
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993 29

Data-Driven Discovery of Quantitative
Rules in Relational Databases

Jiawei Han, Yandong Cai, and Nick Cercone, Member, IEEE

Abstract-A quantitative rule is a rule associated with quantita-
tive information which assesses the representativeness of the rule
in the database. In this paper, an efficient induction method is
developed for learning quantitative rules in relational databases.
With the assistance of knowledge about concept hierarchies, data
relevance, and expected rule forms, attribute-oriented induction
can be performed on the database, which integrates database
operations with the learning process and provides a simple,
efficient way of learning quantitative rules from large databases.
Our method learns both characteristic rules and classification
rules. Quantitative information facilitates quantitative reasoning,
incremental learning, and learning in the presence of noise. More-
over, learning qualitative rules can be treated as a special case
of learning quantitative rules. Our paper shows that attribute-
oriented induction provides an efficient and effective mechanism
for learning various kinds of knowledge rules from relational
databases.

Index Terms- Knowledge discovery in databases, machine
learning, attribute-oriented induction, quantitative rules, charac-
teristic rules, classification rules, data-driven learning algorithms.

I. INTRODUCTION

T HE growth in the number of available databases far out-
strips the growth of corresponding knowledge bases. This

creates both a need and an opportunity for extracting knowl-
edge from databases. By learning from databases, interesting
relationships among data can be discovered automatically, and
the extracted knowledge may facilitate deductive reasoning
and query processing in database systems.

Relational database systems provide many attractive fea-
tures for machine learning. Relational databases store a large
amount of information in a structured and organized manner.
Each tuple in the database can be viewed as a typed logi-
cal formula in a conjunctive normal form. Such uniformity,
together with the well-developed relational technology [19],
[21], facilitate the development of efficient database learning
algorithms.

Different kinds of knowledge rules can be learned from
databases. A learned rule can be either a qualitative rule
or a quantitative rule, where the former does not associate
quantitative information whereas the latter does. For example,
the statement, the salaries of professors of Applied Sciences
are high, is a qualitative rule while the statement, the salaries

Manuscript received December 19, 1989; revised September 18, 1990. This
work was supported in part by the Natural Sciences and Research Council of
Canada under Operating Grants A-3723 and A-4309 and by a research grant
from the Centre for Systems Science, Simon Fraser University.

The authors are with the School of Computing Science, Simon Fraser
University, Burnaby, B.C., Canada V5A lS6.

IEEE Log Number 9205833.

of 60% professors of Arts are high, is a quantitative rule. A
quantitative rule provides statistical information about the rule,
which facilitates quantitative reasoning, incremental learning,
and learning in the presence of noise and exceptions.

From another point of view, a learned rule can be either
a characteristic rule or a classification rule. A characteristic
rule is an assertion which characterizes the concept satisfied
by all of the relevant data in the database. For example, the
symptoms of a particular disease can be summarized as a
characteristic rule. Alternatively, a classification rule is an
assertion which discriminates the concepts of one class from
others. For example, to distinguish one disease from others, a
classification rule summarizes the symptoms that discriminate
this disease from others.

A major challenge of learning in databases is computational
efficiency. Our approach strives for efficiency in two as-
pects: i) knowledge-directed learning and ii) attribute-oriented
induction. The former is achieved by providing knowledge
about the learning task, the concept hierarchies, and the
expected rule forms. The latter is achieved by attribute-

oriented concept tree ascension. These techniques substantially
reduce the search space and improve the efficiency in a
database learning process.

In this paper, our study is on the learning of quantitative
rules from relational databases. The paper is organized as
follows. The primitives required for learning from databases
are discussed in Section II. Learning principles and algorithms
are presented in Section III. Variations of these learning
algorithms are discussed in Section IV. A comparison of our
method with others is presented in Section V. The application
of learned rules is discussed in Section VI, and the concluding
remarks are provided in Section VII.

II. KNOWLEDGE REQUIRED FOR LEARNING FROM DATABASES

Given a number of facts, generalization can be performed in
many different directions [6], [13]. In order to constrain a gen-
eralization process and extract interesting rules from databases,
learning should be directed by background knowledge, such as
knowledge contained in concept hierarchies, and learning task
specifications, such as the specifications of task-relevant data
(data relevance) and expected rule forms (rule expectance).

A. Concept Hierarchy

The concept hierarchy provides valuable information for
inductive learning [9], [18]. By organizing different levels of
concepts into a taxonomy, candidate rules can be restricted
to formulas with a particular vocabulary (conceptual bias [9])

1041-4347/93$03.00 0 1993 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

Fig. 1. A concept hierarchy for the attribute City.

and be described by higher level concepts, which permits a
learned rule to be represented in a simple and explicit form.

Knowledge about concept hierarchies can be directly pro-
vided by domain experts. A concept hierarchy is often related
to a specific attribute and is partially ordered according to
general-to-specific ordering. The most general point is the null
description (ANY), and the most specific points correspond
to the specific values of an attribute in the database. For
example, the concept hierarchy of an attribute City may form
a taxonomy as shown in Fig. 1. Although a database could be
large, a concept hierarchy can be organized by experts with
a reasonable effort because only distinct attribute values may
correspond to the nodes in a concept hierarchy of that attribute.

Concept hierarchy information may also be implicitly stored
in the database. For example, the information about Fig.
1 may actually be stored in a data relation. In order to
utilize the information, the hierarchical relationship among
attributes should be explicitly indicated at the schema level.
For example, the hierarchical relationship for the attribute City
can be indicated in the database schema as “city in province in
country,” (that is, city is a lower level concept of its province,
etc.). Then the taxonomy about the attribute City can be
retrieved from the database and be used in the learning process.

Alternatively, a concept hierarchy can be constructed auto-
matically based on clustering behavior and database statistics.
The automatic construction of discrete attributes from numeri-
cal values can be performed by first obtaining the distribution
of attribute values in the database and then setting the ranges
of the values and performing more detailed classifications for
more densely clustered ranges. For example, the concept hier-
archy for an attribute grade point average (GPA) of graduate
students can be constructed based on the database statistics.
Suppose that all the GPA’s are between O-4, and most GPA’s
for graduates are clustered between 3 and 4. Then we may
classify the values into three clases, [O-1.99], [2-2.991, and
[3-4], and then perform a more detailed classification for those
in [3~l]. Such a statistical technique can also be performed on
the attributes with discrete values under certain circumstances
[7]. For example, if the birth place of most employees are
clustered in Canada and scattered in many different countries,
the top-most level (except NULL) concepts for birth place can
be categorized as Canada and foreign.

In our discussion, we assume that the concept hierarchies
are given and are in the form of balanced concept trees. The
handling of other kinds of concept hierarchies is discussed in
Section IV.

B. Database Relevance

Although a relational database stores a large amount of
data, usually only a portion of it is relevant to a specific
learning task. Clearly, preprocessing should be performed to
extract and group the task relevant data from a database before
generalization. The preprocessing can be viewed as a relational
query which takes a learning request as a retrieval command
to search for the necessary sets of data from the database and
group them according to the learning task.

When learning a characteristic rule, the set of data being
considered (undergoing learning) is called the target class of
the learning process. When learning a classification rule, it is

necessary to collect the set of data being considered (undergo-
ing learning) and the set(s) of data being used for contrasting.
In this case, we call the set of data being considered the target
class and the set(s) of data used for contrasting the contrasting
class(es). For example, to extract the characteristics of profes-
sors in Computing Science, only the data relevant to those
professors are retrieved and grouped into one class, the target
class. To distinguish the professors in Computing Science from
the instructors in the same department, only the data relevant to
them are retrieved but are grouped into two classes, the target
class for those about professors and the contrasting class for
those about instructors.

In most learning-from-examples algorithms [6], [9], the
examples undergoing learning are partitioned into positive and
negative sets. However, since a relational database does not
store negative data in general, there are usually no explicitly
specified negative examples. When learning a characteristic
rule, we should bear in mind that there are no negative
examples for specialization, and the generalization on the data
in the target class should be performed cautiously to avoid
over-generalization. Alternatively, when learning a classifi-
cation rule which distinguishes the properties in the target
class from those in the contrasting class(es), we may treat
the tuples in the target class as positive data and those
in the contrasting class as “negative” data. However, we
should notice that the data in the contrasting class(es) do

not imply that similar data cannot appear in the target class,
but imply that they cannot be used to distinguish the target
class from the contrasting class. Thus such a kind of data is
different from the negative data in the target class. Therefore,
generalization should still be performed conservatively to
avoid over-generalization. Data in the contrasting class are
used to exclude the properties shared by both classes. Such
an exclusion of the shared data results in a condition which
is sufficient but may not be necessary for the data to be in
the target class. This will be explained further in Section
III.

Preprocessing can be specified by a relational-like language
interface and implemented by relational operations. For exam-

ple, the join and projection operations are often necessary to
collect data from several task relevant relations. The group by
operation (in SQL syntax) is useful at clustering data according
to the target class and the contrasting classes, respectively, for
learning classification rules. Even aggregate operations could
be useful if the task is relevant to some aggregate properties.

HAN et al.: DISCOVERY OF QUANTITATIVE RULES IN RELATIONAL DATABASES 31

TABLE I

A TUPLE Is ESSENTIALLY A LOGICAL FORMULA

Name Sex Age Birth-place Department Position

Benson male 45 Vancouver cmpt full-prof

Salary

63 000

A learning task may refer to some nonprimitive data,
where primitive data are those data stored in data relations
and nonprimitive data are those data appearing only in
concept hierarchies. In this case, nonprimitive data should
be mapped to the primitive ones in order to find the task
relevant data in the database. For example, suppose the concept
hierarchy contains the information about the professors such
as “{ assistprof, assocprof, fullprof) c professor” and the
database contains a relation Employee with the scheme:

Employee = (Name, Sex, Age, Birthplace,
Department, Position, Salary).

If the task is to learn a characteristic rule which describes the
relationship among position, age, and salary of the professors
in Computing Science, the corresponding SQL query for
preprocessing should be

select Position, Age, Salary

from Employee
where Position = “professor” and Department =

“Computing Science.”
Notice that “professor” is nonprimitive data, which should

be mapped to the set of corresponding primitive data in query
processing, that is, the SQL expression

Position = “professor”
should be mapped to

Position E {“assistprof,” “assocprof,”

“fillprof’},
or, in SQL:

(Position = “assistprof’ or
Position = “assocprof’ or Position = “fullprof’).

By preprocessing, data relevant to the learning task are
collected into one relation, which is called the initial data
relation. Our later discussion is focused on the induction
process on the initial data relation.

C. Rule Expectance

According to the theory of logic and databases [8], [21],
data in relational databases correspond to logical formulas in
the first-order logic. Each tuple in a relation can be viewed as a
logical formula in conjunctive normal form. For example, the
tuple in Table I represents a logical formula (1). Multiple tuples

can be viewed as a logical formula in disjunctive normal form.
1) 3x ((Name(x) = Benson) A (Sex(x) = male) A (Age(x) =

45) A (Birthplace(x) = Vancouver) A Department(x) = cmpt
A (Position(x) = full-prof) A (Salary(x) = 63000)).

Similarly, the intermediate and final learning results can be
represented in relational forms called generalized relations.
Learning can be viewed as a sequence of processes each
of which transforms a less generalized relation to a more
generalized relation. Each generalized relation is essentially
a logical formula in disjunctive normal form or a conjunctive
normal form if it contains only one tuple.

To control the learning process, it is often necessary to

specify the expected rule form by a generalization threshold,
which is the maximum number of tupels in the target class of
the final generalized relation, that is, the maximum number of
disjuncts in the resulting formula. The generalization threshold
should be a small positive integer which indicates the expected
maximum number of tuples in the final generalized relation.
The threshold value can be specified or predefined by a user, a
database administrator, or a domain expert. There is a trade-off

between a small threshold value and a moderately large one.
A small threshold leads to a simple rule with a few disjuncts.
However, it may result in over-generalization and the loss of
some valuable information. On the other hand, a relatively
large threshold may preserve some useful information, but it
may result in a relatively complex rule with many disjuncts
and some semi-generalized results. Therefore, fine tuning of
thresholds is often necessary in the learning process; this
fine tuning can be performed interactively by domain experts
and/or users.

If the threshold value is one, the final generalized relation
contains only one tuple (a conjunctive rule). Otherwise, it con-
tains a small number of tuples (a disjunctive rule). Although
many learning algorithms [13] can learn only conjuctive rules,
it is necessary to provide the flexibility to learn conjunctive
rules as well as disjunctive rules in database applications
because of the diversity of data in large databases.

III. PRINCIPLES AND ALGORITHMS

FOR LEARNING FROM DATABASES

We first present the principles and algorithms for learning
characteristic rules from databases and then extend them to
learning classification rules.

A. Learning Characteristic Rules

We examine the learning of characteristic rules in databases
using Example 1.

Example I: Table II depicts a portion of a data relation
Employee in a university database. Suppose our task is to learn
a quantitative characteristic rule for professors in Applied
Sciences relevant to attributes Name, Sex, Age, Birth-place,
and Salary.

Suppose further that the concept hierarchy table is as shown
in Fig. 2, where A c B indicates that B is a generalized
concept of A, and ANY(attribute), such as ANY(Position),
represents the most general concept for the attribute, such
as Position. Each specified concept hierarchy represents a
taxonomy of concepts in an attribute domain (a concept tree
like Fig. 1).

Before beginning the induction process, preprocessing is

performed which collects the data relevant to the learning task.
Notice that professors and Applied Sciences are nonprimitive
data which should be mapped to the primitive data using the
concept hierarchy table.

We now turn our attention to the generalization process.
First, possible generalizations should be considered on each
attribute rather than on composite attributes. We then have the
following strategy:

32 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

Name

Anderson

Bach

Barton

Benson

Sex

female

male

female

male

TABLE II
A RELATION Employee IN A UNIVEMTY DATABASE

Age Birthplace Department Position

26 Burnaby cmpt secretary

38 Ottawa electr-eng lab-manager

30 Toronto them junior-lecturer

45 Vancouver cmpt fullgrof

Salary

26 000

41 000

28 000

63 000

Winton male 38 Seattle civil-eng assocgrof 55 400

Young male 55 Bonn german fullgrof 68 000

(Bumahy, . Richmond. Vancouver, Victoria) c B.C.
(Hamilton. Toronto) c Ontario

(B.C., .._, ontarlo) c canada
(BDm”, mcagcl, Seattle I c U.S. A

(Bombay.New Delhi] c India
(Beijing. Nanjing, .,,, Shanghai) t china

I china. India. .._, U.S.A 1 c foreip
(foreign, Canada) c ANY (Binh-place)
(secmary. lal~lnanager 1 c staff
(junior_lecturer, seniormlecturer) c instructor
(assistgmf. asswgmf. fuULpmf1 c professor

(staK instmctor, pmfessor 1 c ANY (position)
(cmpt, elec~_eng. _.,, civil_eng) c Applied-Sciences

I biology. chemistry. _... physics I c Science
(english. geman, music) c An.3
(Applied-Sxnces. ARs, .,., Science I c ANY @Xpanmem)

[ZI-3Q1cyoung
(31- 50) c mid-age
(Jl-7OJcold

(. . . . young. mid-age, old 1 c ANY (Age)
(2oooO-3wM]cl0w
(?03X-JM00)cmedium
(5MOI-100000)chigh
(.__, low. medium, high) c ANY (Salary)

I male. female) c ANY (Sex)

Fig. 2. A concept hierarchy table relevant to the learning task.

TABLE III
THE GENERALIZED RELATION AFTER THE REMOVAL OF THE ATTRIBUTE NAME

Sex

male

male

Age

45

38

Birth-place Salary

Vancouver 63 000

Seattle 55 400

Strategy I: (Generalization on the smallest decomposable
components) Generalization should be performed on the
smallest decomposable components (or attributes) of a data
relation.

Rationale: Generalization is a process of learning from
positive examples. Generalization on the smallest decompos-
able components instead of on composite attributes ensures
that the smallest possible chance is considered in the gen-
eralization, which enforces the least commitment principle
(commitment to minimally generalized concepts) and avoids
over-generalization. q

The generalization is first performed on each attribute in the
initial data relation. We examine the task relevant attributes
in sequence. First, there is no higher level concept specified
on the first attribute Name. Obviously, the attribute should
be removed in generalization, which implies that general
properties of a professor cannot be characterized by the
attribute Name. A portion of the result relation is shown in
Table III. This is based on Strategy 2.

Strategy 2: (Attribute removal) If there is a large set of
distinct values for an attribute, but there is no higher level
concept provided for the attribute, the attribute should be
removed in the generalization process.

Rationale: This strategy corresponds to the generaliza-
tion rule, dropping conditions, in learning-from-examples [13].

Since an attribute-value pair represents a conjunct in the
logical form of a tuple, removal of a conjunct eliminates a
constraint and thus generalizes the rule. If there is a large set
of distinct values in an attribute but there is no higher level
concept provided for it, it cannot be generalized using higher

level concepts and thus the attribute must be removed. Cl
In Table 111,values in each of the three attributes Age, Birth-

place, and Salary can be generalized by substituting the lower
level concepts by their corresponding higher level concepts.
For example, Vancouver can be generalized to B.C. and then to
Canada. Such a substitution is performed attribute by attribute,
which is based on Strategy 3.

Strategy 3: (Concept tree ascension) If there exists a higher
level concept in the concept tree for an attribute value of
a tuple, the substitution of the value by its higher level
concept generalizes the tuple. Minimal generalization should

be enforced by ascending the tree one level at a time.
Rationale: This strategy corresponds to the generaliza-

tion rule, climbing generalization trees, in learning-from-
examples [13]. The substitution of an attribute value by its
higher level concept makes the tuple cover more cases than
the original value and thus generalizes the tuple. Ascending the

concept tree one level at a time ensures that the generalization
shall follow the least commitment principle and thus reduces
chances of over-generalization. q

As a result of concept tree ascension, different tuples may
be generalized to the same tuple. A tuple is redundant if it is

identical to some tuple(s) of the same class in a generalization
relation. The removal of redundant tuples reduces the size of
the generalized relation. To judge whether an attribute needs
to be further generalized, we have Strategy 4.

Strategy 4: (Threshold control on each attribute) If the
number of distinct values of an attribute in the target class is

larger than the specified generalization threshold value, further
generalization on this attribute should be performed.

Rationale: The generalization threshold represents the
maximum number of tuples of the target class in the final
generalized relation. If one attribute contains more distinct

HAN er al.: DISCOVERY OF QUANTITATIVE RULES IN RELATIONAL DATABASES 33

values than the threshold, the number of distinct tuples in the
generalized relation must be greater than the threshold value.
Thus the values in the attribute should be further generalized.0

TABLE IV
THE FINAL GENERALIZED RELATION

After attribute-oriented ascension of concept trees and the

removal of redundant tuples, the total number of tuples in
a generalized relation may still be greater than the specified
threshold. In this case, further generalization is still required.
A strategy has been devised for this further generalization.

Sex

male

male

female

male
female

Age Birthplace Salary Vote

old Canada high 20

mid-age Canada medium 50

mid-age Canada medium 8

mid-age foreign medium 21

mid-age foreign medium 1

Strategy 5: (Threshold control on generalized relations) If
the number of tuples of a generalized relation in the target
class is larger than the specified generalization threshold value,
further generalization on the relation should be performed.

Rationale: Based on the definition of the generalization
threshold, further generalization should be performed if the
number of tuples in a generalized relation is larger than
the threshold value. By further generalization on selected
attribute(s) and the elimination of redundant tuples, the size of
the generalized relation will be reduced. Generalization should
continue until the number of remaining tuples is no longer
greater than the threshold value. q

At this stage, there are usually alternative choices at select-

the vote of each tuple should be carried in generalization,
and the vote of a redundant tuple should be added to that
of the preserved identical tuple before it is removed from the
generalized relation. q

Suppose the threshold is set to 5 and the final generalized
relation of Example 1 is Table IV. The table corresponds
to a rule in the disjunctive normal form. It is derived by
preprocessing, attribute removal, concept tree ascension, vote
propagation, and threshold control.

ing a candidate attribute for further generalization. Criteria,
such as the preference of a larger reduction ratio on the
number of tuples or on the number of distinct attribute values,
etc. can be used for selection. Actually, interesting rules
can often be discovered by following different generalization
paths to generate several generalized relations for examination,

comparison, and selection. This type of discovery corresponds
to the fact that different people may learn differently from
the same set of examples. Then generalized relations can be
examined by users or experts to filter out some trivial rules
and preserve interesting ones.

To measure the typicality of each tuple in the characteristic
rule, we define t-weight in the following.

Definition: Let qa be a generalized tuple. The t-weight for
qa is the percentage of the original tuples covered by qa in the
target class. Formally, we have

t-weight = Votes(q,) I 5 Votes(qi)
I i=l

where N is the number of tuples in the final generalized
relation, and qa is in (41 . . s qN}.

The final generalized relation consists of only a small
number of tuples, which can be transformed to a simple logical
formula. Based on the principles of logic and databases [8],
[21], we have evolved Strategy 6.

Strategy 6: (Rule transformation) A tuple in a final gener-
alized relation is transformed to conjunctive normal form, and
multiple tuples are transformed to disjunctive normal form.

To incorporate quantitative information in the learning
process, a special attribute, vote, can be attached to each
generalized relation. The vote of a tuple t represents the
number of tuples in the initial data relation which are
generalized to the tuple t in the current generalized relation.
The vote of each tuple in the initial data relation is assumed
to be one. Notice that two tuples in a generalized relation are
identical if they have the same corresponding attribute values
without considering the special attribute vote. Strategy 7 is
then obvious.

Obviously, the range for t-weight is [O-l]. For example, the
t-weight of the first tuple in the Table IV is 20/(20 + 50 +
8 + 21 + 1) = 20%. Similarly, the t-weight for the second
to the fifth ones are 50, 8, 21, and l%, respectively. The first
tuple implies that among the professors in Applied Sciences,
20% are male, old, born in Canada and earning high salaries.
The other four tuples can be described similarly. The rule
can be represented either: i) in the relational table form by
changing vote and the corresponding vote values in Table IV
to t-weight and the corresponding t-weight values, or ii) in the

logical form by associating a corresponding t- weight value
with each disjunct.

In general, a quantitative characteristic rule provides the
necessary condition of the target class since the condition is
derived based on all the facts in the target class, that is, the
tuples in the target class must satisfy this condition. However,
the rule may not be a sufficient condition of the target class
since a tuple satisfying the same condition could belong to
another class. Therefore, the rule should be in the form of

Strategy 7: (Vote propagation) The value of the vote of
a tuple should be carried to its generalized tuple and the
votes should be accumulated in the preserved tuple when
other identical (and thus redundant) tuples are removed in
generalization.

V(z)target-class(z) + conditionl(z)[t: WI]

V ... V condition,(z)[t:ul,].

The rule indicates that if z is the target-class, there is a
possibility of wi that x satisfies conditioni where i is in

{l,...,n}.
Rationale: Based on the definition of vote, the vote of Hence, the final generalized relation of Table IV can be

each generalized tuple must. register the number of the tuples transformed into the logical rule form as 2), where only the
in the initial data relation generalized to the current one. first disjunct is shown explicitly, and the others are similar
Therefore, to keep the correct number of votes registered, and hence denoted by dots.

34 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

2) Vx [professor(x) -+ ((Sex(x) = male) A (Age(x) E old)
A (Birthplace(x) E Canada) A (Salary(x) E high)[t: 20%])

if... .

TABLE V
THE QUALITATIVE CHARACTERISTIC RULE FOR Professors IN Applied Sciences

The previous discussion can be summarized in the following
algorithm

Sex

male

ANY

Age

old

mid-age

Birth-place Salary

Canada high

ANY medium

Algorithm 1. LQCHR-Learning quantitative characteris-
tic rules from relational databases.

Input:
i) relational database,
ii) a concept hierarchy table,
iii) the learning task specification,

iv) the threshold value (T).
Output: A quantitative characteristic rule of the learning

task.
Method:
Step 1: Collect the task-relevant data by a relational query.
Step 2: Call procedure Attribute-Oriented Induction.

Procedure: Attribute-Oriented Induction;
(Suppose that the task relevant relation P consists of a set

of attributes, A;, where 1 5 i 5 n. N represents the number
of tuples, and di represents the number of distinct values of

attribute A; in the target class.}

BEGIN

in each attribute by attribute removal (Strategy 2) or concept
tree ascension (Strategy 3), which simulates the generalization
process of learning-from-examples. Moreover, the specified
threshold value ensures that the concept tree ascension process
terminates when it reaches the threshold-controlled number of
disjuncts (Strategies 4 and 5), and votepropagation guarantees
association of the correct quantitative information (Strategy
7). Step 3 performs transformation based on the principles of
logic and database (Strategy 6). Thus the obtained rule should
be the desired result which characterizes the properties of the
class. cl

Learning a qualitative rule can be treated as a special

FOR EACH attribute Ai DO
WHILE di > T DO

BEGIN
IF there is no higher level concept

provided for Ai
THEN Remove attribute Ai
ELSE Substitute the values by its

corresponding minimally generalized

concept;
Eliminate redundant tuples (with the

votes accumulated)
END

case of learning its quantitative counterpart. A qualitative rule
does not associate quantitative information. Thus a qualitative
characteristic rule can be obtained by following the same
process of learning its quantitative counterpart without the
association of the special (quantitative) attribute vote in the
generalized relations. It can also be derived directly from the
final generalized relation by dropping the attribute vote (or
t-weight).

{Now the number of distinct values of
each remaining attribute is less than T.}

WHILE N > T DO

BEGIN
Selectively generalize an attribute;
Eliminate redundant tuples (with the

votes accumulated)
END

END. {Attribute-Oriented Induction}

Step 3: Transform the final generalized relation into a
logical formula. 0

Notice that the statement, “selectively generalize an at-
tribute,” in the algorithm indicates that further generalization is

based on certain attribute selection criteria implemented in the
system, such as user/implementor preference, or better tuple
reduction ratio, etc.

It is often possible and desirable to perform further sim-
plification on the final generalized relation. For example, if
two tuples are almost identical except for the values of the
one attribute, the two tuples can be merged into one by
grouping the two values of that attribute using set notation. For
example, the second and the third tuples of Table IV, (mule,

mid-age, Canada, medium) and (female, mid-age, Canada,
medium), share the values in all other attributes except for
the first one, Sex. The two tuples can be merged into one tuple
with a set value {male, female}. Moreover, since the {male,
female} covers all the possible values of the attribute Sex, it
can be automatically generalized to ANY and then removed
from the conjunction. Similar merging can be performed on
the fourth and the fifth tuples. Furthermore, the two merged
tuples @WI’, mid-age, Canada, medium) and (Ah?‘, mid-age,
foreign, medium) can be further merged into (ANY, mid-age,
ANY, medium) because Canada and foreign cover the whole

set of the concept of the attribute “BirthPlace.” Therefore,
the qualitative characteristic rule for professors in Applied
Sciences becomes Table V. If such simplication is performed in
the learning of a quantitative rule, corresponding votes should
be merged (accumulated) in the merged tuple as in the removal
of redundant tuples.

Theorem 1: Algorithm LQCHR‘ correctly derives a quanti-
tative characteristic rule for the learning task from a relational
database.

The qualitative characteristic rule can be represented in the
logical form as 3). Similar to the corresponding quantitative
rule, it represents a necessary condition, which may or may
not be a sufficient condition, for x to be a professor.

3) Vx(professor(x) -i

Proof: As discussed ‘in Section II, Step I collects the ((sex(x) = male) A (Age(x) E old) A (Birthplace(x) E

data in the database relevant to the learning task. Based on Canada) A (Salary(z) E high)) V ((Age(x) E mid-age) A

the discussion in this section, Step 2 generalizes the concept (Salary(x) E medium))).

- --

HAN et al,: DISCOVERY OF QUANTITATIVE RULES IN RELATIONAL DATABASES 35

B. Learning Classification Rules

A classification rule discriminates the concepts of the target

class from that of the contrasting class(es). In order to extract
a classification rule, it is necessary to test, in the generalization
process, whether a generalized concept in the target class
overlaps with or is covered by one or a set of generalized
concepts in the contrasting class(es). Notice that primitive data
in both kinds of classes usually reside at the same level (other
cases will be discussed in Section IV), and an overlapping test
is usually more efficient than a coverage test. Therefore, the
concept tree ascension in all of the participating classes should
be synchronized in the learning process. We examine such a
learning process in detail.

Example 2: Suppose we have the same database as in

Example 1, and the task is to learn a quantitative classifi-
cation rule for the professors versus the instructors in Applied
Sciences relevant to attributes Name, Sex, Age, Birth-place,

and Salary.
The seven strategies studied in the last subsection are

generally applicable to the learning of classification rules.
However, in order to discriminate the generalized concepts
in the target class professor from those in the constrasting
class instructor, we should partition the task relevant data into
two portions, one for professor and the other for instructor,
and perform concept tree ascension synchronously on the
two partitions. The generalization threshold is the maximum
number of tuples in the generalized portion of the target class

only.
To distinguish tuples shared by both the target class and

the contrasting class(es), overlapping tuples should be handled
carefully. An overlapping tuple is a tuple in the (data or
generalized) relation shared between the target class and the
contrasting class(es). In general, Strategy 8 handles these

cases.
Strategy 8: (Handling overlapping tuples) Overlapping tu-

ples should be marked and such marks should be propagated
in the generalization process in the learning of classification

rules.
Rationale: Overlapping tuples are the tuples shared by

the target class and the contrasting class(es). They represent
the features in the target class that are nondistinguishable from
the contrasting class(es), and therefore, should be marked for
proper handling in the final generalized relation. If two tuples
are overlapping, their synchronous concept tree ascension will
result in the overlapping of their generalized tuples. Thus the
overlapping mark should be propagated to their generalized

tuples. 0
Suppose the threshold is set to 5 in our example. We drop

the attribute Name (Strategy 2) and perform generalization
on the portion of the target class and that of the contrasting
class(es) simultaneously, which is done on the attributes Age,
Birth-place, and Salary by iteratively ascending the concept
trees (Strategy 3) removing redundant tuples, propagating
the votes (Strategy 7) and marking the overlapping tuples
(Strategy 8) until the number of unmarked tuples in the target
class of the final generalized relation is within the specified
threshold (Strategy 5). Suppose the final generalized relation

TABLE VI
THE FINAL GENERALIZED RELATION

(Learning
Concept)

Sex

male

Age Birth-place Salary Mark Vote

old Canada high 20

professor

instructor

male

female

male

female

male

male

female

mid-age

mid-age

mid-age

mid-age

young

mid-age

young

Canada medium * 50

Canada medium 8

foreign medium * 21

foreign medium 1

Canada IOW 30

Canada medium * 15

Canada IOW 4

male mid-age foreign medium * 1

is as depicted in Table VI.

The generalized process can be described in an algorithm,
LQCLR (Learning Quantitative CLassification Rules) in the
following, which is similar to Algorithm LQCHR.

Algorithm 2. LQCLR-Learning quantitative classification
rules from relational databases.

Input:
i) a relational database,

ii) a concept hierarchy table,
iii) the learning task,
iv) the threshold value (T).

Output: The classification rule of the learning task.

Method:
Step 1: Collect the task relevant data and partition them

according to the learning task specification into two classes:
the target class and the contrasting class.

Step 2: Invoke procedure attribute-oriented induction.

Procedure: Attribute-oriented induction;
{Suppose the relation relevant to the learning task, P,

consists of a set of attributes, Ai, where 1 5 i 5 7~. Let T
be the threshold value, N be the number of unmarked tuples

in the target class, and di be the number of distinct values of

attribute Ai in the unmarked tuples of the target class.}
BEGIN

FOR EACH attribute Ai DO
BEGIN

Perform intersection between the target
and contrasting classes and mark the
overlapping tuples;

WHILE di > T DO
IF there is no higher level concept

of Ai

THEN remove attribute Ai;
ELSE BEGIN

Substitute the values by its corre-
sponding minimally generalized con-

cept ;
Mark the newly generalized overlap-

ping tuples (i.e., those overlapped
with the tupes in contrasting clas-

ses); and
Eliminate identical tuples within

each class (with the votes accumu-

36 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

lated) ;
END

END
{The number of distinct values of each

remaining attribute in the target class
is less than T.}

WHILE N > T DO
BEGIN

Generalize the attributes containing
more distinct values or those with a
better reduction ratio;

Mark the newly generalized overlapping
tuples; and

Eliminate identical tuples within each
class (with the votes accumulated);

END
End. {Attribute-oriented induction}

Step 3: Simplify the generalized relation and transform the
final generalized relation into a logical formula. 0

Theorem 2: Algorithm LQCLR correclty learns classifica-
tion rules from relational databases.

Proof Sketch: Step 1 collects the task relevant data from
the database and partitions them into the target class and the
contrasting classes based on the discussion in Section II. Step 2
generalizes the concept in each attribute either by “concept tree
ascension” (Strategy 3) or by “attribute removal” (Strategy l),
which simulates the generalization process of learning-from-
examples. Moreover, the specified threshold value ensures
that the process of concept tree ascension terminates when it
reaches the threshold controlled number of disjuncts (Strategy
5), and “handling overlapping tuples” marks the properties
shared by other classes (Strategy 8). Step 3 performs simplifi-
cation and transformation based on the principles of logic and
databases (Strategy 7). Thus the rule so obtained should be the
desired result which characterizes the discriminating property
of the target class. 0

To measure the discriminating behavior of the learned
classification rule, we introduce another statistical value, d-
weight.

Definition: Let qa be a generalized concept (tuple) and Cj
be the target class. The d-weight for qa (referring to the target
class) is the ratio of the number of original tuples in the
target class covered by qa to the total number of tuples in
both the target class and the contrasting classes covered by
qa. Formally, the d-weight of the concept qa in class Cj is
defined as

d-weight = Votes(q, E Cj)
I

eVotes(q, E Ci)

i=l

where K stands for the total number of the target and
contrasting classes, and Cj is in {Cl, . . . , CK}.

The range for d-weight is [O-l]. A high d-weight indicates
that the concept is primarily derived from the target class
Cj, and a low d-weight implies that the concept is primarily
derived from the contrasting class(es).

TABLE VII
THE QUALITATIVE CLASSIFICATION RULE FOR Professors IN Applied Sciences

Sex Age Birth-place Salary

male old Canada high

female mid-age ANY medium

The d-weight for the first tuple in the target class is 20/(20-t
0) = 100%. Notice that the d-weight for any unmarked tuple
is 100%. Accordingly, the d-weights for the second to the fifth
tuples are 77, 100, 95, and lOO%, respectively. We conclude
that among the professors and instructors in Applied Sciences,
if he was born in Canada, is old and earns high salary, he is a
professor with a probability of 100%. Similarly, we can derive
the other disjuncts of the quantitative rule.

By associating d-weights, a classification rule provides
quantitative criteria to determine the class membership of the
data. The quantitative classification rule is represented by the
tuples in the target class. It can be represented: i) in the
relational table form by changing the vote and its associated
values in Table VI to d-weight and the corresponding d-weight
values, or ii) in the logical form with a d-weight associated
with each disjunct.

In general, a quantitative classification rule provides a

sufficient condition of the target class since it presents a
quantitative measurement of the properties which occur in the
target class versus that occurring in the contrasting classes.
Therefore, the learned rule should be in the form of

V(x) target-class(z) + condition1 (z)[d: WI]

V . + 3 V condition,(s)[d: wn].

The rule indicates that if x satisfies conditioni, there is a
possibility of wi that 5 is in the target-class, where i is in
{l,‘..,n}.

Therefore, the final generalized relation of Table VI can
be transformed into a logical rule as 4), where only the first
disjunct is shown explicitly, and the others are similar, and
hence, denoted by dots.

4) V’z[professor(z)V
((Sex(z) = male) A (Age(x) E old) A (Birthplace(z) E

Canada) A (Salary(z) E high)[d: lOO%]) V

Similarly, a qualitative classification rule can be treated as
a special case of its quantitative counterpart. To represent a
qualitative classification rule, the vote information is dropped
from the generalized relation(s) and marked tuples in the target
class are removed from the rule. The rule can also be obtained
directly from the learned quantitative rule. In this case, a tuple
with a d-weight not equal to 100% should not be presented
in the qualitative rule since it represents the property being
overlapped with the contrasting classes. In our example, the
qualitative classification rule for professors in Applied Sciences
should be Table VII (with {Canada, foreign} merged to ANY).

The final generalized relation implies that among the pro-
fessors and instructors of Applied Sciences, if he was born in
Canada, is old, and earns a high salary, he is a professor; if
she is mid-aged and earns a medium salary, she is a professor.
It can also be represented in the following logical form.

HAN et al.: DISCOVERY OF QUANTITATIVE RULES IN RELATIONAL DATABASES 37

5) V/5(professor(x) c
((Sex(x) = male) A (Age(x) E old) A (Birthplace(z) E

Canada) A (Salary(z) E high)) V

((Sex(x) = female) A (Age(x) E mid-age) A (Salary(z) E
medium))).

In general, a qualitative classification rule represents the
sufficient condition of the target class since it excludes the
properties occurring in the contrasting classes. However, the
rule may not be the necessary condition of the target class
because it may not cover aZZ of the tuples in the target class.
Therefore, the learned rule, as presented in rule 5), should be
in the form of

Vx target-class(x) +- condition(x).

When there are no overlapping data discovered (i.e., marked)
in the learning process, the learned tuple represents both neces-
sary and sufficient conditions because it covers all of the tuples
in the target class but none of the tuples in the contrasting
class(es). In this case, the rule should be of the form

‘dx target-class(x) ++ condition(x).

When both d-weights and t-weights are associated with
the same set of tuples, the quantitative classification and
characteristic rules can be represented in the same logical
rule with the two weights associated with each disjunct. In
this case, the bi-directional arrow can be used in the rule
representation. That is, it should be in the form of

v’()t g t- 1 () z ar e c ass x ++ conditionr(x)[t: ‘~1, d: wi]

v . . . V condition,(x) [t: w, , d: ~161.

This form indicates that for i from 1 to n, if x is the
target-class, there is a possibility of Wi that x satisfies
conditioni; and if x satisfies conditioni, there is a possibility
of w{ that x is in the target-class.

For example, the quantitative classification rule and charac-
teristic rule in our two examples can be merged into one as
shown in 6) where the bi-directional arrow is used and the two
weights are associated with each disjunct.

6) Vx (professor(x) ++
((Sex(x) = male) A (Age(x) E old) A (Birthplace(x) E

Canada) A (Salary(x) E high)[t: 20%, d: lOO%])V
((sex(x) = male) A (Age(x) E mid-age) A (Birthplace(x) E

Canada) A (Salary(x) E medium)[t: 50%, d: 77%])V

((Sex(x) = female) A (Age(x) E mid-age) A (Birthplace(x) E
Canada) A (Salary(x) E medium)[t: S%, d: lOO%])V

((Sex(x) = male) A (Age(x) E mid-age) A (Birthplace(x) E
Foreign) A (Salary(x) E medium)[t: 21%, d: 95%])V

((Sex(x) = female) A (Age(x) E mid-age) A (Birthplace(x) E
Foreign) A (Salary(x) E medium)[t: l%, d: loo%])).

IV. VARIATIONS OF THE LEARNING ALGORITHMS

A. Handling Noise and Exceptions in Learning

Many data-driven learning algorithms assume that learning
is performed in a noise-free or exception-free environment
[121, [141. Such an assumption may not be realistic in database
applications. Usually, a generalized concept may cover a
majority of data but cannot cover some special data in the

database because of the diverse distribution of data, misclassi-
fication or inaccurate measurement of data. Such special kinds
of data are called exceptions or noise.

Many techniques have been developed in machine learning
to cope with noise and exceptions [4], [12], [17]. A rule which
excludes noise and exceptions is called an approximate rule.
Since quantitative rules incorporate quantitative information
in the learned rules, prime rules can be extracted easily from
quantitative rules.

First, we examine the extraction of an approximate chur-
ucteristic rule from a quantitative characteristic rule. The
t-weight information carries database statistics and supports
the pruning of scattered data. A high t-weight implies that
the concept is induced from the majoirty of data, and a low
t-weight implies that the concept is derived from some rare,
exceptional cases. By pruning low t-weight tuples (disjuncts),
the final generalized relation (or rule) characterizes the major-
ity number of facts in the database.

In practice, we may specify a t- threshold to prune the
low t-weighted tuples in the learning process. For example,
in the final generalized rule of Table IV, the t-weight of the
third tuple (female, mid-age, Canada, medium) is 8% and that
of the fifth tuple (female, mid-age, foreign, medium) is 1%.
If the pruning threshold is set to 5%, the fifth tuple should
be dropped. If the threshold is increased to lo%, both the
third and the fifth tuples should be removed from the prime
characteristic rule.

Then we examine the extraction of am approximate clussifi-

cation rule from a quantitative classification rule. The d-weight
of a nonoverlapping tuple is always 1. A high d-weight (with
the value close to 1) indicates that the tuple is primarily
generalized from the original tuples in the target class with
only some exceptional cases from the contrasting class(es);
a low d-weight (with the value close to 0) indicates that it
is primarily from the contrasting class(es) with only some
exceptional cases from the target class; and a medium d-
weight indicates that the generalization is from a relatively
even distribution between the target class and the contrasting
class(es). Since only tuples with high discriminating behavior
are able to discriminate one class from others, only the high
d-weighted tuples should count in the classification rule.

In practice, we may specify a d-threshold to prune the
marked tuples with low and medium d-weights in the quantita-
tive classification rule. For example, in Table IV, the d-weight
of the second tuple is 77% and that of the fourth tuple is 95%.
If the d-threshold is set to 90%, the second tuple should be
removed from the approximate classification rule. The fourth
tuple (mule, mid-age, foreign, medium), though marked, is
preserved in the classification rule because only about 5% of
its original tuples are in the contrasting class.

Both t-threshold and d-threshold are called pruning thresh-
olds since they are used to prune exceptional and noisy

data in generalization. Pruning thresholds can also be tuned
interactively by users/experts in the learning process as the
tuning of the generalization threshold discussed in Section
III. More sophisticated statistical techniques can be applied to
measure the correlations between the generalized tuples and
the learning classes [16]; we do not consider them here.

38 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

B. Incremental Learning on Database Updates

A flexible database learning technique should allow learning

to be performed incrementally on database updates [ll]. In-
cremental learning avoids restarting the costly learning process
from the beginning on database updates.

Using the quantitative information learned from a database,
incremental learning can be performed efficiently and effec-

tively on database updates. Assume that the database stores
the final (quantitative) generalized relation of a learning task.
We consider an example.

Example 3: Suppose a new tuple, (Watt, female, 32, Humil-
ton, cmpt, ussistprof, 45 500), is inserted to the data relation
of Table II, and the learning task is the same as that of
Example 2. Incremental learning should be performed by

modifying the learning result of Table VI instead of restarting
the entire learning process on the newly updated database. It
is performed as follows.

First, the value of the attribute which serves as a classifier
of the learning task determines the class to which the newly
inserted tuple belongs. For example, “Position = ussistprof’
indicates that the new tuple is in the class of professor. If a
newly inserted tuple belongs to neither the target class nor the
contrasting class, such as the newly arrived person is neither
a professor nor an instructor but a secretary, the previous
learning result should not be affected.

Then incremental learning proceeds as follows. The attribute

which does not have corresponding attribute entries in the final
generalized relation should be removed from the tuple, which
corresponds to the strategy attribute removal. Other attribute
values of the inserted tuple should be generalized to the same
level of the concepts as those in the final generalized relation
and inserted into the generalized relation. In our example, the
tuple is generalized to (female, mid-age, Canada, medium) and
inserted to the class of professor. Since this generalized tuple
is the same as the third tuple of Table VI, the effect is just an
increment of the vote of the third tuple by 1. The corresponding
t-weight and d-weight in the learned quantitative rule should
be updated accordingly. cl

In general, when tuples are inserted into the database, each

attribute of the newly inserted tuples is generalized to the
same concept level as those in the original final generalized
relation. The newly generalized tuples are merged with the
final generalized relation. If they have identical tuples in that
relation, the effect is simply incrementing the votes of the
identical tuples. Otherwise, they become the new tuples in
the final generalized relation. If the size of the newly formed
generalized relation is larger than the threshold value, further
generalization should be performed on it to derive a new final
generalized relation.

Incremental learning can also be performed on database
deletions. The deletion of a tuple relevant to the learning
result can be implemented by decrementing the vote of the

corresponding generalized tuple by one in the final generalized
relation. However, the deletion of some sensitive tuples or
the deletion of a substantial number of tuples may require
restarting the learning process from the beginning because a
vote decrement is not equivalent to the reverse of concept

tree ascension. If all of the concepts are retained at the levels
of concepts in the old generalized relation, this may lead to
an overly generalized relation. In such cases, learning should
be performed over again on the new database to keep the
discovered knowledge up-to-date.

C. Learning with Other Kinds of Concept Hierarchies

Our previous discussion assumes that the concept hierarchy
of each attribute, if any, forms a balanced tree. Thus general-
ization on each attribute can be performed synchronously to
generalize the same lower level concepts of an attribute to the
same higher level ones.

However, a concept hierarchy could be an unbalanced
concept tree, or primitive data may reside at different levels of
a concept tree. In such cases, the same level of concepts could
be reached at different generalization stages by synchronous
concept tree ascension, which may result in incorrect gener-
alization. This problem can be solved by checking whether a
generalized concept covers a concept which resides at a level
lower than the current one in the concept tree. If it does, the
covered concept can be substituted by the covering one, that
is, directly ascending that branch of the tree several levels
higher to bring concepts at different levels to the same level.
Then the same learning algorithms can be performed correctly

and efficiently.

V. A COMPARISON WITH OTHER LEARNING ALGORITHMS

It is interesting to compare our technique with those
developed in traditional machine learning research [13], [14].
In general, our method adopts the concept tree ascending
technique which follows the idea of the version space method,
a typical method of learning-from-examples [5], [14], [15].
However, our method takes advantages of the characteristics
of relational database systems and provides many distinct
features.

First, most learning-from-examples algorithms [5], [13],
[14] learn classification rules from both positive and neg-
ative examples. They perform generalization using positive
instances and specialization using negative instances. Unfortu-
nately, negative examples are not stored in relational databases
explicitly. Thus we have to rely on the generalization process,
that is, the least commitment generalization and threshold
control. In the learning of classification rules, data in the
contrasting classes are used to exclude features of the target
class which are shared by the contrasting classes. This can be
viewed as a specialization process. However, this specializa-
tion process is performed by first generalizing tuples in both
the target class and the contrasting class(es) and then excluding
the overlapping tuples. The rule so learned may not cover all
of the positive examples, that is, it is only a sufficient condition
but may not be a necessary condition. This specialization
process is different from that of learning-from-examples which
learns both necessary and sufficient conditions of a concept.

Secondly, the algorithm may learn disjunctive rules,
which provides additional flexibility over many leurning-
from-example algorithms. Moreover, qualtitative rules can be
extracted from the results of learning quantitative rules. By

HAN el al.: DISCOVERY OF QUANTITATIVE RULES IN RELATIONAL DATABASES 39

incorporating quantitative information in the learning process,
our method handles noise and exceptions elegantly.

The major benefit of our method in comparison with the
version space method is processing efficiency. The version

space method adopts tuple-oriented generalization. In contrast,
our method adopts the attribute-oriented generalization which
treats a concept hierarchy of each attribute as a factored ver-
sion space and performs generalization on individual attributes.
Factoring the version space may significantly improve the
computational efficiency. Suppose there are p nodes in each
concept tree and there are k concept trees (attributes) in the
relation. The total size of factorized version space should be
p x k. However, the size of the unfactorized version space for
the same concepts should be p’ [20]. The search space for
attribute-oriented generalization is much smaller than the one
for tuple-oriented generalization.

TABLE VIII
THE NEW FINAL GENERALIZED RELATION

Age Salary Vote

old high 20

mid-age medium 80

Our previous study of learning qualitative rules can be treated
as a special case of learning quantitative rules.

VI. APPLICATION OF LEARNING RESULTS

Similar arguments hold for the attribute-oriented method in

comparison with other tuple-oriented approaches [13], [14].
An attribute-oriented generalization requires the testing of
redundant tuples in processing, which is performed after the
generalization of all the values on each attribute. In contrast,
a tuple-oriented approach requires the testing for concept
coverage, which should be performed after each generalization
on a single attribute value of a tuple. Since there are a huge
number of possible combinations in such testing, inefficient
algorithms evolve when operating in large databases [lo].

Since the knowledge rules discovered in a database are
based on a large set of data, they represent important knowl-
edge about data in the database. The learned rules enrich
our understanding of the general properties of data and help
discover interesting relationships among data in the database.
Therefore, it represents an important technique for knowledge
acquisition in databases.

The efficiency of the attribute-oriented generalization can
also be demonstrated by analyzing its worst-case time com-
plexity. Suppose there are N tuples in the database which are
relevant to the learning task, A attributes for each tuple, and H
levels for each concept tree, the time complexity in the worst
case is analyzed as follows. For each attribute, the time for sub-
stituting the lower level concepts by the higher level concepts
is N, and the time for checking redundant tuples is N log N.
Since the height of the concept tree is H, the time spent on
each attribute is at most H x (N + N log N). Obviously, the
upper bound of the total time for processing A attributes is
A x H x (N+N log N). In general, A and H are much smaller
than N in a large database. Therefore, the time complexity of
our approach is O(N log N) in the worst case, which is more
efficient than the tuple-oriented generalization [18].

Interestingly, many more rules can be derived from the
quantitative rules of a database. First, qualitative rules can be
extracted from the learned quantitative rules, by dropping the
quantitative measurements t- weight(s) and d-weight(s), as we
discussed above. Secondly, approximate rules, which exclude
noise and exceptions, can be extracted from the learned
quantitative rules by pruning the tuples which are below the
specified pruning thresholds. Moreover, rules relevant to a
subset of the previously studied set of attributes can often
be extracted directly from the previously learned rules. We
examine one such example.

Example 4: Suppose the learning task is to characterize the
professors in Applied Sciences relevant to the attributes Age
and Salary only.

Another obvious advantage of our approach over many
others is the integration of the learning process with database
operations. Most of the operations used in our approach
involve traditional relational database operations, such as
selection, join, projection (extracting relevant data and remov-
ing attributes), tuple substitution (ascending concept trees),
and intersection (discovering common tuples among classes).
These operations are set-oriented and have been efficiently
implemented in relational systems. While most learning algo-
rithms suffer from inefficiency problems in the large database
environment [6], [13], our approach provides an efficient
method for learning in such databases.

The learning task is almost the same as the task posed in
Example 1, except that it is relevant to a subset of previously
studied set of attributes. Instead of starting the learning process
from the beginning, the rule can be extracted directly from the
learning result, that is, the final generalized relation, Table
IV. The only processing to be performed is to project the
irrelevant attributes Sex and Birth-place and remove redundant
tuples, which derives the final generalized relation, Table VIII.
That is, 20% professors in Applied Sciences are old with high
salaries and 80% of them are mid-aged with medium salaries.

Attribute-oriented induction was first developed in our pre-
vious work [l], [2]. The technique studied here is a further
development of our techniques for learning quantitative rules.
Quantitative information provides us with informative rules
and facilitates learning in the presence of noise and exceptions.

Another important application of generalized rules and
concept hierarchies is to answer queries involving concepts
at different levels of abstraction. Although a relational data-
base stores a large amount of data, it cannot answer queries
involving concepts at any level higher than the level of
the primitive data. For example, a simple query,“how many
professors are in Applied Scineces?” cannot be answered
since the database (Table II) knows neither “professor” (but
“assist-prof,” “fullprof,” etc.) nor “Applied Sciences” (but
“electr-eng,” “ computing science,” etc.) A query, “describe the
characteristics of professors in Applied Sciences? will be more
challenging. With the help of generalized rules and concept
hierarchies, such queries can be handled naturally. IvIoreover,
queries involving quantitative or statistical information can
be answered effectively and efficiently using the extracted
quantitative rules. A database user may view data at different

40 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

levels of abstraction and inquires concepts at mixed levels,
which enhances the usefulness and flexibility of the database.

Furthermore, discovered knowledge benefits semantic query
optimization in databases. Previous studies have shown that
integrity constraints and deduction rules can be used for se-
mantic query optimization [3]. Actually, induced rules can be
used for such optimization as well. For example, a query, “how
many professors in Applied Sciences were born in foreign coun-
tries?’ can be answered directly by examining only the final
generalized relation. Since generalized rules are extracted from
large amounts of data, they represent certain data semantics
and characteristics. Therefore, queries involving such semantic
information can be processed using induced rules naturally.

VII. CONCLUSIONS

We presented an efficient, attribute-oriented induction
method for data-driven discovery of quantitative rules in
relational databases. Based on the information about data
relevance, expected rule forms, and concept hierarchies,
the attribute-oriented induction method integrates database
operations with the learning process and provides a simple
and efficient way for knowledge discovery in large databases.

We studied in detail the method for learning two kinds of
quantitative rules, characteristic rules and classification rules.
Learning qualitative rules can be treated as a special case of
learning quantitative rules. Moreover, by incorporating quanti-
tative information, approximate rules which exclude noise and
exceptions can be extracted and incremental learning can be
performed efficiently on database updates. Thus learning quan-
titative rules provides us with a powerful mechanism of learn-
ing various kinds of knowledge rules from relational databases.

A preliminary implementation of our approach has resulted
in a prototyped database learning systems, DBLEARN. A high
level interface has also been constructed for the specification
of learning tasks, conceptual hierarchies, and thresholds as
well as for communication with users in the learning process.
Experiments with DBLEARN on the Natural Sciences and
Engineering Research Council of Canada Research Grant
Information Database have shown great promise for data-
driven discovery of knowledge rules in relational databases.
The further development of database learning techniques and
the application of the techniques to deductive database systems
and rule-based expert systems are interesting topics for the
future research.

REFERENCES

[l] Y. Cai, N. Cercone, and J. Han, “Attribute-oriented induction in re-
lational databases,“in G. Piatetsky-Shapiro and W. J. Frawley, Eds.
Knowledge Discovery in Databases. Menlo Park, CA: AAAIMIT,
1990, pp. 213-228.

[2] -, “An attribute-oriented approach for learning classification rules
from relational databases,” in Proc. 6th In?. Conj Data Engineering, Los
Angeles, CA, Feb. 1990, pp. 281-288.

[3] U. S. Chakravarthy, J. Grant, and J. Minker, “Foundations of semantic
query optimization for deductive databases,” in J. Minker, Ed. Founda-
tions ofDeductive Databases and Logic Pronramminn, San Francisco,
CA: Morgan Kaufmann, 1988, pp. 243-274. -

141 K. C. C. Chan and A. K. C. Worm, “A statistical technioue for extracting
classificatory knowledge from d;?tabases,” in G. Piatetsky-Shapiro and
W. J. Frawley, eds., Knowledge Discovery in Databases. Menlo Park,
CA: AAAIMIT, 1991, pp. 107-124.

PI

161

[71

181

191

WI

1111

1121

P31

1151

11’51

WI

P91

PO1

P. Cohen and E. A. Feigenbaum, The Handbook ofArtificial Intelligence
(Vol. Ill). San Franc&o, CA: William Kaufmann, 1$83. -
T. G. Dietterich and R. S. Michalski, “A comuarative review of selected
methods for learning from examples, ” in R.‘S. Michalski et al., Eds.,
Machine Learning: An Artificial Intelligence Approach, Vol. 1. San
Francisco, CA: Morgan Kaufmann, 1983, pp. 41-82.
D. Fisher, “Improving inference through conceptual clustering,” in Proc.
1987AAAI Co& Seattle, WA, July 1987, pp. 461465.
H. Gallaire, J. Minker, and J. Nicolas, “Logic and databases: A deductive
approach,” ACM Comput. Survey, vol. 16, no. 2, pp. 153-185, 1984.
M. Genesereth and N. Nilsson, Logical Foundations of Artificial Intel-
ligence. San Francisco, CA: Morgan Kaufmann, 1987.
D. Haussler, “Quantifying the inductive bias in concept learning,” in
Proc. 1986 AAAI Conf., Philadelphia, PA, Aug. 1986, pp. 485-489.
D. Kulkami and H. A. Simon, “The process of scientific discovery: The
strategy of experimentation,” Cognitive Sci., vol. 12, pp. 139-175, 1988.
M. V. Manago and Y. Kodratoff, “Noise and knowledge acquisition,”
in Proc. 10th Int. Joint Conj Artificial Intelligence, Milan, Italy, 1987,
pp. 348-354.
R. S. Michalski, “A theory and methodology of inductive learning,” in R.
S. Michalski et al., Eds., Machine Learning: An Arti)icial Intelligence
Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann, 1983, pp.
83-134.
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, MachineLearning,
An Artificial Intelligence Approach, Vol. 2. San Francisco, CA: Morgan
Kaufmann, 1986.
T. M. Mitchell, “Version spaces: A candidate elimination approach
to rule learning,” Proc. 5th Int. Joint Conf: Artificial Intelligence,
Cambridge, MA, 1977, pp. 305-310.
G. Piatetsky-Shapiro, “Discovery of strong rules in databases,” in G.
Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in
Databases. Menlo Park, CA: AAAIIMIT, 1991, pp. 229-238.
J. R. Quinlan, “The effect of noise on concept learning,” in R. S.
Michalski et al, Eds., Machine Learning: An Artificial Intelligence
Approuch, Vol. 2. San Francisco, CA: Morgan Kaufmann, 1986, pp.
149-166.
S. J. Russell, “Tree-structured bias,” in Proc. 1988 AAAI Conf.. Min-
neapolis, MN, Aug. 1988, pp. 641-645.
M. Stonebraker, Readings in Database Systems. San Francisco, CA:
Morgan Kaufmann, 1988.
D. Subramanian and J. Feigenbaum, “Factorization in experiment gen-
eration,” in Proc. 1986 AAAI Conf., Philadelphia, PA, Aug. 1986, pp.
518-522.
J. D. UIlman, Principles of Database and Knowledge-Base Systems, Vol.
I. Palo Alto, CA: Computer Science, 1988.

Jiawei Han received the M.Sc. degree in 1981 and
the Ph.D. degree in 1985, both in computer sciences
from the University of Wisconsin, Madison.

He was an Assistant Professor with Northwestern
University from 1986 to 1987. Presently, he is
an Associate Professor with Simon Fraser Univer-
sity, Canada. His current research interests include
deductive database systems, knowledge-base sys-
tems, logic programming, knowledge discovery in
databases, spatial databases, and artificial intelli-
gence.

Dr. Han is a member of the Association for
Association for Logic Programming.

Computing Machinery and the

Yandong Cai received the B.Sc. degree in 1977 and
the M.Sc. degree in 1983 in China. She received
the MSc. degree in computing science from Simon
Fraser University in 1989.

Her current research interests include machine
learning, knowledge discovery in databases, and
expert database systems.

Nick Cercone (S’72-M’75)
2 of this issue.

for a photograph and biography, please see page

