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Abstract-A quantitative rule is a rule associated with quantita- 
tive information which assesses the representativeness of the rule 
in the database. In this paper, an efficient induction method is 
developed for learning quantitative rules in relational databases. 
With the assistance of knowledge about concept hierarchies, data 
relevance, and expected rule forms, attribute-oriented induction 
can be performed on the database, which integrates database 
operations with the learning process and provides a simple, 
efficient way of learning quantitative rules from large databases. 
Our method learns both characteristic rules and classification 
rules. Quantitative information facilitates quantitative reasoning, 
incremental learning, and learning in the presence of noise. More- 
over, learning qualitative rules can be treated as a special case 
of learning quantitative rules. Our paper shows that attribute- 
oriented induction provides an efficient and effective mechanism 
for learning various kinds of knowledge rules from relational 
databases. 

Index Terms- Knowledge discovery in databases, machine 
learning, attribute-oriented induction, quantitative rules, charac- 
teristic rules, classification rules, data-driven learning algorithms. 

I. INTRODUCTION 

T HE growth in the number of available databases far out- 
strips the growth of corresponding knowledge bases. This 

creates both a need and an opportunity for extracting knowl- 
edge from databases. By learning from databases, interesting 
relationships among data can be discovered automatically, and 
the extracted knowledge may facilitate deductive reasoning 
and query processing in database systems. 

Relational database systems provide many attractive fea- 
tures for machine learning. Relational databases store a large 
amount of information in a structured and organized manner. 
Each tuple in the database can be viewed as a typed logi- 
cal formula in a conjunctive normal form. Such uniformity, 
together with the well-developed relational technology [19], 
[21], facilitate the development of efficient database learning 
algorithms. 

Different kinds of knowledge rules can be learned from 
databases. A learned rule can be either a qualitative rule 
or a quantitative rule, where the former does not associate 
quantitative information whereas the latter does. For example, 
the statement, the salaries of professors of Applied Sciences 
are high, is a qualitative rule while the statement, the salaries 
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of 60% professors of Arts are high, is a quantitative rule. A 
quantitative rule provides statistical information about the rule, 
which facilitates quantitative reasoning, incremental learning, 
and learning in the presence of noise and exceptions. 

From another point of view, a learned rule can be either 
a characteristic rule or a classification rule. A characteristic 
rule is an assertion which characterizes the concept satisfied 
by all of the relevant data in the database. For example, the 
symptoms of a particular disease can be summarized as a 
characteristic rule. Alternatively, a classification rule is an 
assertion which discriminates the concepts of one class from 
others. For example, to distinguish one disease from others, a 
classification rule summarizes the symptoms that discriminate 
this disease from others. 

A major challenge of learning in databases is computational 
efficiency. Our approach strives for efficiency in two as- 
pects: i) knowledge-directed learning and ii) attribute-oriented 
induction. The former is achieved by providing knowledge 
about the learning task, the concept hierarchies, and the 
expected rule forms. The latter is achieved by attribute- 

oriented concept tree ascension. These techniques substantially 
reduce the search space and improve the efficiency in a 
database learning process. 

In this paper, our study is on the learning of quantitative 
rules from relational databases. The paper is organized as 
follows. The primitives required for learning from databases 
are discussed in Section II. Learning principles and algorithms 
are presented in Section III. Variations of these learning 
algorithms are discussed in Section IV. A comparison of our 
method with others is presented in Section V. The application 
of learned rules is discussed in Section VI, and the concluding 
remarks are provided in Section VII. 

II. KNOWLEDGE REQUIRED FOR LEARNING FROM DATABASES 

Given a number of facts, generalization can be performed in 
many different directions [6], [13]. In order to constrain a gen- 
eralization process and extract interesting rules from databases, 
learning should be directed by background knowledge, such as 
knowledge contained in concept hierarchies, and learning task 
specifications, such as the specifications of task-relevant data 
(data relevance) and expected rule forms (rule expectance). 

A. Concept Hierarchy 

The concept hierarchy provides valuable information for 
inductive learning [9], [18]. By organizing different levels of 
concepts into a taxonomy, candidate rules can be restricted 
to formulas with a particular vocabulary (conceptual bias [9]) 
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Fig. 1. A concept hierarchy for the attribute City. 

and be described by higher level concepts, which permits a 
learned rule to be represented in a simple and explicit form. 

Knowledge about concept hierarchies can be directly pro- 
vided by domain experts. A concept hierarchy is often related 
to a specific attribute and is partially ordered according to 
general-to-specific ordering. The most general point is the null 
description (ANY), and the most specific points correspond 
to the specific values of an attribute in the database. For 
example, the concept hierarchy of an attribute City may form 
a taxonomy as shown in Fig. 1. Although a database could be 
large, a concept hierarchy can be organized by experts with 
a reasonable effort because only distinct attribute values may 
correspond to the nodes in a concept hierarchy of that attribute. 

Concept hierarchy information may also be implicitly stored 
in the database. For example, the information about Fig. 
1 may actually be stored in a data relation. In order to 
utilize the information, the hierarchical relationship among 
attributes should be explicitly indicated at the schema level. 
For example, the hierarchical relationship for the attribute City 
can be indicated in the database schema as “city in province in 
country,” (that is, city is a lower level concept of its province, 
etc.). Then the taxonomy about the attribute City can be 
retrieved from the database and be used in the learning process. 

Alternatively, a concept hierarchy can be constructed auto- 
matically based on clustering behavior and database statistics. 
The automatic construction of discrete attributes from numeri- 
cal values can be performed by first obtaining the distribution 
of attribute values in the database and then setting the ranges 
of the values and performing more detailed classifications for 
more densely clustered ranges. For example, the concept hier- 
archy for an attribute grade point average (GPA) of graduate 
students can be constructed based on the database statistics. 
Suppose that all the GPA’s are between O-4, and most GPA’s 
for graduates are clustered between 3 and 4. Then we may 
classify the values into three clases, [O-1.99], [2-2.991, and 
[3-4], and then perform a more detailed classification for those 
in [3~l]. Such a statistical technique can also be performed on 
the attributes with discrete values under certain circumstances 
[7]. For example, if the birth place of most employees are 
clustered in Canada and scattered in many different countries, 
the top-most level (except NULL) concepts for birth place can 
be categorized as Canada and foreign. 

In our discussion, we assume that the concept hierarchies 
are given and are in the form of balanced concept trees. The 
handling of other kinds of concept hierarchies is discussed in 
Section IV. 

B. Database Relevance 

Although a relational database stores a large amount of 
data, usually only a portion of it is relevant to a specific 
learning task. Clearly, preprocessing should be performed to 
extract and group the task relevant data from a database before 
generalization. The preprocessing can be viewed as a relational 
query which takes a learning request as a retrieval command 
to search for the necessary sets of data from the database and 
group them according to the learning task. 

When learning a characteristic rule, the set of data being 
considered (undergoing learning) is called the target class of 
the learning process. When learning a classification rule, it is 

necessary to collect the set of data being considered (undergo- 
ing learning) and the set(s) of data being used for contrasting. 
In this case, we call the set of data being considered the target 
class and the set(s) of data used for contrasting the contrasting 
class(es). For example, to extract the characteristics of profes- 
sors in Computing Science, only the data relevant to those 
professors are retrieved and grouped into one class, the target 
class. To distinguish the professors in Computing Science from 
the instructors in the same department, only the data relevant to 
them are retrieved but are grouped into two classes, the target 
class for those about professors and the contrasting class for 
those about instructors. 

In most learning-from-examples algorithms [6], [9], the 
examples undergoing learning are partitioned into positive and 
negative sets. However, since a relational database does not 
store negative data in general, there are usually no explicitly 
specified negative examples. When learning a characteristic 
rule, we should bear in mind that there are no negative 
examples for specialization, and the generalization on the data 
in the target class should be performed cautiously to avoid 
over-generalization. Alternatively, when learning a classifi- 
cation rule which distinguishes the properties in the target 
class from those in the contrasting class(es), we may treat 
the tuples in the target class as positive data and those 
in the contrasting class as “negative” data. However, we 
should notice that the data in the contrasting class(es) do 

not imply that similar data cannot appear in the target class, 
but imply that they cannot be used to distinguish the target 
class from the contrasting class. Thus such a kind of data is 
different from the negative data in the target class. Therefore, 
generalization should still be performed conservatively to 
avoid over-generalization. Data in the contrasting class are 
used to exclude the properties shared by both classes. Such 
an exclusion of the shared data results in a condition which 
is sufficient but may not be necessary for the data to be in 
the target class. This will be explained further in Section 
III. 

Preprocessing can be specified by a relational-like language 
interface and implemented by relational operations. For exam- 

ple, the join and projection operations are often necessary to 
collect data from several task relevant relations. The group by 
operation (in SQL syntax) is useful at clustering data according 
to the target class and the contrasting classes, respectively, for 
learning classification rules. Even aggregate operations could 
be useful if the task is relevant to some aggregate properties. 
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TABLE I 

A TUPLE Is ESSENTIALLY A LOGICAL FORMULA 

Name Sex Age Birth-place Department Position 

Benson male 45 Vancouver cmpt full-prof 

Salary 

63 000 

A learning task may refer to some nonprimitive data, 
where primitive data are those data stored in data relations 
and nonprimitive data are those data appearing only in 
concept hierarchies. In this case, nonprimitive data should 
be mapped to the primitive ones in order to find the task 
relevant data in the database. For example, suppose the concept 
hierarchy contains the information about the professors such 
as “{ assistprof, assocprof, fullprof) c professor” and the 
database contains a relation Employee with the scheme: 

Employee = (Name, Sex, Age, Birthplace, 
Department, Position, Salary). 

If the task is to learn a characteristic rule which describes the 
relationship among position, age, and salary of the professors 
in Computing Science, the corresponding SQL query for 
preprocessing should be 

select Position, Age, Salary 

from Employee 
where Position = “professor” and Department = 

“Computing Science.” 
Notice that “professor” is nonprimitive data, which should 

be mapped to the set of corresponding primitive data in query 
processing, that is, the SQL expression 

Position = “professor” 
should be mapped to 

Position E {“assistprof,” “assocprof,” 

“fillprof’}, 
or, in SQL: 

(Position = “assistprof’ or 
Position = “assocprof’ or Position = “fullprof’). 

By preprocessing, data relevant to the learning task are 
collected into one relation, which is called the initial data 
relation. Our later discussion is focused on the induction 
process on the initial data relation. 

C. Rule Expectance 

According to the theory of logic and databases [8], [21], 
data in relational databases correspond to logical formulas in 
the first-order logic. Each tuple in a relation can be viewed as a 
logical formula in conjunctive normal form. For example, the 
tuple in Table I represents a logical formula (1). Multiple tuples 

can be viewed as a logical formula in disjunctive normal form. 
1) 3x ((Name(x) = Benson) A (Sex(x) = male) A (Age(x) = 

45) A (Birthplace(x) = Vancouver) A Department(x) = cmpt 
A (Position(x) = full-prof) A (Salary(x) = 63000)). 

Similarly, the intermediate and final learning results can be 
represented in relational forms called generalized relations. 
Learning can be viewed as a sequence of processes each 
of which transforms a less generalized relation to a more 
generalized relation. Each generalized relation is essentially 
a logical formula in disjunctive normal form or a conjunctive 
normal form if it contains only one tuple. 

To control the learning process, it is often necessary to 

specify the expected rule form by a generalization threshold, 
which is the maximum number of tupels in the target class of 
the final generalized relation, that is, the maximum number of 
disjuncts in the resulting formula. The generalization threshold 
should be a small positive integer which indicates the expected 
maximum number of tuples in the final generalized relation. 
The threshold value can be specified or predefined by a user, a 
database administrator, or a domain expert. There is a trade-off 

between a small threshold value and a moderately large one. 
A small threshold leads to a simple rule with a few disjuncts. 
However, it may result in over-generalization and the loss of 
some valuable information. On the other hand, a relatively 
large threshold may preserve some useful information, but it 
may result in a relatively complex rule with many disjuncts 
and some semi-generalized results. Therefore, fine tuning of 
thresholds is often necessary in the learning process; this 
fine tuning can be performed interactively by domain experts 
and/or users. 

If the threshold value is one, the final generalized relation 
contains only one tuple (a conjunctive rule). Otherwise, it con- 
tains a small number of tuples (a disjunctive rule). Although 
many learning algorithms [13] can learn only conjuctive rules, 
it is necessary to provide the flexibility to learn conjunctive 
rules as well as disjunctive rules in database applications 
because of the diversity of data in large databases. 

III. PRINCIPLES AND ALGORITHMS 

FOR LEARNING FROM DATABASES 

We first present the principles and algorithms for learning 
characteristic rules from databases and then extend them to 
learning classification rules. 

A. Learning Characteristic Rules 

We examine the learning of characteristic rules in databases 
using Example 1. 

Example I: Table II depicts a portion of a data relation 
Employee in a university database. Suppose our task is to learn 
a quantitative characteristic rule for professors in Applied 
Sciences relevant to attributes Name, Sex, Age, Birth-place, 
and Salary. 

Suppose further that the concept hierarchy table is as shown 
in Fig. 2, where A c B indicates that B is a generalized 
concept of A, and ANY(attribute), such as ANY(Position), 
represents the most general concept for the attribute, such 
as Position. Each specified concept hierarchy represents a 
taxonomy of concepts in an attribute domain (a concept tree 
like Fig. 1). 

Before beginning the induction process, preprocessing is 

performed which collects the data relevant to the learning task. 
Notice that professors and Applied Sciences are nonprimitive 
data which should be mapped to the primitive data using the 
concept hierarchy table. 

We now turn our attention to the generalization process. 
First, possible generalizations should be considered on each 
attribute rather than on composite attributes. We then have the 
following strategy: 
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Name 

Anderson 

Bach 

Barton 

Benson 

Sex 

female 

male 

female 

male 

TABLE II 
A RELATION Employee IN A UNIVEMTY DATABASE 

Age Birthplace Department Position 

26 Burnaby cmpt secretary 

38 Ottawa electr-eng lab-manager 

30 Toronto them junior-lecturer 

45 Vancouver cmpt fullgrof 

Salary 

26 000 

41 000 

28 000 

63 000 

Winton male 38 Seattle civil-eng assocgrof 55 400 

Young male 55 Bonn german fullgrof 68 000 

( Bumahy, . Richmond. Vancouver, Victoria ) c B.C. 
( Hamilton. . . . . Toronto ) c Ontario 

( B.C., .._, ontarlo ) c canada 
( BDm”, mcagcl, . . . . Seattle I c U.S. A 

( Bombay. . . ..New Delhi] c India 
( Beijing. Nanjing, .,,, Shanghai ) t china 

I china. India. .._, U.S.A 1 c foreip 
( foreign, Canada ) c ANY (Binh-place) 
( secmary. lal~lnanager 1 c staff 
( junior_lecturer, seniormlecturer ) c instructor 
( assistgmf. asswgmf. fuULpmf1 c professor 

( staK instmctor, pmfessor 1 c ANY (position) 
( cmpt, elec~_eng. _.,, civil_eng ) c Applied-Sciences 

I biology. chemistry. _... physics I c Science 
( english. geman, . . . . music ) c An.3 
( Applied-Sxnces. ARs, .,., Science I c ANY @Xpanmem) 

[ZI-3Q1cyoung 
( 31- 50 ) c mid-age 
(Jl-7OJcold 

( . . . . young. mid-age, old 1 c ANY (Age) 
(2oooO-3wM]cl0w 
(?03X-JM00)cmedium 
(5MOI-100000)chigh 
( .__, low. medium, high ) c ANY (Salary) 

I male. female ) c ANY (Sex) 

Fig. 2. A concept hierarchy table relevant to the learning task. 

TABLE III 
THE GENERALIZED RELATION AFTER THE REMOVAL OF THE ATTRIBUTE NAME 

Sex 

male 

male 

Age 

45 

38 

Birth-place Salary 

Vancouver 63 000 

Seattle 55 400 

Strategy I: (Generalization on the smallest decomposable 
components) Generalization should be performed on the 
smallest decomposable components (or attributes) of a data 
relation. 

Rationale: Generalization is a process of learning from 
positive examples. Generalization on the smallest decompos- 
able components instead of on composite attributes ensures 
that the smallest possible chance is considered in the gen- 
eralization, which enforces the least commitment principle 
(commitment to minimally generalized concepts) and avoids 
over-generalization. q 

The generalization is first performed on each attribute in the 
initial data relation. We examine the task relevant attributes 
in sequence. First, there is no higher level concept specified 
on the first attribute Name. Obviously, the attribute should 
be removed in generalization, which implies that general 
properties of a professor cannot be characterized by the 
attribute Name. A portion of the result relation is shown in 
Table III. This is based on Strategy 2. 

Strategy 2: (Attribute removal) If there is a large set of 
distinct values for an attribute, but there is no higher level 
concept provided for the attribute, the attribute should be 
removed in the generalization process. 

Rationale: This strategy corresponds to the generaliza- 
tion rule, dropping conditions, in learning-from-examples [13]. 

Since an attribute-value pair represents a conjunct in the 
logical form of a tuple, removal of a conjunct eliminates a 
constraint and thus generalizes the rule. If there is a large set 
of distinct values in an attribute but there is no higher level 
concept provided for it, it cannot be generalized using higher 

level concepts and thus the attribute must be removed. Cl 
In Table 111,values in each of the three attributes Age, Birth- 

place, and Salary can be generalized by substituting the lower 
level concepts by their corresponding higher level concepts. 
For example, Vancouver can be generalized to B.C. and then to 
Canada. Such a substitution is performed attribute by attribute, 
which is based on Strategy 3. 

Strategy 3: (Concept tree ascension) If there exists a higher 
level concept in the concept tree for an attribute value of 
a tuple, the substitution of the value by its higher level 
concept generalizes the tuple. Minimal generalization should 

be enforced by ascending the tree one level at a time. 
Rationale: This strategy corresponds to the generaliza- 

tion rule, climbing generalization trees, in learning-from- 
examples [13]. The substitution of an attribute value by its 
higher level concept makes the tuple cover more cases than 
the original value and thus generalizes the tuple. Ascending the 

concept tree one level at a time ensures that the generalization 
shall follow the least commitment principle and thus reduces 
chances of over-generalization. q 

As a result of concept tree ascension, different tuples may 
be generalized to the same tuple. A tuple is redundant if it is 

identical to some tuple(s) of the same class in a generalization 
relation. The removal of redundant tuples reduces the size of 
the generalized relation. To judge whether an attribute needs 
to be further generalized, we have Strategy 4. 

Strategy 4: (Threshold control on each attribute) If the 
number of distinct values of an attribute in the target class is 

larger than the specified generalization threshold value, further 
generalization on this attribute should be performed. 

Rationale: The generalization threshold represents the 
maximum number of tuples of the target class in the final 
generalized relation. If one attribute contains more distinct 
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values than the threshold, the number of distinct tuples in the 
generalized relation must be greater than the threshold value. 
Thus the values in the attribute should be further generalized.0 

TABLE IV 
THE FINAL GENERALIZED RELATION 

After attribute-oriented ascension of concept trees and the 

removal of redundant tuples, the total number of tuples in 
a generalized relation may still be greater than the specified 
threshold. In this case, further generalization is still required. 
A strategy has been devised for this further generalization. 

Sex 

male 

male 

female 

male 
female 

Age Birthplace Salary Vote 

old Canada high 20 

mid-age Canada medium 50 

mid-age Canada medium 8 

mid-age foreign medium 21 

mid-age foreign medium 1 

Strategy 5: (Threshold control on generalized relations) If 
the number of tuples of a generalized relation in the target 
class is larger than the specified generalization threshold value, 
further generalization on the relation should be performed. 

Rationale: Based on the definition of the generalization 
threshold, further generalization should be performed if the 
number of tuples in a generalized relation is larger than 
the threshold value. By further generalization on selected 
attribute(s) and the elimination of redundant tuples, the size of 
the generalized relation will be reduced. Generalization should 
continue until the number of remaining tuples is no longer 
greater than the threshold value. q 

At this stage, there are usually alternative choices at select- 

the vote of each tuple should be carried in generalization, 
and the vote of a redundant tuple should be added to that 
of the preserved identical tuple before it is removed from the 
generalized relation. q 

Suppose the threshold is set to 5 and the final generalized 
relation of Example 1 is Table IV. The table corresponds 
to a rule in the disjunctive normal form. It is derived by 
preprocessing, attribute removal, concept tree ascension, vote 
propagation, and threshold control. 

ing a candidate attribute for further generalization. Criteria, 
such as the preference of a larger reduction ratio on the 
number of tuples or on the number of distinct attribute values, 
etc. can be used for selection. Actually, interesting rules 
can often be discovered by following different generalization 
paths to generate several generalized relations for examination, 

comparison, and selection. This type of discovery corresponds 
to the fact that different people may learn differently from 
the same set of examples. Then generalized relations can be 
examined by users or experts to filter out some trivial rules 
and preserve interesting ones. 

To measure the typicality of each tuple in the characteristic 
rule, we define t-weight in the following. 

Definition: Let qa be a generalized tuple. The t-weight for 
qa is the percentage of the original tuples covered by qa in the 
target class. Formally, we have 

t-weight = Votes(q,) I 5 Votes(qi) 
I i=l 

where N is the number of tuples in the final generalized 
relation, and qa is in (41 . . s qN}. 

The final generalized relation consists of only a small 
number of tuples, which can be transformed to a simple logical 
formula. Based on the principles of logic and databases [8], 
[21], we have evolved Strategy 6. 

Strategy 6: (Rule transformation) A tuple in a final gener- 
alized relation is transformed to conjunctive normal form, and 
multiple tuples are transformed to disjunctive normal form. 

To incorporate quantitative information in the learning 
process, a special attribute, vote, can be attached to each 
generalized relation. The vote of a tuple t represents the 
number of tuples in the initial data relation which are 
generalized to the tuple t in the current generalized relation. 
The vote of each tuple in the initial data relation is assumed 
to be one. Notice that two tuples in a generalized relation are 
identical if they have the same corresponding attribute values 
without considering the special attribute vote. Strategy 7 is 
then obvious. 

Obviously, the range for t-weight is [O-l]. For example, the 
t-weight of the first tuple in the Table IV is 20/(20 + 50 + 
8 + 21 + 1) = 20%. Similarly, the t-weight for the second 
to the fifth ones are 50, 8, 21, and l%, respectively. The first 
tuple implies that among the professors in Applied Sciences, 
20% are male, old, born in Canada and earning high salaries. 
The other four tuples can be described similarly. The rule 
can be represented either: i) in the relational table form by 
changing vote and the corresponding vote values in Table IV 
to t-weight and the corresponding t-weight values, or ii) in the 

logical form by associating a corresponding t- weight value 
with each disjunct. 

In general, a quantitative characteristic rule provides the 
necessary condition of the target class since the condition is 
derived based on all the facts in the target class, that is, the 
tuples in the target class must satisfy this condition. However, 
the rule may not be a sufficient condition of the target class 
since a tuple satisfying the same condition could belong to 
another class. Therefore, the rule should be in the form of 

Strategy 7: (Vote propagation) The value of the vote of 
a tuple should be carried to its generalized tuple and the 
votes should be accumulated in the preserved tuple when 
other identical (and thus redundant) tuples are removed in 
generalization. 

V(z)target-class(z) + conditionl(z)[t: WI] 

V ... V condition,(z)[t:ul,]. 

The rule indicates that if z is the target-class, there is a 
possibility of wi that x satisfies conditioni where i is in 

{l,...,n}. 
Rationale: Based on the definition of vote, the vote of Hence, the final generalized relation of Table IV can be 

each generalized tuple must. register the number of the tuples transformed into the logical rule form as 2), where only the 
in the initial data relation generalized to the current one. first disjunct is shown explicitly, and the others are similar 
Therefore, to keep the correct number of votes registered, and hence denoted by dots. 
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2) Vx [professor(x) -+ ((Sex(x) = male) A (Age(x) E old) 
A (Birthplace(x) E Canada) A (Salary(x) E high)[t: 20%]) 

if... . 

TABLE V 
THE QUALITATIVE CHARACTERISTIC RULE FOR Professors IN Applied Sciences 

The previous discussion can be summarized in the following 
algorithm 

Sex 

male 

ANY 

Age 

old 

mid-age 

Birth-place Salary 

Canada high 

ANY medium 

Algorithm 1. LQCHR-Learning quantitative characteris- 
tic rules from relational databases. 

Input: 
i) relational database, 
ii) a concept hierarchy table, 
iii) the learning task specification, 

iv) the threshold value (T). 
Output: A quantitative characteristic rule of the learning 

task. 
Method: 
Step 1: Collect the task-relevant data by a relational query. 
Step 2: Call procedure Attribute-Oriented Induction. 

Procedure: Attribute-Oriented Induction; 
(Suppose that the task relevant relation P consists of a set 

of attributes, A;, where 1 5 i 5 n. N represents the number 
of tuples, and di represents the number of distinct values of 

attribute A; in the target class.} 

BEGIN 

in each attribute by attribute removal (Strategy 2) or concept 
tree ascension (Strategy 3), which simulates the generalization 
process of learning-from-examples. Moreover, the specified 
threshold value ensures that the concept tree ascension process 
terminates when it reaches the threshold-controlled number of 
disjuncts (Strategies 4 and 5), and votepropagation guarantees 
association of the correct quantitative information (Strategy 
7). Step 3 performs transformation based on the principles of 
logic and database (Strategy 6). Thus the obtained rule should 
be the desired result which characterizes the properties of the 
class. cl 

Learning a qualitative rule can be treated as a special 

FOR EACH attribute Ai DO 
WHILE di > T DO 

BEGIN 
IF there is no higher level concept 

provided for Ai 
THEN Remove attribute Ai 
ELSE Substitute the values by its 

corresponding minimally generalized 

concept; 
Eliminate redundant tuples (with the 

votes accumulated) 
END 

case of learning its quantitative counterpart. A qualitative rule 
does not associate quantitative information. Thus a qualitative 
characteristic rule can be obtained by following the same 
process of learning its quantitative counterpart without the 
association of the special (quantitative) attribute vote in the 
generalized relations. It can also be derived directly from the 
final generalized relation by dropping the attribute vote (or 
t-weight). 

{Now the number of distinct values of 
each remaining attribute is less than T.} 

WHILE N > T DO 

BEGIN 
Selectively generalize an attribute; 
Eliminate redundant tuples (with the 

votes accumulated) 
END 

END. {Attribute-Oriented Induction} 

Step 3: Transform the final generalized relation into a 
logical formula. 0 

Notice that the statement, “selectively generalize an at- 
tribute,” in the algorithm indicates that further generalization is 

based on certain attribute selection criteria implemented in the 
system, such as user/implementor preference, or better tuple 
reduction ratio, etc. 

It is often possible and desirable to perform further sim- 
plification on the final generalized relation. For example, if 
two tuples are almost identical except for the values of the 
one attribute, the two tuples can be merged into one by 
grouping the two values of that attribute using set notation. For 
example, the second and the third tuples of Table IV, (mule, 

mid-age, Canada, medium) and (female, mid-age, Canada, 
medium), share the values in all other attributes except for 
the first one, Sex. The two tuples can be merged into one tuple 
with a set value {male, female}. Moreover, since the {male, 
female} covers all the possible values of the attribute Sex, it 
can be automatically generalized to ANY and then removed 
from the conjunction. Similar merging can be performed on 
the fourth and the fifth tuples. Furthermore, the two merged 
tuples @WI’, mid-age, Canada, medium) and (Ah?‘, mid-age, 
foreign, medium) can be further merged into (ANY, mid-age, 
ANY, medium) because Canada and foreign cover the whole 

set of the concept of the attribute “BirthPlace.” Therefore, 
the qualitative characteristic rule for professors in Applied 
Sciences becomes Table V. If such simplication is performed in 
the learning of a quantitative rule, corresponding votes should 
be merged (accumulated) in the merged tuple as in the removal 
of redundant tuples. 

Theorem 1: Algorithm LQCHR‘ correctly derives a quanti- 
tative characteristic rule for the learning task from a relational 
database. 

The qualitative characteristic rule can be represented in the 
logical form as 3). Similar to the corresponding quantitative 
rule, it represents a necessary condition, which may or may 
not be a sufficient condition, for x to be a professor. 

3) Vx( professor( x) -i 

Proof: As discussed ‘in Section II, Step I collects the ((sex(x) = male) A (Age(x) E old) A (Birthplace(x) E 

data in the database relevant to the learning task. Based on Canada) A (Salary(z) E high)) V ((Age(x) E mid-age) A 

the discussion in this section, Step 2 generalizes the concept (Salary(x) E medium))). 

- -- 
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B. Learning Classification Rules 

A classification rule discriminates the concepts of the target 

class from that of the contrasting class(es). In order to extract 
a classification rule, it is necessary to test, in the generalization 
process, whether a generalized concept in the target class 
overlaps with or is covered by one or a set of generalized 
concepts in the contrasting class(es). Notice that primitive data 
in both kinds of classes usually reside at the same level (other 
cases will be discussed in Section IV), and an overlapping test 
is usually more efficient than a coverage test. Therefore, the 
concept tree ascension in all of the participating classes should 
be synchronized in the learning process. We examine such a 
learning process in detail. 

Example 2: Suppose we have the same database as in 

Example 1, and the task is to learn a quantitative classifi- 
cation rule for the professors versus the instructors in Applied 
Sciences relevant to attributes Name, Sex, Age, Birth-place, 

and Salary. 
The seven strategies studied in the last subsection are 

generally applicable to the learning of classification rules. 
However, in order to discriminate the generalized concepts 
in the target class professor from those in the constrasting 
class instructor, we should partition the task relevant data into 
two portions, one for professor and the other for instructor, 
and perform concept tree ascension synchronously on the 
two partitions. The generalization threshold is the maximum 
number of tuples in the generalized portion of the target class 

only. 
To distinguish tuples shared by both the target class and 

the contrasting class(es), overlapping tuples should be handled 
carefully. An overlapping tuple is a tuple in the (data or 
generalized) relation shared between the target class and the 
contrasting class(es). In general, Strategy 8 handles these 

cases. 
Strategy 8: (Handling overlapping tuples) Overlapping tu- 

ples should be marked and such marks should be propagated 
in the generalization process in the learning of classification 

rules. 
Rationale: Overlapping tuples are the tuples shared by 

the target class and the contrasting class(es). They represent 
the features in the target class that are nondistinguishable from 
the contrasting class(es), and therefore, should be marked for 
proper handling in the final generalized relation. If two tuples 
are overlapping, their synchronous concept tree ascension will 
result in the overlapping of their generalized tuples. Thus the 
overlapping mark should be propagated to their generalized 

tuples. 0 
Suppose the threshold is set to 5 in our example. We drop 

the attribute Name (Strategy 2) and perform generalization 
on the portion of the target class and that of the contrasting 
class(es) simultaneously, which is done on the attributes Age, 
Birth-place, and Salary by iteratively ascending the concept 
trees (Strategy 3) removing redundant tuples, propagating 
the votes (Strategy 7) and marking the overlapping tuples 
(Strategy 8) until the number of unmarked tuples in the target 
class of the final generalized relation is within the specified 
threshold (Strategy 5). Suppose the final generalized relation 

TABLE VI 
THE FINAL GENERALIZED RELATION 

(Learning 
Concept) 

Sex 

male 

Age Birth-place Salary Mark Vote 

old Canada high 20 

professor 

instructor 

male 

female 

male 

female 

male 

male 

female 

mid-age 

mid-age 

mid-age 

mid-age 

young 

mid-age 

young 

Canada medium * 50 

Canada medium 8 

foreign medium * 21 

foreign medium 1 

Canada IOW 30 

Canada medium * 15 

Canada IOW 4 

male mid-age foreign medium * 1 

is as depicted in Table VI. 

The generalized process can be described in an algorithm, 
LQCLR (Learning Quantitative CLassification Rules) in the 
following, which is similar to Algorithm LQCHR. 

Algorithm 2. LQCLR-Learning quantitative classification 
rules from relational databases. 

Input: 
i) a relational database, 

ii) a concept hierarchy table, 
iii) the learning task, 
iv) the threshold value (T). 

Output: The classification rule of the learning task. 

Method: 
Step 1: Collect the task relevant data and partition them 

according to the learning task specification into two classes: 
the target class and the contrasting class. 

Step 2: Invoke procedure attribute-oriented induction. 

Procedure: Attribute-oriented induction; 
{Suppose the relation relevant to the learning task, P, 

consists of a set of attributes, Ai, where 1 5 i 5 7~. Let T 
be the threshold value, N be the number of unmarked tuples 

in the target class, and di be the number of distinct values of 

attribute Ai in the unmarked tuples of the target class.} 
BEGIN 

FOR EACH attribute Ai DO 
BEGIN 

Perform intersection between the target 
and contrasting classes and mark the 
overlapping tuples; 

WHILE di > T DO 
IF there is no higher level concept 

of Ai 

THEN remove attribute Ai; 
ELSE BEGIN 

Substitute the values by its corre- 
sponding minimally generalized con- 

cept ; 
Mark the newly generalized overlap- 

ping tuples (i.e., those overlapped 
with the tupes in contrasting clas- 

ses); and 
Eliminate identical tuples within 

each class (with the votes accumu- 
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lated) ; 
END 

END 
{The number of distinct values of each 

remaining attribute in the target class 
is less than T.} 

WHILE N > T DO 
BEGIN 

Generalize the attributes containing 
more distinct values or those with a 
better reduction ratio; 

Mark the newly generalized overlapping 
tuples; and 

Eliminate identical tuples within each 
class (with the votes accumulated); 

END 
End. {Attribute-oriented induction} 

Step 3: Simplify the generalized relation and transform the 
final generalized relation into a logical formula. 0 

Theorem 2: Algorithm LQCLR correclty learns classifica- 
tion rules from relational databases. 

Proof Sketch: Step 1 collects the task relevant data from 
the database and partitions them into the target class and the 
contrasting classes based on the discussion in Section II. Step 2 
generalizes the concept in each attribute either by “concept tree 
ascension” (Strategy 3) or by “attribute removal” (Strategy l), 
which simulates the generalization process of learning-from- 
examples. Moreover, the specified threshold value ensures 
that the process of concept tree ascension terminates when it 
reaches the threshold controlled number of disjuncts (Strategy 
5), and “handling overlapping tuples” marks the properties 
shared by other classes (Strategy 8). Step 3 performs simplifi- 
cation and transformation based on the principles of logic and 
databases (Strategy 7). Thus the rule so obtained should be the 
desired result which characterizes the discriminating property 
of the target class. 0 

To measure the discriminating behavior of the learned 
classification rule, we introduce another statistical value, d- 
weight. 

Definition: Let qa be a generalized concept (tuple) and Cj 
be the target class. The d-weight for qa (referring to the target 
class) is the ratio of the number of original tuples in the 
target class covered by qa to the total number of tuples in 
both the target class and the contrasting classes covered by 
qa. Formally, the d-weight of the concept qa in class Cj is 
defined as 

d-weight = Votes(q, E Cj) 
I 

eVotes(q, E Ci) 

i=l 

where K stands for the total number of the target and 
contrasting classes, and Cj is in {Cl, . . . , CK}. 

The range for d-weight is [O-l]. A high d-weight indicates 
that the concept is primarily derived from the target class 
Cj, and a low d-weight implies that the concept is primarily 
derived from the contrasting class(es). 

TABLE VII 
THE QUALITATIVE CLASSIFICATION RULE FOR Professors IN Applied Sciences 

Sex Age Birth-place Salary 

male old Canada high 

female mid-age ANY medium 

The d-weight for the first tuple in the target class is 20/(20-t 
0) = 100%. Notice that the d-weight for any unmarked tuple 
is 100%. Accordingly, the d-weights for the second to the fifth 
tuples are 77, 100, 95, and lOO%, respectively. We conclude 
that among the professors and instructors in Applied Sciences, 
if he was born in Canada, is old and earns high salary, he is a 
professor with a probability of 100%. Similarly, we can derive 
the other disjuncts of the quantitative rule. 

By associating d-weights, a classification rule provides 
quantitative criteria to determine the class membership of the 
data. The quantitative classification rule is represented by the 
tuples in the target class. It can be represented: i) in the 
relational table form by changing the vote and its associated 
values in Table VI to d-weight and the corresponding d-weight 
values, or ii) in the logical form with a d-weight associated 
with each disjunct. 

In general, a quantitative classification rule provides a 

sufficient condition of the target class since it presents a 
quantitative measurement of the properties which occur in the 
target class versus that occurring in the contrasting classes. 
Therefore, the learned rule should be in the form of 

V(x) target-class(z) + condition1 (z)[d: WI] 

V . + 3 V condition,(s)[d: wn]. 

The rule indicates that if x satisfies conditioni, there is a 
possibility of wi that 5 is in the target-class, where i is in 
{l,‘..,n}. 

Therefore, the final generalized relation of Table VI can 
be transformed into a logical rule as 4), where only the first 
disjunct is shown explicitly, and the others are similar, and 
hence, denoted by dots. 

4) V’z[professor(z)V 
((Sex(z) = male) A (Age(x) E old) A (Birthplace(z) E 

Canada) A (Salary(z) E high)[d: lOO%]) V . . . . 

Similarly, a qualitative classification rule can be treated as 
a special case of its quantitative counterpart. To represent a 
qualitative classification rule, the vote information is dropped 
from the generalized relation(s) and marked tuples in the target 
class are removed from the rule. The rule can also be obtained 
directly from the learned quantitative rule. In this case, a tuple 
with a d-weight not equal to 100% should not be presented 
in the qualitative rule since it represents the property being 
overlapped with the contrasting classes. In our example, the 
qualitative classification rule for professors in Applied Sciences 
should be Table VII (with {Canada, foreign} merged to ANY). 

The final generalized relation implies that among the pro- 
fessors and instructors of Applied Sciences, if he was born in 
Canada, is old, and earns a high salary, he is a professor; if 
she is mid-aged and earns a medium salary, she is a professor. 
It can also be represented in the following logical form. 
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5) V/5( professor( x) c 
((Sex(x) = male) A (Age(x) E old) A (Birthplace(z) E 

Canada) A (Salary(z) E high)) V 

((Sex(x) = female) A (Age(x) E mid-age) A (Salary(z) E 
medium))). 

In general, a qualitative classification rule represents the 
sufficient condition of the target class since it excludes the 
properties occurring in the contrasting classes. However, the 
rule may not be the necessary condition of the target class 
because it may not cover aZZ of the tuples in the target class. 
Therefore, the learned rule, as presented in rule 5), should be 
in the form of 

Vx target-class(x) +- condition(x). 

When there are no overlapping data discovered (i.e., marked) 
in the learning process, the learned tuple represents both neces- 
sary and sufficient conditions because it covers all of the tuples 
in the target class but none of the tuples in the contrasting 
class(es). In this case, the rule should be of the form 

‘dx target-class(x) ++ condition(x). 

When both d-weights and t-weights are associated with 
the same set of tuples, the quantitative classification and 
characteristic rules can be represented in the same logical 
rule with the two weights associated with each disjunct. In 
this case, the bi-directional arrow can be used in the rule 
representation. That is, it should be in the form of 

v’( )t g t- 1 ( ) z ar e c ass x ++ conditionr(x)[t: ‘~1, d: wi] 

v . . . V condition,(x) [t: w, , d: ~161. 

This form indicates that for i from 1 to n, if x is the 
target-class, there is a possibility of Wi that x satisfies 
conditioni; and if x satisfies conditioni, there is a possibility 
of w{ that x is in the target-class. 

For example, the quantitative classification rule and charac- 
teristic rule in our two examples can be merged into one as 
shown in 6) where the bi-directional arrow is used and the two 
weights are associated with each disjunct. 

6) Vx (professor(x) ++ 
((Sex(x) = male) A (Age(x) E old) A (Birthplace(x) E 

Canada) A (Salary(x) E high)[t: 20%, d: lOO%])V 
((sex(x) = male) A (Age(x) E mid-age) A (Birthplace(x) E 

Canada) A (Salary(x) E medium)[t: 50%, d: 77%])V 

((Sex(x) = female) A (Age(x) E mid-age) A (Birthplace(x) E 
Canada) A (Salary(x) E medium)[t: S%, d: lOO%])V 

((Sex(x) = male) A (Age(x) E mid-age) A (Birthplace(x) E 
Foreign) A (Salary(x) E medium)[t: 21%, d: 95%])V 

((Sex(x) = female) A (Age(x) E mid-age) A (Birthplace(x) E 
Foreign) A (Salary(x) E medium)[t: l%, d: loo%])). 

IV. VARIATIONS OF THE LEARNING ALGORITHMS 

A. Handling Noise and Exceptions in Learning 

Many data-driven learning algorithms assume that learning 
is performed in a noise-free or exception-free environment 
[ 121, [ 141. Such an assumption may not be realistic in database 
applications. Usually, a generalized concept may cover a 
majority of data but cannot cover some special data in the 

database because of the diverse distribution of data, misclassi- 
fication or inaccurate measurement of data. Such special kinds 
of data are called exceptions or noise. 

Many techniques have been developed in machine learning 
to cope with noise and exceptions [4], [12], [17]. A rule which 
excludes noise and exceptions is called an approximate rule. 
Since quantitative rules incorporate quantitative information 
in the learned rules, prime rules can be extracted easily from 
quantitative rules. 

First, we examine the extraction of an approximate chur- 
ucteristic rule from a quantitative characteristic rule. The 
t-weight information carries database statistics and supports 
the pruning of scattered data. A high t-weight implies that 
the concept is induced from the majoirty of data, and a low 
t-weight implies that the concept is derived from some rare, 
exceptional cases. By pruning low t-weight tuples (disjuncts), 
the final generalized relation (or rule) characterizes the major- 
ity number of facts in the database. 

In practice, we may specify a t- threshold to prune the 
low t-weighted tuples in the learning process. For example, 
in the final generalized rule of Table IV, the t-weight of the 
third tuple (female, mid-age, Canada, medium) is 8% and that 
of the fifth tuple (female, mid-age, foreign, medium) is 1%. 
If the pruning threshold is set to 5%, the fifth tuple should 
be dropped. If the threshold is increased to lo%, both the 
third and the fifth tuples should be removed from the prime 
characteristic rule. 

Then we examine the extraction of am approximate clussifi- 

cation rule from a quantitative classification rule. The d-weight 
of a nonoverlapping tuple is always 1. A high d-weight (with 
the value close to 1) indicates that the tuple is primarily 
generalized from the original tuples in the target class with 
only some exceptional cases from the contrasting class(es); 
a low d-weight (with the value close to 0) indicates that it 
is primarily from the contrasting class(es) with only some 
exceptional cases from the target class; and a medium d- 
weight indicates that the generalization is from a relatively 
even distribution between the target class and the contrasting 
class(es). Since only tuples with high discriminating behavior 
are able to discriminate one class from others, only the high 
d-weighted tuples should count in the classification rule. 

In practice, we may specify a d-threshold to prune the 
marked tuples with low and medium d-weights in the quantita- 
tive classification rule. For example, in Table IV, the d-weight 
of the second tuple is 77% and that of the fourth tuple is 95%. 
If the d-threshold is set to 90%, the second tuple should be 
removed from the approximate classification rule. The fourth 
tuple (mule, mid-age, foreign, medium), though marked, is 
preserved in the classification rule because only about 5% of 
its original tuples are in the contrasting class. 

Both t-threshold and d-threshold are called pruning thresh- 
olds since they are used to prune exceptional and noisy 

data in generalization. Pruning thresholds can also be tuned 
interactively by users/experts in the learning process as the 
tuning of the generalization threshold discussed in Section 
III. More sophisticated statistical techniques can be applied to 
measure the correlations between the generalized tuples and 
the learning classes [16]; we do not consider them here. 
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B. Incremental Learning on Database Updates 

A flexible database learning technique should allow learning 

to be performed incrementally on database updates [ll]. In- 
cremental learning avoids restarting the costly learning process 
from the beginning on database updates. 

Using the quantitative information learned from a database, 
incremental learning can be performed efficiently and effec- 

tively on database updates. Assume that the database stores 
the final (quantitative) generalized relation of a learning task. 
We consider an example. 

Example 3: Suppose a new tuple, (Watt, female, 32, Humil- 
ton, cmpt, ussistprof, 45 500), is inserted to the data relation 
of Table II, and the learning task is the same as that of 
Example 2. Incremental learning should be performed by 

modifying the learning result of Table VI instead of restarting 
the entire learning process on the newly updated database. It 
is performed as follows. 

First, the value of the attribute which serves as a classifier 
of the learning task determines the class to which the newly 
inserted tuple belongs. For example, “Position = ussistprof’ 
indicates that the new tuple is in the class of professor. If a 
newly inserted tuple belongs to neither the target class nor the 
contrasting class, such as the newly arrived person is neither 
a professor nor an instructor but a secretary, the previous 
learning result should not be affected. 

Then incremental learning proceeds as follows. The attribute 

which does not have corresponding attribute entries in the final 
generalized relation should be removed from the tuple, which 
corresponds to the strategy attribute removal. Other attribute 
values of the inserted tuple should be generalized to the same 
level of the concepts as those in the final generalized relation 
and inserted into the generalized relation. In our example, the 
tuple is generalized to (female, mid-age, Canada, medium) and 
inserted to the class of professor. Since this generalized tuple 
is the same as the third tuple of Table VI, the effect is just an 
increment of the vote of the third tuple by 1. The corresponding 
t-weight and d-weight in the learned quantitative rule should 
be updated accordingly. cl 

In general, when tuples are inserted into the database, each 

attribute of the newly inserted tuples is generalized to the 
same concept level as those in the original final generalized 
relation. The newly generalized tuples are merged with the 
final generalized relation. If they have identical tuples in that 
relation, the effect is simply incrementing the votes of the 
identical tuples. Otherwise, they become the new tuples in 
the final generalized relation. If the size of the newly formed 
generalized relation is larger than the threshold value, further 
generalization should be performed on it to derive a new final 
generalized relation. 

Incremental learning can also be performed on database 
deletions. The deletion of a tuple relevant to the learning 
result can be implemented by decrementing the vote of the 

corresponding generalized tuple by one in the final generalized 
relation. However, the deletion of some sensitive tuples or 
the deletion of a substantial number of tuples may require 
restarting the learning process from the beginning because a 
vote decrement is not equivalent to the reverse of concept 

tree ascension. If all of the concepts are retained at the levels 
of concepts in the old generalized relation, this may lead to 
an overly generalized relation. In such cases, learning should 
be performed over again on the new database to keep the 
discovered knowledge up-to-date. 

C. Learning with Other Kinds of Concept Hierarchies 

Our previous discussion assumes that the concept hierarchy 
of each attribute, if any, forms a balanced tree. Thus general- 
ization on each attribute can be performed synchronously to 
generalize the same lower level concepts of an attribute to the 
same higher level ones. 

However, a concept hierarchy could be an unbalanced 
concept tree, or primitive data may reside at different levels of 
a concept tree. In such cases, the same level of concepts could 
be reached at different generalization stages by synchronous 
concept tree ascension, which may result in incorrect gener- 
alization. This problem can be solved by checking whether a 
generalized concept covers a concept which resides at a level 
lower than the current one in the concept tree. If it does, the 
covered concept can be substituted by the covering one, that 
is, directly ascending that branch of the tree several levels 
higher to bring concepts at different levels to the same level. 
Then the same learning algorithms can be performed correctly 

and efficiently. 

V. A COMPARISON WITH OTHER LEARNING ALGORITHMS 

It is interesting to compare our technique with those 
developed in traditional machine learning research [13], [14]. 
In general, our method adopts the concept tree ascending 
technique which follows the idea of the version space method, 
a typical method of learning-from-examples [5], [14], [15]. 
However, our method takes advantages of the characteristics 
of relational database systems and provides many distinct 
features. 

First, most learning-from-examples algorithms [5], [13], 
[14] learn classification rules from both positive and neg- 
ative examples. They perform generalization using positive 
instances and specialization using negative instances. Unfortu- 
nately, negative examples are not stored in relational databases 
explicitly. Thus we have to rely on the generalization process, 
that is, the least commitment generalization and threshold 
control. In the learning of classification rules, data in the 
contrasting classes are used to exclude features of the target 
class which are shared by the contrasting classes. This can be 
viewed as a specialization process. However, this specializa- 
tion process is performed by first generalizing tuples in both 
the target class and the contrasting class(es) and then excluding 
the overlapping tuples. The rule so learned may not cover all 
of the positive examples, that is, it is only a sufficient condition 
but may not be a necessary condition. This specialization 
process is different from that of learning-from-examples which 
learns both necessary and sufficient conditions of a concept. 

Secondly, the algorithm may learn disjunctive rules, 
which provides additional flexibility over many leurning- 
from-example algorithms. Moreover, qualtitative rules can be 
extracted from the results of learning quantitative rules. By 
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incorporating quantitative information in the learning process, 
our method handles noise and exceptions elegantly. 

The major benefit of our method in comparison with the 
version space method is processing efficiency. The version 

space method adopts tuple-oriented generalization. In contrast, 
our method adopts the attribute-oriented generalization which 
treats a concept hierarchy of each attribute as a factored ver- 
sion space and performs generalization on individual attributes. 
Factoring the version space may significantly improve the 
computational efficiency. Suppose there are p nodes in each 
concept tree and there are k concept trees (attributes) in the 
relation. The total size of factorized version space should be 
p x k. However, the size of the unfactorized version space for 
the same concepts should be p’ [20]. The search space for 
attribute-oriented generalization is much smaller than the one 
for tuple-oriented generalization. 

TABLE VIII 
THE NEW FINAL GENERALIZED RELATION 

Age Salary Vote 

old high 20 

mid-age medium 80 

Our previous study of learning qualitative rules can be treated 
as a special case of learning quantitative rules. 

VI. APPLICATION OF LEARNING RESULTS 

Similar arguments hold for the attribute-oriented method in 

comparison with other tuple-oriented approaches [13], [14]. 
An attribute-oriented generalization requires the testing of 
redundant tuples in processing, which is performed after the 
generalization of all the values on each attribute. In contrast, 
a tuple-oriented approach requires the testing for concept 
coverage, which should be performed after each generalization 
on a single attribute value of a tuple. Since there are a huge 
number of possible combinations in such testing, inefficient 
algorithms evolve when operating in large databases [lo]. 

Since the knowledge rules discovered in a database are 
based on a large set of data, they represent important knowl- 
edge about data in the database. The learned rules enrich 
our understanding of the general properties of data and help 
discover interesting relationships among data in the database. 
Therefore, it represents an important technique for knowledge 
acquisition in databases. 

The efficiency of the attribute-oriented generalization can 
also be demonstrated by analyzing its worst-case time com- 
plexity. Suppose there are N tuples in the database which are 
relevant to the learning task, A attributes for each tuple, and H 
levels for each concept tree, the time complexity in the worst 
case is analyzed as follows. For each attribute, the time for sub- 
stituting the lower level concepts by the higher level concepts 
is N, and the time for checking redundant tuples is N log N. 
Since the height of the concept tree is H, the time spent on 
each attribute is at most H x (N + N log N). Obviously, the 
upper bound of the total time for processing A attributes is 
A x H x (N+N log N). In general, A and H are much smaller 
than N in a large database. Therefore, the time complexity of 
our approach is O(N log N) in the worst case, which is more 
efficient than the tuple-oriented generalization [18]. 

Interestingly, many more rules can be derived from the 
quantitative rules of a database. First, qualitative rules can be 
extracted from the learned quantitative rules, by dropping the 
quantitative measurements t- weight(s) and d-weight(s), as we 
discussed above. Secondly, approximate rules, which exclude 
noise and exceptions, can be extracted from the learned 
quantitative rules by pruning the tuples which are below the 
specified pruning thresholds. Moreover, rules relevant to a 
subset of the previously studied set of attributes can often 
be extracted directly from the previously learned rules. We 
examine one such example. 

Example 4: Suppose the learning task is to characterize the 
professors in Applied Sciences relevant to the attributes Age 
and Salary only. 

Another obvious advantage of our approach over many 
others is the integration of the learning process with database 
operations. Most of the operations used in our approach 
involve traditional relational database operations, such as 
selection, join, projection (extracting relevant data and remov- 
ing attributes), tuple substitution (ascending concept trees), 
and intersection (discovering common tuples among classes). 
These operations are set-oriented and have been efficiently 
implemented in relational systems. While most learning algo- 
rithms suffer from inefficiency problems in the large database 
environment [6], [13], our approach provides an efficient 
method for learning in such databases. 

The learning task is almost the same as the task posed in 
Example 1, except that it is relevant to a subset of previously 
studied set of attributes. Instead of starting the learning process 
from the beginning, the rule can be extracted directly from the 
learning result, that is, the final generalized relation, Table 
IV. The only processing to be performed is to project the 
irrelevant attributes Sex and Birth-place and remove redundant 
tuples, which derives the final generalized relation, Table VIII. 
That is, 20% professors in Applied Sciences are old with high 
salaries and 80% of them are mid-aged with medium salaries. 

Attribute-oriented induction was first developed in our pre- 
vious work [l], [2]. The technique studied here is a further 
development of our techniques for learning quantitative rules. 
Quantitative information provides us with informative rules 
and facilitates learning in the presence of noise and exceptions. 

Another important application of generalized rules and 
concept hierarchies is to answer queries involving concepts 
at different levels of abstraction. Although a relational data- 
base stores a large amount of data, it cannot answer queries 
involving concepts at any level higher than the level of 
the primitive data. For example, a simple query,“how many 
professors are in Applied Scineces?” cannot be answered 
since the database (Table II) knows neither “professor” (but 
“assist-prof,” “fullprof,” etc.) nor “Applied Sciences” (but 
“electr-eng,” “ computing science,” etc.) A query, “describe the 
characteristics of professors in Applied Sciences? will be more 
challenging. With the help of generalized rules and concept 
hierarchies, such queries can be handled naturally. IvIoreover, 
queries involving quantitative or statistical information can 
be answered effectively and efficiently using the extracted 
quantitative rules. A database user may view data at different 
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levels of abstraction and inquires concepts at mixed levels, 
which enhances the usefulness and flexibility of the database. 

Furthermore, discovered knowledge benefits semantic query 
optimization in databases. Previous studies have shown that 
integrity constraints and deduction rules can be used for se- 
mantic query optimization [3]. Actually, induced rules can be 
used for such optimization as well. For example, a query, “how 
many professors in Applied Sciences were born in foreign coun- 
tries?’ can be answered directly by examining only the final 
generalized relation. Since generalized rules are extracted from 
large amounts of data, they represent certain data semantics 
and characteristics. Therefore, queries involving such semantic 
information can be processed using induced rules naturally. 

VII. CONCLUSIONS 

We presented an efficient, attribute-oriented induction 
method for data-driven discovery of quantitative rules in 
relational databases. Based on the information about data 
relevance, expected rule forms, and concept hierarchies, 
the attribute-oriented induction method integrates database 
operations with the learning process and provides a simple 
and efficient way for knowledge discovery in large databases. 

We studied in detail the method for learning two kinds of 
quantitative rules, characteristic rules and classification rules. 
Learning qualitative rules can be treated as a special case of 
learning quantitative rules. Moreover, by incorporating quanti- 
tative information, approximate rules which exclude noise and 
exceptions can be extracted and incremental learning can be 
performed efficiently on database updates. Thus learning quan- 
titative rules provides us with a powerful mechanism of learn- 
ing various kinds of knowledge rules from relational databases. 

A preliminary implementation of our approach has resulted 
in a prototyped database learning systems, DBLEARN. A high 
level interface has also been constructed for the specification 
of learning tasks, conceptual hierarchies, and thresholds as 
well as for communication with users in the learning process. 
Experiments with DBLEARN on the Natural Sciences and 
Engineering Research Council of Canada Research Grant 
Information Database have shown great promise for data- 
driven discovery of knowledge rules in relational databases. 
The further development of database learning techniques and 
the application of the techniques to deductive database systems 
and rule-based expert systems are interesting topics for the 
future research. 
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