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Abstract—Optimization-based control strategies are an af-
firmed research topic in the area of electric motors drives. These
methods typically rely on an accurate parametric representation
of the motor equations. In this paper, we present the transition
from model-based towards data-driven optimal control strategies.
We start from the model predictive control paradigm which uses
the voltage balance model of the motor. Second, we discuss the
prediction error method, where a state-space model is identified
from data, without a parametrization. Moving toward data-
driven controls, we present the Subspace Predictive Control,
where a reduced model is constructed based on the singular value
decomposition of raw data. The final step is represented by a
complete data-driven approach, named data-enabled predictive
control, in which raw data is not encoded into a model but
directly used in the controller. The theory behind these techniques
is reviewed and applied for the first time to the design of
the current controller of synchronous permanent magnet motor
drives. Design guidelines are provided to practitioners for the
proposed application and a way to address offset-free tracking
is discussed. Experimental results demonstrate the feasibility of
the real-time implementation and provide comparisons between
model-based and data-driven controls.

Index Terms—Data driven control, model predictive control
(MPC), permanent magnet synchronous motor (PMSM), pre-
diction error method (PEM), subspace predictive control (SPC),
data-enabled predictive control (DeePC)

I. INTRODUCTION

The interest in data analysis is constantly growing, supported
by an unprecedented availability of computational power and
memory storage, as well as advances in optimization, statistics
and machine learning. This leads to an increasing attention
towards data-enabled methods in all branches of science and
engineering. This revolution has a significant impact on the
control engineering too. Data-driven control design consists in
synthesizing a controller using the data collected on the real
system, without defining and identifying a parametric model for
the plant [1]. This is in contrast with model-based approaches,
which rely on plant modeling and identification procedures.
The epitome of this model-based paradigm is arguably the
model predictive control (MPC), which has been applied to
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power electronics control tasks for two decades, reaching an
industrial and commercial level [2].

Continuous control set (CCS) MPC methods for PMSM
current control, which is the focus of this paper, rely on a state-
space model of the motor to build the predictive controller [3]—
[5]. The model is commissioned by performing an experimental
characterization of specific parameters. These procedures often
include many different tests and they require specific measuring
devices and proper test-bed setups. Then, the resulting accurate
model can be exploited in real-time by means of look-up-tables.
Alternatively, parameters could be estimated via offline [6]
or online [7] procedures. Self-commissioning and auto tuning
techniques are also consolidated strategies. In [8], an exhaustive
survey of research and state-of-art parameter identification and
self-commissioning methods for AC motor drives is discussed.
In particular, these approaches are of interest when high
performance control is required with sensorless applications.
Finally, many methods have been proposed in literature to
improve the robustness against parameter variations [9]-[13],
although most of these strategies are implemented for finite-set
MPCs.

The key idea behind data-driven predictive controllers is
to avoid the model identification stage entirely, and design
the controller directly from collected input/output (I/O) data,
e.g. voltage/current samples. This approach overcomes the
challenges of model selection and identification, resulting of par-
ticular interest for many industrial applications [14]. However,
there are just a few examples of data-driven control applications
for electric motor drives. In [15], an observer is coupled to
an MPC to update the PMSM model, improving its reliability.
However, this approach still relies on a parametric model.
A controller design procedure was proposed by Wallscheid
et al. in [16], based on deep reinforcement learning. The
solution guarantees the benefits of an optimal controller, without
requiring expensive computations. Many effective techniques
have been presented which go toward the data-driven paradigm,
named model-free [17]-[19] or parameter-free [20] algorithms.
In particular, [17] and [18] propose to online update a parameter-
free model, but they rely on the hypothesis that there are no
data available for guessing an initial controller, which might
be too restrictive.

In this work we show a transition from model-based to
data-driven control design, considering as application the
current control of PMSMs. This control task serves as a well-
understood benchmark for new methods, despite the fact that



other traditional non-data-driven methods yield satisfactory
results for this application. We consider optimization-based
control scheme, i.e. MPC-type solutions. We first present a
state-of-the-art CCS-MPC, whose model is obtained through a
previous characterization of the motor parameters. Then, we
move step by step towards more data-driven control designs,
exploiting just voltage and current measurements collected from
the motor. First, the prediction error method (PEM) technique
coupled with MPC is presented, which is a consolidate solution
for identifying a state-space model from data [21]. A further
step is represented by the subspace predictive control (SPC)
[22], where the collected data are processed offline by means of
a least-square program, and the resulting auto-regressive model
with exogeneous inputs (ARX) is de-noised by singular value
thresholding. This pseudo-identification procedure is used to
build a linear predictor for the currents dynamics. Finally, a
completely data-driven control algorithm is presented, named
the data-enabled predictive control (DeePC) [23], [24], where
the system identification process is completely avoided and the
collected data are directly used in the controller. This technique
has already found application in power electronics [25]-[27].
The contributions of this work are manifold:

« we illustrate the perspective of data-driven control design
using a predictive control framework;

« we demonstrate the practical real-time implementation
of data-driven methods, which is not trivial since data-
driven methods are expensive in terms of computation
and samples;

« we show that data-driven paradigm can be a systematic
design tool for PMSM current controllers;

o we compare the computational aspects of the presented
control strategies;

« as a technical contribution, we address the problem of the
offset-free tracking for the SPC and DeePC methods;

o we provide guidelines for the choice of the control
parameters and excitation input signals for this application.

A relevant advantage of data-driven strategies is that they
can be easily implemented as automatic procedures that excite
the system with predefined input signals, perform offline
calculations, and deliver a ready-to-use control law. No special
skills or specialized commissioning personnel are required
to set up the procedure. This approach could be interesting
for some industrial challenges. For example, in compressor
for refrigeration equipment or submersible pumps, offline
characterizations cannot be performed when PMSMs are
inaccessible. Another case of interest is multi-purpose drives,
where algorithms suitable for different PMSM topologies are
needed. In addition, PMSM and inverter manufacturers are
often different companies and they were never meant to be
integrated in the same application. Moreover, if the motor drive
needs to be manually re-tuned during its life-cycle, data-driven
procedures represent a simple and reliable method to adapt the
initial design.

The goal of this paper is not to demonstrate the superiority
of the data-driven paradigm over the model-based approach.
Instead, this work provides some concrete, although prelimi-
nary, answer to the contemporary question how data-driven

techniques can impact the electric drives field. Differently
from other machine-learning based solution that can be found
in literature, the proposed schemes are more computationally
efficient, less data hungry and more suitable to rigorous stability
and robustness analysis [28].

II. MODEL-BASED MPC OF PMSM CURRENTS

According to the MPC paradigm, the future control input
sequence u = [u(k),u(k+1),...u(k+ N —1)]T is optimized
in order to steer the predicted future output y = [y(k+1),y(k+
2),...y(k+ N)]T to a desired reference r = [r(k + 1), 7(k +
2),...7(k+ N)]T. Only the first optimal input of the sequence
u(k) is applied to the plant (receding horizon principle). Thus,
the following optimization problem is solved at each control
period:

. T 2
min (Jly = rlg + lul) (1)
subject to  z(k + 1) = Az(k) + Bu(k), y = Cz, (1b)
uk) €U, k=0,...,N—1 (Ic)

where N is the prediction horizon, Q > 0 and R > 0 are
two weighting matrices, A and B represent the state space
model used to predict the output y = Cx, and U is the
input feasible set. Considering the specific application, I/ is
a polytope [29]. If the set U/ is neglected, the problem is
referred to unconstrained, and it has a closed-from solution of
reduced computational burden. On the opposite, if the polytopic
constraints are included, the optimization problem becomes a
quadratic program (QP) which requires an online QP solver
like gpOASES, as in [30], but it is still usually solvable in
real-time.

In the context of PMSM currents control, future currents
are estimated by exploiting a parametric model, based on
the PMSM voltage balance equations, represented in the dg
reference frame, synchronous with the rotor flux. The equations
are arranged in a state-space form and discretized using the
explicit Euler approximation technique:

idq(k + 1) = A’qu(k}) + Budq(k:) + Bh(k)

T, L T.
1 - Rsi‘ weJTi = 0 (2)
A= I Ld Ld T B= Ld T ’
d s |7 s
—we—1Ty 1— Ry— 0 —
eLq s qu Lq

where R is the stator winding resistance, T is the sampling
period, w, is the electric angular speed and Ly and Lq are
the d and g-axis inductances, respectively. Moreover, iqq and
udq are the dq currents and voltages, respectively. uqq are the
inputs of the system whereas iqq are the states. Finally, h =
[0 — weApm]T is the back-electro motive force (back-EMF) due
to the permanent magnet flux linkage App. In the considered
application, the full state, i.e. motor currents, is measurable.
This model neglects the cross-saturation phenomena, as well
as iron-saturation and back-EMF harmonics effects. Thus, the
model can result as oversimplified for some PMSM topologies,
such as pure reluctance motors. However, many CCS-MPCs
proposed in literature work with even more simplified models,
obtaining indeed good results. In particular, the dependence of



matrix A on the operating speed w. is neglected, preferring
a constant A matrix for the real-time implementation [29].
We will see later that the data-driven paradigm overcomes
the problem of selecting a model structure. Moreover, it is
worth noticing that the Euler discretization does not introduce
significant errors because of the high sampling rates, which
are typical of the power electronics area.

An integral action is included in the MPC formulation by
means of the velocity form of the MPC problem (1) [31], in
order to achieve an unbiased current reference tracking. The
discussion about the offset-free data-driven control is given in
Sec. III-C.

III. TOWARDS DATA-DRIVEN CONTROL OF PMSM DRIVES

A data-driven controller for PMSM solves essentially a
current reference tracking problem analogous to the one
presented in (1). However, in contrast to the parametric model
(2) used in the MPC solution, a non-parametric model is
adopted, consisting of raw measurements arranged in a matrix
representation. The construction of this model happens offline,
therefore it is not an adaptive controller. A data-driven controller
design procedure consists of two steps:

e A data collection step, followed by offline rearrangement

of the voltages/currents samples into proper matrices;

o An online program, when the tracking problem is solved,
with the voltages/currents samples matrices acting as a
constraint. In this online step, the controller has access to
the latest I/O (voltage/current) samples and optimizes the
predictions over an horizon of N steps.

A. Data Collection and Offline Computations

All the considered data-driven designs begin from the
collection of a T-long sequence of I/O voltages u° and currents
1 measurements (Fig. 1(a)), where the superscript ¢ stands
for collected. The sequence u® = [u§;u$;...;us] € R
contains the inverter reference voltages and it fulfills the
persistency of excitation requirement [32, Corollary 2], that is
the Hankel matrix of inputs in (4) needs to have full raw rank.
The selection of the input signal is further discussed in Sec.
IV-A. The resulting output sequence contains the dg currents
e = [y5; 055 € R

PEM-MPC — In the PEM-MPC method the state-space
model (1b) is used, similarly to a standard MPC approach.
However, the coefficients of the state-space matrices A and B
used in (1b) are inferred from data by means of an ordinary
least-square problem' that involves the sequence u,. and ¥,:

min
A,B

)

T-1
k=1

The main difference between the resulting model and the
parametric voltage balance equation (2) is that the latter
inherently requires the ad-hoc identification procedures to
identify all the electric parameters ([%, L4, Lq, Apm). The
PEM method, instead, does not enforce any parametrization
of the model and the resulting matrices can, in general, have a
structure that is different from the one of (2).

'We refer to [25] for a discussion on how to solve this problem numerically.
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(b) Block scheme of the online controller.

Fig. 1: Overview of the data collection step and the online program.

SPC — In the SPC algorithm, the state-space model (1b)
is replaced by a different algebraic constraint that relates the
future currents trajectory with the past Tj,; voltages/currents
samples and the future NV input voltage samples.

To obtain this model, two Hankel matrices .7 (u°) and
2 (y°) are built using the collected sequences u and y°:

uy 2]
U2 us

UT —Tyi—N+1
UT—Thi—N+2

H(u°) == 4)

UTwi+N  UTy+N+1 ur

The number of columns of a Hankel matrix is hereinafter
denoted as L. Given T data and the horizon lengths N and
Tini, L can be computed as: L = T — Tj; — N + 1. The
output matrix 7 (y°) is built in an analogous way from the
samples y°. Then, the matrices are partitioned in Past and
Future sub-blocks:

| = (30| = e

where Up contains the first Tj,; block rows of 52 (u¢), i.e. 2T}y
rows, and Up the remaining N block rows. The block Hankel
matrices Yp and Y are similarly obtained. The dimensions
of all the presented matrices are summarized in Table I for
convenience. The I/O block Hankel matrices Up, Ugr, Yp and
Y are used in the SPC design to construct an ARX predictor

[33]:
y =Py <Uini> + Pyu,

(&)

(6)

mi

where Uini, Yini € R2Twi gre the past dg voltage and current
samples, respectively, u,y € R?Y are the future ones. The



TABLE I: Overview of matrices dimensions for the considered PMSM current control application.

Matrix %(u‘) .%o(yc) Up Yp Up Yr Pw Py M [} A B
rows 2(Tni +N)  2(Twmi+N) 20, 2T 2N 2N 2N 2N L L 2 2
columns L L L L L L ATy 2T 4T 2N 2 2

matrices P,, and P, are computed solving the least-square
problem
2

Up
min ||[Yp— [Pw | Pu]| Yp , @)
Puw,Py Ur
where P,, multiplies the two blocks gp and P, multiplies
P

the block Ug. The matrix P,, is exploited in (6) to set the
initial condition of the prediction, i.e. to compute the term
P (Uini, ¥ini)T. A singular value decomposition (SVD) of the
initial trajectory predictor P,, can be performed to mitigate
the noise effect in the data [22]. Only the dominant singular
values are used to construct a reduced-rank matrix.

DeePC — The design of a DeePC controller is purely data-
driven, as the data block Hankel matrices defined in (5) are
used in their raw form in the controller. This method is based on
the so called Fundamental Lemma of behavioral system theory
[32], which guarantees that (under persistency-of-excitation
assumptions on u®) any trajectory of the system needs to satisfy,
for a unique g € R”, the linear equations

Up Uini
Yp ini
urla= % ®)
Yr Y

Implicitly, (8) serves as a predictor of the future N-long I/O
voltages/currents trajectory (u, y) based on Tjp;-long I/O initial
trajectory (Uini, ¥Yini)- If we consider (u, y) as free optimization
variables, the vector g that satisfies the first two block-equations
of (8) can be expressed explicitly as

) [
1\ Ye] | Y
where {1 denotes the Moore-Penrose pseudo-inverse operator,
and ®, such that [Up, Yp]T\® = 0, represents a basis of the
kernel of M. Both ® and M can be computed offline using
standard linear algebra routines. This decomposition allows
expressing the future trajectory as a function of the lower-
dimensional variable z, and turns out to be useful in the online
phase of the unconstrained control problem, as explained in
the next subsection.

+®2=M [“} + @z, 9)

n1

B. Computational Aspects of the Online Stage

In the online stage, the MPC tracking problem (1) is solved,
but with different representations in place of (1b) depending
on the adopted data-driven method. Both the unconstrained
and constrained solutions are now discussed for each data-
driven method, clarifying the practicality of their real-time
implementation from the computational burden point of view.
A complete overview of the data-driven design procedures is
provided in Fig. 2, where the differences between the presented
methods are highlighted both for the offline and online stage.

PEM-MPC — PEM-MPC algorithm is completely analo-
gous to a standard model-based MPC, from the point of view of
the online program. It is worth remembering that two possible
online controllers can be obtained, depending on the presence or
not of the constraints (1c). If the problem is unconstrained ((1c)
is absent), the PEM-MPC yields a linear feedback controller
[5] of the form u = K"r + K*z(k). On the other hand, the
QP problem requires an iterative solver as in [30], if input
constraints are included. In both situations, the complexity of
the PEM-MPC is the same of a standard model-based MPC,
which is amenable for real-time implementation on adequate
hardware. The dimension of the decision variable coincides
with the dimension of u € R2V | thus it scales linearly with
the prediction horizon. In the considered application, the full
state of the system is available, but in general the PEM-MPC
requires a state estimator. The other two data-driven methods,
SPC and DeePC, do not require a state estimator, since they
naturally work with the plant outputs.

SPC — The SPC algorithm solves the same tracking problem
(1) as in MPC or PEM-MPC, but with the state-space model
(1b) replaced by the predictor (6):

min - |ly = rllg + llullk (10a)
subject to y =P, [u} +P,u (10b)
u(k) €U, k=0,...,N —1. (10c)

Similarly to the PEM-MPC, if the constraints (10c) are not
present, then we can solve the problem in closed-form by
substituting the predictor equation (10b) into (10a) and by
setting the gradient of the resulting convex quadratic cost to
zero. The resulting online controller is a linear feedback of
the form u = K" r + Kini [tini, Yini] . If the constraints (10c)
are present, the minimization program can be solved online,
at the same computational complexity of the PEM-MPC one.
In fact, the computational burden depends on the length of w.
We remind that this property does not hold for those systems
whose states and outputs have different dimensions.

DeePC — The DeePC algorithm, because of the implicit
form of the algebraic constraint, requires the minimization over
the decision variables g, u, y:

min |y —7l[g + |lulfz + A1/ (11a)
Up Uini
Yrp| | Yni B

S.t. Upl 9= | u ,u(k) e, k=0,..,N —1, (11b)
Yr Yy

where )\, adds a regularization on the decision variable g.
In fact, if noisy data are used, the Hankel matrices are full
raw rank, but the realized control error in (1la) could be



different from the predicted one. Thus, the term A,||g||? helps
to robustify the control problem [34, Section III.C]. In the
unconstrained case, the problem can be solved directly using the
null-space representation presented in (9). The future currents
and voltages sequences u and y are replaced in (11a) with
Urg and Y g, respectively, obtaining

. Uini Uini
min 104 [ 1] +-02) — 1+ [Up 00 [19] + @) 7
(12)
The solution of the problem is available in closed form as
2Pt = 14T where the Hessian matrix H and the linear term
d are defined as:

H:=3"YLQYr® + @ ULRUR®

d:= (r —YsM {Z] )TQ<1> - (UFM {Z} )TR<I>. (13)

The Hessian inversion can be evaluated offline with proper
numerical techniques, further reducing the complexity of the
scheme. More details on the closed-form solution of the
unconstrained DeePC can be found in [25]. Starting from
the optimal value of 2°%, (9) is used to compute ¢°P, and,
finally, the sequence of optimal input u°. It is still possible to
condense this controller in a feedback law similar to the SPC,
with a decision variable that scales linearly with the prediction
horizon length. The constrained solution of (12) would instead
require an online QP-solver. However, the dimension of the
decision variable g can be large, as it depends on the number
of samples used in (8). Thus, the real-time implementation of
the DeePC algorithm is still a challenging problem.

In conclusion, three main aspects differentiate the SPC
and DeePC methods [34]: the way the predictor is built, the
underlying prediction model and the variables over which the
QP problem is solved. In fact, the SPC forces a least-square
fit to a linear time invariant (LTI) system model, whereas the
DeePC does not. Thus, SPC is more suited for LTI systems
or linear parameter varying ones. On the other hand, DeePC
exhibits interesting features also when applied to non-linear
system, even if the fundamental lemma requires in theory a
linear time invariant plant, e.g. the grid connected inverter
application shown in [25]. Finally, SPC solves the tracking
problem in the input u, whereas the DeePC in g.

C. Integral Action

An integral action is needed to avoid bias errors in the
currents reference tracking for the SPC and DeePC algorithms.
For instance, the back-EMF induced by the magnets acts as a
constant disturbance in the voltage equation, inducing a steady-
state error in reference tracking. Following this principle, we
introduce this framework also for data-driven controllers. The
integral action can be included by formulating the optimization
problem in its velocity-form [31]. The idea is to perform the
data collection stage filling the matrices with incremental data,

Select T'
Apply the voltages u€, collect the resulting currents y©
NG
Build Hankel matrices H(u®) and H(y®)

} HEE)HE)
Split the blocks Up, Ur, Yp and Yr  Select Tip;, N
Control selection
|
v v v
PEM-MPC
Identify A,B Compute Py, Py, Compute M, ®
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. (ONANIYE 5ot yp problem (1a
i = + (1c) Select Q, R
w= K"+ K[y, g o P P (1a) + (Ic) Q
u Equality constr.

Project w in U
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|
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J
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Fig. 2: Overview of the three proposed data-driven controller design
procedures.
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Fig. 3: Offset-free tracking error: simulation of DeePC algorithm
with no integral action (before ¢ = 1s) and with the offset-free
implementation after ¢t = 1s.

e.g. Ay =y(k) —y(k — 1). For instance, the DeePC problem
in (11) is written as follows:

1Ay —'|Ig + [[Aul[g + Agllg]|*

min
g,Au,Ay
U;D Atini
. Yp o Ayim
Sllb]eCt to U/F g = Au (14)
Y Ay

wk) =u(k—1)+Au(k) €U, k=0,1..,N —1
r(k) =r(k) —y(k), k=1,..,N.
[UpY'pU%Y’%]T are the Hankel matrices filled with incremental

data. The optimization problem (14) is solved for g, then Au(k)
is found.
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Fig. 4: Test-bed layout.
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TABLE II: Overview of the drive parameters.

Parameter Symbol Value
Pole pairs p 3
Phase resistance R 1Q
d-axis inductance Lyq 0.010H
g-axis inductance Lq 0.014H
PM flux-linkage Apm 0.26 Vs
Nominal current In 6.2 Arms
Nominal d current INg —-1.1A
Nominal g current Ing 8.7TA
Nominal speed On 1000 1/min
DC bus voltage Upc 300V
Sampling period Ts 100 ps

The effectiveness of the proposed solution is shown in Fig. 3.
The nominal current reference has been set and steady state
is reached, while the motor is kept at nominal speed. Before
time ¢ = 1s, the standard data-driven formulation is considered
as controller. As can be seen, a bias appears in the tracking.
At time t = 1s, the controller designed with incremental data
is selected and the bias is removed.

IV. EXPERIMENTAL VALIDATION

The authors propose the experimental validation on an
interior permanent magnet motor. The nominal parameters
of the considered machine are reported in Table II, while
the test-bench layout is shown in Fig. 4. All the algorithms,
i.e. the MPC, PEM-MPC, SPC and DeePC, are real-time
implemented on the dSPACE MicroLabBox at a sample rate
of T, = 100 ps. The MPC nominal model is commissioned
by means of standard tests and offline post-processing. The
motor under test is not significantly affected by the magnetic
non-linearity.

A. Data Acquisition Step

The test designed to collect I/O data from the interior
permanent magnet (IPM) motor consists of excitation with a
random (detailed below) dg voltage vectors sequence u and the
measurement of the dq currents via LEM sensors. Thanks to this

L HE maxdly“lD
%

15 30 45 60 75 90
Excitation voltage (V)

(a) Output currents during the excitation tests for different uexc values:
mean and maximum output currents values.

—_

(=)

SV magnitude (log 10)

3 i . . .
1 2 3 4

Singular Value (SV)

(b) Singular values analysis of P,, for different uexc values.

Fig. 5: Overview of some key parameters of the data collection test.

choice, the rotor is not required to be locked or to be maintained
at standstill by another motor. The selected zero-mean voltage
sequence induces zero-mean currents and, consequently, a zero
mean torque. Since the mechanical dynamic is much slower
than the electric one, the rotor remain at standstill even if
instantaneously the torque is not zero. In addition non-linear
frictions help to avoid rotations of the motor. If the mechanical
inertia of the system is too low or the frictions are negligible
the rotor could slightly move, as happen for other injection-
based commissioning techniques [35]. Designers should be
aware of this potential issue in some specific applications.
The criteria to select the voltages amplitude is here discussed.
The motor is driven by a two-level voltage source inverter with
a DC bus voltage of 300 V. The voltage sequence is generated
by picking the values from a uniform probability distribution
in the interval [—texc, Uexc]. We propose a test to analyze the
effects of uex. on the sequence y° and the data-driven design.
Fig. 5(a) refers to several excitation tests, characterized by
different values of uex.. On one hand, the maximum excitation
voltage should be limited to avoid over-currents, preserving a
safe motor operation. The figure, in fact, shows that the mean
value of the currents samples are quite low with respect to the
nominal value. However, the nominal current value, for the
proposed motor, is achieved using ue. = 90V, i.e. the 30%
of the DC bus voltage. Higher excitation voltages should be
avoided. On the other hand, a too low voltage excitation could
lead at least to current sampling issues, due to small signal
to noise ratios. Moreover, we need to take into consideration
also other problems, i.e. if the information carried by the data
is rich enough to describe the current dynamics. The PWM
synthesis of low voltages could emphasize some inverter non-
linearities, e.g. not properly compensated dead-times, that are
not of interest of our identification. In order to evaluate if the
data are collected properly, the dominant singular values of the
matrix P,, are analyzed (see the logarithmic plot in Fig. 5(b)).
The number of dominant values should be coherent with the



TABLE III: Matrices dimensions resulting from the design choices: N = 3, Ti,i = 1 and 7" = 100 samples.

Matrix W(uc) ,%(yc) Up Yp Up Yr Pw Py M [ A B
JO 8 8 2 2 6 6 6 6 97 97 2
columns 97 97 97 97 97 97 4 2 4 6 2 2
anticipated dimension of the state, see Table 1. Two dominant 0.015
values characterize the considered dynamic, as expected. R 0401
< 0.005
3 o i
-0.005
B. Parameters Selection ool | | | | |
1 101 1.02 1.03 1.04 1.05
In this section we address the problem of parameters time (s)
selection for designing the data-driven controls. The prediction (2) MPC
horizon length N is chosen according to the MPC framework, 0015
i.e. N = 3. This value is a good trade-off between accuracy 0.01
and computational effort for this application [29]. Moreover, all < vo05 |
the these controllers share the same cost function; thus, equal = ! J‘.
weighting matrices Q and R are chosen. In particular, Q is the “ 0,005 | ,
identity matrix, whereas R is the identity scaled by a factor ‘
0.0001. We consider the robust formulation of the DeePC, and 0o Lot L2 103 104 105
the related parameter in (11) has been set to A, = 0.1. time (s)
(b) DeePC

Two parameters that characterize the data-driven algorithms
are the length of the initial trajectory 7i, and the number
of samples T. The trajectory [uini, ¥ini]" replaces the initial
condition for the prediction. Thus, it determines the inherent
system state, and the parameter T;,; provides a complexity for
the model. In [32], the system lag2 [ is used to find a lower
bound for Tiy;. In particular, if T3, > [ the system prediction is
uniquely determined. Thank to this criteria, the value of Tj,;
can be chosen even without knowing the system dimension, but
using an estimate of it. Since the system lag is known for the
considered application (i.e [ = 1), we set Tiy; = 1. The length
T of the recorded I/O vectors should be long enough to make
sure that the Hankel matrices have full rank. The Fundamental
Lemma in [32] gives a lower bound for 7', whose value for
the considered application is T > 3(Tin + N +2) — 1. We
selected T' = 100 samples, which satisfies the inequality.

C. Complexity of the online program

The design choices described in the previous subsection
set all the dimensions of the matrices presented in TA-
BLE III. All the controllers have been implemented in
their unconstrained version, i.e. a feedback law of the form
u = K+ K™ [ui, yini] T or u = K'r + K*z(k). This means
that the turn-around-time of all the controllers are similar.
A slightly higher computation time is required for the first
feedback law. The turn-around-time of each predictive control
scheme is about 9.6 us - 9.7ps, depending on the specific
feedback-law. The dSPACE MicroLabBox is equipped with
a 2 GHz NXP QorIQ P5020 microprocessor. The number of
computations required by the feedback laws scales linearly
with respect to the length of the prediction horizon N and the
length of the initial trajectory Tjy;.

Fig. 6: Accuracy of the data-driven predictors in the estimation of the
g-axis current variation.
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Fig. 7: Residual analysis of the prediction error: probability distribution
function of the residuals for the presented predictors.

D. Accuracy of the Data-Driven Predictor

The accuracy of the data-driven predictors is investigated in
this subsection, taking the model-based MPC as benchmark.
This analysis is performed during steady-state operation, when
the motor is working at the nominal maximum-torque-per-
ampere current point (see Table II) at standstill. During the tests
the currents are regulated by standard PI controllers. We are
interested on the open-loop prediction accuracy of the methods.
This means that the predictors are fed by current measurements
and the reference voltages computed by the PIs. A first
qualitative information on the accuracy is provided by Fig. 6(a)
and Fig. 6(b). The figures show the comparison between the
measured g-axis current increments and the predicted ones,
using respectively the predictor obtained with (3) and (12). We
observe a good correspondence between measurements and

>The lag I of a linear system is the smallest integer value for which the
observability matrix O = [C' CA...C A'~!|T has full rank.



TABLE IV: Residual analysis of the prediction error: mean and standard deviation of the residuals.

Controller | MPC | PEM | SPC | DeePC
d-axis  q-axis | d-axis q-axis | d-axis g-axis | d-axis  g-axis

Mean (uA) 2.4 -04 | -12 -0.2 -29 -04 | -28 04

Standard deviation (uA) | 3100 500 2100 350 3800 590 3800 590

predictions for both the controllers.

The residuals between measured and estimated currents are
considered as performance index, as suggested in [15]. The
results of this analysis are reported in Fig. 7. The figures
show the estimated probability density function of the d and ¢
residuals for all the described predictors. From literature [15],
we expect a zero mean normal distribution of the residuals,
which is coherent with the obtained results. The PEM-MPC
predictor appears the most accurate one, proving that using
data to validate the commissioning tests is an interesting tool.

E. Online Unconstrained Controller

In this subsection we provide a comparison between model-
based and data-driven designed controllers in terms of step
current reference response. In particular, the reference r is
changed from zero to the nominal maximum-torque-per-ampere
current. The model-based MPC adopts the motor parameters
which were previously obtained by means of characterization
procedures (see Table II). All the data-driven controllers are
designed from the same data recording, in particular the one
defined by a uexe = 50 V.

The step responses are compared at standstill in Fig. 8. It is
interesting to notice that the data-driven designs allow achieving
similar performances with respect to the model-based controller.
In fact, the commissioning effort of all the proposed algorithms
in terms of measurement apparatus, number of carried out tests
and their complexity and duration is much lighter compared to
the characterization required to build an accurate model-based
controller [8]. Among data driven controllers, the DeePC is
considered the most data-oriented algorithm, because it uses raw
data without any pre-processing. Despite the direct exploitation
of raw data, it has almost the same performance as the others.
We reported the same step response analysis also at nominal
speed rate in Fig. 9. This test confirms the effectiveness of the
integral action included in the data-driven control framework.
The back-EMF and the state transition matrix A of the IPM
motor model (2) depend on the operating speed. Thus, a bias
in the current tracking should be observed if the integral action
is missing (as in Fig. 3). We underline that the proposed data-
driven methods seems very effective for the g-axis current.
Moreover, other tools can be used to further improve their
behavior, in particular the one of the DeePC (see [23]). In
addition, accordingly to [36], a feed-forward term can be nested
in the controller to improve disturbance rejection performances,
without penalizing the overshoot in the dynamics. We therefore
believe that there is much unexplored potential to improve the
performance to data-driven controllers.

Concerning the steady-state behaviors, a total harmonic
distortion analysis is performed on the motor currents at
nominal speed. The results are briefly summarized in TABLE V.
The distortion is quite low, as expected from a continuous-
set MPC, which encapsulates a modulator in the controller

TABLE V: Total harmonic distortion analysis at the nominal point.

MPC
0.32%

PEM
0.25%

SPC
0.36%

DeePC
0.36%

Controller

THD

structure. The PEM-MPC seems again the preferable structure,
as observed also in the previous section. Nevertheless, both SPC
and DeePC grant the same harmonic distortion of a benchmark
(model-based) velocity-form MPC.

Finally, the closed-loop cost analysis is proposed to provide
a different insight on the steady-state performance. The closed-
loop cost is computed for each control step using (14), where
the weight matrices are designed as described in Sec. IV-B.
The test considers the machine at standstill (Fig. 8) and at
nominal speed (Fig. 9), when steady-state condition is reached.
Results are described in Fig. 10, where the cost is reported in
decibel. The closed-loop cost achieved by the data-driven and
model-based controllers are not significantly different, both at
standstill Fig. 10(a) and at nominal speed Fig. 10(b). Thus, a
purely data-driven design assure the same closed-loop cost of
a standard model-based procedure, even if no assumption on
the model structure is required.

V. CONCLUSION

In this work we present a transition path from model-based
to data-driven design of PMSM current controllers. Different
data-driven algorithms are considered: the prediction error
method model predictive control, the subspace and the data-
enabled predictive controls (DeePC). All the algorithms were
online implemented in the unconstrained version, proving
their online feasibility. Similar accuracy between model-based
and data-driven predictors is demonstrated with experimental
data. Experimental results show that all these controllers have
comparable performance, considering the MPC with an accurate
model as benchmark. Moreover, among data-driven controllers,
the DeePC performs well both in steady state and dynamics.

There are several challenges to address in the future. First,
a comparison between data-driven and self-commissioning
techniques would be valuable. This could help to design
effective strategies for the excitation voltage signals. Second,
the extension of data-driven methods for nonlinear system
is at the beginning. The possibility to automatically include
the motor nonlinearities in the control law, e.g. magnetic
cross saturation effects, is of particular interest. Third, finding
computationally efficient methods for implementing high-
dimensional data-driven methods that include constraints in
real-time is still an open challenge. Finally, other future research
will focus on online adaptation of data-driven control structures
and applications to other drives problems.
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