rev. 2021, 54, 1–38. [CrossRef]
9. Armaghani, D.J.; Asteris, P.G.; Fatemi, S.A.; Hasanipanah, M.; Tarinejad, R.; Rashid, A.S.A.; Huynh, V.V. On the use of neuro-

swarm system to forecast the pile settlement. Appl. Sci. 2020, 10, 1904. [CrossRef]
10. Ashrafian, A.; Taheri Amiri, M.J.; Masoumi, P.; Asadi-shiadeh, M.; Yaghoubi-chenari, M.; Mosavi, A.; Nabipour, N. Classification-

based regression models for prediction of the mechanical properties of roller-compacted concrete pavement. Appl. Sci. 2020,
10, 3707. [CrossRef]

11. Paji, M.K.; Gordan, B.; Biklaryan, M.; Armaghani, D.J.; Zhou, J.; Jamshidi, M. Neuro-swarm and Neuro-imperialism Techniques
to Investigate the Compressive Strength of Concrete Constructed by Freshwater and Magnetic Salty Water. Measurement 2021,
182, 109720. [CrossRef]

12. Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial
neural networks. J. Build. Eng. 2018, 16, 213–219. [CrossRef]

13. Shaban, W.M.; Elbaz, K.; Yang, J.; Shen, S.-L. A multi-objective optimization algorithm for forecasting the compressive strength of
RAC with pozzolanic materials. J. Clean. Prod. 2021, 327, 129355. [CrossRef]

14. Mohammed, A.; Kurda, R.; Armaghani, D.J.; Hasanipanah, M. Prediction of compressive strength of concrete modified with fly
ash: Applications of neuro-swarm and neuro-imperialism models. Comput. Concr. 2021, 27, 489–512.

15. Li, T.; Xiao, J.; Singh, A. Strength index analysis of concrete with large size recycled aggregate based on back propagation neural
network. Adv. Struct. Eng. 2021, 25, 133–145. [CrossRef]

16. Imam, A.; Salami, B.A.; Oyehan, T.A. Predicting the compressive strength of a quaternary blend concrete using Bayesian
regularized neural network. J. Struct. Integr. Maint. 2021, 6, 237–246. [CrossRef]

17. Korouzhdeh, T.; Eskandari-Naddaf, H.; Kazemi, R. Hybrid artificial neural network with biogeography-based optimization to
assess the role of cement fineness on ecological footprint and mechanical properties of cement mortar expose to freezing/thawing.
Constr. Build. Mater. 2021, 304, 124589. [CrossRef]

18. Shi-qin, H.; Hai-chao, W. Orthogonal experimental studies on mix design of high performance concrete. Ind. Constr. 2003, 33,
8–10.

19. Toufigh, V.; Jafari, A. Developing a comprehensive prediction model for compressive strength of fly ash-based geopolymer
concrete (FAGC). Constr. Build. Mater. 2021, 277, 122241. [CrossRef]

20. Ahmad, A.; Farooq, F.; Niewiadomski, P.; Ostrowski, K.; Akbar, A.; Aslam, F.; Alyousef, R. Prediction of compressive strength of
fly ash based concrete using individual and ensemble algorithm. Materials 2021, 14, 794. [CrossRef]

http://doi.org/10.1680/jmacr.19.00542
http://doi.org/10.3390/buildings11080324
http://doi.org/10.1007/s00521-020-05244-4
http://doi.org/10.1007/s10462-021-10065-5
http://doi.org/10.3390/app10061904
http://doi.org/10.3390/app10113707
http://doi.org/10.1016/j.measurement.2021.109720
http://doi.org/10.1016/j.jobe.2018.01.007
http://doi.org/10.1016/j.jclepro.2021.129355
http://doi.org/10.1177/13694332211046348
http://doi.org/10.1080/24705314.2021.1892572
http://doi.org/10.1016/j.conbuildmat.2021.124589
http://doi.org/10.1016/j.conbuildmat.2021.122241
http://doi.org/10.3390/ma14040794


Buildings 2022, 12, 132 16 of 16

21. Farooq, F.; Czarnecki, S.; Niewiadomski, P.; Aslam, F.; Alabduljabbar, H.; Ostrowski, K.A.; Śliwa-Wieczorek, K.; Nowobilski, T.;
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