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Abstract We consider stochastic programs where the distribution of the uncertain

parameters is only observable through a finite training dataset. Using the Wasserstein

metric, we construct a ball in the space of (multivariate and non-discrete) probability

distributions centered at the uniform distribution on the training samples, and we seek

decisions that perform best in view of the worst-case distribution within this Wasser-

stein ball. The state-of-the-art methods for solving the resulting distributionally robust

optimization problems rely on global optimization techniques, which quickly become

computationally excruciating. In this paper we demonstrate that, under mild assump-

tions, the distributionally robust optimization problems over Wasserstein balls can

in fact be reformulated as finite convex programs—in many interesting cases even

as tractable linear programs. Leveraging recent measure concentration results, we

also show that their solutions enjoy powerful finite-sample performance guarantees.

Our theoretical results are exemplified in mean-risk portfolio optimization as well as

uncertainty quantification.

Mathematics Subject Classification 90C15 Stochastic programming ·
90C25 Convex programming · 90C47 Minimax problems

1 Introduction

Stochastic programming is a powerful modeling paradigm for optimization under

uncertainty. The goal of a generic single-stage stochastic program is to find a decision

B Peyman Mohajerin Esfahani

P.MohajerinEsfahani@tudelft.nl

Daniel Kuhn

daniel.kuhn@epfl.ch

1 Delft Center for Systems and Control, TU Delft, Delft, The Netherlands

2 Risk Analytics and Optimization Chair, EPFL, Lausanne, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1172-1&domain=pdf
http://orcid.org/0000-0003-1286-8782


116 P. Mohajerin Esfahani, D. Kuhn

x ∈ R
n that minimizes an expected cost EP[h(x, ξ)], where the expectation is taken

with respect to the distribution P of the continuous random vector ξ ∈ R
m . However,

classical stochastic programming is challenged by the large-scale decision problems

encountered in today’s increasingly interconnected world. First, the distribution P is

never observable but must be inferred from data. However, if we calibrate a stochastic

program to a given dataset and evaluate its optimal decision on a different dataset,

then the resulting out-of-sample performance is often disappointing—even if the two

datasets are generated from the same distribution. This phenomenon is termed the

optimizer’s curse and is reminiscent of overfitting effects in statistics [48]. Second, in

order to evaluate the objective function of a stochastic program for a fixed decision x ,

we need to compute a multivariate integral, which is #P-hard even if h(x, ξ) constitutes

the positive part of an affine function, while ξ is uniformly distributed on the unit

hypercube [24, Corollary 1].

Distributionally robust optimization is an alternative modeling paradigm, where

the objective is to find a decision x that minimizes the worst-case expected cost

supQ∈P EQ[h(x, ξ)]. Here, the worst-case is taken over an ambiguity set P , that

is, a family of distributions characterized through certain known properties of the

unknown data-generating distribution P. Distributionally robust optimization prob-

lems have been studied since Scarf’s [43] seminal treatise on the ambiguity-averse

newsvendor problem in 1958, but the field has gained thrust only with the advent

of modern robust optimization techniques in the last decade [3,9]. Distributionally

robust optimization has the following striking benefits. First, adopting a worst-case

approach regularizes the optimization problem and thereby mitigates the optimizer’s

curse characteristic for stochastic programming. Second, distributionally robust mod-

els are often tractable even though the corresponding stochastic model with the true

data-generating distribution (which is generically continuous) are #P-hard. So even

if the data-generating distribution was known, the corresponding stochastic program

could not be solved efficiently.

The ambiguity set P is a key ingredient of any distributionally robust optimization

model. A good ambiguity set should be rich enough to contain the true data-generating

distribution with high confidence. On the other hand, the ambiguity set should be

small enough to exclude pathological distributions, which would incentivize overly

conservative decisions. The ambiguity set should also be easy to parameterize from

data, and—ideally—it should facilitate a tractable reformulation of the distributionally

robust optimization problem as a structured mathematical program that can be solved

with off-the-shelf optimization software.

Distributionally robust optimization models where ξ has finitely many realizations

are reviewed in [2,7,39]. This paper focuses on situations where ξ can have a con-

tinuum of realizations. In this setting, the existing literature has studied three types

of ambiguity sets. Moment ambiguity sets contain all distributions that satisfy cer-

tain moment constraints, see for example [18,22,51] or the references therein. An

attractive alternative is to define the ambiguity set as a ball in the space of probability

distributions by using a probability distance function such as the Prohorov metric [20],

the Kullback–Leibler divergence [25,27], or the Wasserstein metric [38,52] etc. Such

metric-based ambiguity sets contain all distributions that are close to a nominal or most

likely distribution with respect to the prescribed probability metric. By adjusting the

123



Data-driven distributionally robust optimization using the… 117

radius of the ambiguity set, the modeler can thus control the degree of conservatism of

the underlying optimization problem. If the radius drops to zero, then the ambiguity

set shrinks to a singleton that contains only the nominal distribution, in which case the

distributionally robust problem reduces to an ambiguity-free stochastic program. In

addition, ambiguity sets can also be defined as confidence regions of goodness-of-fit

tests [7].

In this paper we study distributionally robust optimization problems with a Wasser-

stein ambiguity set centered at the uniform distribution P̂N on N independent and

identically distributed training samples. The Wasserstein distance of two distributions

Q1 and Q2 can be viewed as the minimum transportation cost for moving the proba-

bility mass from Q1 to Q2, and the Wasserstein ambiguity set contains all (continuous

or discrete) distributions that are sufficiently close to the (discrete) empirical distribu-

tion P̂N with respect to the Wasserstein metric. Modern measure concentration results

from statistics guarantee that the unknown data-generating distribution P belongs to

the Wasserstein ambiguity set around P̂N with confidence 1 − β if its radius is a

sublinearly growing function of log(1/β)/N [11,21]. The optimal value of the distri-

butionally robust problem thus provides an upper confidence bound on the achievable

out-of-sample cost.

While Wasserstein ambiguity sets offer powerful out-of-sample performance guar-

antees and enable the decision maker to control the model’s conservativeness,

moment-based ambiguity sets appear to display better tractability properties. Specif-

ically, there is growing evidence that distributionally robust models with moment

ambiguity sets are more tractable than the corresponding stochastic models because

the intractable high-dimensional integrals in the objective function are replaced with

tractable (generalized) moment problems [18,22,51]. In contrast, distributionally

robust models with Wasserstein ambiguity sets are believed to be harder than their

stochastic counterparts [36]. Indeed, the state-of-the-art method for computing the

worst-case expectation over a Wasserstein ambiguity set P relies on global opti-

mization techniques. Exploiting the fact that the extreme points of P are discrete

distributions with a fixed number of atoms [52], one may reformulate the original

worst-case expectation problem as a finite-dimensional non-convex program, which

can be solved via “difference of convex programming” methods, see [52] or [36, Sec-

tion 7.1]. However, the computational effort is reported to be considerable, and there is

no guarantee to find the global optimum. Nevertheless, tractability results are available

for special cases. Specifically, the worst case of a convex law-invariant risk measure

with respect to a Wasserstein ambiguity set P reduces to the sum of the nominal risk

and a regularization term whenever h(x, ξ) is affine in ξ and P does not include any

support constraints [53]. Moreover, while this paper was under review we became

aware of the PhD thesis [54], which reformulates a distributionally robust two-stage

unit commitment problem over a Wasserstein ambiguity set as a semi-infinite linear

program, which is subsequently solved using a Benders decomposition algorithm.

The main contribution of this paper is to demonstrate that the worst-case expectation

over a Wasserstein ambiguity set can in fact be computed efficiently via convex opti-

mization techniques for numerous loss functions of practical interest. Furthermore, we

propose an efficient procedure for constructing an extremal distribution that attains the

worst-case expectation—provided that such a distribution exists. Otherwise, we con-
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struct a sequence of distributions that attain the worst-case expectation asymptotically.

As a by-product, our analysis shows that many interesting distributionally robust opti-

mization problems with Wasserstein ambiguity sets can be solved in polynomial time.

We also investigate the out-of-sample performance of the resulting optimal decisions—

both theoretically and experimentally—and analyze its dependence on the number of

training samples. We highlight the following main contributions of this paper.

• We prove that the worst-case expectation of an uncertain loss ℓ(ξ) over a Wasser-

stein ambiguity set coincides with the optimal value of a finite-dimensional convex

program if ℓ(ξ) constitutes a pointwise maximum of finitely many concave func-

tions. Generalizations to convex functions or to sums of maxima of concave

functions are also discussed. We conclude that worst-case expectations can be

computed efficiently to high precision via modern convex optimization algorithms.

• We describe a supplementary finite-dimensional convex program whose optimal

(near-optimal) solutions can be used to construct exact (approximate) extremal

distributions for the infinite-dimensional worst-case expectation problem.

• We show that the worst-case expectation reduces to the optimal value of an explicit

linear program if the 1-norm or the ∞-norm is used in the definition of the Wasser-

stein metric and if ℓ(ξ) belongs to any of the following function classes: (1) a

pointwise maximum or minimum of affine functions; (2) the indicator function of

a closed polytope or the indicator function of the complement of an open polytope;

(3) the optimal value of a parametric linear program whose cost or right-hand side

coefficients depend linearly on ξ .

• Using recent measure concentration results from statistics, we demonstrate that the

optimal value of a distributionally robust optimization problem over a Wasserstein

ambiguity set provides an upper confidence bound on the out-of-sample cost of the

worst-case optimal decision. We validate this theoretical performance guarantee

in numerical tests.

If the uncertain parameter vector ξ is confined to a fixed finite subset of R
m , then the

worst-case expectation problems over Wasserstein ambiguity sets simplify substan-

tially and can often be reformulated as tractable conic programs by leveraging ideas

from robust optimization. An elegant second-order conic reformulation has been dis-

covered, for instance, in the context of distributionally robust regression analysis [32],

and a comprehensive list of tractable reformulations of distributionally robust risk

constraints for various risk measures is provided in [39]. Our paper extends these

tractability results to the practically relevant case where ξ has uncountably many pos-

sible realizations—without resorting to space tessellation or discretization techniques

that are prone to the curse of dimensionality.

When ℓ(ξ) is linear and the distribution of ξ ranges over a Wasserstein ambiguity

set without support constraints, one can derive a concise closed-form expression for

the worst-case risk of ℓ(ξ) for various convex risk measures [53]. However, these

analytical solutions come at the expense of a loss of generality. We believe that the

results of this paper may pave the way towards an efficient computational procedure for

evaluating the worst-case risk of ℓ(ξ) in more general settings where the loss function

may be non-linear and ξ may be subject to support constraints.
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Among all metric-based ambiguity sets studied to date, the Kullback–Leibler ambi-

guity set has attracted most attention from the robust optimization community. It has

first been used in financial portfolio optimization to capture the distributional uncer-

tainty of asset returns with a Gaussian nominal distribution [19]. Subsequent work

has focused on Kullback–Leibler ambiguity sets for discrete distributions with a fixed

support, which offer additional modeling flexibility without sacrificing computational

tractability [2,14]. It is also known that distributionally robust chance constraints

involving a generic Kullback–Leibler ambiguity set are equivalent to the respective

classical chance constraints under the nominal distribution but with a rescaled viola-

tion probability [26,27]. Moreover, closed-form counterparts of distributionally robust

expectation constraints with Kullback–Leibler ambiguity sets have been derived in

[25].

However, Kullback–Leibler ambiguity sets typically fail to represent confidence

sets for the unknown distribution P. To see this, assume that P is absolutely continu-

ous with respect to the Lebesgue measure and that the ambiguity set is centered at the

discrete empirical distribution P̂N . Then, any distribution in a Kullback–Leibler ambi-

guity set around P̂N must assign positive probability mass to each training sample.

As P has a density function, it must therefore reside outside of the Kullback–Leibler

ambiguity set irrespective of the training samples. Thus, Kullback–Leibler ambiguity

sets around P̂N contain P with probability 0. In contrast, Wasserstein ambiguity sets

centered at P̂N contain discrete as well as continuous distributions and, if properly

calibrated, represent meaningful confidence sets for P. We will exploit this property

in Sect. 3 to derive finite-sample guarantees. A comparison and critical assessment of

various metric-based ambiguity sets is provided in [45]. Specifically, it is shown that

worst-case expectations over Kullback–Leibler and other divergence-based ambiguity

sets are law invariant. In contrast, worst-case expectations over Wasserstein ambiguity

sets are not. The law invariance can be exploited to evaluate worst-case expectations

via the sample average approximation.

The models proposed in this paper fall within the scope of data-driven distribu-

tionally robust optimization [7,16,20,23]. Closest in spirit to our work is the robust

sample average approximation [7], which seeks decisions that are robust with respect

to the ambiguity set of all distributions that pass a prescribed statistical hypothesis

test. Indeed, the distributions within the Wasserstein ambiguity set could be viewed

as those that pass a multivariate goodness-of-fit test in light of the available training

samples. This amounts to interpreting the Wasserstein distance between the empiri-

cal distribution P̂N and a given hypothesis Q as a test statistic and the radius of the

Wasserstein ambiguity set as a threshold that needs to be chosen in view of the test’s

desired significance level β. The Wasserstein distance has already been used in tests

for normality [17] and to devise nonparametric homogeneity tests [40].

The rest of the paper proceeds as follows. Section 2 sketches a generic framework

for data-driven distributionally robust optimization, while Sect. 3 introduces our spe-

cific approach based on Wasserstein ambiguity sets and establishes its out-of-sample

performance guarantees. In Sect. 4 we demonstrate that many worst-case expectation

problems over Wasserstein ambiguity sets can be reduced to finite-dimensional convex

programs, and we develop a systematic procedure for constructing worst-case distri-

butions. Explicit linear programming reformulations of distributionally robust single
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and two-stage stochastic programs as well as uncertainty quantification problems are

derived in Sect. 5. Section 6 extends the scope of the basic approach to broader classes

of objective functions, and Sect. 7 reports on numerical results.

Notation We denote by R+ the non-negative and by R:=R∪{−∞,∞} the extended

reals. Throughout this paper, we adopt the conventions of extended arithmetics,

whereby ∞ · 0 = 0 · ∞ = 0/0 = 0 and ∞ − ∞ = −∞ + ∞ = 1/0 = ∞.

The inner product of two vectors a, b ∈ R
m is denoted by

〈
a, b
〉
:=a⊺b. Given a

norm ‖ · ‖ on R
m , the dual norm is defined through ‖z‖∗:= sup‖ξ‖≤1

〈
z, ξ
〉
. A function

f : R
m → R is proper if f (ξ) < +∞ for at least one ξ and f (ξ) > −∞ for every ξ

in R
m . The conjugate of f is defined as f ∗(z):= supξ∈Rm

〈
z, ξ
〉
− f (ξ). Note that con-

jugacy preserves properness. For a set � ⊆ R
m , the indicator function 1� is defined

through 1�(ξ) = 1 if ξ ∈ �; = 0 otherwise. Similarly, the characteristic function

χ� is defined via χ�(ξ) = 0 if ξ ∈ �; = ∞ otherwise. The support function of � is

defined as σ�(z):= supξ∈�

〈
z, ξ
〉
. It coincides with the conjugate of χ�. We denote by

δξ the Dirac distribution concentrating unit mass at ξ ∈ R
m . The product of two prob-

ability distributions P1 and P2 on �1 and �2, respectively, is the distribution P1 ⊗P2

on �1 × �2. The N -fold product of a distribution P on � is denoted by PN , which

represents a distribution on the Cartesian product space �N . Finally, we set the expec-

tation of ℓ : � → R under P to EP[ℓ(ξ)] = EP
[

max{ℓ(ξ), 0}
]
+EP
[

min{ℓ(ξ), 0}
]
,

which is well-defined by the conventions of extended arithmetics.

2 Data-driven stochastic programming

Consider the stochastic program

J ⋆:= inf
x∈X

{
EP
[
h(x, ξ)
]

=
∫

�

h(x, ξ)P(dξ)

}
(1)

with feasible set X ⊆ R
n , uncertainty set � ⊆ R

m and loss function h : R
n×R

m → R.

The loss function depends both on the decision vector x ∈ R
n and the random vector

ξ ∈ R
m , whose distribution P is supported on �. Problem (1) can be viewed as the

first-stage problem of a two-stage stochastic program, where h(x, ξ) represents the

optimal value of a subordinate second-stage problem [46]. Alternatively, problem (1)

may also be interpreted as a generic learning problem in the spirit of [49].

Unfortunately, in most situations of practical interest, the distribution P is not

precisely known, and therefore we miss essential information to solve problem (1)

exactly. However, P is often partially observable through a finite set of N indepen-

dent samples, e.g., past realizations of the random vector ξ . We denote the training

dataset comprising these samples by �̂N :={̂ξi }i≤N ⊆ �. We emphasize that—before

its revelation—the dataset �̂N can be viewed as a random object governed by the

distribution PN supported on �N .

A data-driven solution for problem (1) is a feasible decision x̂N ∈ X that is con-

structed from the training dataset �̂N . Throughout this paper, we notationally suppress

the dependence of x̂N on the training samples in order to avoid clutter. Instead, we

reserve the superscript ‘̂ ’ for objects that depend on the training data and thus con-

stitute random objects governed by the product distribution PN . The out-of-sample
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performance of x̂N is defined as EP
[
h(̂xN , ξ)

]
and can thus be viewed as the expected

cost of x̂N under a new sample ξ that is independent of the training dataset. As P is

unknown, however, the exact out-of-sample performance cannot be evaluated in prac-

tice, and the best we can hope for is to establish performance guarantees in the form

of tight bounds. The feasibility of x̂N in (1) implies J ⋆ ≤ EP
[
h(̂xN , ξ)

]
, but this

lower bound is again of limited use as J ⋆ is unknown and as our primary concern is to

bound the costs from above. Thus, we seek data-driven solutions x̂N with performance

guarantees of the type

PN
{
�̂N : EP

[
h(̂xN , ξ)

]
≤ ĴN

}
≥ 1 − β, (2)

where ĴN constitutes an upper bound that may depend on the training dataset, and

β ∈ (0, 1) is a significance parameter with respect to the distribution PN , which

governs both x̂N and ĴN . Hereafter we refer to ĴN as a certificate for the out-of-

sample performance of x̂N and to the probability on the left-hand side of (2) as its

reliability. Our ideal goal is to find a data-driven solution with the lowest possible

out-of-sample performance. This is impossible, however, as P is unknown, and the

out-of-sample performance cannot be computed. We thus pursue the more modest

but achievable goal to find a data-driven solution with a low certificate and a high

reliability.

A natural approach to generate data-driven solutions x̂N is to approximate P with

the discrete empirical probability distribution

P̂N :=
1

N

N∑

i=1

δ̂ξi
, (3)

that is, the uniform distribution on �̂N . This amounts to approximating the original

stochastic program (1) with the sample-average approximation (SAA) problem

ĴSAA:= inf
x∈X

{
EP̂N
[
h(x, ξ)
]

=
1

N

N∑

i=1

h(x, ξ̂i )

}
. (4)

If the feasible set X is compact and the loss function is uniformly continuous in x

across all ξ ∈ �, then the optimal value and optimal solutions of the SAA problem

(4) converge almost surely to their counterparts of the true problem (1) as N tends to

infinity [46, Theorem 5.3]. Even though finite sample performance guarantees of the

type (2) can be obtained under additional assumptions such as Lipschitz continuity of

the loss function (see e.g., [47, Theorem 1]), the SAA problem has been conceived

primarily for situations where the distribution P is known and additional samples can

be acquired cheaply via random number generation. However, the optimal solutions

of the SAA problem tend to display a poor out-of-sample performance in situations

where N is small and where the acquisition of additional samples would be costly.

In this paper we address problem (1) with an alternative approach that explicitly

accounts for our ignorance of the true data-generating distribution P, and that offers
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attractive performance guarantees even when the acquisition of additional samples

from P is impossible or expensive. Specifically, we use �̂N to design an ambiguity

set P̂N containing all distributions that could have generated the training samples

with high confidence. This ambiguity set enables us to define the certificate ĴN as

the optimal value of a distributionally robust optimization problem that minimize the

worst-case expected cost.

ĴN := inf
x∈X

sup
Q∈P̂N

EQ
[
h(x, ξ)
]

(5)

Following [38], we construct P̂N as a ball around the empirical distribution (3) with

respect to the Wasserstein metric. In the remainder of the paper we will demonstrate

that the optimal value ĴN as well as any optimal solution x̂N (if it exists) of the

distributionally robust problem (5) satisfy the following conditions.

(i) Finite sample guarantee: For a carefully chosen size of the ambiguity set, the

certificate ĴN provides a 1 − β confidence bound of the type (2) on the out-of-

sample performance of x̂N .

(ii) Asymptotic consistency: As N tends to infinity, the certificate ĴN and the data-

driven solution x̂N converge—in a sense to be made precise below—to the

optimal value J ⋆ and an optimizer x⋆ of the stochastic program (1), respectively.

(iii) Tractability: For many loss functions h(x, ξ) and sets X, the distributionally

robust problem (5) is computationally tractable and admits a reformulation rem-

iniscent of the SAA problem (4).

Conditions (i–iii) have been identified in [7] as desirable properties of data-driven

solutions for stochastic programs. Precise statements of these conditions will be pro-

vided in the remainder. In Sect. 3 we will use the Wasserstein metric to construct

ambiguity sets of the type P̂N satisfying the conditions (i) and (ii). In Sect. 4, we will

demonstrate that these ambiguity sets also fulfill the tractability condition (iii). We

see this last result as the main contribution of this paper because the state-of-the-art

method for solving distributionally robust problems over Wasserstein ambiguity sets

relies on global optimization algorithms [36].

3 Wasserstein metric and measure concentration

Probability metrics represent distance functions on the space of probability distri-

butions. One of the most widely used examples is the Wasserstein metric, which is

defined on the space M(�) of all probability distributions Q supported on � with

EQ
[
‖ξ‖
]

=
∫
�

‖ξ‖Q(dξ) < ∞.

Definition 3.1 (Wasserstein metric [29]) The Wasserstein metric dW : M(�) ×
M(�) → R+ is defined via

dW

(
Q1,Q2

)
:= inf

{∫

�2
‖ξ1 − ξ2‖
(dξ1, dξ2) : 
 is a joint distribution of ξ1 and ξ2

with marginals Q1 and Q2, respectively

}

for all distributions Q1,Q2 ∈ M(�), where‖ · ‖ represents an arbitrary norm on R
m .
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The decision variable 
 can be viewed as a transportation plan for moving a mass

distribution described by Q1 to another one described by Q2. Thus, the Wasserstein

distance betweenQ1 andQ2 represents the cost of an optimal mass transportation plan,

where the norm ‖ ·‖ encodes the transportation costs. We remark that a generalized p-

Wasserstein metric for p ≥ 1 is obtained by setting the transportation cost between ξ1

and ξ2 to ‖ξ1 −ξ2‖p. In this paper, however, we focus exclusively on the 1-Wasserstein

metric of Definition 3.1, which is sometimes also referred to as the Kantorovich metric.

We will sometimes also need the following dual representation of the Wasserstein

metric.

Theorem 3.2 (Kantorovich–Rubinstein [29]) For any distributions Q1,Q2 ∈ M(�)

we have

dW

(
Q1,Q2

)
= sup

f ∈L

{ ∫

�

f (ξ)Q1(dξ) −
∫

�

f (ξ)Q2(dξ)
}
,

where L denotes the space of all Lipschitz functions with | f (ξ) − f (ξ ′)| ≤ ‖ξ − ξ ′‖
for all ξ, ξ ′ ∈ �.

Kantorovich and Rubinstein [29] originally established this result for distribu-

tions with bounded support. A modern proof for unbounded distributions is due to

Villani [50, Remark 6.5, p. 107]. The optimization problems in Definition 3.1 and

Theorem 3.2, which provide two equivalent characterizations of the Wasserstein met-

ric, constitute a primal-dual pair of infinite-dimensional linear programs. The dual

representation implies that two distributions Q1 and Q2 are close to each other with

respect to the Wasserstein metric if and only if all functions with uniformly bounded

slopes have similar integrals under Q1 and Q2. Theorem 3.2 also demonstrates that the

Wasserstein metric is a special instance of an integral probability metric (see e.g. [33])

and that its generating function class coincides with a family of Lipschitz continuous

functions.

In the remainder we will examine the ambiguity set

Bε(P̂N ):=
{
Q ∈ M(�) : dW

(
P̂N ,Q
)

≤ ε
}
, (6)

which can be viewed as the Wasserstein ball of radius ε centered at the empirical dis-

tribution P̂N . Under a common light tail assumption on the unknown data-generating

distribution P, this ambiguity set offers attractive performance guarantees in the spirit

of Sect. 2.

Assumption 3.3 (Light-tailed distribution) There exists an exponent a > 1 such that

A:=EP
[

exp(‖ξ‖a)
]

=
∫

�

exp(‖ξ‖a)P(dξ) < ∞.

Assumption 3.3 essentially requires the tail of the distribution P to decay at an

exponential rate. Note that this assumption trivially holds if � is compact. Heavy-

tailed distributions that fail to meet Assumption 3.3 are difficult to handle even in the
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context of the classical sample average approximation. Indeed, under a heavy-tailed

distribution the sample average of the loss corresponding to any fixed decision x ∈ X

may not even converge to the expected loss; see e.g. [13,15]. The following modern

measure concentration result provides the basis for establishing powerful finite sample

guarantees.

Theorem 3.4 (Measure concentration [21, Theorem 2]) If Assumption 3.3 holds, we

have

PN
{

dW

(
P, P̂N

)
≥ ε
}

≤
{

c1 exp
(
−c2 Nεmax{m,2}) if ε ≤ 1,

c1 exp
(
−c2 Nεa

)
if ε > 1,

(7)

for all N ≥ 1, m 
= 2, and ε > 0, where c1, c2 are positive constants that only depend

on a, A, and m.1

Theorem 3.4 provides an a priori estimate of the probability that the unknown

data-generating distribution P resides outside of the Wasserstein ball Bε(P̂N ). Thus,

we can use Theorem 3.4 to estimate the radius of the smallest Wasserstein ball that

contains P with confidence 1 − β for some prescribed β ∈ (0, 1). Indeed, equating

the right-hand side of (7) to β and solving for ε yields

εN (β):=

⎧
⎪⎨
⎪⎩

(
log(c1β

−1)
c2 N

)1/max{m,2}
if N ≥ log(c1β

−1)
c2

,
(

log(c1β
−1)

c2 N

)1/a

if N <
log(c1β

−1)
c2

.

(8)

Note that the Wasserstein ball with radius εN (β) can thus be viewed as a confidence

set for the unknown true distribution as in statistical testing; see also [7].

Theorem 3.5 (Finite sample guarantee) Suppose that Assumption 3.3 holds and that

β ∈ (0, 1). Assume also that ĴN and x̂N represent the optimal value and an optimizer

of the distributionally robust program (5) with ambiguity set P̂N = BεN (β)(P̂N ). Then,

the finite sample guarantee (2) holds.

Proof The claim follows immediately from Theorem 3.4, which ensures via the def-

inition of εN (β) in (8) that PN {P ∈ BεN (β)(P̂N )} ≥ 1 − β. Thus, EP[h(̂xN , ξ)] ≤
supQ∈P̂N

EQ[h(̂xN , ξ)] = ĴN with probability 1 − β. ⊓⊔

It is clear from (8) that for any fixed β > 0, the radius εN (β) tends to 0 as N

increases. Moreover, one can show that if βN converges to zero at a carefully chosen

rate, then the solution of the distributionally robust optimization problem (5) with

ambiguity set P̂N = BεN (βN )(P̂N ) converges to the solution of the original stochastic

program (1) as N tends to infinity. The following theorem formalizes this statement.

1 A similar but slightly more complicated inequality also holds for the special case m = 2; see [21,

Theorem 2] for details.
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Theorem 3.6 (Asymptotic consistency) Suppose that Assumption 3.3 holds and that

βN ∈ (0, 1), N ∈ N, satisfies
∑∞

N=1 βN < ∞ and limN→∞ εN (βN ) = 0.2 Assume

also that ĴN and x̂N represent the optimal value and an optimizer of the distributionally

robust program (5) with ambiguity set P̂N = BεN (βN )(P̂N ), N ∈ N.

(i) If h(x, ξ) is upper semicontinuous in ξ and there exists L ≥ 0 with |h(x, ξ)| ≤
L(1 + ‖ξ‖) for all x ∈ X and ξ ∈ �, then P∞-almost surely we have ĴN ↓ J ⋆

as N → ∞ where J ⋆ is the optimal value of (1).

(ii) If the assumptions of assertion (i) hold, X is closed, and h(x, ξ) is lower semi-

continuous in x for every ξ ∈ �, then any accumulation point of {̂xN }N∈N is

P∞-almost surely an optimal solution for (1).

The proof of Theorem 3.6 will rely on the following technical lemma.

Lemma 3.7 (Convergence of distributions) If Assumption 3.3 holds and βN ∈ (0, 1),

N ∈ N, satisfies
∑∞

N=1 βN < ∞ and limN→∞ εN (βN ) = 0, then, any sequence

Q̂N ∈ BεN (βN )(P̂N ), N ∈ N, where Q̂N may depend on the training data, converges

under the Wasserstein metric (and thus weakly) to P almost surely with respect to P∞,

that is,

P∞
{

lim
N→∞

dW

(
P, Q̂N

)
= 0

}
= 1.

Proof As Q̂N ∈ BδN
(P̂N ), the triangle inequality for the Wasserstein metric ensures

that

dW

(
P, Q̂N

)
≤ dW

(
P, P̂N

)
+ dW

(
P̂N , Q̂N

)
≤ dW

(
P, P̂N

)
+ εN (βN ).

Moreover, Theorem 3.4 implies that PN {dW

(
P, P̂N

)
≤ εN (βN )} ≥ 1 − βN , and

thus we have PN {dW

(
P, Q̂N

)
≤ 2εN (βN )} ≥ 1 − βN . As

∑∞
N=1 βN < ∞, the

Borel–Cantelli Lemma [28, Theorem 2.18] further implies that

P∞ {dW

(
P, Q̂N

)
≤ εN (βN ) for all sufficiently large N

}
= 1.

Finally, as limN→∞ εN (βN ) = 0, we conclude that limN→∞ dW

(
P, Q̂N

)
= 0 almost

surely. Note that convergence with respect to the Wasserstein metric implies weak

convergence [10]. ⊓⊔

Proof of Theorem 3.6 As x̂N ∈ X, we have J ⋆ ≤ EP[h(̂xN , ξ)]. Moreover, Theo-

rem 3.5 implies that

PN
{

J ⋆ ≤ EP[h(̂xN , ξ)] ≤ ĴN

}
≥ PN
{
P ∈ BεN (βN )(P̂N )

}
≥ 1 − βN ,

2 A possible choice is βN = exp(−
√

N ).
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for all N ∈ N. As
∑∞

N=1 βN < ∞, the Borel–Cantelli Lemma further implies that

P∞
{

J ⋆ ≤ EP[h(̂xN , ξ)] ≤ ĴN for all sufficiently large N
}

= 1.

To prove assertion (i), it thus remains to be shown that lim supN→∞ ĴN ≤ J ⋆ with

probability 1. As h(x, ξ) is upper semicontinuous and grows at most linearly in ξ , there

exists a non-increasing sequence of functions hk(x, ξ), k ∈ N, such that h(x, ξ) =
limk→∞ hk(x, ξ), and hk(x, ξ) is Lipschitz continuous in ξ for any fixed x ∈ X and

k ∈ N with Lipschitz constant Lk ≥ 0; see Lemma A.1 in the appendix. Next, choose

any δ > 0, fix a δ-optimal decision xδ ∈ X for (1) with EP[h(xδ, ξ)] ≤ J ⋆ + δ, and

for every N ∈ N let Q̂N ∈ P̂N be a δ-optimal distribution corresponding to xδ with

sup
Q∈P̂N

EQ[h(xδ, ξ)] ≤ EQN [h(xδ, ξ)] + δ.

Then, we have

lim sup
N→∞

ĴN ≤ lim sup
N→∞

sup
Q∈P̂N

EQ[h(xδ, ξ)]

≤ lim sup
N→∞

EQ̂N [h(xδ, ξ)] + δ

≤ lim
k→∞

lim sup
N→∞

EQ̂N [hk(xδ, ξ)] + δ

≤ lim
k→∞

lim sup
N→∞

(
EP[hk(xδ, ξ)] + Lk dW

(
P, Q̂N

))
+ δ

= lim
k→∞

EP[hk(xδ, ξ)] + δ, P∞-almost surely

= EP[h(xδ, ξ)] + δ ≤ J ⋆ + 2δ,

where the second inequality holds because hk(x, ξ) converges from above to h(x, ξ),

and the third inequality follows from Theorem 3.2. Moreover, the almost sure equality

holds due to Lemma 3.7, and the last equality follows from the Monotone Conver-

gence Theorem [30, Theorem 5.5], which applies because |EP[hk(xδ, ξ)]| < ∞.

Indeed, recall that P has an exponentially decaying tail due to Assumption 3.3 and

that hk(xδ, ξ) is Lipschitz continuous in ξ . As δ > 0 was chosen arbitrarily, we thus

conclude that lim supN→∞ ĴN ≤ J ⋆.

To prove assertion (ii), fix an arbitrary realization of the stochastic process {̂ξN }N∈N

such that J ⋆ = limN→∞ ĴN and J ⋆ ≤ EP[h(̂xN , ξ)] ≤ ĴN for all sufficiently large

N . From the proof of assertion (i) we know that these two conditions are satisfied

P∞-almost surely. Using these assumptions, one easily verifies that

lim inf
N→∞

EP[h(̂xN , ξ)] ≤ lim
N→∞

ĴN = J ⋆. (9)

Next, let x⋆ be an accumulation point of the sequence {̂xN }N∈N, and note that x⋆ ∈ X

as X is closed. By passing to a subsequence, if necessary, we may assume without loss

of generality that x⋆ = limN→∞ x̂N . Thus,

123



Data-driven distributionally robust optimization using the… 127

J ⋆ ≤ EP[h(x⋆, ξ)] ≤ EP[lim inf
N→∞

h(̂xN , ξ)] ≤ lim inf
N→∞

EP[h(̂xN , ξ)] ≤ J ⋆,

where the first inequality exploits that x⋆ ∈ X, the second inequality follows from the

lower semicontinuity of h(x, ξ) in x , the third inequality holds due to Fatou’s lemma

(which applies because h(x, ξ) grows at most linearly in ξ ), and the last inequality

follows from (9). Therefore, we have EP[h(x⋆, ξ)] = J ⋆. ⊓⊔

In the following we show that all assumptions of Theorem 3.6 are necessary for

asymptotic convergence, that is, relaxing any of these conditions can invalidate the

convergence result.

Example 1 (Necessity of regularity conditions)

(1) Upper semicontinuity of ξ �→ h(x, ξ) in Theorem 3.6 (i):

Set � = [0, 1], P = δ0 and h(x, ξ) = 1(0,1](ξ), whereby J ⋆ = 0. As P

concentrates unit mass at 0, we have P̂N = δ0 = P irrespective of N ∈ N.

For any ε > 0, the Dirac distribution δε thus resides within the Wasserstein ball

Bε(P̂N ). Hence, ĴN fails to converge to J ⋆ for ε → 0 because

ĴN ≥ Eδε [h(x, ξ)] = h(x, ε) = 1, ∀ε > 0.

(2) Linear growth of ξ �→ h(x, ξ) in Theorem 3.6 (i):

Set � = R, P = δ0 and h(x, ξ) = ξ2, which implies that J ⋆ = 0. Note that for

any ρ > ε, the two-point distribution Qρ = (1 − ε
ρ
)δ0 + ε

ρ
δρ is contained in the

Wasserstein ball Bε(P̂N ) of radius ε > 0. Hence, ĴN fails to converge to J ⋆ for

ε → 0 because

ĴN ≥ sup
ρ>ε

EQρ [h(x, ξ)] = sup
ρ>ε

ερ = ∞, ∀ε > 0.

(3) Lower semicontinuity of x �→ h(x, ξ) in Theorem 3.6 (ii):

Set X = [0, 1] and h(x, ξ) = 1[0.5,1](x), whereby J ⋆ = 0 irrespective of P.

As the objective is independent of ξ , the distributionally robust optimization

problem (5) is equivalent to (1). Then, x̂N = N−1
2N

is a sequence of minimizers

for (5) whose accumulation point x⋆ = 1
2

fails to be optimal in (1).

A convergence result akin to Theorem 3.6 for goodness-of-fit-based ambiguity

sets is discussed in [7, Section 4]. This result is complementary to Theorem 3.6.

Indeed, Theorem 3.6(i) requires h(x, ξ) to be upper semicontinuous in ξ , which is

a necessary condition in our setting (see Example 1) that is absent in [7]. Moreover,

Theorem 3.6(ii) only requires h(x, ξ) to be lower semicontinuous in x , while [7] asks

for equicontinuity of this mapping. This stronger requirement provides a stronger

result, that is, the almost sure convergence of supQ∈P̂N
EQ[h(x, ξ)] to EP[h(x, ξ)]

uniformly in x on any compact subset of X.

Theorems 3.5 and 3.6 indicate that a careful a priori design of the Wasserstein ball

results in attractive finite sample and asymptotic guarantees for the distributionally

robust solutions. In practice, however, setting the Wasserstein radius to εN (β) yields

over-conservative solutions for the following reasons:
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• Even though the constants c1 and c2 in (8) can be computed based on the proof

of [21, Theorem 2], the resulting Wasserstein ball is larger than necessary, i.e.,

P /∈ BεN (β)(P̂N ) with probability ≪ β.

• Even if P /∈ BεN (β)(P̂N ), the optimal value ĴN of (5) may still provide an upper

bound on J ⋆.

• The formula for εN (β) in (8) is independent of the training data. Allowing for

random Wasserstein radii, however, results in a more efficient use of the available

training data.

While Theorems 3.5 and 3.6 provide strong theoretical justification for using

Wasserstein ambiguity sets, in practice, it is prudent to calibrate the Wasserstein radius

via bootstrapping or cross-validation instead of using the conservative a priori bound

εN (β); see Sect. 7.2 for further details. A similar approach has been advocated in [7]

to determine the sizes of ambiguity sets that are constructed via goodness-of-fit tests.

So far we have seen that the Wasserstein metric allows us to construct ambiguity sets

with favorable asymptotic and finite sample guarantees. In the remainder of the paper

we will further demonstrate that the distributionally robust optimization problem (5)

with a Wasserstein ambiguity set (6) is not significantly harder to solve than the

corresponding SAA problem (4).

4 Solving worst-case expectation problems

We now demonstrate that the inner worst-case expectation problem in (5) over the

Wasserstein ambiguity set (6) can be reformulated as a finite convex program for

many loss functions h(x, ξ) of practical interest. For ease of notation, throughout this

section we suppress the dependence on the decision variable x . Thus, we examine a

generic worst-case expectation problem

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

(10)

involving a decision-independent loss function ℓ(ξ):= maxk≤K ℓk(ξ), which is defined

as the pointwise maximum of more elementary measurable functions ℓk : R
m → R,

k ≤ K . The focus on loss functions representable as pointwise maxima is non-

restrictive unless we impose some structure on the functions ℓk . Many tractability

results in the remainder of this paper are predicated on the following convexity assump-

tion.

Assumption 4.1 (Convexity) The uncertainty set � ⊆ R
m is convex and closed, and

the negative constituent functions −ℓk are proper, convex, and lower semicontinuous

for all k ≤ K . Moreover, we assume that ℓk is not identically −∞ on � for all ≤ K .

Assumption 4.1 essentially stipulates that ℓ(ξ) can be written as a maximum of

concave functions. As we will showcase in Sect. 5, this mild restriction does not sacri-

fice much modeling power. Moreover, generalizations of this setting will be discussed

in Sect. 6. We proceed as follows. Sect. 4.1 addresses the reduction of (10) to a finite

convex program, while Sect. 4.2 describes a technique for constructing worst-case

distributions.
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4.1 Reduction to a finite convex program

The worst-case expectation problem (10) constitutes an infinite-dimensional optimiza-

tion problem over probability distributions and thus appears to be intractable. However,

we will now demonstrate that (10) can be re-expressed as a finite-dimensional convex

program by leveraging tools from robust optimization.

Theorem 4.2 (Convex reduction) If the convexity Assumption 4.1 holds, then for any

ε ≥ 0 the worst-case expectation (10) equals the optimal value of the finite convex

program

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

inf
λ,si ,zik ,νik

λε + 1
N

N∑
i=1

si

s.t. [−ℓk]∗(zik − νik) + σ�(νik) −
〈
zik, ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖zik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K .

(11)

Recall that [−ℓk]∗(zik − νik) denotes the conjugate of −ℓk evaluated at zik − νik

and ‖zik‖∗ the dual norm of zik . Moreover, χ� represents the characteristic function

of � and σ� its conjugate, that is, the support function of �.

Proof of Theorem 4.2 By using Definition 3.1 we can re-express the worst-case expec-

tation (10) as

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup

,Q

∫
�

ℓ(ξ)Q(dξ)

s.t.
∫
�2 ‖ξ − ξ ′‖
(dξ, dξ ′) ≤ ε
{


 is a joint distribution of ξ and ξ ′

with marginals Q and P̂N , respectively

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

sup
Qi ∈M(�)

1
N

N∑
i=1

∫
�

ℓ(ξ)Qi (dξ)

s.t. 1
N

N∑
i=1

∫
�

‖ξ − ξ̂i‖Qi (dξ) ≤ ε.

The second equality follows from the law of total probability, which asserts that any

joint probability distribution 
 of ξ and ξ ′ can be constructed from the marginal

distribution P̂N of ξ ′ and the conditional distributions Qi of ξ given ξ ′ = ξ̂i , i ≤ N ,

that is, we may write 
 = 1
N

∑N
i=1 δ̂ξi

⊗ Qi . The resulting optimization problem

represents a generalized moment problem in the distributions Qi , i ≤ N . Using a

standard duality argument, we obtain
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sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

= sup
Qi ∈M(�)

inf
λ≥0

1

N

N∑

i=1

∫

�

ℓ(ξ)Qi (dξ)

+λ
(
ε −

1

N

N∑

i=1

∫

�

‖ξ − ξ̂i‖Qi (dξ)
)

≤ inf
λ≥0

sup
Qi ∈M(�)

λε +
1

N

N∑

i=1

∫

�

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
Qi (dξ)

(12a)

= inf
λ≥0

λε +
1

N

N∑

i=1

sup
ξ∈�

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
, (12b)

where (12a) follows from the max-min inequality, and (12b) follows from the fact that

M(�) contains all the Dirac distributions supported on �. Introducing epigraphical

auxiliary variables si , i ≤ N , allows us to reformulate (12b) as
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
λ,si

λε + 1
N

N∑
i=1

si

s.t. sup
ξ∈�

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
≤ si ∀i ≤ N

λ ≥ 0

(12c)

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
λ,si

λε + 1
N

N∑
i=1

si

s.t. sup
ξ∈�

(
ℓk(ξ) − max

‖zik‖∗≤λ

〈
zik, ξ − ξ̂i

〉)
≤ si ∀i ≤ N , ∀k ≤ K

λ ≥ 0

(12d)

≤

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
λ,si

λε + 1
N

N∑
i=1

si

s.t. min
‖zik‖∗≤λ

sup
ξ∈�

(
ℓk(ξ) −

〈
zik, ξ − ξ̂i

〉)
≤ si ∀i ≤ N , ∀k ≤ K

λ ≥ 0.

(12e)

Equality (12d) exploits the definition of the dual norm and the decomposability of ℓ(ξ)

into its constituents ℓk(ξ), k ≤ K . Interchanging the maximization over zik with the

minus sign (thereby converting the maximization to a minimization) and then with the

maximization over ξ leads to a restriction of the feasible set of (12d). The resulting

upper bound (12e) can be re-expressed as
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
λ,si ,zik

λε + 1
N

N∑
i=1

si

s.t. sup
ξ∈�

(
ℓk(ξ) −

〈
zik, ξ
〉)

+
〈
zik, ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖zik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

inf
λ,si ,zik

λε + 1
N

N∑
i=1

si

s.t. [−ℓk + χ�]∗(zik) −
〈
zik, ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖zik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K ,

(12f)

where (12f) follows from the definition of conjugacy, our conventions of extended

arithmetic, and the substitution of zik with −zik . Note that (12f) is already a finite

convex program.

Next, we show that Assumption 4.1 reduces the inequalities (12a) and (12e) to

equalities. Under Assumption 4.1, the inequality (12a) is in fact an equality for any

ε > 0 by virtue of an extended version of a well-known strong duality result for

moment problems [44, Proposition 3.4]. One can show that (12a) continues to hold as

an equality even for ε = 0, in which case the Wasserstein ambiguity set (6) reduces to

the singleton {P̂N }, while (10) reduces to the sample average 1
N

∑N
i=1 ℓ(̂ξi ). Indeed,

for ε = 0 the variable λ in (12b) can be increased indefinitely at no penalty. As

ℓ(ξ) constitutes a pointwise maximum of upper semicontinuous concave functions,

an elementary but tedious argument shows that (12b) converges to the sample average
1
N

∑N
i=1 ℓ(̂ξi ) as λ tends to infinity.

The inequality (12e) also reduces to an equality under Assumption 4.1 thanks to

the classical minimax theorem [4, Proposition 5.5.4], which applies because the set

{zik ∈ R
m : ‖zik‖∗ ≤ λ} is compact for any finite λ ≥ 0. Thus, the optimal values of

(10) and (12f) coincide.

Assumption 4.1 further implies that the function −ℓk + χ� is proper, convex and

lower semicontinuous. Properness holds because ℓk is not identically −∞ on �.

By Rockafellar and Wets [42, Theorem 11.23(a), p. 493], its conjugate essentially

coincides with the epi-addition (also known as inf-convolution) of the conjugates of

the functions −ℓk and σ�. Thus,

[−ℓk + χ�]∗(zik) = inf
νik

(
[−ℓk]∗(zik − νik) + [χ�]∗(νik)

)

= cl
[

inf
νik

(
[−ℓk]∗(zik − νik) + σ�(νik)

)]
,

where cl[·] denotes the closure operator that maps any function to its largest lower

semicontinuous minorant. As cl[ f (ξ)] ≤ 0 if and only if f (ξ) ≤ 0 for any function

f , we may conclude that (12f) is indeed equivalent to (11) under Assumption 4.1. ⊓⊔

Note that the semi-infinite inequality in (12c) generalizes the nonlinear uncertain

constraints studied in [1] because it involves an additional norm term and as the loss

function ℓ(ξ) is not necessarily concave under Assumption 4.1. As in [1], however,
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the semi-infinite constraint admits a robust counterpart that involves the conjugate of

the loss function and the support function of the uncertainty set.

From the proof of Theorem 4.2 it is immediately clear that the worst-case expec-

tation (10) is conservatively approximated by the optimal value of the finite convex

program (12f) even if Assumption 4.1 fails to hold. In this case the sum −ℓk + χ�

in (12f) must be evaluated under our conventions of extended arithmetics, whereby

∞ − ∞ = ∞. These observations are formalized in the following corollary.

Corollary 4.3 [Approximate convex reduction] For any ε ≥ 0, the worst-case expec-

tation (10) is smaller or equal to the optimal value of the finite convex program (12f).

4.2 Extremal distributions

Stress test experiments are instrumental to assess the quality of candidate decisions

in stochastic optimization. Meaningful stress tests require a good understanding of

the extremal distributions from within the Wasserstein ball that achieve the worst-

case expectation (10) for various loss functions. We now show that such extremal

distributions can be constructed systematically from the solution of a convex program

akin to (11).

Theorem 4.4 (Worst-case distributions) If Assumption 4.1 holds, then the worst-case

expectation (10) coincides with the optimal value of the finite convex program

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
αik ,qik

1
N

N∑
i=1

K∑
k=1

αikℓk

(̂
ξi − qik

αik

)

s.t. 1
N

N∑
i=1

K∑
k=1

‖qik‖ ≤ ε

K∑
k=1

αik = 1 ∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K

ξ̂i − qik

αik
∈ � ∀i ≤ N , ∀k ≤ K

(13)

irrespective of ε ≥ 0. Let
{
αik(r), qik(r)

}
r∈N

be a sequence of feasible decisions whose

objective values converge to the supremum of (13). Then, the discrete probability

distributions

Qr :=
1

N

N∑

i=1

K∑

k=1

αik(r)δξik(r) with ξik(r) := ξ̂i −
qik(r)

αik(r)

belong to the Wasserstein ball Bε(P̂N ) and attain the supremum of (10) asymptotically,

i.e.,

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

= lim
r→∞

EQr
[
ℓ(ξ)
]

= lim
k→∞

1

N

N∑

i=1

K∑

k=1

αik(r)ℓ
(
ξik(r)
)
.
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We highlight that all fractions in (13) must again be evaluated under our conventions

of extended arithmetics. Specifically, if αik = 0 and qik 
= 0, then qik/αik has at least

one component equal to +∞ or −∞, which implies that ξ̂i −qik/αik /∈ �. In contrast,

if αik = 0 and qik = 0, then ξ̂i − qik/αik = ξ̂i ∈ �. Moreover, the ik-th component

in the objective function of (13) evaluates to 0 whenever αik = 0 regardless of qik .

The proof of Theorem 4.4 is based on the following technical lemma.

Lemma 4.5 Define F : R
m × R+ → R through F(q, α) = inf z∈Rm

〈
z, q − αξ̂

〉
+

α f ∗(z) for some proper, convex, and lower semicontinuous function f : R
m → R and

reference point ξ̂ ∈ R
m . Then, F coincides with the (extended) perspective function

of the mapping q �→ − f (̂ξ − q), that is,

F(q, α) =
{

−α f
(̂
ξ − q/α

)
if α > 0,

−χ{0}(q) if α = 0.

Proof By construction, we have F(q, 0) = inf z∈Rm

〈
z, q
〉
= −χ{0}(q). For α > 0, on

the other hand, the definition of conjugacy implies that

F(q, α) = −[α f ∗]∗(αξ̂ − q) = −α[ f ∗]∗
(̂
ξ − q/α

)
.

The claim then follows because [ f ∗]∗ = f for any proper, convex, and lower semi-

continuous function f [4, Proposition 1.6.1(c)]. Additional information on perspective

functions can be found in [12, Section 2.2.3, p. 39]. ⊓⊔

Proof of Theorem 4.4 By Theorem 4.2, which applies under Assumption 4.1, the

worst-case expectation (10) coincides with the optimal value of the convex pro-

gram (11). From the proof of Theorem 4.2 we know that (11) is equivalent to (12f).

The Lagrangian dual of (12f) is given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

sup
βik ,αik

inf
λ,si ,zik

λε+
N∑

i=1

[
si

N
+

K∑
k=1

[
βik

(
‖zik‖∗ − λ

)
+αik

(
[−ℓk +χ�]∗(zik)−

〈
zik , ξ̂i

〉
−si

)]]

s.t. αik ≥ 0 ∀i ≤ N , ∀k ≤ K

βik ≥ 0 ∀i ≤ N , ∀k ≤ K ,

where the products of dual variables and constraint functions in the objective are eval-

uated under the standard convention 0 ·∞ = 0. Strong duality holds since the function

[−ℓk + χ�]∗ is proper, convex, and lower semicontinuous under Assumption 4.1 and

because this function appears in a constraint of (12f) whose right-hand side is a free

decision variable. By explicitly carrying out the minimization over λ and si , one can

show that the above dual problem is equivalent to

123



134 P. Mohajerin Esfahani, D. Kuhn

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
βik ,αik

inf
zik

N∑
i=1

K∑
k=1

βik‖zik‖∗+ αik[−ℓk + χ�]∗(zik) − αik

〈
zik, ξ̂i

〉

s.t.
N∑

i=1

K∑
k=1

βik = ε

K∑
k=1

αik = 1
N

∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K

βik ≥ 0 ∀i ≤ N , ∀k ≤ K .

(14a)

By using the definition of the dual norm, (14a) can be re-expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
βik ,αik

inf
zik

N∑
i=1

K∑
k=1

max
‖qik‖≤βik

〈
zik, qik

〉
+ αik[−ℓk + χ�]∗(zik) − αik

〈
zik, ξ̂i

〉]

s.t.
N∑

i=1

K∑
k=1

βik = ε

K∑
k=1

αik = 1
N

∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K

βik ≥ 0 ∀i ≤ N , ∀k ≤ K

(14b)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
βik ,αik

max
‖qik‖≤βik

inf
zik

N∑
i=1

K∑
k=1

〈
zik, qik

〉
+ αik[−ℓk + χ�]∗(zik) − αik

〈
zik, ξ̂i

〉

s.t.
N∑

i=1

K∑
k=1

βik = ε

K∑
k=1

αik = 1
N

∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K

βik ≥ 0 ∀i ≤ N , ∀k ≤ K ,

(14c)

where (14c) follows from the classical minimax theorem and the fact that the qik

variables range over a non-empty and compact feasible set for any finite ε; see [4,

Proposition 5.5.4]. Eliminating the βik variables and using Lemma 4.5 allows us to

reformulate (14c) as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
αik ,qik

inf
zik

N∑
i=1

K∑
k=1

〈
zik , qik − αik ξ̂i

〉
+ αik[−ℓk + χ�]∗(zik)

s.t.
N∑

i=1

K∑
k=1

‖qik‖ ≤ ε

K∑
k=1

αik = 1
N

∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K

(14d)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
αik ,qik

N∑
i=1

K∑
k=1

−αik

(
− ℓk

(̂
ξi − qik

αik

)
+ χ�

(̂
ξi − qik

αik

))
1{αik>0} − χ{0}(qik)1{αik=0}

s.t.
N∑

i=1

K∑
k=1

‖qik‖ ≤ ε

K∑
k=1

αik = 1
N

∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K .

(14e)

Our conventions of extended arithmetics imply that the ik-th term in the objective

function of problem (14e) simplifies to

αikℓk

(
ξ̂i −

qik

αik

)
− χ�

(
ξ̂i −

qik

αik

)
. (14f)

Indeed, for αik > 0, this identity trivially holds. For αik = 0, on the other hand, the

ik-th objective term in (14e) reduces to −χ{0}(qik). Moreover, the first term in (14f)

vanishes whenever αik = 0 regardless of qik , and the second term in (14f) evaluates to

0 if qik = 0 (as 0/0 = 0 and ξ̂i ∈ �) and to −∞ if qik 
= 0 (as qik/0 has at least one

infinite component, implying that ξ̂i + qik/0 /∈ �). Therefore, (14f) also reduces to

−χ{0}(qik) when αik = 0. This proves that the ik-th objective term in (14e) coincides

with (14f). Substituting (14f) into (14e) and re-expressing −χ�

(̂
ξi − qik

αik

)
in terms of

an explicit hard constraint yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
αik ,qik

N∑
i=1

K∑
k=1

αikℓk

(̂
ξi − qik

αik

)

s.t.
N∑

i=1

K∑
k=1

‖qik‖ ≤ ε

K∑
k=1

αik = 1
N

∀i ≤ N

αik ≥ 0 ∀i ≤ N , ∀k ≤ K

ξ̂i − qik

αik
∈ � ∀i ≤ N , ∀k ≤ K .

(14g)

Finally, replacing
{
αik, qik

}
with 1

N

{
αik, qik

}
shows that (14g) is equivalent to (13).

This completes the first part of the proof.
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As for the second claim, let {αik(r), qik(r)}r∈N be a sequence of feasible solutions

that attains the supremum in (13), and set ξik(r) := ξ̂i − qik(r)
αik (r)

∈ �. Then, the discrete

distribution


r :=
1

N

N∑

i=1

K∑

k=1

αik(r)δ(
ξik (r),̂ξi

)

has the distribution Qr defined in the theorem statement and the empirical distribution

P̂N as marginals. By the definition of the Wasserstein metric, 
r represents a feasible

mass transportation plan that provides an upper bound on the distance between P̂N

and Qr ; see Definition 3.1. Thus, we have

dW

(
Qr , P̂N

)
≤
∫

�2
‖ξ − ξ ′‖
r (dξ, dξ ′) =

1

N

N∑

i=1

K∑

k=1

αik(r)
∥∥ξik(r)

− ξ̂i

∥∥= 1

N

N∑

i=1

K∑

k=1

∥∥qik(r)
∥∥ ≤ ε,

where the last inequality follows readily from the feasibility of qik(r) in (13). We

conclude that

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

≥ lim sup
k→∞

EQr
[
ℓ(ξ)
]

= lim sup
k→∞

1

N

N∑

i=1

K∑

k=1

αik(r)ℓ
(
ξik(r)
)

≥ lim sup
k→∞

1

N

N∑

i=1

K∑

k=1

αik(r)ℓk

(
ξik(r)
)

= sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]
,

where the first inequality holds as Qr ∈ Bε(P̂N ) for all k ∈ N, and the second

inequality uses the trivial estimate ℓ ≥ ℓk for all k ≤ K . The last equality follows

from the construction of αik(r) and ξik(r) and the fact that (13) coincides with the

worst-case expectation (10). ⊓⊔

In the rest of this section we discuss some notable properties of the convex

program (13).

In the ambiguity-free limit, that is, when the radius of the Wasserstein ball is set to

zero, then the optimal value of the convex program (13) reduces to the expected loss

under the empirical distribution. Indeed, for ε = 0 all qik variables are forced to zero,

and αik enters the objective only through
∑K

k=1 αik = 1
N

. Thus, the objective function

of (13) simplifies to EP̂N [ℓ(ξ)].
We further emphasize that it is not possible to guarantee the existence of a worst-case

distribution that attains the supremum in (10). In general, as shown in Theorem 4.4,

we can only construct a sequence of distributions that attains the supremum asymptot-

ically. The following example discusses an instance of (10) that admits no worst-case

distribution.
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Fig. 1 Example of a worst-case expectation problem without a worst-case distribution

Example 2 (Non-existence of a worst-case distribution) Assume that � = R, N = 1,

ξ̂1 = 0, K = 2, ℓ1(ξ) = 0 and ℓ2(ξ) = ξ − 1. In this case we have P̂N = δ{0}, and

problem (13) reduces to

sup
Q∈Bε(δ0)

EQ
[
ℓ(ξ)
]

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
α1 j ,q1 j

−q12 − α12

s.t. |q11| + |q12| ≤ ε

α11 + α12 = 1

α11 ≥ 0, α12 ≥ 0.

The supremum on the right-hand side amounts to ε and is attained, for instance, by the

sequence α11(r) = 1 − 1
k

, α12(r) = 1
k

, q11(r) = 0, q12(r) = −ε for k ∈ N. Define

Qr = α11(r) δξ11(r) + α12(r) δξ12(r),

with ξ11(r) = ξ̂1 − q11(r)
α11(r)

= 0, and ξ12(r) = ξ̂1 − q12(r)
α12(r)

= εk. By Theorem 4.4,

the two-point distributions Qr reside within the Wasserstein ball of radius ε around

δ0 and asymptotically attain the supremum in the worst-case expectation problem.

However, this sequence has no weak limit as ξ12(r) = εk tends to infinity, see Fig. 1.

In fact, no single distribution can attain the worst-case expectation. Assume for the

sake of contradiction that there exists Q⋆ ∈ Bε(δ0) with EQ⋆ [ℓ(ξ)] = ε. Then, we find

ε = EQ⋆ [ℓ(ξ)] < EQ⋆ [|ξ |] ≤ ε, where the strict inequality follows from the relation

ℓ(ξ) < |ξ | for all ξ 
= 0 and the observation that Q⋆ 
= δ0, while the second inequality

follows from Theorem 3.2. Thus, Q⋆ does not exist.

The existence of a worst-case distribution can, however, be guaranteed in some

special cases.

Corollary 4.6 (Existence of a worst-case distribution) Suppose that Assumption 4.1

holds. If the uncertainty set � is compact or the loss function is concave (i.e., K = 1),

then the sequence {αik(r), ξik(r)}r∈N constructed in Theorem 4.4 has an accumulation

point {α⋆
ik, ξ

⋆
ik}, and
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(a) (b) (c)

Fig. 2 Representative distributions in balls centered at P̂N induced by different metrics. (a) Empirical

distribution on a training dataset with N = 2 samples. (b) A representative discrete distribution in the total

variation or the Kullback–Leiber ball. (c) A representative discrete distribution in the Wasserstein ball

Q⋆:=
1

N

N∑

i=1

K∑

k=1

α⋆
ikδξ⋆

ik

is a worst-case distribution achieving the supremum in (10).

Proof If � is compact, then the sequence {αik(r), ξik(r)}r∈N has a converging subse-

quence with limit {α⋆
ik, ξ

⋆
ik}. Similarly, if K = 1, then αi1 = 1 for all i ≤ N , in which

case (13) reduces to a convex optimization problem with an upper semicontinuous

objective function over a compact feasible set. Hence, its supremum is attained at a

point {α⋆
ik, ξ

⋆
ik}. In both cases, Theorem 4.4 guarantees that the distributionQ⋆ implied

by {α⋆
ik, ξ

⋆
ik} achieves the supremum in (10). ⊓⊔

The worst-case distribution of Corollary 4.6 is discrete, and its atoms ξ ⋆
ik reside in

the neighborhood of the given data points ξ̂i . By the constraints of problem (13), the

probability-weighted cumulative distance between the atoms and the respective data

points amounts to

N∑

i=1

K∑

k=1

αik‖ξ ⋆
ik − ξ̂i‖ =

N∑

i=1

K∑

k=1

‖qik‖ ≤ ε,

which is bounded above by the radius of the Wasserstein ball. The fact that the

worst-case distribution Q⋆ (if it exists) is supported outside of �̂N is a key feature dis-

tinguishing the Wasserstein ball from the ambiguity sets induced by other probability

metrics such as the total variation distance or the Kullback–Leibler divergence; see

Fig. 2. Thus, the worst-case expectation criterion based on Wasserstein balls advo-

cated in this paper should appeal to decision makers who wish to immunize their

optimization problems against perturbations of the data points.

Remark 4.7 (Weak coupling) We highlight that the convex program (13) is amenable

to decomposition and parallelization techniques as the decision variables associated

with different sample points are only coupled through the norm constraint. We expect

the resulting scenario decomposition to offer a substantial speedup of the solution

times for problems involving large datasets. Efficient decomposition algorithms that

could be used for solving the convex program (13) are described, for example, in [35]

and [5, Chapter 4].
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5 Special loss functions

We now demonstrate that the convex optimization problems (11) and (13) reduce

to computationally tractable conic programs for several loss functions of practical

interest.

5.1 Piecewise affine loss functions

We first investigate the worst-case expectations of convex and concave piecewise affine

loss functions, which arise, for example, in option pricing [8], risk management [34]

and in generic two-stage stochastic programming [6]. Moreover, piecewise affine func-

tions frequently serve as approximations of smooth convex or concave loss functions.

Corollary 5.1 (Piecewise affine loss functions) Suppose that the uncertainty set is

a polytope, that is, � = {ξ ∈ R
m : Cξ ≤ d} where C is a matrix and d a vector of

appropriate dimensions. Moreover, consider the affine functions ak(ξ):=
〈
ak, ξ
〉
+ bk

for all k ≤ K .

(i) If ℓ(ξ) = maxk≤K ak(ξ), then the worst-case expectation (10) evaluates to

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
λ,si ,γik

λε + 1
N

N∑
i=1

si

s.t. bk +
〈
ak, ξ̂i

〉
+
〈
γik, d − C ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖C⊺γik − ak‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K

γik ≥ 0 ∀i ≤ N , ∀k ≤ K .

(15a)

(ii) If ℓ(ξ) = mink≤K ak(ξ), then the worst-case expectation (10) evaluates to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
λ,si ,γi ,θi

λε + 1
N

N∑
i=1

si

s.t.
〈
θi , b + Aξ̂i

〉
+
〈
γi , d − C ξ̂i

〉
≤ si ∀i ≤ N

‖C⊺γi − A⊺θi‖∗ ≤ λ ∀i ≤ N〈
θi , e
〉
= 1 ∀i ≤ N

γi ≥ 0 ∀i ≤ N

θi ≥ 0 ∀i ≤ N ,

(15b)

where A is the matrix with rows a
⊺

k , k ≤ K , b is the column vector with entries

bk , k ≤ K , and e is the vector of all ones.

Proof Assertion (i) is an immediate consequence of Theorem 4.2, which applies

because ℓ(x) is the pointwise maximum of the affine functions ℓk(ξ) = ak(ξ), k ≤ K ,

and thus Assumption 4.1 holds for J = K . By definition of the conjugacy operator,
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we have

[−ℓk]∗(z) = [−ak]∗(z) = sup
ξ

〈
z, ξ
〉
+
〈
ak, ξ
〉
+ bk =

{
bk if z = −ak,

∞ else,

and

σ�(ν) =

⎧
⎨
⎩

sup
ξ

〈
ν, ξ
〉

s.t. Cξ ≤ d

=

{
inf
γ≥0

〈
γ, d
〉

s.t. C⊺γ = ν,

where the last equality follows from strong duality, which holds as the uncertainty

set is non-empty. Assertion (i) then follows by substituting the above expressions into

(11).

Assertion (ii) also follows directly from Theorem 4.2 because ℓ(ξ) = ℓ1(ξ) =
mink≤K a j (ξ) is concave and thus satisfies Assumption 4.1 for J = 1. In this setting,

we find

[−ℓ]∗(z) = sup
ξ

〈
z, ξ
〉
+ min

k≤K

{〈
ak, ξ
〉
+ bk

}
=

⎧
⎨
⎩

sup
ξ,τ

〈
z, ξ
〉
+ τ

s.t. Aξ + b ≥ τe

=

⎧
⎪⎪⎨
⎪⎪⎩

inf
θ≥0

〈
θ, b
〉

s.t. A⊺θ = −z〈
θ, e
〉
= 1

where the last equality follows again from strong linear programming duality, which

holds since the primal maximization problem is feasible. Assertion (ii) then follows

by substituting [−ℓ]∗ as well as the formula for σ� from the proof of assertion (i) into

(11). ⊓⊔

As a consistency check, we ascertain that in the ambiguity-free limit, the optimal

value of (15a) reduces to the expectation of maxk≤K ak(ξ) under the empirical distri-

bution. Indeed, for ε = 0, the variable λ can be set to any positive value at no penalty.

For this reason and because all training samples must belong to the uncertainty set

(i.e., d − C ξ̂i ≥ 0 for all i ≤ N ), it is optimal to set γik = 0. This in turn implies

that si = maxk≤K ak (̂ξi ) at optimality, in which case 1
N

∑N
i=1 si represents the sample

average of the convex loss function at hand.

An analogous argument shows that, for ε = 0, the optimal value of (15b) reduces

to the expectation of mink≤K ak(ξ) under the empirical distribution. As before, λ can

be increased at no penalty. Thus, we conclude that γi = 0 and

si = min
θi ≥0

{〈
θi , b + Aξ̂i

〉
:
〈
θi , e
〉
= 1
}

= min
k≤K

ak (̂ξi )

at optimality, in which case 1
N

∑N
i=1 si is the sample average of the given concave loss

function.
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5.2 Uncertainty quantification

A problem of great practical interest is to ascertain whether a physical, economic or

engineering system with an uncertain state ξ satisfies a number of safety constraints

with high probability. In the following we denote by A the set of states in which the

system is safe. Our goal is to quantify the probability of the event ξ ∈ A (ξ /∈ A)

under an ambiguous state distribution that is only indirectly observable through a finite

training dataset. More precisely, we aim to calculate the worst-case probability of the

system being unsafe, i.e.,

sup
Q∈Bε(P̂N )

Q [ξ /∈ A] , (16a)

as well as the best-case probability of the system being safe, that is,

sup
Q∈Bε(P̂N )

Q [ξ ∈ A] . (16b)

Remark 5.2 (Data-dependent sets) The set A may even depend on the samples

ξ̂1, . . . , ξ̂N , in which case A is renamed as Â. If the Wasserstein radius ε is set to

εN (β), then we have P ∈ Bε(P̂N ) with probability 1 − β, implying that (16a) and

(16b) still provide 1 − β confidence bounds on P[ξ /∈ Â] and P[ξ ∈ Â], respectively.

Corollary 5.3 (Uncertainty quantification) Suppose that the uncertainty set is a poly-

tope of the form � = {ξ ∈ R
m : Cξ ≤ d} as in Corollary 5.1.

(i) If A = {ξ ∈ R
m : Aξ < b} is an open polytope and the halfspace

{
ξ :
〈
ak, ξ
〉
≥

bk

}
has a nonempty intersection with � for any k ≤ K , where ak is the k-th

row of the matrix A and bk is the k-th entry of the vector b, then the worst-case

probability (16a) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
λ,si ,γik ,θik

λε + 1
N

N∑
i=1

si

s.t. 1 − θik

(
bk −
〈
ak, ξ̂i

〉)
+
〈
γik, d − C ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖akθik − C⊺γik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K

γik ≥ 0 ∀i ≤ N , ∀k ≤ K

θik ≥ 0 ∀i ≤ N , ∀k ≤ K

si ≥ 0 ∀i ≤ N .

(17a)

(ii) If A = {ξ ∈ R
m : Aξ ≤ b} is a closed polytope that has a nonempty intersection

with �, then the best-case probability (16b) is given by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
λ,si ,γi ,θi

λε + 1
N

N∑
i=1

si

s.t. 1 +
〈
θi , b − Aξ̂i

〉
+
〈
γi , d − C ξ̂i

〉
≤ si ∀i ≤ N

‖A⊺θi + C⊺γi‖∗ ≤ λ ∀i ≤ N

γi ≥ 0 ∀i ≤ N

θi ≥ 0 ∀i ≤ N

si ≥ 0 ∀i ≤ N .

(17b)

Proof The uncertainty quantification problems (16a) and (16b) can be interpreted as

instances of (10) with loss functions ℓ = 1 − 1A and ℓ = 1A, respectively. In order

to be able to apply Theorem 4.2, we should represent these loss functions as finite

maxima of concave functions as shown in Fig. 3.

Formally, assertion (i) follows from Theorem 4.2 for a loss function with K + 1

pieces if we use the following definitions. For every k ≤ K we define

ℓk(ξ) =

{
1 if

〈
ak, ξ
〉
≥ bk,

−∞ otherwise.

Moreover, we define ℓK+1(ξ) = 0. As illustrated in Fig. 3a, we thus have ℓ(ξ) =
maxk≤K+1 ℓk(ξ) = 1 − 1A(ξ) and

sup
Q∈Bε(P̂N )

Q [ξ /∈ A] = sup
Q∈Bε(P̂N )

EQ [ℓ(ξ)] .

Assumption 4.1 holds due to the postulated properties of A and �. In order to apply

Theorem 4.2, we must determine the support function σ�, which is already known

from Corollary 5.1, as well as the conjugate functions of −ℓk , k ≤ K + 1. A standard

duality argument yields

[−ℓk]∗(z) =

⎧
⎨
⎩

sup
ξ

〈
z, ξ
〉
+ 1

s.t.
〈
ak, ξ
〉
≥ bk

=

{
inf
θ≥0

1 − bkθ

s.t. akθ = −z,

for all k ≤ K . Moreover, we have [−ℓK+1]∗ = 0 if ξ = 0; = ∞ otherwise. Asser-

tion (ii) then follows by substituting the formulas for [−ℓk]∗, k ≤ K + 1, and σ� into

(11).

Assertion (ii) follows from Theorem 4.2 by setting K = 2, ℓ1(ξ) = 1 −χA(ξ) and

ℓ2(ξ) = 0. As illustrated in Fig. 3b, this implies that ℓ(ξ) = max{ℓ1(ξ), ℓ2(ξ)} =
1A(ξ) and

sup
Q∈Bε(P̂N )

Q [ξ ∈ A] = sup
Q∈Bε(P̂N )

EQ [ℓ(ξ)] .

Assumption 4.1 holds by our assumptions on A and �. In order to apply Theorem 4.2,

we thus have to determine the support function σ�, which was already calculated in
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(a) (b)

Fig. 3 Representing the indicator function of a convex set and its complement as a pointwise maximum

of concave functions. (a) Indicator function of the unsafe set. (b) Indicator function of the safe set

Corollary 5.1, and the conjugate functions of −ℓ1 and −ℓ2. By the definition of the

conjugacy operator, we find

[−ℓ1]∗(z) = sup
ξ∈A

〈
z, ξ
〉
+ 1 =

⎧
⎨
⎩

sup
ξ

〈
z, ξ
〉
+ 1

s.t. Aξ ≤ b

=

{
inf
θk≥0

〈
θ, b
〉
+ 1

s.t. A⊺θ = z

where the last equality follows from strong linear programming duality, which holds

as the safe set is non-empty. Similarly, we find [−ℓ2]∗ = 0 if ξ = 0; = ∞ otherwise.

Assertion (ii) then follows by substituting the above expressions into (11). ⊓⊔

In the ambiguity-free limit (i.e., for ε = 0) the optimal value of (17a) reduces to the

fraction of training samples residing outside of the open polytope A = {ξ : Aξ < b}.
Indeed, in this case the variable λ can be set to any positive value at no penalty. For this

reason and because all training samples belong to the uncertainty set (i.e., d −C ξ̂i ≥ 0

for all i ≤ N ), it is optimal to set γik = 0. If the i-th training sample belongs to A (i.e.,

bk −
〈
ak, ξ̂i

〉
> 0 for all k ≤ K ), then θik ≥ 1/(bk −

〈
ak, ξ̂i

〉
) for all k ≤ K and si = 0

at optimality. Conversely, if the i-th training sample belongs to the complement of A,

(i.e., bk −
〈
ak, ξ̂i

〉
≤ 0 for some k ≤ K ), then θik = 0 for some k ≤ K and si = 1 at

optimality. Thus,
∑N

i=1 si coincides with the number of training samples outside of

A at optimality. An analogous argument shows that, for ε = 0, the optimal value of

(17b) reduces to the fraction of training samples residing inside of the closed polytope

A = {ξ : Aξ ≤ b}.

5.3 Two-stage stochastic programming

A major challenge in linear two-stage stochastic programming is to evaluate the

expected recourse costs, which are only implicitly defined as the optimal value of a lin-

ear program whose coefficients depend linearly on the uncertain problem parameters

[46, Section 2.1]. The following corollary shows how we can evaluate the worst-case

expectation of the recourse costs with respect to an ambiguous parameter distribution

that is only observable through a finite training dataset. For ease of notation and without

loss of generality, we suppress here any dependence on the first-stage decisions.

Corollary 5.4 (Two-stage stochastic programming) Suppose that the uncertainty set

is a polytope of the form � = {ξ ∈ R
m : Cξ ≤ d} as in Corollaries 5.1 and 5.3.
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(i) If ℓ(ξ) = inf y

{〈
y, Qξ
〉
: W y ≥ h

}
is the optimal value of a parametric linear

program with objective uncertainty, and if the feasible set {y : W y ≥ h} is

non-empty and compact, then the worst-case expectation (10) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
λ,si ,γi ,yi

λε + 1
N

N∑
i=1

si

s.t.
〈
yi , Qξ̂i

〉
+
〈
γi , d − C ξ̂i

〉
≤ si ∀i ≤ N

W yi ≥ h ∀i ≤ N

‖Q⊺yi − C⊺γi‖∗ ≤ λ ∀i ≤ N

γi ≥ 0 ∀i ≤ N .

(18a)

(ii) If ℓ(ξ) = inf y

{〈
q, y
〉
: W y ≥ Hξ + h

}
is the optimal value of a parametric

linear program with right-hand side uncertainty, and if the dual feasible set

{θ ≥ 0 : W ⊺θ = q} is non-empty and compact with vertices vk , k ≤ K , then the

worst-case expectation (10) is given by

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
λ,si ,γik

λε + 1
N

N∑
i=1

si

s.t.
〈
vk, h
〉
+
〈
H⊺vk, ξ̂i

〉
+
〈
γik, d − C ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖C⊺γik − H⊺vk‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K

γik ≥ 0 ∀i ≤ N , ∀k ≤ K .

(18b)

Proof Assertion (i) follows directly from Theorem 4.2 because ℓ(ξ) is concave as

an infimum of linear functions in ξ . Indeed, the compactness of the feasible set {y :
W y ≥ h} ensures that Assumption 4.1 holds for K = 1. In this setting, we find

[−ℓ]∗(z) = sup
ξ

{〈
z, ξ
〉
+ inf

y

{〈
y, Qξ
〉
: W y ≥ h

}}

= inf
y

{
sup
ξ

{〈
z + Q⊺y, ξ

〉}
: W y ≥ h

}

=
{

0 if there exists y with Q⊺y = −z and W y ≥ h,

∞ otherwise,

where the second equality follows from the classical minimax theorem [4, Proposition

5.5.4], which applies because {y : W y ≥ h} is compact. Assertion (i) then follows by

substituting [−ℓ]∗ as well as the formula for σ� from Corollary 5.1 into (11).

Assertion (ii) relies on the following reformulation of the loss function,

ℓ(ξ) =

{
inf

y

〈
q, y
〉

s.t. W y ≥ Hξ + h
=

⎧
⎨
⎩

sup
θ≥0

〈
θ, Hξ + h

〉

s.t. W ⊺θ = q

= max
k≤K

〈
vk, Hξ + h

〉

= max
k≤K

〈
H⊺vk, ξ

〉
+
〈
vk, h
〉
,
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where the first equality holds due to strong linear programming duality, which applies

as the dual feasible set is non-empty. The second equality exploits the elementary

observation that the optimal value of a linear program with non-empty, compact fea-

sible set is always adopted at a vertex. As we managed to express ℓ(ξ) as a pointwise

maximum of linear functions, assertion (ii) follows immediately from Corllary 5.1 (i).

⊓⊔

As expected, in the ambiguity-free limit, problem (18a) reduces to a standard SAA

problem. Indeed, for ε = 0, the variable λ can be made large at no penalty, and thus

γi = 0 and si =
〈
yi , Qξ̂i

〉
at optimality. In this case, problem (18a) is equivalent to

inf
yi

{
1

N

N∑

i=1

〈
yi , Qξ̂i

〉
: W yi ≥ h ∀i ≤ N

}
.

Similarly, one can verify that for ε = 0, (18b) reduces to the SAA problem

inf
yi

{
1

N

N∑

i=1

〈
yi , q
〉
: W yi ≥ H ξ̂i ∀i ≤ N

}
.

We close this section with a remark on the computational complexity of all the

convex optimization problems derived in this section.

Remark 5.5 (Computational tractability) ⊓⊔

• If the Wasserstein metric is defined in terms of the 1-norm (i.e., ‖ξ‖ =
∑m

k=1 |ξk |)
or the ∞-norm (i.e., ‖ξ‖ = maxk≤m |ξk |), then the optimization problems (15a),

(15b), (17a), (17b), (18a) and (18b) all reduce to linear programs whose sizes

scale with the number N of data points and the number J of affine pieces of the

underlying loss functions.

• Except for the two-stage stochastic program with right-hand side uncertainty in

(18b), the resulting linear programs scale polynomially in the problem description

and are therefore computationally tractable. As the number of vertices vk , k ≤ K ,

of the polytope {θ ≥ 0 : W ⊺θ = q} may be exponential in the number of its

facets, however, the linear program (18b) has generically exponential size.

• Inspecting (15a), one easily verifies that the distributionally robust optimization

problem (5) reduces to a finite convex program if X is convex and h(x, ξ) =
maxk≤K

〈
ak(x), ξ

〉
+ bk(x), while the gradients ak(x) and the intercepts bk(x)

depend linearly on x . Similarly, (5) can be reformulated as a finite convex pro-

gram if X is convex and h(x, ξ) = inf y

{〈
y, Qξ
〉
: W y ≥ h(x)

}
or h(x, ξ) =

inf y

{〈
q, y
〉
: W y ≥ H(x)ξ + h(x)

}
, while the right hand side coefficients h(x)

and H(x) depend linearly on x ; see (18a) and (18b), respectively. In contrast,

problems (15b), (17a) and (17b) result in non-convex optimization problems when

their data depends on x .

• We emphasize that the computational complexity of all convex programs examined

in this section is independent of the radius ε of the Wasserstein ball.

123



146 P. Mohajerin Esfahani, D. Kuhn

6 Tractable extensions

We now demonstrate that through minor modifications of the proofs, Theorems 4.2

and 4.4 extend to worst-case expectation problems involving even richer classes of

loss functions. First, we investigate problems where the uncertainty can be viewed as a

stochastic process and where the loss function is additively separable. Next, we study

problems whose loss functions are convex in the uncertain variables and are therefore

not necessarily representable as finite maxima of concave functions as postulated by

Assumption 4.1.

6.1 Stochastic processes with a separable cost

Consider a variant of the worst-case expectation problem (10), where the uncertain

parameters can be interpreted as a stochastic process ξ =
(
ξ1, . . . , ξT

)
, and assume

that ξt ∈ �t , where �t ⊆ R
m is non-empty and closed for any t ≤ T . Moreover,

assume that the loss function is additively separable with respect to the temporal

structure of ξ , that is,

ℓ(ξ):=
T∑

t=1

max
k≤K

ℓtk

(
ξt

)
, (19)

where ℓtk : R
m → R is a measurable function for any k ≤ K and t ≤ T . Such loss

functions appear, for instance, in open-loop stochastic optimal control or in multi-item

newsvendor problems. Consider a process norm ‖ξ‖T =
∑T

t=1 ‖ξt‖ associated with

the base norm ‖ · ‖ on R
m , and assume that its induced metric is the one used in the

definition of the Wasserstein distance. Note that if ‖ · ‖ is the 1-norm on R
m , then ‖·‖T

reduces to the 1-norm on R
mT .

By interchanging summation and maximization, the loss function (19) can be re-

expressed as

ℓ(ξ) = max
kt ≤K

T∑

t=1

ℓtkt

(
ξt

)
,

where the maximum runs over all K T combinations of k1, . . . , kT ≤ K . Under this

representation, Theorem 4.2 remains applicable. However, the resulting convex opti-

mization problem would involve O(K T ) decision variables and constraints, indicating

that an efficient solution may not be available. Fortunately, this deficiency can be over-

come by modifying Theorem 4.2.

Theorem 6.1 (Convex reduction for separable loss functions) Assume that the loss

function ℓ is of the form (19), and the Wasserstein ball is defined through the process

norm ‖·‖T. Then, for any ε ≥ 0, the worst-case expectation (10) is smaller or equal

to the optimal value of the finite convex program
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⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

inf
λ,sti ,ztik ,νtik

λε + 1
N

N∑
i=1

T∑
t=1

st i

s.t. [−ℓtk ]∗
(
zt ik − νt ik

)
+ σ�t (νt ik) −

〈
zt ik , ξ̂t i

〉
≤ st i ∀i ≤ N , ∀k ≤ K , ∀t ≤ T,

‖zt ik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K , ∀t ≤ T .

(20)

If �t and {ℓtk}k≤K satisfy the convexity Assumption 4.1 for every t ≤ T , then the

worst-case expectation (10) coincides exactly with the optimal value of problem (20).

Proof Up until equation (12d), the proof of Theorem 6.1 parallels that of Theorem 4.2.

Starting from (12d), we then have

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

= inf
λ≥0

λε +
1

N

N∑

i=1

sup
ξ

(
ℓ(ξ) − λ

∥∥ξ − ξ̂i

∥∥
T

)

= inf
λ≥0

λε +
1

N

N∑

i=1

T∑

t=1

sup
ξt ∈�t

(
max
k≤K

ℓtk

(
ξt

)
− λ
∥∥ξt − ξ̂ti

∥∥
)

,

where the interchange of the summation and the maximization is facilitated by the

separability of the overall loss function. Introducing epigraphical auxiliary variables

yields

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
λ,sti

λε + 1
N

N∑
i=1

T∑
t=1

sti

s.t. sup
ξt ∈�t

(
ℓtk

(
ξt

)
− λ
∥∥ξt − ξ̂ti

∥∥
)

≤ sti ∀i ≤ N , ∀k ≤ K , ∀t ≤ T

λ ≥ 0

≤

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
λ,sti ,ztik

λε + 1
N

N∑
i=1

T∑
t=1

sti

s.t. sup
ξt ∈�t

(
ℓtk

(
ξt

)
−
〈
ztik, ξt

〉)
+
〈
ztik, ξ̂ti

〉
≤ sti ∀i ≤ N , ∀k ≤ K , ∀t ≤ T

‖ztik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K , ∀t ≤ T

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

inf
λ,sti ,ztik

λε + 1
N

N∑
i=1

T∑
t=1

sti

s.t. [−ℓtk + χ�t ]∗
(
− ztik

)
+
〈
ztik, ξ̂ti

〉
≤ sti ∀i ≤ N , ∀k ≤ K , ∀t ≤ T

‖ztik‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K , ∀t ≤ T,

where the inequality is justified in a similar manner as the one in (12e), and it holds

as an equality provided that �t and {ℓtk}k≤K satisfy Assumption 4.1 for all t ≤ T .

Finally, by Rockafellar and Wets [42, Theorem 11.23(a),p. 493], the conjugate of

−ℓtk +χ�t can be replaced by the inf-convolution of the conjugates of −ℓtk and χ�t .

This completes the proof. ⊓⊔
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Note that the convex program (20) involves only O(N K T ) decision variables and

constraints. Moreover, if ℓtk is affine for every t ≤ T and k ≤ K , while ‖·‖ represents

the 1-norm or the ∞-norm on R
m , then (20) reduces to a tractable linear program

(see also Remark 5.5). A natural generalization of Theorem 4.4 further allows us to

characterize the extremal distributions of the worst-case expectation problem (10) with

a separable loss function of the form (19).

Theorem 6.2 (Worst-case distributions for separable loss functions) Assume that the

loss function ℓ is of the form (19), and the Wasserstein ball is defined through the

process norm ‖·‖T. If �t and {ℓtk}k≤K satisfy Assumption 4.1 for all t ≤ T , then

the worst-case expectation (10) coincides with the optimal value of the finite convex

program

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
αtik ,qtik

1
N

N∑
i=1

K∑
k=1

T∑
t=1

αtikℓtk

(
ξ̂ti − qtik

αtik

)

s.t. 1
N

N∑
i=1

K∑
k=1

T∑
t=1

‖qtik‖ ≤ ε

K∑
k=1

αtik = 1 ∀i ≤ N , ∀t ≤ T

αtik ≥ 0 ∀i ≤ N , ∀t ≤ T, ∀k ≤ K

ξ̂ti − qtik

αtik
∈ �t ∀i ≤ N , ∀t ≤ T, ∀k ≤ K

(21)

irrespective of ε ≥ 0. Let
{
αtik(r), qtik(r)

}
r∈N

be a sequence of feasible decisions

whose objective values converge to the supremum of (21). Then, the discrete (product)

probability distributions

Qr :=
1

N

N∑

i=1

T⊗

t=1

( K∑

k=1

αtik(r)δξtik(r)

)
with ξtik(r):=ξ̂ti −

qtik(r)

αtik(r)

belong to the Wasserstein ball Bε(P̂N ) and attain the supremum of (10) asymptotically,

i.e.,

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

= lim
r→∞

EQr
[
ℓ(ξ)
]

= lim
r→∞

1

N

N∑

i=1

K∑

k=1

T∑

t=1

αtik(r)ℓtk

(
ξtik(r)
)
.

Proof As in the proof of Theorem 4.4, the claim follows by dualizing the convex

program (20). Details are omitted for brevity of exposition. ⊓⊔

We emphasize that the distributions Qr from Theorem 6.2 can be constructed effi-

ciently by solving a convex program of polynomial size even though they have N K T

discretization points.
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6.2 Convex loss functions

Consider now another variant of the worst-case expectation problem (10), where the

loss function ℓ is proper, convex and lower semicontinuous. Unless ℓ is piecewise

affine, we cannot represent such a loss function as a pointwise maximum of finitely

many concave functions, and thus Theorem 4.2 may only provide a loose upper bound

on the worst-case expectation (10). The following theorem provides an alternative

upper bound that admits new insights into distributionally robust optimization with

Wasserstein balls and becomes exact for � = R
m .

Theorem 6.3 (Convex reduction for convex loss functions) Assume that the loss

function ℓ is proper, convex, and lower semicontinuous, and define κ:= sup
{
‖θ‖∗ :

ℓ∗(θ) < ∞
}
. Then, for any ε ≥ 0, the worst-case expectation (10) is smaller or equal

to

κε +
1

N

N∑

i=1

ℓ(̂ξi ). (22)

If � = R
m , then the worst-case expectation (10) coincides exactly with (22).

Remark 6.4 (Radius of effective domain) The parameter κ can be viewed as the radius

of the smallest ball containing the effective domain of the conjugate function ℓ∗ in

terms of the dual norm. By the standard conventions of extended arithmetic, the term

κε in (22) is interpreted as 0 if κ = ∞ and ε = 0.

Proof Equation (12b) in the proof of Theorem 4.2 implies that

sup
Q∈Bε(P̂N )

EQ
[
ℓ(ξ)
]

= inf
λ≥0

λε +
1

N

N∑

i=1

sup
ξ∈�

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
(23)

for every ε > 0. As ℓ is proper, convex, and lower semicontinuous, it coincides with

its bi-conjugate function ℓ∗∗, see e.g. [4, Proposition 1.6.1(c)]. Thus, we may write

ℓ(ξ) = sup
θ∈�

〈
θ, ξ
〉
− ℓ∗(θ),

where �:={θ ∈ R
m : ℓ∗(θ) < ∞} denotes the effective domain of the conjugate

function ℓ∗. Using this dual representation of ℓ in conjunction with the definition of

the dual norm, we find

sup
ξ∈�

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
= sup

ξ∈�

sup
θ∈�

(〈
θ, ξ
〉
− ℓ∗(θ) − λ‖ξ − ξ̂i‖

)

= sup
ξ∈�

sup
θ∈�

inf
‖z‖∗≤λ

(〈
θ, ξ
〉
− ℓ∗(θ) +

〈
z, ξ
〉
−
〈
z, ξ̂i

〉)
.

The classical minimax theorem [4, Proposition 5.5.4] then allows us to interchange

the maximization over ξ with the maximization over θ and the minimization over z to

obtain
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sup
ξ∈�

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
= sup

θ∈�

inf
‖z‖∗≤λ

sup
ξ∈�

(〈
θ + z, ξ

〉
− ℓ∗(θ) −

〈
z, ξ̂i

〉)

= sup
θ∈�

inf
‖z‖∗≤λ

σ�(θ + z) − ℓ∗(θ) −
〈
z, ξ̂i

〉
. (24)

Recall that σ� denotes the support function of �. It seems that there is no simple

exact reformulation of (24) for arbitrary convex uncertainty sets �. Interchanging

the maximization over θ with the minimization over z in (24) would lead to the

conservative upper bound of Corollary 4.3. Here, however, we employ an alternative

approximation. By definition of the support function, we have σ� ≤ σRm = χ{0}.
Replacing σ� with χ{0} in (24) thus results in the conservative approximation

sup
ξ∈Rm

(
ℓ(ξ) − λ‖ξ − ξ̂i‖

)
≤

{
ℓ(̂ξi ) if sup

{
‖θ‖∗ : θ ∈ �

}
≤ λ,

∞ otherwise.
(25)

The inequality (22) then follows readily by substituting (25) into (23) and using the

definition of κ in the theorem statement. For � = R
m we have σ� = χ{0}, and thus

the upper bound (22) becomes exact. Finally, if ε = 0, then (10) trivially coincides

with (22) under our conventions of extended arithmetic. Thus, the claim follows. ⊓⊔

Theorem 6.3 asserts that for � = R
m , the worst-case expectation (10) of a convex

loss function reduces the sample average of the loss adjusted by the simple correction

term κε. The following proposition highlights that κ can be interpreted as a measure

of maximum steepness of the loss function. This interpretation has intuitive appeal in

view of Definition 3.1.

Proposition 6.5 (Steepness of the loss function) Let κ be defined as in Theorem 6.3.

(i) If ℓ is L-Lipschitz continuous, i.e., if there exists ξ ′ ∈ R
m such that ℓ(ξ)−ℓ(ξ ′) ≤

L‖ξ − ξ ′‖ for all ξ ∈ R
m , then κ ≤ L.

(ii) If ℓ majorizes an affine function, i.e., if there exists θ ∈ R
m with ‖θ‖∗ =: L and

ξ ′ ∈ R
m such that ℓ(ξ) − ℓ(ξ ′) ≥

〈
θ, ξ − ξ ′〉 for all ξ ∈ R

m , then κ ≥ L.

Proof The proof follows directly from the definition of conjugacy. As for (i), we have

ℓ∗(θ) = sup
ξ∈Rm

〈
θ, ξ
〉
− ℓ(ξ) ≥ sup

ξ∈Rm

〈
θ, ξ
〉
− L‖ξ − ξ ′‖ − ℓ(ξ ′)

= sup
ξ∈Rm

inf
‖z‖∗≤L

〈
θ, ξ
〉
−
〈
z, ξ − ξ ′〉− ℓ(ξ ′),

where the last equality follows from the definition of the dual norm. Applying the

minimax theorem [4, Proposition 5.5.4] and explicitly carrying out the maximization

over ξ yields
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ℓ∗(θ) ≥

{ 〈
θ, ξ ′〉− ℓ(ξ ′) if ‖θ‖∗ ≤ L,

∞ otherwise.

Consequently, ℓ∗(θ) is infinite for all θ with ‖θ‖∗ > L , which readily implies that the

‖ · ‖∗-ball of radius L contains the effective domain of ℓ∗. Thus, κ ≤ L .

As for (ii), we have

ℓ∗(θ) = sup
ξ∈Rm

〈
θ, ξ
〉
− ℓ(ξ) ≤ sup

ξ∈Rm

〈
θ, ξ
〉
−
〈
z, ξ − ξ ′〉− ℓ(ξ ′)

= σRm (θ − z) +
〈
z, ξ ′〉− ℓ(ξ ′),

which implies that ℓ∗(θ) ≤
〈
θ, ξ ′〉 − ℓ(ξ ′) < ∞. Thus, θ belongs to the effective

domain of ℓ∗. We then conclude that κ ≥ ‖θ‖∗ = L . ⊓⊔

Remark 6.6 (Consistent formulations) If � = R
m and the loss function is given

by ℓ(ξ) = maxk≤K {
〈
ak, ξ
〉
+ bk}, then both Corollary 5.1 and Theorem 6.3 offer an

exact reformulation of the worst-case expectation (10) in terms of a finite-dimensional

convex program. On the one hand, Corollary 5.1 implies that (10) is equivalent to

⎧
⎪⎨
⎪⎩

min
λ

λε + 1
N

N∑
i=1

ℓ(̂ξi )

s.t. ‖ak‖∗ ≤ λ ∀k ≤ K ,

which is obtained by setting C = 0 and d = 0 in (15a). At optimality we have

λ⋆ = maxk≤K ‖ak‖∗, which corresponds to the (best) Lipschitz constant of ℓ(ξ) with

respect to the norm ‖·‖. On the other hand, Theorem 6.3 implies that (10) is equivalent

to (22) with κ = λ⋆. Thus, Corollary 5.1 and Theorem 6.3 are consistent.

Remark 6.7 (ε-insensitive optimizers3) Consider a loss function h(x, ξ) that is con-

vex in ξ , and assume that � = R
m . In this case Theorem 6.3 remains valid, but the

steepness parameter κ(x) may depend on x . For loss functions whose Lipschitz mod-

ulus with respect to ξ is independent of x (e.g., the newsvendor loss), however, κ(x)

is constant. In this case the distributionally robust optimization problem (5) and the

SAA problem (4) share the same minimizers irrespective of the Wasserstein radius ε.

This phenomenon could explain why the SAA solutions tend to display a surprisingly

strong out-of-sample performance in these problems.

7 Numerical results

We validate the theoretical results of this paper in the context of a stylized portfolio

selection problem. The subsequent simulation experiments are designed to provide

additional insights into the performance guarantees of the proposed distributionally

robust optimization scheme.

3 We are indepted to Vishal Gupta who has brought this interesting observation to our attention.
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7.1 Mean-risk portfolio optimization

Consider a capital market consisting of m assets whose yearly returns are captured

by the random vector ξ = [ξ1, . . . , ξm]⊺. If short-selling is forbidden, a portfolio

is encoded by a vector of percentage weights x = [x1, . . . , xm]⊺ ranging over the

probability simplex X = {x ∈ R
m
+ :
∑m

i=1 xi = 1}. As portfolio x invests a percentage

xi of the available capital in asset i for each i = 1, . . . , m, its return amounts to
〈
x, ξ
〉
.

In the remainder we aim to solve the single-stage stochastic program

J ⋆ = inf
x∈X

{
EP
[
−
〈
x, ξ
〉]

+ ρ P-CVaRα

(
−
〈
x, ξ
〉)}

, (26)

which minimizes a weighted sum of the mean and the conditional value-at-risk (CVaR)

of the portfolio loss −
〈
x, ξ
〉
, where α ∈ (0, 1] is referred to as the confidence level of

the CVaR, and ρ ∈ R+ quantifies the investor’s risk-aversion. Intuitively, the CVaR

at level α represents the average of the α × 100% worst (highest) portfolio losses

under the distribution P. Replacing the CVaR in the above expression with its formal

definition [41], we obtain

J ⋆ = inf
x∈X

{
EP
[
−
〈
x, ξ
〉]

+ ρ inf
τ∈R

EP
[
τ +

1

α
max
{

−
〈
x, ξ
〉
− τ, 0
}]}

= inf
x∈X,τ∈R

EP
[

max
k≤K

ak

〈
x, ξ
〉
+ bkτ
]
,

where K = 2, a1 = −1, a2 = −1 − ρ
α

, b1 = ρ and b2 = ρ(1 − 1
α
). An investor who

is unaware of the distribution P but has observed a dataset �̂N of N historical samples

fromP and knows that the support ofP is contained in � = {ξ ∈ R
m : Cξ ≤ d} might

solve the distributionally robust counterpart of (26) with respect to the Wasserstein

ambiguity set Bε(P̂N ), that is,

ĴN (ε):= inf
x∈X,τ∈R

sup
Q∈Bε(P̂N )

EQ
[

max
k≤K

ak

〈
x, ξ
〉
+ bkτ
]
,

where we make the dependence on the Wasserstein radius ε explicit. By Corollary 5.1

we know that

ĴN (ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
x,τ,λ,si ,γik

λε + 1
N

N∑
i=1

si

s.t. x ∈ X

bkτ + ak

〈
x, ξ̂i

〉
+
〈
γik, d − C ξ̂i

〉
≤ si ∀i ≤ N , ∀k ≤ K

‖C⊺γik − ak x‖∗ ≤ λ ∀i ≤ N , ∀k ≤ K

γik ≥ 0 ∀i ≤ N , ∀k ≤ K .

(27)
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Before proceeding with the numerical analysis of this problem, we provide some

analytical insights into its optimal solutions when there is significant ambiguity. In

what follows we keep the training data set fixed and let x̂N (ε) be an optimal distri-

butionally robust portfolio corresponding to the Wasserstein ambiguity set of radius

ε. We will now show that, for natural choices of the ambiguity set, x̂N (ε) converges

to the equally weighted portfolio 1
m

e as ε tends to infinity, where e:=(1, . . . , 1)⊺.

The optimality of the equally weighted portfolio under high ambiguity has first been

demonstrated in [37] using analytical methods. We identify this result here as an

immediate consequence of Theorem 4.2, which is primarily a computational result.

For any non-empty set S ⊆ R
m we denote by recc(S):={y ∈ R

m : x + λy ∈
S ∀x ∈ S, ∀λ ≥ 0} the recession cone and by S◦:={y ∈ R

m :
〈
y, x
〉
≤ 0 ∀x ∈ S} the

polar cone of S.

Lemma 7.1 If {εk}k∈N ⊂ R+ tends to infinity, then any accumulation point x⋆ of{
x̂N (εk)
}

k∈N
is a portfolio that has minimum distance to (recc(�))◦ with respect to

‖ · ‖∗.

Proof Note first that x̂N (εk), k ∈ N, and x⋆ exist because X is compact. For large

Wasserstein radii ε, the term λε dominates the objective function of problem (27).

Using standard epi-convergence results [42, Section 7.E], one can thus show that

x⋆ ∈ arg min
x∈X

min
γik≥0

max
i≤N , k≤K

‖C⊺γik − ak x‖∗

= arg min
x∈X

max
i≤N , k≤K

min
γ≥0

‖C⊺γ + |ak | x‖∗

= arg min
x∈X

min
γ≥0

‖C⊺γ + x‖∗ max
k≤K

|ak |

= arg min
x∈X

min
γ≥0

‖C⊺γ + x‖∗,

where the first equality follows from the fact that ak < 0 for all k ≤ K , the second

equality uses the substitution γ → γ |ak |, and the last equality holds because the set

of minimizers of an optimization problem is not affected by a positive scaling of the

objective function. Thus, x⋆ is the portfolio nearest to the cone C = {C⊺γ : γ ≥ 0}.
The claim now follows as the polar cone

C
◦:= {y ∈ R

m : y⊺x ≤ 0 ∀x ∈ C} = {y ∈ R
m : y⊺C⊺γ ≤ 0 ∀γ ≥ 0}

= {y ∈ R
m : Cy ≥ 0}

is readily recognized as the recession cone of � and as C = (C◦)◦. ⊓⊔

Proposition 7.2 (Equally weighted portfolio) Assume that the Wasserstein metric

is defined in terms of the p-norm in the uncertainty space for some p ∈ [1,∞). If

{εk}k∈N ⊂ R+ tends to infinity, then
{

x̂N (εk)
}

k∈N
converges to the equally weighted

portfolio x⋆ = 1
m

e provided that the uncertainty set is given by

(i) the entire space, i.e., � = R
m , or
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Fig. 4 Optimal portfolio composition as a function of the Wasserstein radius ε averaged over 200 simula-

tions; the portfolio weights are depicted in ascending order, i.e., the weight of asset 1 at the bottom (dark

blue area) and that of asset 10 at the top (dark red area). (a) N = 30 training samples. (b) N = 300 training

samples. (c) N = 3000 training samples (color figure online)

(ii) the nonnegative orthant shifted by −e, i.e., � = {ξ ∈ R
m : ξ ≥ −e}, which

captures the idea that no asset can lose more than 100% of its value.

Proof (i) One easily verifies from the definitions that (recc(�))◦ = {0}. Moreover, we

have ‖ · ‖∗ = ‖ · ‖q where 1
p

+ 1
q

= 1. As p ∈ [1,∞), we conclude that q ∈ (1,∞],
and thus the unique nearest portfolio to (recc(�))◦ with respect to ‖ · ‖∗ is x⋆ = 1

m
e.

The claim then follows from Lemma 7.1. Assertion (ii) follows in a similar manner

from the observation that (recc(�))◦ is now the non-positive orthant. ⊓⊔

With some extra effort one can show that for every p ∈ [1,∞) there is a threshold

ε̄ > 0 with x̂N (ε) = x⋆ for all ε ≥ ε̄, see [37, Proposition 3]. Moreover, for p ∈ {1, 2}
the threshold ε̄ is known analytically.

7.2 Simulation results: portfolio optimization

Our experiments are based on a market with m = 10 assets considered in [7, Sec-

tion 7.5]. In view of the capital asset pricing model we may assume that the return ξi

is decomposable into a systematic risk factor ψ ∼ N (0, 2%) common to all assets

and an unsystematic or idiosyncratic risk factor ζi ∼ N (i × 3%, i × 2.5%) specific

to asset i . Thus, we set ξi = ψ + ζi , where ψ and the idiosyncratic risk factors

ζi , i = 1, . . . , m, constitute independent normal random variables. By construction,

assets with higher indices promise higher mean returns at a higher risk. Note that the

given moments of the risk factors completely determine the distribution P of ξ . This

distribution has support � = R
m and satisfies Assumption 3.3 for the tail exponent

a = 1, say. We also set α = 20% and ρ = 10 in all numerical experiments, and we use

the 1-norm to measure distances in the uncertainty space. Thus, ‖ · ‖∗ is the ∞-norm,

whereby (27) reduces to a linear program.

7.2.1 Impact of the Wasserstein radius

In the first experiment we investigate the impact of the Wasserstein radius ε on the

optimal distributionally robust portfolios and their out-of-sample performance. We
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Fig. 5 Out-of-sample performance J (̂xN (ε)) (left axis, solid line and shaded area) and reliability

PN [J (̂xN (ε)) ≤ ĴN (ε)] (right axis, dashed line) as a function of the Wasserstein radius ε and esti-

mated on the basis of 200 simulations. (a) N = 30 training samples. (b) N = 300 training samples. (c)

N = 3000 training samples

solve problem (27) using training datasets of cardinality N ∈ {30, 300, 3000}. Fig-

ure 4 visualizes the corresponding optimal portfolio weights x̂N (ε) as a function of

ε, averaged over 200 independent simulation runs. Our numerical results confirm the

theoretical insight of Proposition 7.2 that the optimal distributionally robust portfolios

converge to the equally weighted portfolio as the Wasserstein radius ε increases; see

also [37].

The out-of-sample performance

J
(
x̂N (ε)
)
:=EP
[
−
〈
x̂N (ε), ξ

〉]
+ ρ P-CVaRα

(
−
〈
x̂N (ε), ξ

〉)

of any fixed distributionally robust portfolio x̂N (ε) can be computed analytically as P

constitutes a normal distribution by design, see, e.g., [41, p. 29]. Figure 5 shows the

tubes between the 20 and 80% quantiles (shaded areas) and the means (solid lines)

of the out-of-sample performance J
(
x̂N (ε)
)

as a function of ε—estimated using 200

independent simulation runs. We observe that the out-of-sample performance improves

(decreases) up to a critical Wasserstein radius εcrit and then deteriorates (increases).

This stylized fact was observed consistently across all of simulations and provides an

empirical justification for adopting a distributionally robust approach.

Figure 5 also visualizes the reliability of the performance guarantees offered by

our distributionally robust portfolio model. Specifically, the dashed lines represent the

empirical probability of the event J
(
x̂N (ε)
)

≤ ĴN (ε) with respect to 200 independent

training datasets. We find that the reliability is nondecreasing in ε. This observation

has intuitive appeal because ĴN (ε) ≥ J (̂xN (ε)) whenever P ∈ Bε(P̂N ), and the latter

event becomes increasingly likely as ε grows. Figure 5 also indicates that the certificate

guarantee sharply rises towards 1 near the critical Wasserstein radius εcrit. Hence,

the out-of-sample performance of the distributionally robust portfolios improves as

long as the reliability of the performance guarantee is noticeably smaller than 1 and

deteriorates when it saturates at 1. Even though this observation was made consistently

across all simulations, we were unable to validate it theoretically.

7.2.2 Portfolios driven by out-of-sample performance

Different Wasserstein radii ε may result in robust portfolios x̂N (ε) with vastly different

out-of-sample performance J (̂xN (ε)). Ideally, one should select the radius ε̂
opt
N that
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minimizes J (̂xN (ε)) over all ε ≥ 0; note that ε̂
opt

N inherits the dependence on the

training data from J (̂xN (ε)). As the true distribution P is unknown, however, it is

impossible to evaluate and minimize J (̂xN (ε)). In practice, the best we can hope for

is to approximate ε̂
opt
N using the training data. Statistics offers several methods to

accomplish this goal:

• Holdout method: Partition ξ̂1, . . . , ξ̂N into a training dataset of size NT and a

validation dataset of size NV = N −NT . Using only the training dataset, solve (27)

for a large but finite number of candidate radii ε to obtain x̂NT
(ε). Use the validation

dataset to estimate the out-of-sample performance of x̂NT
(ε)via the sample average

approximation. Set ε̂ hm
N to any ε that minimizes this quantity. Report x̂ hm

N =
x̂NT

(̂ε hm
N ) as the data-driven solution and Ĵ hm

N = ĴNT
(̂ε hm

N ) as the corresponding

certificate.

• k-fold cross validation: Partition ξ̂1, . . . , ξ̂N into k subsets, and run the holdout

method k times. In each run, use exactly one subset as the validation dataset and

merge the remaining k − 1 subsets to a training dataset. Set ε̂ cv
N to the average of

the Wasserstein radii obtained from the k holdout runs. Resolve (27) with ε = ε̂ cv
N

using all N samples, and report x̂ cv
N = x̂N (̂ε cv

N ) as the data-driven solution and

Ĵ cv
N = ĴN (̂ε cv

N ) as the corresponding certificate.

The holdout method is computationally cheaper, but cross validation has superior

statistical properties. There are several other methods to estimate the best Wassertein

radius ε̂
opt
N . By construction, however, no method can provide a radius ε̂N such that

x̂N (̂εN ) has a better out-of-sample performance than x̂N (̂ε
opt
N ).

In all experiments we compare the distributionally robust approach based on the

Wasserstein ambiguity set with the classical sample average approximation (SAA)

and with a state-of-the-art data-driven distributionally robust approach, where the

ambiguity set is defined via a linear-convex ordering (LCX)-based goodness-of-fit

test [7, Section 3.3.2]. The size of the LCX ambiguity set is determined by a single

parameter, which should be tuned to optimize the out-of-sample performance. While

the best parameter value is unavailable, it can again be estimated using the holdout

method or via cross validation. To our best knowledge, the LCX approach represents

the only existing data-driven distributionally robust approach for continuous uncer-

tainty spaces that enjoys strong finite-sample guarantees, asymptotic consistency as

well as computational tractability.4

To keep the computational burden manageable, in all experiments we select the

Wasserstein radius as well as the LCX size parameter from within the discrete set

E = {ε = b · 10c : b ∈ {0, . . . , 9}, c ∈ {−3,−2,−1}} instead of R+. We have

verified that refining or extending E has only a marginal impact on our results, which

indicates that E provides a sufficiently rich approximation of R+.

In Fig. 6a–c the sizes of the (LCX and Wasserstein) ambiguity sets are determined

via the holdout method, where 80% of the data are used for training and 20% for

4 Much like worst-case expectations over Wasserstein balls, worst-case expectations over LCX ambiguity

sets can be reformulated as finite convex programs whenever the underlying loss function represents a

pointwise maximum of K concave component functions. Unlike problem (11) in Theorem 4.2, however,

the resulting convex program scales exponentially with K .
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Fig. 6 Out-of-sample performance J (̂xN ), certificate ĴN , and certificate reliability PN
[
J (̂xN ) ≤ ĴN

]

for the performance-driven SAA, LCX and Wasserstein solutions as a function of N . (a) Holdout method,

(b) Holdout method, (c) Holdout method, (d) k-fold cross validation, (e) k-fold cross validation, (f) k-fold

cross validation, (g) optimal size, (h) optimal size, (i) optimal size (color figure online)

validation. Figure 6a visualizes the tube between the 20 and 80% quantiles (shaded

areas) as well as the mean value (solid lines) of the out-of-sample performance J (̂xN )

as a function of the sample size N and based on 200 independent simulation runs,

where x̂N is set to the minimizer of the SAA (blue), LCX (purple) and Wasserstein

(green) problems, respectively. The constant dashed line represents the optimal value

J ⋆ of the original stochastic program (1), which is computed through an SAA problem

with N = 106 samples. We observe that the Wasserstein solutions tend to be superior

to the SAA and LCX solutions in terms of out-of-sample performance.

Figure 6b shows the optimal values ĴN of the SAA, LCX and Wasserstein problems,

where the sizes of the ambiguity sets are chosen via the holdout method. Unlike Fig. 6a,

Fig. 6b thus reports in-sample estimates of the achievable portfolio performance. As

expected, the SAA approach is over-optimistic due to the optimizer’s curse, while the

LCX and Wasserstein approaches err on the side of caution. All three methods are

known to enjoy asymptotic consistency, which is in agreement with all in-sample and

out-of-sample results.
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Figure 6c visualizes the reliability of the different performance certificates, that is,

the empirical probability of the event J (̂xN ) ≤ ĴN evaluated over 200 independent

simulation runs. Here, x̂N represents either an optimal portfolio of the SAA, LCX

or Wasserstein problems, while ĴN denotes the corresponding optimal value. The

optimal SAA portfolios display a disappointing out-of-sample performance relative

to the optimistically biased mimimum of the SAA problem—particularly when the

training data is scarce. In contrast, the out-of-sample performance of the optimal LCX

and Wasserstein portfolios often undershoots ĴN .

Figure 6d–f show the same graphs as Fig. 6a–c, but now the sizes of the ambiguity

sets are determined via k-fold cross validation with k = 5. In this case, the out-of-

sample performance of both distributionally robust methods improves slightly, while

the corresponding certificates and their reliabilities increase significantly with respect

to the naïve holdout method. However, these improvements come at the expense of a

k-fold increase in the computational cost.

One could think of numerous other statistical methods to select the size of the

Wasserstein ambiguity set. As discussed above, however, if the ultimate goal is to

minimize the out-of-sample performance of x̂N (ε), then the best possible choice is

ε = ε̂
opt
N . Similarly, one can construct a size parameter for the LCX ambiguity set that

leads to the best possible out-of-sample performance of any LCX solution. We empha-

size that these optimal Wasserstein radii and LCX size parameters are not available

in practice because computing J (̂xN (ε)) requires knowledge of the data-generating

distribution. In our experiments we evaluate J (̂xN (ε)) to high accuracy for every

fixed ε ∈ E using 2 · 105 validation samples, which are independent from the (much

fewer) training samples used to compute x̂N (ε). Figure 6g–i show the same graphs as

Fig. 6a–c for optimally sized ambiguity sets. By construction, no method for sizing the

Wasserstein or LCX ambiguity sets can result in a better out-of-sample performance,

respectively. In this sense, the graphs in Fig. 6g capture the fundamental limitations

of the different distributionally robust schemes.

7.2.3 Portfolios driven by reliability

In Sect. 7.2.2 the Wasserstein radii and LCX size parameters were calibrated with the

goal to achieve the best out-of-sample performance. Figure 6c, f, i reveal, however,

that by optimizing the out-of-sample performance one may sacrifice reliability. An

alternative objective more in line with the general philosophy of Sect. 2 would be

to choose Wasserstein radii that guarantee a prescribed reliability level. Thus, for a

given β ∈ [0, 1] we should find the smallest Wasserstein radius ε ≥ 0 for which

the optimal value ĴN (ε) of (27) provides an upper 1 − β confidence bound on the

out-of-sample performance J (̂xN (ε)) of its optimal solution. As the true distribution

P is unknown, however, the optimal Wasserstein radius corresponding to a given β

cannot be computed exactly. Instead, we must derive an estimator ε̂
β

N that depends on

the training data. We construct ε̂
β

N and the corresponding reliability-driven portfolio

via bootstrapping as follows:

(1) Construct k resamples of size N (with replacement) from the original training

dataset. It is well known that, as N grows, the probability that any fixed training
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data point appears in a particular resample converges to e−1
e

≈ 2
3

. Thus, about N
3

training samples are absent from any resample. We collect all unused samples in

a validation dataset.

(2) For each resample κ = 1, . . . , k and ε ≥ 0, solve problem (27) using the Wasser-

stein ball of radius ε around the empirical distribution P̂κ
N on the κ-th resample.

The resulting optimal decision and optimal value are denoted as x̂κ
N (ε) and Ĵ κ

N (ε),

respectively. Next, estimate the out-of-sample performance J (̂xκ
N (ε)) of x̂κ

N (ε)

using the sample average over the κ-th validation dataset.

(3) Set ε̂
β

N to the smallest ε ≥ 0 so that the certificate Ĵ κ
N (ε) exceeds the estimate of

J (̂xκ
N (ε)) in at least (1 − β) × k different resamples.

(4) Compute the data-driven portfolio x̂N = x̂N (̂ε
β

N ) and the corresponding certificate

ĴN = ĴN (̂ε
β

N ) using the original training dataset.

As in Sect. 7.2.2, we compare the Wasserstein approach with the LCX and SAA

approaches. Specifically, by using bootstrapping, we calibrate the size of the LCX

ambiguity set so as to guarantee a desired reliability level 1 − β. The SAA problem,

on the other hand, has no free parameter that can be tuned to meet a prescribed

reliability target. Nevertheless, we can construct a meaningful certificate of the form

ĴN (�) := ĴSAA + � for the SAA portfolio by adding a non-negative constant to the

optimal value of the SAA problem. Our aim is to find the smallest offset � ≥ 0 with

the property that ĴN (�) provides an upper 1 − β confidence bound on the out-of-

sample performance J (̂xSAA) of the optimal SAA portfolio x̂SAA. The optimal offset

corresponding to a given β cannot be computed exactly. Instead, we must derive an

estimator �̂
β

N that depends on the training data. Such an estimator can be found through

a simple variant of the above bootstrapping procedure.

In all experiments we set the number of resamples to k = 50. Figure 7a–c visual-

ize the out-of-sample performance, the certificate and the empirical reliability of the

reliability-driven portfolios obtained with the SAA, LCX and Wasserstein approaches,

respectively, for the reliability target 1−β = 90% and based on 200 independent sim-

ulation runs. Figure 7d–f show the same graphs as Fig. 7a–c but for the reliability

target 1 − β = 75%. We observe that the new SAA certificate now overestimates the

true optimal value of the portfolio problem. Moreover, while the empirical reliability

of the SAA solution now closely matches the desired reliability target, the empirical

reliabilities of the LCX and Wasserstein solutions are similar but noticeably exceed

the prescribed reliability threshold. A possible explanation for this phenomenon is that

the k resamples generated by the bootstrapping algorithm are not independent, which

may give rise to a systematic bias in estimating the Wasserstein radii required for the

desired reliability levels.

7.2.4 Impact of the sample size on the Wasserstein radius

It is instructive to analyze the dependence of the Wasserstein radii on the sample size

N for different data-driven schemes. As for the performance-driven portfolios from

Sect. 7.2.2, Fig. 8 depicts the best possible Wasserstein radius ε̂
opt
N as well as the

Wasserstein radii ε̂ hm
N and ε̂ cv

N obtained by the holdout method and via k-fold cross
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Fig. 7 Out-of-sample performance J (̂xN ), certificate ĴN , and certificate reliability PN
[
J (̂xN ) ≤ ĴN

]
for

the reliability-driven SAA, LCX and Wasserstein portfolios as a function of N . (a) β = 10%, (b) β = 10%,

(c) β = 10%, (d) β = 25% (e) β = 25% (f) β = 25%
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Fig. 8 Optimal performance-driven Wasserstein radius ε̂
opt
N

and its estimates ε̂ hm
N

and ε̂ cv
N

obtained via

the holdout method and k-fold cross validation, respectively, as well as the reliability-driven Wasserstein

radius ε̂
β
N

for β ∈ {10%, 25%} obtained via bootstrapping

validation, respectively. As for the reliability-driven portfolios from Sect. 7.2.3, Fig. 8

further depicts the Wasserstein radii ε̂
β

N , for β ∈ {10%, 25%}, obtained by bootstrap-

ping. All results are averaged across 200 independent simulation runs. As expected

from Theorem 3.6, all Wasserstein radii tend to zero as N increases. Moreover, the

convergence rate is approximately equal to N− 1
2 . This rate is likely to be optimal.
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Indeed, if X is a singleton, then every quantile of the sample average estimator ĴSAA

converges to J ⋆ at rate N− 1
2 due to the central limit theorem. Thus, if ε̂N = o(N− 1

2 ),

then ĴN also converges to J ⋆ at leading order N− 1
2 by Theorem 6.3, which applies

as the loss function is convex. This indicates that the a priori rate N− 1
m suggested by

Theorem 3.4 is too pessimistic in practice.

7.3 Simulation results: uncertainty quantification

Investors often wish to determine the probability that a given portfolio will outperform

various benchmark indices or assets. Our results on uncertainty quantification devel-

oped in Sect. 5.2 enable us to compute this probability in a meaningful way—solely

on the basis of the training dataset.

Assume for example that we wish to quantify the probability that any data-driven

portfolio x̂N outperforms the three most risky assets in the market jointly. Thus, we

should compute the probability of the closed polytope

Â =
{
ξ ∈ R

m :
〈
x̂N , ξ
〉
≥ ξi ∀i = 8, 9, 10

}
.

As the true distribution P is unknown, the probability P[ξ ∈ Â] cannot be evaluated

exactly. Note that Â as well as P[ξ ∈ Â] constitute random objects that depend on x̂N

and thus on the training data. Using the same training dataset that was used to compute

x̂N , however, we may estimate P[ξ ∈ Â] from above and below by

sup
Q∈Bε(P̂N )

Q
[
ξ ∈ Â
]

and inf
Q∈Bε(P̂N )

Q
[
ξ ∈ Â
]

= 1 − sup
Q∈Bε(P̂N )

Q
[
ξ /∈ Â
]
,

respectively. Indeed, recall that the true data-generating probability distribution resides

in the Wasserstein ball of radius εN (β) defined in (8) with probability 1−β. Therefore,

we have

1 − β ≤ PN
[
�̂N : P ∈ BεN (β)(P̂N )

]

≤ PN
[
�̂N : sup

Q∈BεN (β)(P̂N )

Q
[
A
]

≥ P
[
A
]

∀A ∈ B(�)
]

= PN
[
�̂N : inf

A∈B(�)
sup

Q∈BεN (β)(P̂N )

Q
[
A
]
− P
[
A
]

≥ 0
]
,

where B(�) denotes the set of all Borel subsets of �. The data-dependent set ÂN

can now be viewed as a (measurable) mapping from �̂N to the subsets in B(�). The

above inequality then implies

PN
[
�̂N : sup

Q∈BεN (β)(P̂N )

Q
[
ÂN

]
− P
[
ÂN

]
≥ 0
]

≥ 1 − β.
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Fig. 9 Excess Ĵ+
N

(ε) − PÂ] and shortfall Ĵ−
N

(ε) − P[Â] (solid lines, left axis) as well as reliability

PN [ Ĵ−
N

(ε) ≤ P[Â] ≤ Ĵ+
N

(ε)] (dashed lines, right axis) as a function of ε. (a) N = 30, (b) N = 300

Thus, sup{Q[ÂN ] : Q ∈ BεN (β)(P̂N )} provides indeed an upper bound on P[ÂN ]
with confidence 1 − β. Similarly, one can show that inf{Q[ÂN ] : Q ∈ BεN (β)(P̂N )}
provides a lower confidence bound on P[ÂN ].

The upper confidence bound can be computed by solving the linear program (17a).

Replacing Â with its interior in the lower confidence bound leads to another (potentially

weaker) lower bound that can be computed by solving the linear program (17b). We

denote these computable bounds by Ĵ+
N (ε) and Ĵ−

N (ε), respectively. In all subsequent

experiments x̂N is set to a solution of the distributionally robust program (27) calibrated

via k-fold cross validation as described in Sect. 7.2.2.

7.3.1 Impact of the Wasserstein radius

As Ĵ+
N (ε) and Ĵ−

N (ε) estimate a random target P[Â], it makes sense to filter out

the randomness of the target and to study only the differences Ĵ+
N (ε) − P[Â] and

Ĵ−
N (ε) − P[Â]. Figure 9a, b visualize the empirical mean (solid lines) as well as the

tube between the empirical 20 and 80% quantiles (shaded areas) of these differences

as a function of the Wasserstein radius ε, based on 200 training datasets of cardinality

N = 30 and N = 300, respectively. Figure 9 also shows the empirical reliability of the

bounds (dashed lines), that is, the empirical probability of the event Ĵ−
N (ε) ≤ P[Â] ≤

Ĵ+
N (ε). Note that the reliability drops to 0 for ε = 0, in which case both Ĵ+

N (0) and

Ĵ−
N (0) coincide with the SAA estimator for P[Â]. Moreover, at ε = 0 the set Â is

constructed from the SAA portfolio x̂N , whose performance is overestimated on the

training dataset. Thus, the SAA estimator for P[Â], which is evaluated using the same

training dataset, is positively biased. For ε > 0, finally, the reliability increases as the

shaded confidence intervals move away from 0.

7.3.2 Impact of the sample size

We propose a variant of the k-fold cross validation procedure for selecting ε in uncer-

tainty quantification. Partition ξ̂1, . . . , ξ̂N into k subsets and repeat the following
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Fig. 10 Dependence of the confidence bounds and the Wasserstein radius on N . (a) Excess Ĵ+
N

− P[Â]
and shortfall Ĵ−

N
−P[Â] of the data-driven confidence bounds for P[Â]. (b) Data-driven Wasserstein radius

ε̂ cv
N

obtained via k-fold cross validation

holdout method k times. Select one of the subsets as the validation set of size NV

and merge the remaining k − 1 subsets to a training dataset of size NT = N − NV .

Use the validation set to compute the SAA estimator of P[Â], and use the training

dataset to compute Ĵ+
NT

(ε) for a large but finite number of candidate radii ε. Set ε̂ hm
N

to the smallest candidate radius for which the SAA estimator of P[Â] is not larger

than Ĵ+
NT

(ε). Next, set ε̂ cv
N to the average of the Wasserstein radii obtained from the

k holdout runs, and report Ĵ+
N = Ĵ+

N (̂ε cv
N ) as the data-driven upper bound on P[Â].

The data-driven lower bound Ĵ−
N is constructed analogously in the obvious way.

Figure 10a visualizes the empirical means (solid lines) as well as the tubes between

the empirical 20 and 80% quantiles (shaded areas) of Ĵ+
N −P[Â] and Ĵ−

N −P[Â] as a

function of the sample size N , based on 300 independent training datasets. As expected,

the confidence intervals shrink and converge to 0 as N increases. We emphasize that

Ĵ+
N and Ĵ−

N are computed solely on the basis of N training samples, whereas the

computation of P[Â] necessitates a much larger dataset, particularly if Â constitutes

a rare event.

Figure 10b shows the Wasserstein radius ε̂ cv
N obtained via k-fold cross validation

(both for Ĵ+
N and Ĵ−

N ). As usual, all results are averaged across 300 independent

simulation runs. A comparison with Fig. 8 reveals that the data-driven Wasserstein

radii in uncertainty quantification display a similar but faster polynomial decay than in

portfolio optimization. We conjecture that this is due to the absence of decisions, which

implies that uncertainty quantification is less susceptible to the optimizer’s curse. Thus,

nature (i.e., the fictitious adversary choosing the distribution in the ambiguity set) only

has to compensate for noise but not for bias. A smaller Wasserstein radius seems to

be sufficient for this purpose.
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Appendix A

The following technical lemma on the pointwise approximation of an upper semi-

continuous function by a non-increasing sequence of Lipschitz continuous majorants

strengthens [31, Theorem 4.2], which focuses on bounded domains and continuous

(but not necessarily Lipschitz continuous) majorants.

Lemma A.1 If h : � → R is upper semicontinuous and satisfies h(ξ) ≤ L(1 + ‖ξ‖)
for some L ≥ 0, then there exists a non-increasing sequence of Lipschitz continuous

functions that converge pointwise to h on �.

Proof The proof is constructive. Define the functions

hk(ξ) = sup
ξ ′∈�

h(ξ ′) − kL‖ξ − ξ ′‖, k ∈ N,

where L is the linear growth rate of h. Note that by construction hk(ξ) ≤ L(1+‖ξ‖). As

ξ ′ = ξ is feasible in the maximization problem defining hk(ξ), we have hk(ξ) ≥ h(ξ)

for all ξ ∈ � and k ∈ N. Moreover, hk(ξ) is Lipschitz continuous with Lipschitz

constant kL (as hk(ξ) constitutes a supremum of norm functions with this property).

Given any ξ ∈ �, it remains to be shown that limk→∞ hk(ξ) = h(ξ). Thus, choose

ξ ′
k ∈ � with

hk(ξ) = sup
ξ ′∈�

h(ξ ′) − kL‖ξ − ξ ′‖ ≤ h(ξ ′
k) − kL‖ξ − ξ ′

k‖ +
1

k
.

We first show that ξk converges to ξ as k tends to ∞. Indeed, we have

h(ξ) ≤ hk(ξ) ≤ h(ξ ′
k) − kL‖ξ − ξ ′

k‖ +
1

k
≤ L(1 + ‖ξ ′

k‖) − kL‖ξ − ξ ′
k‖ +

1

k

≤ L(1 + ‖ξ − ξ ′
k‖ + ‖ξ‖) − kL‖ξ − ξ ′

k‖ +
1

k
= L(1 + ‖ξ‖) +

1

k

− (k − 1)L‖ξ − ξ ′
k‖,

which implies

‖ξ − ξ ′
k‖ ≤

1

L(k − 1)

(
h(ξ) − L(1 + ‖ξ‖) −

1

k

)
,
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that is, ‖ξ − ξ ′
k‖ → 0 as k → ∞. Therefore, we find

h(ξ) ≤ lim
k→∞

hk(ξ) ≤ lim sup
k→∞

h(ξ ′
k) − kL‖ξ − ξ ′

k‖ +
1

k
≤ lim sup

k→∞
h(ξ ′

k) ≤ h(ξ),

where the last inequality is due to the upper semicontinuity of h. This concludes the

proof. ⊓⊔
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