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Abstract: Important information concerning a multivariate data set, such
as clusters and modal regions, is contained in the derivatives of the proba-
bility density function. Despite this importance, nonparametric estimation
of higher order derivatives of the density functions have received only rel-
atively scant attention. Kernel estimators of density functions are widely
used as they exhibit excellent theoretical and practical properties, though
their generalization to density derivatives has progressed more slowly due
to the mathematical intractabilities encountered in the crucial problem of
bandwidth (or smoothing parameter) selection. This paper presents the first
fully automatic, data-based bandwidth selectors for multivariate kernel den-
sity derivative estimators. This is achieved by synthesizing recent advances
in matrix analytic theory which allow mathematically and computationally
tractable representations of higher order derivatives of multivariate vector
valued functions. The theoretical asymptotic properties as well as the fi-
nite sample behaviour of the proposed selectors are studied. In addition,
we explore in detail the applications of the new data-driven methods for
two other statistical problems: clustering and bump hunting. The intro-
duced techniques are combined with the mean shift algorithm to develop
novel automatic, nonparametric clustering procedures which are shown to
outperform mixture-model cluster analysis and other recent nonparametric
approaches in practice. Furthermore, the advantage of the use of smooth-
ing parameters designed for density derivative estimation for feature signif-
icance analysis for bump hunting is illustrated with a real data example.
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1. Introduction

The estimation of density derivatives has full potential for applications. This
has been noted even in the first seminal papers on density estimation, as Parzen
(1962), which was also concerned with the estimation of the mode of a unimodal
distribution, the value that makes zero the first density derivative. In the multi-
variate case, the pioneering work of Fukunaga and Hostetler (1975) showed how
the estimation of the gradient vector can also be used for clustering and data
filtering, leading to a substantial amount of literature on the subject, under the
name of the mean shift algorithm. Looking further afield, Cheng (1995) made use
of the mean shift idea for image analysis, and the highly-cited paper by Comani-
ciu and Meer (2002) showed how these techniques can be useful for low-level
vision problems, discontinuity preserving smoothing and image segmentation.
A further very popular use of the mean shift algorithm is for real-time object
tracking, as described in Comaniciu, Ramesh and Meer (2003).

From the perspective of statistical data analysis, in the multidimensional con-
text the estimation of the first and second derivatives of the density is crucial to
identify significant features of the distribution, such as local extrema, valleys,
ridges or saddle points. In this sense, Godtliebsen, Marron and Chaudhuri (2002)
developed methods for determining and visualizing such features in dimension
two, extending previous work on scale space ideas introduced in Chaudhuri and
Marron (1999) for the univariate case (the SiZer approach), and the same au-
thors also explored the application of this methodology to digital image analysis
in Godtliebsen, Marron and Chaudhuri (2004). Duong et al. (2008) generalized
these results for multivariate data in arbitrary dimensions and provided a novel
visualization for three-dimensional data. These techniques have been widely ap-
plied recently in the field of flow cytometry; see Zeng et al. (2007); Naumann
and Wand (2009) or Pratt et al. (2009).

Another relatively new problem that is closely related to gradient estimation
is that of finding filaments in point clouds, which has applications in medical
imaging, remote sensing, seismology and cosmology. This problem is rigorously
stated and analyzed in Genovese et al. (2009). Filaments are one-dimensional
curves embedded in a point process, and it can be shown that steepest ascent
paths (i.e., the paths from each point following the gradient direction) concen-
trate around them, so gradient estimation appears as a useful tool for filament
detection.

In this paper we focus on kernel estimators of multivariate density deriva-
tives of arbitrary order, formally defined in Section 2 below. As for any kernel
estimator, it is well known that the crucial factor that determines the perfor-
mance of the estimator in practice is the choice of the bandwidth matrix. In the
multivariate setting there are several levels of sophistication at the time of spec-
ifying the bandwidth matrix to be used in the kernel estimator (see Wand and
Jones, 1995, Chapter 4). The most general bandwidth type consists of a sym-
metric positive definite matrix; it allows the kernel estimator to smooth in any
direction whether coordinate or not. This general class of bandwidth matrices
can be constrained to consider positive definite diagonal matrices, allowing for
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different degrees of smoothing along each of the coordinate axis, or even further
to consider a bandwidth matrix involving only a positive scalar multiple of the
identity matrix, meaning that the same smoothing is applied to every coordi-
nate direction. As noted in Wand and Jones (1993) in the density estimation
context, the single-parameter class should not be used for unscaled data or, as
stated by Comaniciu and Meer (2002) in terms of feature space analysis, to use
this bandwidth class at least the validity of an Euclidean metric for the feature
space should be previously checked.

The simpler parameterizations are in general more widely used than the un-
constrained counterpart for two reasons: first, in practice they need less smooth-
ing parameters to be tuned, and second, due to the difficulties encountered in the
mathematical analysis of estimators with unconstrained bandwidths. However,
Chacén, Duong and Wand (2011) provided a detailed error analysis of kernel
density derivative estimators with unconstrained bandwidths and showed that
the use of the simpler parameterizations can lead to a substantial loss in terms
of efficiency, and that this problem becomes more and more important as the
order of the derivative to be estimated increases.

Chacén, Duong and Wand (2011) also proposed an optimal bandwidth selec-
tor for the normal case, but they did not develop more sophisticated data-driven
choices of the bandwidth matrix with applicability to more general densities,
which is crucial to make density derivative estimation useful in practice. Along
the same lines, Comaniciu and Meer (2002) argue that most existing band-
width selection methods for the mean shift algorithm, all of them for the single-
parameter class of bandwidths, are based on empirical arguments.

In the univariate case there exist some approaches to bandwidth selection
for density derivative estimation: Hérdle, Marron and Wand (1990) introduced
a cross validation method and showed its optimality; Jones (1992) derived the
relative rate of convergence of this method and also for a plug-in proposal; Wu
(1997) studied two root n selectors in the Fourier domain, and more recently
Dobrovidov and Rud’ko (2010) focused on the smoothed cross validation band-
width selector for the density derivative. In the multivariate case, however, the
issue of automatic bandwidth selection for density derivative estimation has
remained largely unexplored. Given the smaller body of multivariate density
estimation research as compared to their univariate cousins, it is not surprising
that multivariate density derivative estimation suffers equally (if not more so)
from a lack of solid results. To the best of our knowledge, in the literature the
only published approaches to bandwidth selection for multivariate kernel esti-
mation of density derivatives are the recent papers Horova and Vopatova (2011)
and Horovd, Koldcek and Vopatova (2013), but both focus exclusively on the
first derivative.

This paper proposes three new methods for unconstrained bandwidth matrix
selection for the multivariate kernel density derivative estimator, and explores
their applicability to other related statistical problems. In Section 2, we intro-
duce the mathematical framework for the analysis of multivariate derivatives. In
Section 3 we show that the relative rate of convergence of these unconstrained
selectors is the same as for the classes of simpler bandwidth matrices, so that
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from an asymptotic point of view our methods can be as successful as (and
more flexible than) those needing less smoothing parameters. The finite-sample
behaviour of the new bandwidths is investigated in Section 4, and their applica-
tion to develop new data-driven nonparametric clustering methods via the mean
shift algorithm is explored in Section 5, and for feature significance in Section 6.
Finally, the proofs of the results are given in an appendix.

2. Kernel density derivative estimation

The problem of estimating the r-th derivative of a multivariate density is con-
sidered in this section. From a multivariate point of view, the r-th derivative of
a function is understood as the set of all its partial derivatives of order r, rather
than just one of them. Notice that, for instance, in a multivariate Taylor expan-
sion of order r all of the partial derivatives of order r are needed to compute
the r-th order term. Or, in another related example, all the second order partial
derivatives are involved in the computation of the Hessian matrix.

All the r-th partial derivatives can be neatly organized into a single vec-
tor as follows: if f is a real d-variate density function and x = (z1,...,z4),
denote by D = 9/0x = (0/0x1,...,0/0xq) the first derivative (gradient) op-
erator. All the second order partial derivatives can be organized into the Hes-
sian matrix Hf = (82f/8xi8xj)f)j:1, and the Hessian operator can be formally
written as H = DD if the usual convention (9/0z;)(0/0x;) = 0?/(0z;0x;)
is taken into account. For r > 3, however, it is not that clear how to or-
ganize the set containing all the d” partial derivatives of order r. Here we
adopt the unified approach used in Holmquist (1996a) or Kollo and von Rosen
(2005, Section 1.4), where the r-th derivative of f is defined to be the vector
DO f = (Df)®" = 9" f/0x®" € R?. In the previous equation D®" denotes the
r-th Kronecker power of the operator D; see, e.g., Magnus and Neudecker (1999)
for the definition of the Kronecker product. Naturally, D®°f = f, D®'f = Df
and, for example, D®2 = vec H, where vec denotes the operator which concate-
nates the columns of a matrix into a single vector.

Here we study the problem of estimating the r-th derivative D®” f from a
sample Xy, ..., X, of independent and identically distributed random variables
with common density f. The usual kernel estimator of f is defined as fH(:I:) =
n! > Ku(x — X;), where the kernel K is a spherically symmetric density
function, the bandwidth H is a symmetric positive definite matrix and Ky (x) =
[H|~Y/2K(H~'/?z). Thus, the most straightforward estimator of D®" f is just
the r-th derivative of fg, given by D®" fi(x) = n~' Y7, D" Ku(x — X,),
where the roles of K and H can be separated for implementation purposes
by noting that D®"Ky(x) = [H|~Y2(H~/2)®"D® K (H'/?z), as shown in
Chacén, Duong and Wand (2011), where for any matrix A it is understood that
A®" =1 € R and A®! = A. See, however, Jones (1994) for other possible
estimators in the univariate context.

For the density estimation case (r = 0), Wand and Jones (1993) showed that
the use of bandwidths belonging to the class Z = {h?1; : h € R}, with I, the
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dxd identity matrix, or the class D = {diag(h, h3,...,h3) : h1,he,... hq € R},
may lead to dramatically less efficient estimators than those based on bandwidth
matrices drawn from F, the space of all positive definite symmetric matrices.
Moreover Chacén, Duong and Wand (2011) showed that the issue of efficiency
loss is even more severe for » > 1. So the development of unconstrained band-
width selectors for density derivative estimation, which is achieved in this paper,
may also represent an important improvement in practice.

To measure the error committed by the kernel estimator for the sample at
hand it is natural to consider the integrated squared error (ISE), defined as

ISE,(H) = [ | D% fu(a) - D7 (x) e,

where ||-|| denotes the usual Euclidean norm. This quantity depends on the data,
so it is common to consider the mean integrated squared error MISE,(H) =
E[ISE, (H)] as a non-stochastic measure of error, and its minimizer Hyigg ,» =
argming . »MISE, (H) as the non-stochastic optimal bandwidth choice. A more
detailed discussion of the advantages and disadvantages of the ISE and MISE
viewpoints can be found in Jones (1991).

Standard calculations lead to the integrated variance plus integrated squared
bias decomposition MISE,(H) = IV,.(H) + ISB,(H), where IV, (H) =
Ja tr Var[D®” fyy(x)]da and ISB,(H) = [,, |E[D®" fu(z)] — D®' f(z)|*dz. By
expanding each of these two terms, Chacén, Duong and Wand (2011) showed
that a more explicit form of the MISE is given by

MISE, (H)
= {n"H|"Y?tr (HH®"R(D®'K)) — n ' tr R*(Ky * K, D f)}
+ {tr R*(Kg * Ku1,D®" f) — 2tr R*(Kw1, D¥" f) + tr R(D®" f)}
(1)
where R(g) = [p. g(x)g(x)" dx, and R*(a,8) = [z.(a x g)(x)g(x) " dz for a
vector valued function g and a real valued function a, with a * g standing for a
component-wise application of the convolution operator.
Moreover, writing ma(K)Iy = [;. xx | K (z)dx, under some smoothness as-

sumptions Chacén, Duong and Wand (2011) also showed that an asymptotic
approximation of the MISE is given by

AMISE, (H) = n ' [H|""2tr (H™1)®"R(D®"K))
+ %K)Q tr ((Igr ® vec' H)R(D®" 2 ) (I ® vec H))

and that the minimizer of this AMISE function, Hawmisg,r =
argming e »AMISE, (H), has entries of order O(n~%/(4+2r+4)) 'leading to a min-
imum achievable AMISE of order O(n~%/(d+2r+4)),

Although these expressions provide an insightful error analysis of multivariate
kernel density derivative estimators, they are not directly implementable as
software since they all involve the unknown density f. In the next section, we
examine strategies to estimate these unknown quantities which lead to optimal
data-based selectors for density derivative estimation.

(2)
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3. Bandwidth selection methods

In this section we propose three new methods to select the bandwidth matrix for
kernel density derivative estimation from the data and study their asymptotic
properties. These methods are inspired by the cross validation, plug-in and
smoothed cross validation methodologies for the estimation of the density in
the univariate case, hence their names.

3.1. Cross validation method

Cross validation (CV) techniques for bandwidth selection for univariate density
estimation were introduced in Rudemo (1982) and Bowman (1984), and studied
in detail in seminal papers like Hall (1983); Stone (1984) and Hall and Marron
(1987). They can be motivated in terms of either ISE-oriented or MISE-oriented
considerations.

In the case of multivariate density derivative estimation notice that, for a
random variable X having density f and independent of Xy,...,X,,, using in-
tegration by parts it is possible to write

ISE, (H)

= (=1)"vec" Idr{n2 zn: D® Ky * Ku(X; — X;) — 2E[D®% fu(X)] }
i,j=1
+trR(D®"f)

provided that the kernel K is sufficiently smooth. The last term is irrelevant for
minimizing concerns, and the two first terms can be unbiasedly estimated by

Cv, (H)

= (—1)T VeCT Idr{n_2 Z D®2TKH * KH(Xl — X]) — 27’L_1 Z D®2TfH)i(Xi)}
ij=1 i=1
= (—1)T VeCT Idr{n_2 Z D®2TKH * KH(Xl — X])
ij=1
~2lnn - 1] Y0 KX, - X) |
i#j
where D®27 le denotes the kernel estimator based on the sample with the i-th

observation deleted.
From the MISE point of view notice that, for any smooth enough function L,

tr R*(Ly, D¥"f) = /Rd (Lys + D®7 f)(x) "D f(x)de

= (=1)"vec' Idr/ D®%" Ly * f(z) f(x)dx
Rd

= (=1)"vec' I+E[D®* Ly(X; — X»)],
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so that tr R*(Lg, D®" f) can be unbiasedly estimated by
(—1)T[7’L(7’L — 1)]_1 VGC—r IdT Z D®2TLH(Xi — X])
1#]
Therefore, in view of (1), MISE, (H) — tr R(D®" f) can be unbiasedly estimated
by
CV,(H)
=n 'H|"2tr (H)*"R(D¥'K))
+ (=1l - 1)) vee I Y {(1 DO gy — 2D®2TKH}(Xi ~X;),
1#]
where K = K x K. To check that these two CV expressions coincide, take into
account that D®%" Kgg + Kig = D®?" (K * Kgg) = D®?" (K x K )g = D®?" Kg, so
that using some properties of the Kronecker product and the vec operator (see,
e.g., Magnus and Neudecker, 1999), the sum of the diagonal terms in the first
CV,(H) expression equals
(=1)"n "t vec I;-D®? K51 (0) = (—1)"n HH| Y2 vec " Iy (H1/2)%2r D2 £ (0)
= (=1)"n Y H|Y2 vecT (HH® D K (0)
=n"HH|"Y2vec" (H™1)®" vec R(D®TK)
=n 'H[T?tr (H )" R(D¥'K))

where the third line follows by noting that
vecR(D®"K) = (—1)T/ D®?" K (x)K (z)dx = (—1)"D®?" K (0).
R4
Surely the simplest formulation for CV (useful for implementation purposes)
is
CV,.(H) = (—1)"|H|~1/? vecT(Hl)(@’”{n2 Z D®2TK(H*1/2(XZ- - X;))

ij=1

—2[n(n —1)]7* Z D®2TK(H_1/2(X1' - Xj))}'
i#]

We denote by I:ICVW the bandwidth matrix in F which minimizes CV,.(H).

3.2. Plug-in method

Plug-in (PI) bandwidth selection techniques are based on estimating the un-
known quantities that appear in an asymptotic error formula and minimizing
the resulting empirical criterion. Basic plug-in selectors for univariate density
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estimation are described in Park and Marron (1990) and Sheather and Jones

(1991). In the multivariate case, introducing the vector integrated density deriva-
tive functional, defined as

o = / D®%" f(z) f () dx = (~1)" vec R(D®" f),

allows us to rewrite the AMISE formula (2) for the r-th derivative as

AMISE, (H) = n ' [H|" "2 tr (H™)®"R(D¥'K))
+ (1) 2] (vee L @ (vec H)®2).

Thus, the plug-in bandwidth selector I:Ipl)r is defined to be the bandwidth in
F minimizing the criterion

PL.(H) = n ' [H|"?tr (H™)®"R(D®"K))
+ (1) 2] (veels @ (vec H)®2),

where 12;2T+4 is a suitable estimator of 1, 4.
Chacén and Duong (2010) analyzed the problem of estimating ,, for an
arbitrary r. Noting that 1p,, = E[D®?" f(X)], they proposed the kernel estimator

P (G) =n"" Y D fa(Xi) =n"" Y D Lg(X; - X;),

i=1 i,j=1

using a kernel L with pilot bandwidth G, possibly different from K and H. For
the selection of the pilot bandwidth matrix G, the same authors showed that
the leading term of the mean squared error E [||1,AZJ2T(G) — 9y, ||?] is given by the
squared norm of the asymptotic bias vector

wp1ar(G) = n |GGV 2D L(0) + 22 (vee T G @ Lior by, 0,
(3)
so that the asymptotically optimal choice of the pilot bandwidth for the esti-

mation of ¥y, is Gpr,2r = argming¢ 7 ||wpr,2-(G)||?, which depends on 9, 5.
Hence, to select the pilot bandwidth G from the data we could substitute
Py,4o by another kernel estimator in (3) and minimize the squared norm of
the resulting vector, but of course then the optimal bandwidth for the kernel
estimator of 12,12 depends on ), 4, and so on. The usual strategy to over-
come this problem is to use an m-stage algorithm as described in Chacén and
Duong (2010), involving m successive kernel functional estimations with the ini-
tial bandwidth matrix chosen on the basis of a normal scale approximation. The
resulting bandwidth obtained by minimizing PI,.(H) when ), 4 is estimated
using an m-stage algorithm is called an m-stage plug-in bandwidth selector for

the r-th derivative.
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3.3. Smoothed cross wvalidation method

The smoothed cross validation (SCV) methodology for univariate density esti-
mation was introduced in Hall, Marron and Park (1992), and a thorough study
of this technique was made in Jones, Marron and Park (1991). However, it has
not been until recently that its multivariate counterpart has been developed,
in Duong and Hazelton (2005b) and Chacén and Duong (2011), and its use for
univariate density derivative estimation has been explored (see Dobrovidov and
Rud’ko, 2010).

A possible derivation of the SCV criterion for the problem of multivariate den-
sity derivative estimation is based on the approximation of the MISE obtained
by replacing the exact integrated variance in equation (1) by its asymptotic
approximation (the first term), while keeping the exact form for the integrated
squared bias, so that MISE, (H) ~ MISE2,(H) with

MISE2, (H) = n~'[H|~"?tr (H™)®"R(D®"K)) + tr R* (A, D" f),

where Ay = K — Ko (here K denotes the Dirac delta function) and Ag =
Au * Ag = Ky — 2Ku + K. The SCV criterion is obtained by replacing the
unknown target D®7 f in the MISE2 formula with a pilot estimator D®" fG (x) =
n~t3 " D® Lg(z — X;), leading to

SCV,(H) = n ' [H|"?tr (H H)®"R(D®"K))

+ (=) (vec 1) Y Am# D La(Xi — X;),

i,j=1

where L = L * L. When all the X; are distinct and the diagonal terms (i = j)
are omitted in the previous sum it can be shown, using the properties of the
Dirac delta function (see, e.g., Gel’fand and Shilov, 1964, Chapter 1.2), that the
SCV criterion coincides with the CV criterion for G = 0.

The minimizer of SCV,.(H) is defined to be I:ISCVJ. Its value depends on the
pilot selector G. Chacén and Duong (2011) showed that in the case r = 0 the
leading term of the mean squared error E|| vec(Hscy,» — Hysg.)||? is given
by the squared norm |wscv 2r+4(G)|? where wscv 2,+4(G) is the same as
the aforementioned wpy2,44(G) except that L is replaced by L. Thus it is
straightforward to define, analogously to the plug-in algorithm, the required
optimal k-th stage pilot bandwidth of an m-stage SCV selector.

3.4. Convergence results

Let H, = argming, }-I\TIS\ET(H) be an arbitrary data-based bandwidth selector,

built up on the basis of an estimated criterion MISE, (H). Following Duong and
Hazelton (2005a), H, is said to converge to Hysg,» at relative rate n=® if

vec(H, — Hyis,) = Op(n™*J g2) vec Hyisp,»
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where Op denotes element-wise order in probability and Jg» is the d? x d?
matrix of ones. This order in probability statement can be difficult to derive di-
rectly. The next lemma provides a more tractable indirect method of calculating
convergence rates.

Lemma 1. Suppose that assumptions (A1)-(A3) given in the appendiz hold.
The discrepancy Vec(I:IT —Hwisg,r) is asymptotically equivalent to Dg[MISE, —
MISE, |(Hmisk,»), where Dy is shorthand for 8/0vecH. Furthermore, the rel-

ative rate of convergence of H, is n=% if

E{Du[MISE, — MISE,|(Hyusg.,) FE{Du[MISE, — MISE,|(Hyusg, )} "
+ Var{Du[MISE, — MISE,](Hyust.,)}

can be expressed as O(n_2°‘sz) vec Hyirse,» vee Hyise,r-

The convergence rates of the three bandwidth selectors considered here are
given in the following theorem, whose proof is deferred to the appendix.

Theorem 1. Suppose that assumptions (A1)-(A5) given in the appendiz hold.
The relative rate of convergence to Hyisg,» 15 n—d/(2d+4r+8) for the cross vali-
dation selector I:ICVJ, and n~2/(d+2r+6) for the plug-in selector I:IPI)T and the
smoothed cross validation selector I:ISCVJ when d > 2.

Jones (1992) computed the relative rate of convergence for the CV and PI se-
lectors for the estimation of a single partial derivative, using a single-parameter
bandwidth matrix (i.e., H € 7). The previous theorem shows that the uncon-
strained CV bandwidth attains the same rate as its constrained counterpart,
yet with added flexibility that should be captured in the constant coefficient
of the asymptotic expression, although the computation of an explicit form for
this coefficient does not seem possible in general.

The convergence rate of the PI selector is n~ (24+min{2:d/21)/(d+2r+6) within the
single-parameter bandwidth class Z, yielding a slightly faster convergence to the
optimal constrained bandwidth. As explained in Chacén and Duong (2010, 2011)
for the density case, this is due to the fact that the very special cancellation
in the bias term which is achievable when using a single-parameter bandwidth
is not possible in general for the unconstrained estimator. Nevertheless, the
aforementioned papers showed that this slight loss in convergence rate terms is
negligible in practice as compared with the fact that the targeted constrained
optimal bandwidth is usually much less efficient than the unconstrained one (see
also Section 4 below).

Theorem 1 also shows that the similarities noted in Chacén and Duong (2011)
about the asymptotic properties of the PI and SCV methods for the density
estimation problem persist for » > 0, since both selectors exhibit the same
relative rate of convergence.

Jones, Marron and Sheather (1996, p. 406) exemplified how slow is the rate
n~1/10 of the CV selector for d = 1, 7 = 0 by noting that n has to be as large as
10'° = 10,000, 000, 000 so that n~1/1% = 0.1. In the same spirit, to compare the
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TABLE 1
Comparison of the relative rate of convergence for the C'V, PI and SCV selectors. For each
combination of r, n and d in the table, the left entry in the corresponding cell shows
n~ 4/ Rd+4r+8) (O selector) and the right entry n—2/(d+27+6) (P and SCV selectors)
divided by 1000~1/6 (i.e. the rate for the C'V selector with n = 1000,d = 2,7 =0)

d=2 d=3 d=1 d=5
CV PI/SCV  CV PI/SCV  CV PI/SCV _ CV PI/SCV

r=0 =n=10> 1000 0562  0.720 0.681  0.562 0.794  0.464 0.901
n=10" 0681 0316 0439 0408 0316 0501  0.245 0.593
n=10 0464 0178 0268 0.245  0.178 0.316  0.129 0.390

r=1 n=10° 1.334 0.794 1000 0.901  0.794 1.000  0.658 1.093
n=10" 1000 0.501  0.681 0593  0.501 0.681  0.390 0.767
n=10° 0.750 0.316  0.464 0390 0316 0464  0.231 0.538

r=2 n=10° 1.585 1.000 1233 1.093  1.000 1.179  0.838 1.259
n=10" 1259 0.681  0.901 0.767  0.681 0.848  0.538 0.926
n=10  1.000 0464  0.658 0.538 0464 0.611  0.346 0.681

rates obtained in Theorem 1, Table 1 shows the values of n~4/(2d+4r+8) (CV)
and n~%/(¢+2r+6) (PT and SCV) divided by 10001/, that is the rate for the
CV selector n = 1000,d = 2,7 = 0 which is used as a base case, for all the
different combinations of n = 10%,10%,10°, d = 2,3,4,5 and r = 0, 1, 2. Ratios
which are lower than 1 indicate the rate is faster than the base case, and ratios
greater than 1 a slower rate. For n = 103, these ratios in Table 1 tend to be
greater than 1, indicating that using this sample size will lead to a deteriorating
convergence rate. On the other hand for the larger sample sizes, n = 10%,10,
these ratios tend to be less than 1. This implies that convergence rates better
than the CV selector for bivariate density estimation can be attained, even with
higher dimensions and higher order derivatives, provided that sufficiently large
(although still realistic) sample sizes are used. Of course this comparison only
takes into account the asymptotic order of the convergence rates by ignoring
the associated coefficients since explicit formulas for the latter are not available
for d > 2. The finite sample behaviour of the bivariate case for moderate sample
sizes is examined more closely in the next section.

4. Numerical study

4.1. Data-based algorithms

For most practical implementations the normal kernels are used, i.e. K = L = ¢.
For d x d symmetric matrices A, B, and for r,s > 0, let

Nor,2s(2; A, B, X)) = [(VecT A% @ (VecT B)®S]D®2T+25¢g ()

and write, for short, 7o, (x;X) = 1noro(x;14,14,%) and v.(X) =
(=1) 12, (0; )/ ¢5(0).

Then the cross validation criterion can be rewritten as

Cv, (H)

= (—1)T{n_2 Z Nor (X — X5 2H) — 2[n(n — 1)]7* Zn2r(xi - Xj;H)}.

ij=1 i#j
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Besides, the data-based m-stage selection algorithm for plug-in selectors is given
by:

1. Initialize the m-th stage pilot selector to be the normal reference selector

9 2/ (2r+2m+d+4)
) 2Sn72/(2r+2m+d+4),

G T m = a. o . 7 o

Plarsamss (2T+2m—|—d—|—2
from Chacén, Duong and Wand (2011), where S is the sample variance of
Xy, X, R

2. For k =m—1,m—-2,...,1, the optimal k-the stage pilot selector Gpr 2/ 42k+2
is the minimizer of

> = n2|G|71(27m) " *OF (27 + 2k + 2)vp 1111 (GT2)

+ (=1)" 1 (2m) = 20F (2r + 2k + 2)|G| /203

lopr2rt2k+2(G)

n
. -1 ¢
X Z n2,2r+2k+2(Xi — X3 G, G, Gpr,2r42k+4)

4,j=1

n . 2
+ in_‘l{z 772,2r+2k+2(Xi_Xj§GaIdaGPI,2r+2k+4)} ,
i,j=1
where OF(2p) = 2p — 1)(2p — 3)---5-3 -1 for p € N. The numerical
minimization over the class of positive-definite matrices is carried out as
described in detail in Duong and Hazelton (2005b, Section 5.1).
3. The plug-in selector Hpy, is the minimizer of

PIT(H) _ n—l |H|—1/22—(d+7‘)ﬂ.—d/2yr(H—l)

+(-1)"(2n)? Z N2.2r(Xi — X3 H, 1y, Gproria).

4,j=1

The derivations of ||Wpr2,+2k+2(G)||? and PL.(H) in the 5 functional form can
be found in Chacén and Duong (2012). There it is also shown that, although it
appears that these are less concise than the previous expressions, they facilitate
efficient computation, both in terms of memory and execution time.

We observe that ||wscv 2rtak42||? is the same as ||wpr2,42k12]? except the
three terms are multiplied by 2-% 27921 and 4 respectively; since #(0) =
$21(0) = 27%24(0) and ma(d) = 2ma(¢). Furthermore,

SCV,(H) = n ' [H| /22~ (@41 =d/2), (H™1)
+ (=172 {mr(Xs — X5 2H + 2G)

i,j=1

— 202, (X — X H+ 2G) + 12 (X — X52G) }.

So a data-based m-stage SCV selector is obtained from straightforward modifi-
cations of the PI selector algorithm above.
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Density #1 Uncorrelated Normal Density #6 Bimodal Density #7 Separated Bimodal

3 2 1 0 1 2 3

Density #8 Asymmetric Bimodal

F1G 1. Target bivariate normal mizture densities.

4.2. Simulation study

The bandwidth selectors included in our simulation study were

e OR: oracle, i.e. the minimizer of the MISE for the target density

e NR: normal reference from Chacén, Duong and Wand (2011, Theorem 6),
which is equal to [4/(d + 2r 4 2)]¥/(d+2r+4) g =2/(d+2r+4)

e CV: cross validation from Section 3.1

e PI: plug-in with 2-stage unconstrained pilots from Section 3.2

e SCV: smoothed cross validation with 2-stage unconstrained pilots from
Section 3.3

We have developed efficient implementations of all these selectors and incorpo-
rated them into the existing R library ks (Duong, 2007). The target bivariate
normal mixture densities that we considered are displayed in Figure 1. Their
explicit definitions can be found in Chacén (2009).

For each selector and target density and for » = 0,1,2, we generated 100
samples of size n = 1000. The integrated squared error (ISE) between the re-
sulting density estimate and the target density was computed as our measure
of performance. The box plots of the log ISEs are shown in Figure 2. We also
conducted the study for sample sizes n = 400 and n = 4000 but the conclusions
extracted were much the same as for n = 1000 so we decided not to include
these results here to avoid redundancies.
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log(ISE)

Fic 2. Boz plots of the logarithm of the ISEs for bandwidth selectors for n = 1000, = 0,1, 2
for the siz bivariate target densities.
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By construction, the oracle selector (OR) is the best possible selector in
terms of MISE given that the true target normal mixture density was used for
its computation. As expected, it also has the uniformly lowest ISE. The normal
reference selector (NR) was the only data-based selector previously available
in the literature, and the results show that it is suitable only for density #1
since its ISEs for the other densities are uniformly higher than those of the
other selectors. In line with other published simulation studies (Cao, Cuevas and
Gonzélez-Manteiga, 1994; Jones, Marron and Sheather, 1996), the CV selector
displays larger variability in the ISEs than the PI and SCV selectors, though the
former presents lower mean ISEs in some cases, e.g. density #12, r = 0,1. We
note also that the CV variability tends to increase with increasing r, whereas
this is not observed for the two other hi-tech selectors. An anonymous referee
drew our attention to the low variability of the introduced bandwidth selectors
for this density #12, as compared with that of the oracle. This density has very
complicated features, like modal regions of different shape and size, so this is the
scenario where usually oversmoothing occurs, and we checked that this is indeed
the case: the oracle tries hard to discover the true structure (hence its high
variability), whereas all the data-driven bandwidths tend to consistently prefer a
more conservative estimate, slightly oversmoothed. Given that the construction
and theoretical properties of the PI and SCV selectors are similar, it is not
surprising that their ISE performance is correspondingly similar for all the cases
examined here. Either of these selectors would thus be our recommendation over
the CV and NR selectors.

5. Applications to mean shift clustering

The so-called mean shift algorithm (Fukunaga and Hostetler, 1975) is an iter-
ative procedure which, at every step, shifts the point obtained in the previous
iteration in the direction of the density gradient, producing a convergent se-
quence that transports any initial value to a local maximum of the density
along the steepest ascent path.

Specifically, the mean shift clustering algorithm can be described as follows:
an initial point Yy is transformed recursively to obtain a sequence defined by

Y41 =Y, +ADf(Y;)/f(Y;), (4)

where f is an arbitrary density estimator, Df is an estimator of the density
gradient, and A is a fixed d x d positive definite matrix, properly chosen to
guarantee convergence of the sequence (Yy, Y1,...). This is easily recognized as
a variant of the well-known gradient ascent algorithm employed to find the local
maxima of a given function, but using the normalized density gradient (i.e., the
density gradient divided by the density itself) instead of just the gradient in
its definition. The advantages of using such a normalization are illustrated in
Fukunaga and Hostetler (1975); Cheng (1995) and Comaniciu and Meer (2002);
one of them is to accelerate the convergence of the resulting sequence for initial
values of low density.
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When kernel estimators are used in (4) the above procedure attains a par-
ticularly simple form. Assuming that the kernel K is a spherically symmetric
function it follows that K (x) = 1k(||?), where the function k: Ry — R is
known as the profile of K. Under the usual conditions that K is smooth and uni-
modal, its profile is decreasing so that g(x) = —k’(x) > 0.Therefore, noting that

DK(x) = —zg(||z||?), the kernel density gradient estimator can be written as

Dfu(e) = n ' [H?H 3 (X; - 2)g((@ - X)) TH (@ - X))

i=1
= H ™' fu(z)mu(z), (5)
where fu(z) =n ' H["Y2Y"  g((x —X;) TH ! (z — X;)) can be understood
as an unnormalized kernel estimator of f and the term
_ E?:l Xlg((m — Xi)THil(.’B — Xz))
Y g((x —Xy) TH (= — X))
is known as the mean shift. Thus, equation (5) can be re-arranged to note that

H 'my(z) provides a reasonable estimator of the normalized density gradient,
and by taking A = H in equation (4) it leads to the recursively defined sequence

my () —x

Y Xig((Y; —X;) THH(Y; — X))

Yorr =X O] = (X0 Y, - X))

(6)

When k is a convex and monotonically decreasing profile, and H = h2?I;, Co-
maniciu and Meer (2002, Theorem 1) showed that the sequence (Yo, Yq,...)
defined in this simple way converges to a local maximum of fH, and their proof
can be easily adapted to cover the case of an unconstrained H as well. The
recursive formulation (6) was also motivated as an EM-type algorithm for mode
finding in Li, Ray and Lindsay (2007), who proved its convergence under more
general conditions.

Since the direction along which the data points are shifted, as well as the limit
points of the sequences of successive locations (i.e., the solutions of D fgr () = 0),
are directly related to the density gradient, our proposal is to take H in the mean
shift algorithm as a bandwidth matrix selector for multivariate kernel density
gradient estimation, using any of the methods introduced in Section 3. This
choice is also supported by the results in Grund and Hall (1995) and Vieu (1996),
where it was shown that the optimal bandwidth choice for estimating the mode
of a density is closely related to the problem of density derivative estimation.
Thus, the bandwidth choice is made with the goal of optimal identification of
the density features in mind. This is in contrast with other proposals, as for
example Comaniciu (2003), where a different criterion is taken into account to
obtain an automatic variable-bandwidth selection algorithm.

When only a few iterations of the mean shift algorithm are performed, it is
probably the case that convergence has not been reached yet. However, the pro-
cedure is still useful for other tasks. These include data filtering (Fukunaga and



Density derivative estimation, clustering and bump hunting 515

o 99 o
ooQ) o
N o o [e¥o e}
19 o) o)
o @ o (% o _0O
— - OO OOQ o o OO @ o
o y o OOOOO o) Q0
° o ° g9 ° o
0 Qoo 50
OQOO oo ?%6
Q
o oo o Oo OO [o} Oo
S oo ©
ogg r 1\ % o0 oo )
Q)Oo © [} mo
- | ° 03 oS0
| o (o) %o (o] o
o ® o
© o o © o
o 0
~ P
o o0
° o
T T T T I
-2 -1 0 1 2

F1c 3. Paths followed by the sample points as a result of the application of the mean shift
algorithm. Sample of size n = 210 from a trimodal normal mizture density.

Hostetler, 1975), which seeks to reduce the effect of noise in the determination
of the geometric properties of a data set or in finding local principal curves,
and also data sharpening (Choi and Hall, 1999; Hall and Minotte, 2002), which
can be used to reduce the bias in kernel curve estimation and to adapt kernel
estimators to pre-specified curve constraints.

The main statistical application of the mean shift procedure is for cluster
analysis. For several additional applications in engineering, see Cheng (1995);
Comaniciu and Meer (2002); Comaniciu, Ramesh and Meer (2003). When the
mean shift algorithm is applied with any of the data points as starting value it
induces a partition of the data in a natural way, by assigning the same cluster
to all the data points that converge to the same local maximum. This is called
modal clustering in Li, Ray and Lindsay (2007). Notice that this methodology
does not require the number of clusters to be specified in advance, and that it
allows clusters of arbitrary shape to be discovered. Moreover, since the mean
shift algorithm can be applied with any starting point, it does not produce only
a partition of the data, but a partition of the whole space.

To illustrate the use of mean shift clustering Figure 3 shows the result of
applying the mean shift algorithm to a sample of size n = 210 from a trimodal
normal mixture (the one labeled Trimodal IIT in Wand and Jones (1993)). The
black bold stars show the location of the three modes found and the paths in
grey starting from every data point depict their ascent towards their associated
density mode.
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5.1. Simulation results

As pointed out above, any of the bandwidth selection methods for kernel density
gradient estimation introduced in Section 3 leads automatically to a new non-
parametric clustering procedure via the mean shift algorithm. To explore the
finite sample properties of these new proposals, their performance is compared
here to other related existing methods.

Given the enormous amount of literature on clustering techniques, it would be
impossible to include all the different clustering procedures in this comparison,
so a brief selection of techniques similar to the one introduced here have been
considered:

e CLUES algorithm (CLUstEring based on local Shrinking), proposed in
Wang, Qiu and Zamar (2007), is an iterative algorithm closely related to
the mean shift algorithm, but in which the shift is performed at each itera-
tion by computing the coordinate-wise median of the K-nearest neighbors
of the previous iteration point.

e PDFC algorithm (PDF Clustering), proposed in Azzalini and Torelli (2007),
is also based on a kernel density estimate. Its high density regions are
computed and the connected components of this regions are identified as
sample clusters. The bandwidth used in the kernel estimate is just a diag-
onal normal scale rule-of-thumb for the density (not the density gradient),
multiplied by a subjectively chosen shrinkage factor 3/4 to correct for
oversmoothing. We are aware of the existence of other clustering meth-
ods based on high density regions, as for instance Cuevas, Febrero and
Fraiman (2001) or Rinaldo and Wasserman (2010), but decided to include
in this admittedly limited study only the PDFC algorithm due to its sim-
plicity.

e MCLUST algorithm (Mixture model CLUSTering), as surveyed in Fraley
and Raftery (2002), is included in the comparison since it can be recog-
nized as the parametric golden standard.

These three methodologies are compared with mean shift clustering using un-
constrained bandwidth matrices for density gradient estimation obtained with:
1) the normal scale rule derived in Chacén, Duong and Wand (2011) (labeled
NR), 2) the cross-validation bandwidth (labeled CV), 3) the plug-in bandwidth
(labeled PI), and 4) the smoothed cross-validation bandwidth (labeled SCV).

The comparison is made along five test clustering problems, generated by five
bivariate mixture densities that have been chosen to investigate the performance
of the methods in a typical parametric setup (two normal mixture densities) and
in situations with non-ellipsoidal cluster shapes, having also different scales.
Specifically, the five mixture densities in the study are:

1. Trimodal IIT density from Wand and Jones (1993).

2. Quadrimodal density from Wand and Jones (1993).

3. 4-crescent model. This model is intended to mimic the distribution ex-
plored in Figure 7 of Comaniciu (2003). Since an explicit expression of the
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x
x

Fic 4. Samples of size n = 800 from each of the models considered in the clustering simulation
study. Different cluster membership is indicated with different plotting characters and colours.

density function is not given there, our model has been generated as a suit-
able modification of Experiment 4 in Fukunaga (1990, p. 546). Namely,
a bivariate random vector X is defined to have a crescent distribution
with center O € R2, radius r > 0 and convexity indicator x € {0, 1},
denoted C(O,r, k) if X = O + (rcos®,(—1)*rsin®)" + U, where ©
is normally distributed with mean 7/2 and variance (7/6)? and U is a
bivariate centred normal vector with variance matrix (r/20)2I,. Then,
the 4-crescent model is the equally weighted 4-component mixture density
with components C'((—1,1)",1,1), C((0,0.5)",1,0), C((0,0)",0.5,1) and
C((0.5,-0.5)",0.5,0).

4. Broken ring model. This model aims to reproduce the sampling scheme
shown in Figure 3 in Wang, Qiu and Zamar (2007). Precisely, a bivariate
random vector X is defined to have a standard half-crescent distribution
with mean angle 6, denoted HC () if X = (cos©,sin©)" + U, where
© is normally distributed with mean @ and variance (7/12)? and U is a
bivariate centred normal vector with variance matrix (1/20)?I. Then, the
broken ring model is the 5-component mixture density having a centred
normal component with variance (1/5)?Iy and weight 1/4, and four stan-
dard half-crescent components with equal weights 3/16 and mean angles
/4, 3w /4, 5w /4 and Tw/4, respectively.

5. Eye model. This model is a variation of the former. It is also a 5-component
mixture density with a centred normal component with variance (1/5)?I5
as before, but with a weight 1/20. The other 4 components are centred
crescent distributions (i.e., O = (0,0)"), two of them with radius 1 and
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TABLE 2
Average adjusted Rand index (ARI) for 100 simulation runs of size n = 500 of each
distribution
NR CV PI SCV CLUES PDFC MCLUST
Trimodal 11 0.700 0.694 0.752 0.546 0.583 0.754 0.715
Quadrimodal 0.518 0.617 0.630 0.505 0.519 0.641 0.790
4-crescent 0.569 0.920 0.913 0.932 0.805 0.834 0.481
Broken ring 0.983 0.918 0.983 0.986 0.984 0.975 0.811
Eye 0.606 0.742 0.765 0.585 0.548 0.544 0.420

the two possible convexity indicators, respectively, having weight 1/8 each;
and the other two with radius 1.5 and also the two possible convexity
indicators, but with weight 7/20 each, and rotated 90 degrees.

A clearer picture of all these models is provided by Figure 4, which shows
samples of size n = 800 for each of them.

In common with Azzalini and Torelli (2007); Wang, Qiu and Zamar (2007)
and many others, the performance of each clustering method is measured through
the adjusted Rand index (ARI), which was introduced by Hubert and Arabie
(1985) as a corrected-for-chance version of the proportion of agreements between
two partitions of a given data set. This index is the overall preferred accuracy
measure in the simulation study of Milligan and Cooper (1986). An ARI value
of 1 indicates that all estimated memberships are the same as the true member-
ships, whereas a value close to 0 indicates that the estimated cluster assignation
does not differ much from random assignment. For the comparison, 100 samples
of size 500 were drawn from each of the five test models, the data were clus-
tered according to the seven methods in the study (four mean shift procedures
plus CLUES, PDFC and MCLUST) and the ARI was computed to measure the
performance of each method for each of these data sets. Table 2 presents the
average ARI values obtained.

In view of Table 2, none of the methods compared is uniformly the best. In
the group of the mean shift procedures, the use of the PI bandwidth seems to
exhibit the best overall performance. The CV choice can be rated second best,
with similar or even slightly (but not significantly) better average ARI in some
cases. The SCV bandwidth shows an unexpectedly inferior performance for the
normal mixture models, but it has an acceptable behaviour for the models with
non-standard cluster shapes. Finally, the normal scale rule NR is clearly inferior
in four out of the five models, but it performs surprisingly well for the broken
ring model; since it is the least intensive method in computational terms, it
could be useful at least to provide a quick initial analysis, especially in higher
dimensions.

The comparison with the parametric method MCLUST followed the expected
guidelines: for the normal mixture models MCLUST showed good results, espe-
cially for the difficult quadrimodal density, but it seems unable to adapt itself to
the non-standard cluster shape situations. On the contrary, CLUES is not very
powerful for a standard setup with ellipsoidal clusters, but seems to performs
reasonably well for non-standard problems. Finally, PDFC shows remarkable
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results in the simulation study, in spite of the ad hoc choice of the bandwidth in
which it is based, and its performance is comparable to that of the best mean
shift procedure, with the only exception of the eye model. Surely a more care-
ful study of the bandwidth selection problem would improve the quality of the
PDFC method further.

5.2. Real data examples

The mean shift algorithm in conjunction with the new proposed bandwidth
selection rules was also applied to some real data sets. It is well-known that the
kernel density estimator tends to produce spurious bumps (i.e., unimportant
modes caused by a single observation) in the tails of the distribution, and that
this problem seems enhanced in higher dimensions, due to the empty space
phenomenon and the curse of dimensionality (see, for instance, Simonoff, 1996,
Chapter 4). For real data sets, this may result in a number of data points forming
singleton clusters after applying the mean shift algorithm.

Furthermore, in some applications the researcher may be interested in form-
ing more homogeneous groups so that, say, insignificant groups of size less than
a% of the biggest group are not allowed in the outcome of the clustering algo-
rithm. This goal can be achieved as follows: apply the mean shift algorithm to
the whole data set and identify all the data points forming groups of size less
than a% of the biggest group, then leave those singular data points out of the
estimation process in the mean shift algorithm and re-compute the data-based
bandwidth and the density and density gradient estimators in (4) using only
non-singular data points. Since the mean shift algorithm produces a partition
of the whole space, these left-out data points can be naturally assigned to any
of the corresponding newly obtained clusters. If this new assignment again con-
tains insignificant clusters then iterate the process until the eventual partition
satisfies the desired requirements. This correction is similar (although a little
different) to the stage called “merging clusters based on the coverage rate” in
Li, Ray and Lindsay (2007), and will be referred henceforth as correction for
insignificant groups.

5.2.1. FE.coli data

The E. coli data set is provided by the UCI machine learning database repository
(Frank and Asuncion, 2010). The original data were contributed by Kenta Nakai
at the Institute of Molecular and Cellular Biology of Osaka University. The data
represent seven features calculated from the amino acid sequences of n = 336
E.coli proteins, classified in eight classes according to their localization sites,
labeled imL (2 observations), omL (5), imS (2), om (20), pp (52), imU (35),
im (77), cp (143). A more detailed description of this data set can be found in
Horton and Nakai (1996). Since two of the original seven features are binary
variables, only the remaining five continuous variables (d = 5), scaled to have
unit variance, were retained for the cluster analysis.
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The number of groups identified by the mean shift procedure with correction
for insignificant groups (using @ = 5% as a default) was 5 for PI and SCV
bandwidths, which is the natural choice if the insignificant clusters imL, omL
and imS are merged into bigger groups. The mean shift algorithm found 6 groups
using the NR bandwidth and 7 with the CV bandwidth. Since in this example
the true cluster membership is available from the original data, it is also possible
to compare the performance of the methods using the ARI. The ARIs for these
configurations were 0.63 (NR, bandwidth), 0.671 (CV), 0.667 (PI) and 0.559
(SCV). In contrast, CLUES and PDFC indicated a severely underestimated
number of groups in the data, namely 3 and 2, respectively, and whereas CLUES
obtains a remarkably high ARI anyway (0.697), the performance of PDFC is
poor for this data set in ARI terms (0.386). MCLUST also gives a reasonable
answer, with 6 groups and an ARI of 0.642.

5.2.2. Oliwe oil data

These data were introduced in Forina et al. (1983), and consist of eight chemical
measurements on n = 572 olive oil samples from three regions of Italy. The
three regions R1, R2 and R3 are further divided into nine areas, with areas
A1 (25 observations), A2 (56), A3 (206) and A4 (36) in region R1 (totalling
323 observations); areas A5 (65) and A6 (33) in region R2 (totalling 98); and
areas A7 (50), A8 (50) and A9 (51) in region R3 (totalling 151). Detailed cluster
analyses of this data set are given in Stuetzle (2003) and Azzalini and Torelli
(2007). Taking into account the compositional nature of these data, they were
transformed following the guidelines in the latter reference, first dealing with
the effect of rounding zeroes when the chemical measurement was below the
instrument sensitivity level and then applying the additive log-ratio transform
to place the data in a 7-dimensional Euclidean space (see Pawlowsky-Glahn and
Buccianti, 2011, for a recent monograph on compositional data). Then, cluster
analysis was carried out over the first five principal components of the scaled
Euclidean variables.

The results of the analysis indicated that whereas some methods seemed to
target the partition of the data into major regions, others tried hard to discover
the sub-structure of areas. This was clearly recognized when the ARIs of the
groupings were computed either with respect to one classification or the other.
Naturally, if a method produced a grouping which was accurate with respect to
major regions, it had lower ARI with respect to the division into areas.

CLUES, PDFC and the mean shift algorithm using the NR bandwidth clearly
favoured grouping the data into major categories. The PDFC method obtained
a remarkable ARI of 0.841 by clustering the data into 3 groups, whereas CLUES
only found 2 groups resulting in an ARI of 0.680. Using the NR bandwidth the
mean shift algorithm achieved an ARI of 0.920 with respect to the true grouping
into major regions; it correctly identified all the data points in regions R1 and
R2, although region R3 appeared divided into several subregions.

In contrast, MCLUST and the mean shift algorithm combined with all the
more sophisticated bandwidth selectors tended to produce groupings closer to
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Fic 5. Significant negative curvature regions (in blue). (Upper left) Plug-in selector r = 0.
(Upper right) Plug-in selector r = 2. (Lower left) SCV selector r = 0. (Lower right) SCV
selector r = 2. The significant curvature regions or modal regions are more clearly delimited
from the surrounding scatter point cloud with the selectors corresponding to second derivative.

the assignment into smaller areas. MCLUST showed the existence of 8 groups
and achieved an ARI of 0.739 with respect to the true distribution into areas.
The mean shift analyses with the CV, PI and SCV bandwidths all found 7
groups, leading to ARIs of 0.741 (CV bandwidth), 0.791 (PI) and 0.782 (SCV).

6. Applications to bump-hunting with feature significance

It is not always easy to interpret visually estimates of multivariate derivatives.
To assist us, we use the significant negative curvature regions of Duong et al.
(2008), defined as the set containing the values of € R? such that the null hy-
pothesis that the Hessian Hf(x) is positive definite is significantly rejected. The
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appropriate kernel test statistic, null distribution and adjustment for multiple
testing is outlined in Duong et al. (2008) and implemented in the feature li-
brary in R. Significant negative curvature regions corresponds to a modal region
in the density function, and hence a local maxima in data density. These au-
thors focused on the scale space approach of smoothing and so did not develop
optimal bandwidth selectors for their density derivative estimates.

Here, we compare the significant curvature regions obtained using a usual
r = 0 bandwidth selector to those with an r = 2 optimal bandwidth in Figure 5
on the earthquake data from Scott (1992). The recorded measurements are
the latitude and longitude (in degrees) and depth (in km) of epicenters of 510
earthquakes. Here, negative latitude indicates west of the International Date
Line, and negative depth indicates distances below the Earth’s surface. The
depth is transformed using —log(—depth). For these transformed data, we use PI
selectors Hpr o and Hpr 2 and SCV selectors Hgcv,o and Hgcv 2.

As expected from asymptotic theory, bandwidths for Hessian estimation are
larger in magnitude than bandwidths for density estimation. Moreover only the
central modal region is present using Hpy o, whereas with Hpy 2, the three local
modal regions are more clearly delimited from the surrounding space, confirming
the three modes obtained with subjective bandwidth selection by Scott (1992).
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Appendix A: Proofs

Henceforth the following assumptions are made:

(A1) K is a symmetric d-variate density such that [zz ' K(x)dzx = mo(K)Iy
and all its partial derivatives up to order 2r + 1 are bounded, continuous
and square integrable.

(A2) f is a density function with all its partial derivatives up to order 2r + 6
bounded, continuous and square integrable.

(A3) H = H,, is a sequence of bandwidth matrices such that all entries of
n~HH["Y2(H-1)®" and H tend to zero as n — oo.

These do not form a minimal set of assumptions, but they serve as useful start-
ing point for the results that we subsequently develop. Besides, in this section
integrals without any integration limits are assumed to be integrated over the
appropriate Euclidean space. We also assume that suitable regularity conditions
are satisfied so that the exchange of term-by-term integration and differentiation
of Taylor expansions are well-defined.
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Proof of Lemma 1. Reasoning as in Lemma 1 in Duong and Hazelton (2005a),
it follows that vec(H, — Hymsg,») is asymptotically equivalent to

—[D%_IMISET (HMISEyT)]ilDH[l\TI—S\ET — MISET](HMISE_’T),

where D% = 9%/(0vec HOvec” H) denotes the Hessian operator corresponding
to Dy Therefore, it suffices to show that D MISE, (Hyisg,») = O(J42). But for
any H with entries of order O(n=2/(4+27+4)) "as Hyjisg, -, the results in Chacén,
Duong and Wand (2011) imply that MISE, (H) is equivalent to AMISE, (H)
and, moreover, the smoothness assumptions ensure that Df;MISE, (H) is of the
same order as D;AMISE, (H). And it is not hard to show that for the asymp-
totic integrated squared bias term we have D%_I{IZJ;T+4(V€C L ® (vec H)®?)} =
O(J42) and similarly for the asymptotic integrated variance, thus finishing the
proof. O

A.1. Convergence rate for the CV bandwidth

Lemma 1 shows that Vec(I:ICVm — Hyisg,») is asymptotically equivalent to
Du[CV, — MISE,|(Hmisg,»)- Since E[CV,.(H)] = MISE, (H) — tr R(D®" f) for
all H, it follows that the order of Vec(I:ICVW — Hwmisg,») is given by the (root)
order of

Var {Dg[CV, — MISE,|(Hyisg,r) }

~ Var { n — 1 -1 Z DH VeC )®T(D®2TK) (Xl - XJ)} ’H*HMISE }a
i#j "

where K = KK —2K. So denoting ¢y (x) = D[ vec” (H™1)®"(D®?" K)g ()],
by standard U-statistics theory the previous variance is of the same order as
dn~1(E — Eg) + 2n 25y, where

= Elpu (X1 — X2)pu(Xi — X3) ']

= Elpu (X1 — Xa)pu(Xi — X3) ]

= Elpn (X1 — Xo)|E[pg (X1 — Xo)]

with H of the order of Hwmisg,, namely having all its entries of order
O(n—2/(d+2r+4))  The following lemma provides an explicit expression for the
function () that will be helpful to evaluate E,,p =0, 1,2

o m

ju

Lemma 2. The function py(x) can be explicitly expressed as pgp(x) =
A(D®* K)g(z) + Bpgy(x) where the function p: RY — R s given by
p(x) = (Ipr @ x @ I)DEC TV K (x) and the matrices A = A(H) € Mgz g2,
B =B(H) € Mg2yq2r+2 are defined as
A=—L(vec' H* " @vecH ') — r(vec’ H®~ r=1) @ H®~2)
B=—[vec' H* " @ (H/?9oHY? + I, H) !

where we understand that H®~" = (H~1)®" = (H®")~!
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Proof. Since vec! H®~"(D®?" K)i(x) = |H|"/2vec H®"D® K (H~/x),
its differential is decomposed into three terms
d(vec” H®"(D®*" K)u(z)) = d(|H|~*/?) vec" H®"D®*" K (H'/?z)
+ [H|"Y2(dvecH® ") TD®?" K (H~ /%)
+ [H|"Y2vecT H®"d(D¥* K (H™'/?x)).
From Chacén and Duong (2010), the differentials involved in the first two terms
can be expressed as
d(H|Y?) = ~3/H|7Y?(vec" H ')dvecH and
d(vecH® ") = —T, [vec H®~ "1 @ H®2)d vec H,

where T, is a matrix such that T',) D®?" = rD®2". For the third term,

vec! H®"d(D®*" K (H™'/?z))
=vec! H*"((D®*'D")K)(H /2z)d(H "/ *z)
=D RK(H22)T (vecH® " @ I)d(H™/?x)

3

since [D(DT)®%"]vec H®™" = vec (I;[D(D7)®*]vecH® ") = (vec' H® ™" ®
I,)D®?" 1, Finally, using dvecH /2 = —(H'/2@H+H®H'/?)"'dvec H from
Chacén and Duong (2010), it follows that d(H™/?z) = (2" @ I3)dvecH /2 =
—(2"H 2 21,;)(1; @ H+ HY2 @ H/2)"1dvec H. Thus the derivative reads
D (vec H®"(D®*" K)u(z))
— —%|H|71/2(vecT H® " @ vecH 1)D®?" K (H™/?x)

_ T‘|H|_l/2(veCT H®—(r—1) ® H®—2)D®2TK—(H—1/2$)

_ |H|71/2(H1/2 ® H1/2 +L® 1_1)71(1_171/2m ® Id)

x (vec! H® ™" @ 1,)D®¥ H1 K (H™ Y 2x).

The central factors of the third term on the right hand side can be rewritten as

H'7ZoH"? + 1,0 H) ' (H %2 @ 1) (vec" H® " @ 1)
=H72QHY?+1;0H) Y(vec' H* " @ H 22 9 1)
=vec' H¥ " @ [(H?0H'? + L, o H) '(H 222 1,)]
=[vec ' H® " @ (H? @ HY/? + I; ® H) (L2 @ H 22 9 1),

as desired. O

We now return to the task of finding the asymptotic order of Eg, E; and =.
For that, some preliminary notation is needed. For any real function a we denote
its vector moment of order p as p,(a) = [z, ®*Pa(x)dx. For instance, Chacén

and Duong (2011) showed that p1o(K) = —1, p, (K) = po(K) = p3(K) = 0 and
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py(K) = 6mg(K)%284.4(vecI1)®2, where 84, denotes the symmetrizer matrix
of order r (see Holmquist, 1985), defined as the (only) matrix such that pre-
multiplying a Kronecker product of any 7 vectors in R¢ by S, results in the
average of all possible permutations of the r-fold product. We also introduce
here the notation K, ,, for the commutation matrix of order mn x mn (Magnus
and Neudecker, 1979).

So taking this into account, for the calculation of the asymptotic order of ),
a fourth order Taylor expansion of D®?" f(x — H'/22), in the form of Kollo and
von Rosen (2005, Theorem 1.4.8) or Chacén, Duong and Wand (2011), gives

(D®*"K)u * f ()
_ /D®2TK(z)f(w _HY2z)dz

= (H1/2)®2T/K(Z)D®2Tf($ —H'22)dz

4 p
~ (HY/2)92" Z (_p—lv) /f((z) [Lpr ® (2 H'Y/2)®P]DOX P f () dz
p=0

_ (H1/2)®2T Z (_1!)10 [Id27‘ ® (HP(K)T(HI/Q)(@Z))} D®2T+pf(w)

p=0
= —(HY2)®2 D" () + tma(K)*(HY?)®? [Tz @ ((vec H)®2S44)]
x DE2H £ ()
= —(H2)B2DE f(z) 4 Ly (K)2 [(HY2)%% @ (veeT H)2|DE>+4 f(z),
Therefore, since vec! H®~"(H'/?)®?" = vec' I;» and Dy (vecH)®? = (I;2 ®
vec H)(Iz1 + Kz 42), we obtain
eu * f(x)
=Dn [VQCT H® " (D®? Ky * f()]
~ Du{im(K)*[vec' I ® (vec” H)®?|D®¥ 4 f(z)}
ma(K)?(vec" I @ Ipz @ vee! H)[Tg2r @ (Igz + Kz 42) D2 f ()
ma(K)?(vec” Iy @ Ipz @ vee! H)D®? H f ().

N[= =

Using this,
Elpg (X —Xs)] = /‘PH * f(z) f(z)dx
~ Ima(K)? (vee Ir © 12 @ veeT H)ahy, 4

and g = O(J42) vecHvec " H.
Similarly,

= - / ou * f(@)pn * ()" f(z)dz
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~ imQ(K)‘l(vecT Iy ® I @ vee! H)

« { / D®2r+4f(m)D®2r+4f($)Tf(m)dw} (vec Iir @142 ® vec H)
=0(Jg2)vecHvec H.

Finally, note that E; = [H|7/2E[(¢e )u(X1 — X)], where ¢(z) =
A(D®?"K)(z) + Bp(x), which also depends on H through A and B. Besides,

Bllpe (X - Xo)] = [ [ (00T @) 1) 0 + B2 dydz

~Mﬁ/¢@wwfw

which, in view of Lemma 2, leads to By = O(Jg|H|"Y/2)vecH® (1)
vec! H®~(+1),

Putting all these together, since every element of Hysg, is O(n_2/(d+2r+4)),
4n_1(51 — Eo) + 2n_252 ~ O(sz n_d/(d+2r+4)) vec HMISE,T VGC—r HMISE,r

and therefore VeC(I:IC\/)T — Huyiser) = O(Jg2n =9/ Cd+4718)) voc Hyprsg, -

A.2. Convergence rate for the PI bandwidth

Henceforth, in addition to (A1)-(A3) the following assumptions on the pilot
kernel L and the pilot bandwidth G are made:

(A4) L is a symmetric d-variate density such that [xz L(z)dz = mo(L)Iy
and all its partial derivatives up to order 2r + 4 are bounded, continuous
and square integrable.

(A5) G = G, is a sequence of bandwidth matrices such that all entries of
n~HG[72(G1)® 2 and G tend to zero as n — oc.

To make use of Lemma 1 once more, notice that the difference between the
MISE and its estimate is

PL.(H) — MISE, (H) ~ (_1)T%K)2(":b2r+4(c') - ¢2r+4)T (VeC Lo @ (vec H)®2)

so taking into account Dy (vec H)®? = (I2 ® vec” H)(Lj + K2 42) again, we
come to

Du[P1,.(H) — MISE, (H)] ~ (—1)" 2209 (vec T T ® T2 ® vec | H)
X (12’2r+4(G) = Po,44),

so that the performance of Hpy . is determined by the performance of 95, (G)
as an estimator of ¥, 4.

From Theorem 2 in Chacén and Duong (2010) the optimal pilot bandwidth G
for the estimator y,,,(G) is of order n~2/(+2+6) Jeading to
E[|92,44(G)=ta,14l|?] = O(n="/(#+2749)) ‘and then D[P, (H) - MISE, (H)]
= Op(n=2/(+2r+6)J 1) vec H. So finally we arrive to Vec(I:IpLT — Huisg,r) =
Op(n=2/(d+2r+6)J 1) vec Hypsg by applying Lemma 1.
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A.3. Convergence rate for the SCV bandwidth

As in Chacén and Duong (2011), it can be shown that the function MISE, can be
replaced for MISE2,. everywhere in the asymptotic analysis, since the difference
between their respective minimizers is of relative order faster than n~'/2, which
is the fastest attainable rate in bandwidth selection (Hall and Marron, 1991).

So to apply Lemma 1 it is also possible consider MISE2,. instead of MISE,.,
hence we focus on analyzing the difference SCV,(H) — MISE2,(H) at H of the
same order as Hysg,». To begin with, note that using a fourth order Taylor
expansion of D®?"L(G~1/2x — G~1/2H'/22) results in

Ag * D®*" Lg(x)
= /AH(z)D‘mrflg(w —z)dz

= |G|71/2(G71/2)®2’r‘/A(Z)D®2TL(G71/2w _ G71/2H1/2z) d=
~ |GV (GT2)e2r
—1)? [ . )
@/A(z)[ldzr ® (ZTH1/2G71/2)®ZJ]D®2T+pL(G71/2m) dz
p!
K)2|G|~Y2(G™Y/2)92" Lo, @ (vec T H)®2(G /24 DO HL (G 1/ 2g)
K)YG| Y212 @ (vec” H)®2)(G™1/2)@@r+0)p@2r+4 T (G—1/2)
K)?[Igr @ (vec” H)®?D® H Lg (),

X
3
-

g

N N N
)
—~ —~ —~ O

ma

where we have made use of the fact that po(A) = pq (A) = py(A) = pg(A) =0
and py(A) = 6ma(K)2S44(vecly)®2, and that the entries of G™'H tend to
zero as a consequence of (A3) and (Ab).

This asymptotic approximation is then used to expand the terms in

E[SCV,(H) — MISE2,(H)] = (—=1)" vec' I {n_lﬁH * D®?"Lg(0)

+(1=n HE[(Ag xD¥"Lg)(X1 — Xa)] — /AH * DO f(x) f(x) dw}.

Precisely, for the first term we have
Ap * D®¥ L (0) ~ Lo (K)?|G| Y2 [Lzr @ (vee” H)®2)(G—1/2)@2r+4
X D®27‘+4E(0),

and for the second term
E[(An * D®*"Lg)(X; — X»)]

~ Amy(K)?[Lger @ (vec! H)®?] // DM Lg(x —y)f(x)f(y) dedy

= 2my(K)?[Lper ® (vec| H)®?] // La(x —y)D®* T f(x) f(y) dedy
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~ (K) Tg2r ® VeC ®2 // Z L [Tg2r+a @ (w TG1/2)®p]

pOp'

x DEXHP f(y) f(y) dwdy

2 P _
= Lmy(K)?[Lzer @ (vec” H)®? Z (_pll) Tgzr+s ® {MP(L)T(G1/2)®p}]¢2r+4+p

p=0
= gma(K)*[Lr @ (vec H)®Jahy, s + gma(K)?*ma(L)
x [Lgzr ® (vec! H)®? @ vec” Glap,, .
since po(L) = 1,puy(L) = 0 and py(L) = 2uy(L) = 2mso(L) vecIy. Finally,

noting thatD®2TKH (H_1/2)®2T(D®2TK)H and making use of the previously
obtained expansion for (D®2" K )y  f, the third term is

[ Bu <0 f(@)f(@)de = [ 05 Rn s f(a)f(@) do+ b,
~ 2my(K)? [Tger @ (vec” H)®? |4y, 4.
Thus,

E[SCV, (H) — MISE2, (H)]
~ ima(K)?n G| 2 [vee " Igr @ (vec! H)®2|(G1/2)@2rHD@2rHL (o)
+ 2ma(K)*my (L)[vec" Ipr ® (vec” H)®? @ vec' Glapy, g

Calculations in Section 3 give G is order n—=2/(27+4+6) a5 for the plug-in selector,
so substituting to this into the derivative of the previous equation yields

E{Du[SCV,.(H) — MISE2,(H)]} = O([n"'|G|72(tr G) "2 + tr G|J 2) vec H
= O(n~Y/Cr+d+6)3 1) vec H.

Lemma 1 shows that vec(I:ISCVVT — Hynise,r) is asymptotically equivalent to
Du[SCV, — MISE2,|(Hmisg,r). Since it was stated in Section 3 that
E[Hvec(I:ISCVW — HMISE,T)HQ} is dominated by its squared bias term, then
vec(Hscv,r — Husg,r) = Op(n=2/2r+4460) 3 1) vec Hynisr, -
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