
Data-driven elicitation of quality requirements in agile

companies

Marc Oriol1 , Pertti Seppänen2 , Woubshet Behutiye2 , Carles Farré1 ,
Rafal Kozik3,4 , Silverio Martínez-Fernández5 , Pilar Rodríguez2 ,

Xavier Franch1 , Sanja Aaramaa6, Antonin Abhervé7, Michal Choras3,4

and Jari Partanen8

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{moriol, farre, franch}@essi.upc.edu

2 University of Oulu, Oulu, Finland
{pertti.seppanen, woubshet.behutiye, pilar.rodriguez}@oulu.fi

3 ITTI Sp. z o.o., Poznań, Poland
{rkozik, mchoras}@itti.com.pl

4 University of Science and Technology, UTP, Bydgoszcz, Poland
5 Fraunhofer IESE, Kaiserslautern, Germany

silverio.martinez@iese.fraunhofer.de
6 NOKIA, Oulu, Finland

sanja.aaramaa@nokia.com
7 Softeam, Paris, France

antonin.abherve@softeam.fr
8 Bittium Wireless Ltd., Oulu, Finland
jari.partanen@bittium.com

Abstract. Quality Requirements (QRs) are a key artifact to ensure the quality

and success of a software system. Despite its importance, QRs have not reached

the same degree of attention as its functional counterparts, especially in the con-

text of trending software development methodologies like Agile Software Devel-

opment (ASD). Moreover, crucial information that can be obtained from data

sources of a project under development (e.g. JIRA, github,…) are not fully ex-

ploited, or even neglected, in QR elicitation activities. In this work, we present a

data-driven approach to semi-automatically generate and document QRs in the

context of ASD. We define an architecture focusing on the process and the arte-

facts involved. We validate and iterate on such architecture by conducting work-

shops in four companies of different size and profile. Finally, we present the im-

plementation of such architecture, considering the feedback and outcomes of the

conducted workshops.

Keywords: Quality Requirements, Non-Functional Requirements, Agile Soft-

ware Development, Data-driven Requirements Engineering.

mailto:%7Bmoriol,%20farre,%20franch%7D@essi.upc.edu
mailto:woubshet.behutiye,%20pilar.rodriguez%7D@oulu.fi
mailto:silverio.martinez@iese.fraunhofer.de
mailto:antonin.abherve@softeam.fr
http://orcid.org/0000-0003-1928-7024
https://orcid.org/0000-0002-4289-2487
https://orcid.org/0000-0002-9015-9941
https://orcid.org/0000-0001-5814-3782
http://orcid.org/0000-0001-7122-3306
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0003-1928-7024�
https://orcid.org/0000-0002-4289-2487�
https://orcid.org/0000-0002-9015-9941�
https://orcid.org/0000-0001-5814-3782�
http://orcid.org/0000-0001-7122-3306�
https://orcid.org/0000-0001-9928-133X�
https://orcid.org/0000-0002-0618-6104�
https://orcid.org/0000-0001-9733-8830�

2

1 Introduction

Quality management is known to be one of the critical success factors for software
projects [1]. There are many examples of software with poor quality (e.g. software with
bugs, security issues, technical debt, low quality of service, poor code quality, etc.) that
have caused millions of euros of losses. A report conducted by the software testing
company Tricentis revealed that software failures caused more than $1.7 trillion in fi-
nancial losses in 2017 [2].

To be successful, software development companies must understand and manage
software quality to ensure that new releases lead to progressive improvement [3]. For
such a reason, many approaches have emerged to try to improve the software quality in
different phases of the software development lifecycle. In this regard, market studies
show a steady increase in the proportion of software development companies’ budget
being spent on dealing with software quality [4].

It is argued that an optimal approach to ensure a good software quality, should con-
sider and address such quality starting early from the requirements [5]. The artifact that
requirements engineers use to state conditions on, and analyse compliance of, software
quality are the Quality Requirements (QRs; also known as non-functional require-
ments) [6].

A QR is defined as “a requirement that pertains to a quality concern that is not

covered by functional requirements” [6].
QRs play an essential role in the success of software systems, and neglecting or fail-

ing to satisfy QRs can lead to critical or even catastrophic consequences [5][7].
Despite their importance, QRs have traditionally not received the same degree of

attention than their functional requirements counterpart [8]. This is also true in trending
software development methodologies, like Agile Software Development (ASD), a soft-
ware development approach that has been widely adopted in the software industry [9].

To address this problem we presented in a previous work an explorative position
paper at [10] where we envisaged a conceptual framework, named Q-Rapids, to gener-
ate and document QRs using a data-driven approach in the context of ASD. The goal
of this paper is to continue on such work and present an operational implementation of
the approach for generating and documenting QRs in ASD. The contributions of this
paper are as follows:

1. A software architecture for a tool implementation, explained with a running
example impacting the companies.

2. Workshops to refine and validate the architecture for a tool implementation
with prospective end-users.

3. Discussions on the results and current tool support.
The research has been conducted in the context of the Q-Rapids H2020 project

(www.q-rapids.eu) which has given us the opportunity to elicit real scenarios and eval-
uate the results on different company-provided scenarios.

The rest of the paper is organized as follows: Section 2 presents the Related Work.
Section 3 provides an overview of the overall Q-Rapids Approach. Section 4 describes
our proposal, detailing the architecture and artifacts for the QR generation and docu-
mentation process. Section 5 evaluates such proposal by means of workshops con-
ducted in four companies. Section 6 reports and discusses the findings of such

3

evaluation, which are then used for the implementation of the tools, described in Sec-
tion 7. Finally, Section 8 provides the conclusions and the future work.

2 Background and related work

In ASD, the development process is mostly driven by functional requirements. For ex-
ample, in Scrum [11], requirements are specified as user stories in the product backlog
and prioritized based on a customer perspective. This way of eliciting and managing
requirements tends to favour functional requirements over QRs [12][13]. As a result,
QRs are not properly documented and only managed in a tacit way [14]. Moreover,
despite the numerous sources of information related to product quality that ASD pro-
vides (e.g. continuous integration systems and user feedback), there is a lack of methods
to support continuous elicitation and management of QRs, throughout the whole soft-
ware development lifecycle [13].

On the other hand, traditional approaches for eliciting and managing QRs are usually
inadequate in the highly-dynamic scenarios in which ASD is more suitable. Traditional
techniques to elicit QRs include structured and unstructured interviews, quality models,
checklists, prioritization questionnaires, and the like. None of them exploits runtime
data. In this context, data-driven requirements engineering [15] is advocated as the
proper way to go for eliciting QRs. Some recent proposals in this direction aim at ex-
ploiting end-user explicit feedback data [16][17][18].

Explicit feedback requires user commitment and can be incomplete and/or biased.
Implicit feedback can be considered as an alternative/complementary data source for
requirements elicitation [15]. As an example, [19] exploits implicit feedback but does
not aim at generating QRs but at discovering user preferences and usage patterns. The
SUPERSEDE data-driven approach [20] combines both explicit and implicit end-user
feedback with other sources like run-time monitors to detect and address different kinds
of issues: bugs, new features, QoS violations.

However, none of the aforementioned approaches exploit data gathered from soft-
ware repositories, project management tools, or code inspectors. Without these other
relevant sources, QRs related more directly to “internal” aspects like code quality or
the software development process itself could hardly be elicited.

3 The Q-Rapids Approach to Quality Requirements elicitation

and documentation

Q-Rapids is a quality-aware ASD framework in which QRs are elicited using a data-
driven approach. Data from multiple data sources are gathered and evaluated against a
Quality Model to generate QRs if an issue is identified.

4

Fig. 1. Main logical components of the Q-Rapids conceptual architecture [10]

Fig. 1 depicts the Conceptual Architecture of Q-Rapids with its different phases to
generate and document QRs:

• Raising of quality alerts: As a first step, data from multiple and heterogeneous
data sources is gathered (e.g., from Jira, SonarQube, github, runtime monitors,
etc.). The collected data feeds a quality model that computes the quality of the
software. The different elements of the quality model represent characteristics
of the software quality at different abstraction levels. These elements of the
quality model have customizable thresholds, that, if violated, automatically
raise a quality alert

• Selection of candidate QR patterns: When a quality alert is raised, Q-Rapids
identifies candidate QR patterns that, after being instantiated to QRs and im-
plemented, will restore the value(s) of the element(s) of the quality model that
raised the alert. A key component used to identify such candidate QR is the
QR pattern catalogue [21]. The QR pattern catalogue consists of a set of QR

patterns that are defined in terms of natural language sentences that include
formal parameters (i.e. free variables). The QR patterns are bound to quality

model elements in the schema of the QR patterns catalogue. This binding is
fundamental in order to match the appropriate candidate QR patterns with the
raised quality alert.

• Assessment and decision on QRs: The candidate QR patterns are presented to
the decision makers —Product Owners, Project Managers or other members
of the development team— through a strategic dashboard. The decision mak-
ers assess the candidate QR patterns and instantiates them to particular QRs
by setting the values of the formal parameters of the QR pattern. To support
the assessment of the instantiated QRs, the strategic dashboard includes sim-
ulation techniques. Such simulations predict the impact that the QRs would
have on the values of the different elements of the quality model if such QRs
were implemented.

• Documentation of QRs: In case the QR is accepted by the decision maker, such
QR is forwarded to the backlog. The strategic dashboard provides the user
with a link through which the accepted QR is automatically moved to the or-
ganization’s requirements repository. The strategic dashboard itself does not

5

depend on any fixed repositories or tools but utilizes the link mechanism to
transfer the data content of the accepted QR to the requirements repository.
Building the linkage between the strategic dashboard and the used require-
ments repository is a task done in the Q-Rapids setting-up actions.

In [10], we introduced the ideas of such QR generation process. We have further
elaborated on those ideas and provided a first design, which was evaluated in different
companies as part of a co-creation activity for its implementation.

4 QR generation and documentation architecture

4.1 QR generation and documentation process

To design the QR generation and documentation process, we have formalized the dif-
ferent steps and elements required by means of a Business Process Model and Notation
(BPMN) process model. The QR generation process are the activities conducted from
the raise of an alert until the QR is generated, whereas the QR documentation is the
activity to include such QR into the backlog. Such BPMN process model is shown in
Fig. 2 and defines the main tasks and artifacts involved. The process starts when a qual-
ity alert is triggered. The quality alert is then notified to the decision makers by sending
the «artifact» quality alert. The decision makers evaluate the quality alert, and request
the QR patterns to resolve it. Q-Rapids obtains from the «repository» QR Patterns Cat-

alogue the «artifact» QR patterns able to resolve the quality alert. The decision makers
select and instantiate the QR pattern, generating the «artifact» QR, which is finally
stored to the «repository» Backlog.

Fig. 2. BPMN process model of the QR generation and documentation process

Q
-R

a
p

id
s

d
e
c
is

io
n

m
a

k
e

rs

quality alert is

triggered

«artifact»

 quality alert

notify quality

alert

evaluate

quality

alert

request QR

patterns

obtain QR

patterns

«artifact»

QR patterns

select and

instantiate QR

pattern

«repository»

QR Patterns

Catalogue

«artifact»

QR

store QR to

backlog

«repository»

Backlog

In the following subsections we describe in detail how we have designed those arti-
facts. Namely: quality alert, QR patterns and QR. We also describe and discuss the
repositories that we will use for the QR patterns Catalogue and Backlog.

Finally, the presented artifacts are evaluated in multiple companies (see Section 5

and Section 6). Following the evaluation of the artifacts, we implemented a first proto-

type of the tools that automate the defined tasks in Q-Rapids (see Section 7).
 4.2 Quality alerts

In a previous work, we had defined the quality model based on expert knowledge from
the companies of the Q-Rapids consortium [22]. The nodes of the quality model are of
different type depending on the abstraction level: at the highest level there are project
indicators (e.g. product quality), which are decomposed into quality factors (e.g. code
quality), which are decomposed into quality metrics (e.g. duplicated lines of code).
Starting from this quality model, we have defined customizable thresholds on each of
the different nodes in order to raise a quality alert if such threshold is violated. We
defined the quality alert artifact in JSON with the following metadata:

• Element id: a unique identifier for the alert.

• Name: name describing the alert.

• Type: identifies if the alert is at the quality metric, quality factor or project
indicator level.

• Category: it is used to bind the alert with the QRs that can solve it. This in-
formation is obtained from the node of the quality model that raised the alert
and is defined at design time.

• Date: Date in which the alert was raised.

• Status: Identifies the state of the alert: new, viewed or processed.

The process of raising a quality alert can be illustrated with the following example:

A company is using a quality model that includes several quality factors and metrics.

One of those quality factors is Code Quality that has gone down until reaching the value

0.6 (all values in the quality model are normalized from 0 to 1, where 0 is the worst

case scenario and 1 is the best case). In this case, the monitored value is below the

threshold defined for this quality factor, which was set to 0.75 (such threshold was

defined by the company based on historical data from similar projects and their expe-

rience on it). Because of such situation, a quality alert is raised for the Code Quality

quality factor (see Fig. 3).

Fig. 3. Example of quality alert in Q-Rapids

 4.3 QR Patterns Catalogue

To design and instantiate the QR Patterns Catalogue, we used the PABRE framework
[21] and extended it to support the QR generation process. PABRE is a tooled frame-
work that facilitates the reuse in requirement engineering by using requirement patterns.

7

PABRE provides the capability to define a repository with a list of QR patterns that,
among other features, can be classified in a schema following a tree-structured form.

In this regard, we defined a schema with the tree structure following the same struc-
ture defined in the quality model. In such a manner, there is a clear mapping between
the categories of the quality alerts generated and the QRs that can solve them. A generic
catalogue of QR patterns is available at the supporting material of this paper [23].

It is worth to remark that such approach enables to have multiple QR patterns for a
given quality alert, or that a quality alert at the quality factor level can be solved by the
QR patterns bounded to the quality metrics that decompose such quality factor.

For instance, from the previous example, PABRE can retrieve the QRs able to re-

solve the alert of the Code Quality factor. In this case, the QR patterns are: Complex-

FilesReq (which aims to reduce the ratio of files with a high cyclomatic complexity),

CommentedFilesReq (which aims to reduce the ratio of files with a high number of

commented lines of code) and DuplicationsReq (which aims to reduce the ratio of files

with a high number of duplicated lines of code). All these QR patterns are bound to the

quality metrics Complex files, Commented files and Duplications, respectively; which

are quality metrics of the quality model that decompose Code Quality.

 4.4 QR patterns

The internal structure of a QR pattern is also based on PABRE [21] and it has been
tailored to the specific needs of Q-Rapids. A requirement pattern includes several
metadata as described and specified at [24]. But from the point of view of the decision
makers, just the following information is visible:

• Goal: it describes the objective or problem that the QR pattern aims to solve.

• Requirement form: the textual form of the QR pattern. In this textual form,
one or more formal parameters can be defined. The formal parameters are free
variables that need to be instantiated by the decision makers to produce the
QR.

• Description: A detailed description of the QR pattern.

An example of the QR pattern DuplicationsReq is depicted in Fig. 4.

Fig. 4. QR pattern – DuplicationsReq

8

4.5 Quality Requirements

The QR is an instantiation of the QR pattern. In particular, it is the result produced by the decision
maker after instantiating the formal parameter(s) of the QR pattern. To assist the decision maker
on instantiating the parameter(s) with appropriate values to solve the quality alert, Q-Rapids will
provide simulation techniques that will show the impact that the instantiated QR will have on the
elements of the quality model. Such simulation techniques will be based on bayesian networks as
proposed in the VALUE framework [25].

Following the example previously described, the decision maker could instantiate the QR pat-

terns provided by Q-Rapids (i.e. ComplexFilesReq, CommentedFilesReq, DuplicationsReq) with

different values on its parameters and evaluate the impact that those instantiations have on the

quality model. During this process of simulation, the decision maker could play with different al-

ternatives and combinations in order to decide the QRs to add. For instance, after playing with dif-

ferent combinations, the decision maker might choose to instantiate the DuplicationsReq, setting

its value to 85% (leading to the QR “The ratio of files without duplicated lines of code should be at

least 85%”), and ComplexFilesReq, setting its value to 70% (leading to the QR “The ratio of files

with low cyclomatic complexity should be at least 70%”), since, according to the results of the

simulation, these two QRs combined would improve the value of Code Quality to 0.7, which is

above the defined threshold, and hence resolving the quality alert.

4.6 Backlog

In a previous study [26], we identified that companies adopt different practices and
tools for documenting QRs. Hence, the Q-Rapids approach for integrating generated
QRs in the projects’ requirements backlog needs to consider varying documentation
practices (e.g., hierarchy level, description, decisions on who documents the generated
QR, etc.), as well as multiple requirements management tools (e.g. JIRA, openProject,
etc.). To address such heterogeneity, we propose a generic service interface to link the
generated QR in Q-Rapids to the projects’ backlog. Such service interface can have
multiple implementations to meet the needs of each requirements management tool
(e.g. JIRA, openProject) and can be tailored to the specific companies’ needs. Hence
the generated QRs can be added to the project’ requirements backlog following specific
practices adopted by each company.

5 Evaluation design, execution and analysis

In order to evaluate the artifacts and the process defined, we designed an evaluation
that involved the participation of four companies following a structured workshop for-
mat. The evaluation was conducted in the four companies of the Q-Rapids consortium,
which have different profiles (one large corporation, two large/medium companies and
one SME) and produce different types of systems (e.g., from modelling tools to tele-
communication software).

9

The goal of the workshop was twofold. On the one hand, to validate the Q-Rapids
QR generation (i.e. the process and its artifacts) and, on the other hand, to conduct an
exploratory study of the Quality Requirements documentation process (i.e. the step that
documents the QR into the backlogs).

5.1 Workshop design

The workshop was structured in two parts, following the two goals defined above.
The first part was the validation of the QR generation process. This validation fol-

lowed a user-oriented perspective involving the representatives of the aforementioned
companies. In this regard, the validation focused on the generated artifacts that need to
be processed and analysed by the Decision Makers in their tasks of defining and decid-
ing about QRs. Namely: the quality alerts, the QR patterns catalogue and the QR pat-
terns along with the instantiated QRs.

The first part started with a short presentation by the researcher describing the work-
flow and the structure and contents of each of those artifacts, presenting as well an
illustrative example akin to the one presented in Section 4, by means of mock-ups. After
the description of each artifact, the researcher asked the following questions to retrieve
the feedback from the participants. Questions were asked orally to motivate discussion
within the company representative participants. The particular questions for each arti-
fact that were investigated are:

• Is the amount of information provided adequate?

• Is the amount of information provided overwhelming?

• Is there any information missing?
The participants were also invited to provide at any time any feedback or comment

they wanted to raise.
The second part of the workshop focused on exploring the QRs documentation prac-

tice of the companies and identifying important aspects for documenting the generated
QRs in the projects’ requirements backlogs. Researchers used findings from earlier
study with the companies regarding requirements documentation [26] to initiate the
discussion. We used requirements documentation templates based on requirements
management tool applied in the projects (e.g. JIRA), to guide the discussion and asked
the participants to identify aspects they find important while documenting QRs, with a
purpose to achieve lightweight and informative QRs documentation.

5.2 Workshop execution

The workshops were conducted in the four companies of the consortium. The members

of the companies who participated in the workshops were involved in the development

process or the management of requirements for the software project used as pilot test,

and they acted as representatives of their respective development teams. Each workshop

had between 1 and 3 members representing the company. Due to the limited amount of

participants, analysis was limited to a qualitative assessment and no quantitative study

was conducted. Three of the four workshops were conducted in the premises of the

company, whereas one workshop was conducted on-line. The workshops were con-

ducted between June 12th 2018 and September 7th 2018. The duration of the workshops

range from 124 minutes to 202 minutes. Details are summarized in Table 1.

10

Table 1. Summary of workshops execution.

Company Bittium iTTi NOKIA Softeam

Country Finland Poland Finland France

Number of partici-

pants
2 1 3 2

Date of the workshop June 12th 2018 September 7th 2018 June 13th 2018 June 19th 2018

In premises / On-line in premises on-line in premises in premises

Duration of workshop 196 min 202 min 190 min 124 min

5.3 Data Analysis

The research data were gathered in the workshops by recording the discussions. The
recordings were transcribed in a professional transcriptions company in Finland to
MsWord documents.

The research data were analyzed by using a combination of thematic synthesis and
narrative synthesis [27][28]. The combination of two synthesis practices was opted be-
cause, at a detailed level, the practices of the case companies were very company spe-
cific.

The analysis was started by reading through the MsWord documents and dividing
the content to sections relevant for the QR generation and QR documentation. The first
level division was necessary due to the fact that in the actual discussion the interviewees
commented sometimes both viewpoints in parallel.

The documentation-specific sections of the MsWord documents were gathered to
Excel tables, one for each case company, the sections were coded and the codes were
gathered to higher-order themes according to the thematic synthesis principles [27].
Excel was selected as the tool for the analysis because it is easy to share within an
international network of researchers.

The themes identified in the three case companies were summarized and the con-
sistency of the summarized themes were checked by using the principles of the narra-
tive synthesis [28].

6 Results and findings

6.1 Results on QR generation

Quality alerts. All case companies answered that the amount of information provided

in the alerts was adequate and not overwhelming. As a respondent summarized, “to me

it looks like the most important information”. Most companies’ representatives pro-

vided also valuable feedback and ideas based on their needs in order to improve such

quality alert mechanism. All companies pointed out the need for top-down traceability,

11

in order to have “a direct way to access the raw data”, or, “the guilty part of the soft-

ware”. Apart from top-down traceability, most participants also required bottom-up

traceability. That is, given a quality alert at a lower level (e.g. at the quality metric

level), to be able to visualize the values of the upper levels even though their values are

not violated.
Finally, one company pointed out the importance of having easy to understand nam-

ing on the elements to improve its learnability.

QR patterns and QRs. All companies answered that the amount of information pro-
vided in the QRs was adequate and not overwhelming.

Regarding information missing, some companies’ representatives requested to make
more explicit the terminology of what is commonly understood as QRs, as a participant
requested: “something like stability or security or maintainability”. For that, such par-
ticipant suggested that “non-functional requirement-related keywords could be some-
how highlighted in the text. So, that would give clearer understanding that this relates
for example to performance issues”.

QR Patterns Catalogue. All companies considered the QR patterns catalogue ade-
quate, complete and not overwhelming. As valuable feedback, they pointed out the need
to easily “have the ability to add a new quality requirement pattern” as they evolve the
quality model. One company, went one step further in this direction, and suggested to
be able to extend the QR patterns catalogue on demand. That is, if there is no QR pattern
able to solve a particular quality alert there should be the possibility to extend the QR
patterns catalogue dynamically.

6.2 Results on QR documentation

The participants of the workshops raised documentation-related topics important for
effective deployment of the QRs generated by the Q-Rapids solution: 1) backwards
traceability, 2) information content and end-user value, 3) understandability of QRs,
and 4) interfacing to the processes and tools deployed in a company.

While the QRs presented derive from quality issues aggregated from raw quality
data by the Q-Rapids quality model, the users of all involved companies highlighted
backwards traceability as a key aspect when planning corrective actions for an accepted
and documented QR. As one practitioner stated: “So basically if we violate in the de-
velopment phase something, some quality requirement we already have, we should be
able to trace back what requirement we are violating”

The companies had established, well-implemented processes and practices for ASD
and quality assurance, and several tools gathering and reporting quality-related infor-
mation were in use. That sets requirements to the documentation of QRs - the infor-
mation content of the QRs must be exact and fitted to the processes and practices of the
company. The topic was taken up by all companies and is well highlighted in a discus-
sion between the researchers and a practitioner: "But a comment cannot be a mandatory
field or is it, will it be used by Q-Rapids?" - "It’s not mandatory though, it’s..." - "Yeah
but okay, do you have a vision that how quality requirements on Q-Rapids could benefit
from this comment field information?".

The companies differed from each other in terms of the stability of the deployed
processes and tools they used. One had fairly stable processes and requirement reposi-
tory tools, one was in a middle of change to a new tool, and one company was improv-
ing the processes and tools in a continuous manner resulting in a situation where several
requirement repository tools were in use in different parts of the organization. Such
situation generates challenges to the automatic link for QRs between the Q-Rapids stra-
tegic dashboard and the requirement repositories, meaning that there would not be any
one-fit-all solution: “But then the question is that which backlog.” - “So you have dif-
ferent backlogs following that?” - “Yes...Should we then cover all of, the basic question
is that if we are thinking about this mapping and our next step in Q-Rapids, should we
select one of those and, omit others?”.

7 Tool-support implementation

Based on the results of the workshop, we were able to refine the evaluated artifacts and
start the implementation of the tools that automate the QR generation and documenta-
tion process described in Section 4. The modules implemented as a result of those work-
shops were:

qr-alert module: This module automates the process of evaluating the elements of the
quality model and raise an alert if a threshold is violated. Decision makers can specify
the threshold for each of these nodes and receive a notification once a violation is trig-
gered. The service can be triggered in time-based manner and configured in terms of
running intervals during the day. Moreover, the module allows the user to specify more
complex (than simple threshold-based conditions) activation rules that will trigger a
quality alert. Users can use any timespan (e.g. range) or a specific date for executing
the rule.

qr-generation module: This module automates the process of retrieving the candidate
QR patterns that resolve a qr-alert. The module connects to PABRE through its REST-
ful interface and identifies if a quality alert can be resolved by a QR pattern. If so, it
provides the list of QR patterns that can solve the quality alert throughout the tree-based
structure.

qrapids-backlog-*: This module is used to store the generated QRs to the backlog. The
module defines a common RESTful interface that can have multiple internal implemen-
tations, enabling the capability for Q-Rapids to connect to multiple backlogs (e.g.
OpenProject, Jira,...).

On top of those components, the workflow was integrated in the Q-Rapids strategic
dashboard, which offers to the decision makers an easy-to-use user interface to generate
and document QRs, providing also the traceability functionalities requested by the com-
panies through its navigable interface.

Finally, PABRE was also extended to provide the functionality to easily extend the
catalogue through import/export functions as well as RESTful methods to dynamically
add, update and delete existing QR patterns in the catalogue.

13

The implementation and documentation of such components is available in github1.

8 Conclusions and future work

In this paper we have presented a data-driven approach for generating and documenting
QRs in ASD. Our proposed solution is part of the Q-Rapids framework, which aims at
improving QR management in the agile ecosystem. In a nutshell, Q-Rapids collects
data from multiple sources of a project (e.g. Jira, SonarQube, github, etc.) and feeds a
quality model that computes the quality of the software. Quality alerts are triggered
when defined thresholds in the nodes of the quality model are surpassed, which, in turns
triggers the QR generation and documentation process. We have formalized such pro-
cess by means of a BPMN process model where the different tasks, artifacts and repos-
itories involved were defined. To refine and validate our proposal, we have conducted
a workshop in four companies of different size and profiles. The results of such work-
shop have enabled us to iterate on the proposal and implement the tools that automate
the activities of the proposed QR generation and documentation process.

As Future work, on the one hand, we plan to improve the current implementation in
several directions, such as the simulation techniques to compute the impact of the QRs
over the quality model, adding cost functions to estimate the effort to implement such
QRs, and improving the overall user experience to facilitate its adoption. On the other
hand, we plan to deploy and evaluate the implemented tools in different companies,
considering also companies beyond the consortium. For those evaluations, we plan to
conduct a quantitative analysis involving a higher number of participants in the study,
as well as more complete interviews to obtain additional insights.

Acknowledgments. This work is a result of the Q-Rapids project, which has received
funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 732253.

References

[1] N. Abbas, A. M. Gravell, G. B. Wills: The Impact of Organization, Project and
Governance Variables on Software Quality and Project Success. In: Procs of Agile
Conference, 2010.

[2] Tricentis: Software Fail Watch: 5th Edition. White Paper, 2018. http://www.tricen-
tis.com/resources/software-fail-watch-5th-edition/, last accessed 2019/05/19.

[3] P. Behnamghader, R. Alfayez, K. Srisopha, B. Boehm: Towards Better Understanding
of Software Quality Evolution through Commit-Impact Analysis. In: Procs of QRS,
2017.

[4] Capgemini: World Quality Report 2015-16. Tech Report, 2015. www.capgem-
ini.com/resources/world-quality-report-2015-16/, last accessed 2019/05/19.

[5] X. Franch: Why Are Ontologies and Languages for Software Quality Increasingly Im-
portant?. In: SERC Talks, 2018. sercuarc.org/event/serc-talks-why-are-ontologies-and-
languages-for-software-quality-increasingly-important, last accessed 2019/05/19.

1 https://github.com/q-rapids (modules qr-alert, qr-generation and qrapids-backlog-*)

https://github.com/q-rapids

14

[6] K. Pohl, C. Rupp: Requirements engineering fundamentals A Study Guide for the Cer-
tified Professional for Requirements Engineering Exam. 2nd ed. Rocky Nook, 2015.

[7] D. Spinellis: Code quality : the open source perspective. Addison-Wesley, 2006.
[8] S. Wagner: Software Product Quality Control. 2nd ed. Springer Berlin Heidelberg, 2015
[9] P. Rodríguez, J. Markkula, M. Oivo, K. Turula: Survey on agile and lean usage in finnish

software industry. In: Procs of ESEM, 2012.
[10] X. Franch et al.: Data-Driven Elicitation, Assessment and Documentation of Quality

Requirements in Agile Software Development. In: Procs of CAiSE, 2018.
[11] K. Schwaber, Agile project management with Scrum. Microsoft Press, 2004.
[12] E.-M. Schön, J. Thomaschewski, M. J. Escalona: Agile Requirements Engineering: A

systematic literature review. Computer Standards and Interfaces, vol. 49, 2017.
[13] P. Rodríguez et al.: Continuous deployment of software intensive products and services:

A systematic mapping study. Journal of Systems and Software, vol. 123, 2017.
[14] S. Bartsch, Steffen: Practitioners’ Perspectives on Security in Agile Development. In:

Procs of ARES, 2011
[15] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe: Toward Data-Driven Requirements

Engineering. IEEE Software, vol. 33(1), 2016.
[16] E. C. Groen et al.: A Study on How App Users Report Quality Aspects in Online Re-

views. In: Procs of RE, 2017.
[17] Z. Kurtanovic, W. Maalej: Mining User Rationale from Software Reviews. In: Procs of

RE, 2017
[18] M. Lu, P. Liang: Automatic Classification of Non-Functional Requirements from Aug-

mented App User Reviews. In: Procs of EASE, 2017.
[19] X. Liu et al.: Deriving User Preferences of Mobile Apps from Their Management Ac-

tivities. ACM Transactions on Information Systems, vol. 35(4), 2017.
[20] X. Franch et al.: A Situational Approach for the Definition and Tailoring of a Data-

Driven Software Evolution Method. In: Procs of CAiSE, 2018.
[21] C. Palomares, C. Quer, X. Franch: PABRE-Proj: Applying patterns in requirements elic-

itation. In: Procs of RE, 2013
[22] S. Martinez-Fernandez, A. Jedlitschka, L. Guzman, A. M. Vollmer: A Quality Model

for Actionable Analytics in Rapid Software Development. In: Procs of SEAA, 2018.
[23] M. Oriol et al.: Appendix of: Data-driven elicitation of quality requirements in agile

companies, 2019. http://www.essi.upc.edu/~moriol/qr_elicitation/.
[24] PABRE API Documentation. http://gessi3.cs.upc.edu/pabre-ws/doc/#/.
[25] E. Mendes, P. Rodriguez, V. Freitas, S. Baker, M. A. Atoui: Towards improving deci-

sion making and estimating the value of decisions in value-based software engineering:
the VALUE framework. Software Quality Journal, vol. 26(2), 2018.

[26] W. Behutiye et al.: Non-functional Requirements Documentation in Agile Software
Development: Challenges and Solution Proposal. In: Procs of PROFES, 2017.

[27] D. S. Cruzes, T. Dyba: Recommended Steps for Thematic Synthesis in Software Engi-
neering. In: Procs of ESEM, 2011.

[28] D. S. Cruzes, T. Dybå, P. Runeson, M. Höst: Case studies synthesis: a thematic, cross-
case, and narrative synthesis worked example. Empirical Software Engineering, vol. 20
(6), 2015.

	1 Introduction
	2 Background and related work
	3 The Q-Rapids Approach to Quality Requirements elicitation and documentation
	4 QR generation and documentation architecture
	4.1 QR generation and documentation process
	4.2 Quality alerts
	4.3 QR Patterns Catalogue
	4.4 QR patterns
	4.5 Quality Requirements
	4.6 Backlog

	5 Evaluation design, execution and analysis
	5.1 Workshop design
	5.2 Workshop execution
	5.3 Data Analysis

	6 Results and findings
	6.1 Results on QR generation
	6.2 Results on QR documentation

	7 Tool-support implementation
	8 Conclusions and future work
	References

