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Abstract Equilibrium modeling is common in a variety of fields such as game theory

and transportation science. The inputs for these models, however, are often diffi-

cult to estimate, while their outputs, i.e., the equilibria they are meant to describe,

are often directly observable. By combining ideas from inverse optimization with

the theory of variational inequalities, we develop an efficient, data-driven technique

for estimating the parameters of these models from observed equilibria. We use this

technique to estimate the utility functions of players in a game from their observed

actions and to estimate the congestion function on a road network from traffic count

data. A distinguishing feature of our approach is that it supports both parametric and

nonparametric estimation by leveraging ideas from statistical learning (kernel meth-

ods and regularization operators). In computational experiments involving Nash and

Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate

the unknown demand or congestion function, respectively, and b) our proposed reg-

ularization technique substantially improves the out-of-sample performance of our

estimators.
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1 Introduction

Modeling phenomena as equilibria is a common approach in a variety of fields. Exam-

ples include Nash equilibrium in game theory, traffic equilibrium in transportation sci-

ence and market equilibrium in economics. Often, however, the model primitives or

“inputs” needed to calculate equilibria are not directly observable and can be difficult

to estimate. Small errors in these estimates may have large impacts on the resulting

equilibrium. This problem is particularly serious in design applications, where one

seeks to (re)design a system so that the induced equilibrium satisfies some desirable

properties, such as maximizing social welfare. In this case, small errors in the estimates

may substantially affect the optimal design. Thus, developing accurate estimates of

the primitives is crucial.

In this work we propose a novel framework to estimate the unobservable model

primitives for systems in equilibrium. Our data-driven approach hinges on the fact

that although the model primitives may be unobservable, it is frequently possible to

observe equilibria experimentally. We use these observed equilibria to estimate the

original primitives.

We draw on an example from game theory to illustrate. Typically, one specifies

the utility functions for each player in a game and then calculates Nash equilibria. In

practice, however, it is essentially impossible to observe utilities directly. Worse, the

specific choice of utility function often makes a substantial difference in the resulting

equilibrium. Our approach amounts to estimating a player’s utility function from her

actions in previous games, assuming her actions were approximately equilibria with

respect to her opponents. In contrast to her utility function, her previous actions are

directly observable. This utility function can be used either to predict her actions in

future games, or as an input to subsequent mechanism design problems involving this

player in the future.

A second example comes from transportation science. Given a particular road net-

work, one typically specifies a cost function and then calculates the resulting flow

under user (Wardrop) equilibrium. However, measuring the cost function directly in a

large-scale network is challenging because of the interdependencies among arcs. Fur-

thermore, errors in estimates of cost functions can have severe and counterintuitive

effects; Braess paradox (see [13]) is one well-known example. Our approach amounts

to estimating cost functions using current traffic count data (flows) on the network,

assuming those flows are approximately in equilibrium. Again, in contrast to the cost

function, traffic count data are readily observable and frequently collected on many

real-life networks. Finally, our estimate can be used either to predict congestion on

the network in the future, or else to inform subsequent network design problems.
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Data-driven estimation in equilibrium 597

In general, we focus on equilibria that can be modeled as the solution to a variational

inequality (VI). VIs are a natural tool for describing equilibria with examples spanning

economics, transportation science, physics, differential equations, and optimization.

(See Sect. 2.1 or [26] for detailed examples.) Our model centers on solving an inverse

variational inequality problem: given data that we believe are equilibria, i.e., solutions

to some VI, estimate the function which describes this VI, i.e., the model primitives.

Our formulation and analysis is motivated in many ways by the inverse optimization

literature. In inverse optimization, one is given a candidate solution to an optimiza-

tion problem and seeks to characterize the cost function or other problem data that

would make that solution (approximately) optimal. See [27] for a survey of inverse

combinatorial optimization problems, [3] for the case of linear optimization and [28]

for the case of conic optimization. The critical difference, however, is that we seek

a cost function that would make the observed data equilibria, not optimal solutions

to an optimization problem. In general, optimization problems can be reformulated

as variational inequalities (see Sect. 2.1), so that our inverse VI problem generalizes

inverse optimization, but this generalization allows us to address a variety of new

applications.

To the best of our knowledge, we are the first to consider inverse variational inequal-

ity problems. Previous work, however, has examined the problem of estimating para-

meters for systems assumed to be in equilibrium, most notably the structural estimation

literature in econometrics and operations management ([4,5,32,35]). Although there

are a myriad of techniques collectively referred to as structural estimation, roughly

speaking, they entail (1) assuming a parametric model for the system including proba-

bilistic assumptions on random quantities, (2) deducing a set of necessary (structural)

equations for unknown parameters, and, finally, (3) solving a constrained optimization

problem corresponding to a generalized method of moments (GMM) estimate for the

parameters. The constraints of this optimization problem include the structural equa-

tions and possibly other application-specific constraints, e.g., orthogonality conditions

of instrumental variables. Moreover, this optimization problem is typically difficult to

solve numerically, as it can be non-convex with large flat regions and multiple local

optima (see [4] for some discussion).

Our approach differs from structural estimation and other specialized approaches in

a number of respects. From a philosophical point of view, the most critical difference is

in the objective of the methodology. Specifically, in the structural estimation paradigm,

one posits a “ground-truth” model of a system with a known parametric form. The

objective of the method is to learn the parameters in order to provide insight into

the system. By contrast, in our paradigm, we make no assumptions (parametric or

nonparametric) about the true mechanics of the system; we treat is as a “black-box.”

Our objective is to fit a model—in fact, a VI—that can be used to predict the behavior

of the system. We make no claim that this fitted model accurately reflects “reality,”

merely that it has good predictive power.

This distinction is subtle, mirroring the distinction between “data-modelling” in

classical statistics and “algorithmic modeling” in machine learning. (A famous, albeit

partisaned, account of this distinction is [15].) Our approach is kindred to the machine

learning point of view. For a more detailed discussion, please see Appendix 2.

This philosophical difference has a number of practical consequences:
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598 D. Bertsimas et al.

1. Minimal probabilistic assumptions: Our method has provably good performance

in a very general setting with minimal assumptions on the underlying mechanism

generating the data. (See Theorems 6–8 for precise statements.) By contrast, other

statistical methods, including structural estimation, require a full-specification of

the data generating mechanism and can yield spurious results if this specification

is inaccurate.

2. Tractability: Since our fitted model need not correspond exactly to the under-

lying system dynamics, we have considerably more flexibility in choosing its

functional form. For several interesting choices, including nonparametric speci-

fications (see next point), the resulting inverse VI problem can be reformulated as

a conic optimization problem. Conic optimization problems are both theoretically

and numerically tractable, even for large scale instances ([12]), in sharp contrast

to the non-convex problems that frequently arise in other methods.

3. Nonparametric estimation: Like existing methods in inverse optimization and

structural estimation, our approach can be applied in a parametric setting. Unlike

these approaches, our approach also extends naturally to a nonparametric descrip-

tion of the function f defining the VI. To the best of our knowledge, existing

methods do not treat this possibility. Partial exceptions are [8] and [25] which

use nonparametric estimators for probability densities, but parametric descriptions

of the mechanism governing the system. The key to our nonparametric approach

is to leverage kernel methods from statistical learning to reformulate the infinite

dimensional inverse variational inequality problem as a finite dimensional, convex

quadratic optimization problem. In applications where we may not know, or be

willing to specify a particular form for f we consider this non-parametric approach

particularly attractive.

Although there are other technical differences between these approaches—for

example, some structural estimation techniques can handle discrete features while

our method applies only to continuous problems—we feel that the most important

difference is the aforementioned intended purpose of the methodology. We see our

approach as complementary to existing structural estimation techniques and believe

in some applications practitioners may prefer it for its computational tractability and

relatively fewer modeling assumptions. Of course, in applications where the under-

lying assumptions of structural estimations or other statistical techniques are valid,

those techniques may yield potentially stronger claims about the underlying system.

We summarize our contributions below:

1. We propose the inverse variational inequality problem to model inverse equilibrium.

We illustrate the approach by estimating market demand functions under Bertrand-

Nash equilibrium and by estimating the congestion function in a traffic equilibrium.

2. We formulate an optimization problem to solve a parametric version of the inverse

variational inequality problem. The complexity of this optimization depends on

the particular parametric form of the function to be estimated. We show that for

several interesting choices of parametric form, the parametric version of the inverse

variational inequality problem can be reformulated as a simple conic optimization

problem.
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Data-driven estimation in equilibrium 599

3. We formulate and solve a nonparametric version of the inverse variational inequal-

ity problem using kernel methods. We show that this problem can be efficiently

solved as a convex quadratic optimization problem whose size scales linearly with

the number of observations.

4. Under very mild assumptions on the mechanism generating the data, we show that

both our parametric and non-parametric formulations enjoy a strong generalization

guarantee similar to the guarantee enjoyed by other methods in machine learning.

Namely, if the fitted VI explains the existing data well, it will continue to explain

new data well. Moreover, under some additional assumptions on the optimization

problem, equilibria from the VI serve as good predictions for new data points.

5. We provide computational evidence in the previous two examples—demand esti-

mation under Nash equilibrium and congestion function estimation under traffic

equilibrium—that our proposed approach recovers reasonable functions with good

generalization properties and predictive power. We believe these results may merit

independent interest in the specialized literature for these two applications.

The remainder of this paper is organized as follows. Section 2 reviews background

material on equilibrium modeling through VIs. Section 3 formally defines the inverse

variational inequality problem and solves it in the case that the function to be estimated

has a known parametric form. In preparation for the nonparametric case, Sect. 4

reviews some necessary background material on kernels. Section 5 formulates and

solves the nonparametric inverse variational inequality problem using kernels, and

Sect. 6 illustrates how to incorporate priors, semi-parametric modeling and ambiguity

sets into this framework. Section 7 states our results on the generalization guarantees

and predictive power of our approach. Finally, Sect. 8 presents some computational

results, and Sect. 9 concludes. In the interest of space, almost all proofs are placed in

the Appendix.

In what follows we will use boldfaced capital letters ( e.g., A, W) to denote matrices,

boldfaced lowercase letters (e.g., x, f(·)) to denote vectors or vector-valued functions,

and ordinary lowercase letters to denote scalars. We will use caligraphic capital letters

(e.g., S) to denote sets. For any proper cone C , i.e. C is pointed, closed, convex and

has a strict interior, we will say x ≤C y whenever y − x ∈ C .

2 Variational inequalities: background

2.1 Definitions and examples

In this section, we briefly review some results on variational inequalities that we use

in the remainder of the paper. For a more complete survey, see [26].

Given a function f : Rn → Rn and a non-empty set F ⊆ Rn the variational

inequality problem, denoted VI(f,F), is to find an x∗ ∈ F such that

f(x∗)T (x − x∗) ≥ 0, ∀x ∈ F . (1)

A solution x∗ to VI(f,F) need not exist, and when it exists, it need not be unique.

We can guarantee the existence and uniqueness of the solution by making appropriate
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assumptions on f(·) and/or F , e.g., f continuous and F convex and compact. See [26]

for other less stringent conditions.

There are at least three classical applications of VI modeling that we will refer

to throughout the paper: constrained optimization, Nash Equilibrium, and Traffic (or

Market) Equilibrium.

Constrained Optimization The simplest example of a VI is in fact not an equilibrium,

per se, but rather convex optimization. Nonetheless, the specific example is very useful

in building intuition about VIs. Moreover, using this formalism, one can derive many

of the existing results in the inverse optimization literature as a special case of our

results for inverse VIs in Sect. 3.2.

Consider the problem

min
x∈F

F(x). (2)

The first order necessary conditions for an optimal solution of this problem are (see,

e.g., [11])

∇F(x∗)T (x − x∗) ≥ 0, ∀x ∈ F . (3)

These conditions are sufficient in the case that F is a convex function, and F is

a convex set. Observe, then, that solving (2) is equivalent to finding a point which

satisfies Eq. (3), which is equivalent to solving VI(∇F,F).

Note that, in general, a VI with a function f whose Jacobian is symmetric models

an optimization problem (see [26]).

Nash Equilibrium Our first application of VI to model equilibrium is non-cooperative

Nash equilibrium. Consider a game with p players. Each player i chooses an action

from a set of feasible actions, ai ∈ Ai ⊆ Rmi , and receives a utility Ui (a1, . . . , ap).

Notice in particular, that player i’s payoff may depend upon the actions of other

players. We will assume that Ui is differentiable and concave in ai for all i and that

Ai is convex for all i .

A profile of actions for the players (a∗
1, a∗

2, . . . a∗
p) is said to be a Nash Equilibrium

if no single player can unilaterally change her action and increase her utility. See [22]

for a more complete treatment. In other words, player i plays her best response given

the actions of the other players. More formally,

a∗
i ∈ arg max

a∈Ai

Ui (a
∗
1, . . . , a∗

i−1, a, a∗
i+1, . . . , a∗

p), i = 1, . . . , p. (4)

This condition can be expressed as a VI. Specifically, a profile a∗ = (a∗
1, a∗

2, . . . a∗
p) is

a Nash Equilibrium, if and only if it solves VI(f,F) where F = A1 ×A2 ×· · ·×Ap,

f(a) =

⎛

⎜

⎝

−∇1U1(a)
...

−∇pUp(a)

⎞

⎟

⎠
(5)

and ∇i denotes the gradient with respect to the variables ai (see [26] for a proof.)
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Data-driven estimation in equilibrium 601

It is worth pointing out that many authors use Eq. (4) to conclude

∇iUi (a
∗
1, . . . , a∗

p) = 0, i = 1, . . . , p, (6)

where ∇i refers to a gradient with respect to the coordinates of ai . This characterization

assumes that each player’s best response lies on the strict interior of her strategy set

Ai . The assumption is often valid, usually because the strategy sets are unconstrained.

Indeed, this condition can be derived as a special case of (5) in the case Ai = Rmi .

In some games, however, it is not clear that an equilibrium must occur in the interior,

and we must use (5) instead. We will see an example in Sect. 3.2.

Wardrop Equilibrium Our final example of a VI is Wardrop or user-equilibrium from

transportation science. Wardrop equilibrium is extremely close in spirit to the market

(Walrasian) equilibrium model in economics—see [19,41]—and our comments below

naturally extend to the Walrasian case.

Specifically, we are given a directed network of nodes and arcs (V,A), representing

the road network of some city. Let N ∈ {0, 1}|V |×|A| be the node-arc incidence matrix

of this network. For certain pairs of nodes w = (ws, wt ) ∈ W , we are also given

an amount of flow dw that must flow from ws to wt . The pair w is referred to as an

origin–destination pair. Let dw ∈ R|V | be the vector which is all zeros, except for

a (−dw) in the coordinate corresponding to node ws and a (dw) in the coordinate

corresponding to node wt .

We will say that a vector of flows x ∈ R
|A|
+ is feasible if x ∈ F where

F =
{

x : ∃xw ∈ R
|A|
+ s.t. x =

∑

w∈W

xw, Nxw = dw ∀w ∈ W

}

.

Let ca : R
|A|
+ → R+ be the “cost” function for arc a ∈ A. The interpretation of cost,

here, is deliberately vague. The cost function might represent the actual time it takes to

travel an arc, tolls users incur along that arc, disutility from environmental factors along

that arc, or some combination of the above. Note that because of interdependencies in

the network, the cost of traveling arc a may depend not only on xa , but on the flows on

other arcs as well. Denote by c(·) the vector-valued function whose a-th component

is ca(·).
A feasible flow x∗ is a Wardrop equilibrium if for every origin–destination pair

w ∈ W , and any path connecting (ws, wt ) with positive flow in x∗, the cost of traveling

along that path is less than or equal to the cost of traveling along any other path that

connects (ws, wt ). Here, the cost of traveling along a path is the sum of the costs of

each of its constituent arcs. Intuitively, a Wardrop equilibrium captures the idea that

if there exists a less congested route connecting ws and wt , users would find and use

it instead of their current route.

It is well-known that a Wardrop equilibrium is a solution to VI(c,F).
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2.2 Approximate equilibria

Let ǫ > 0. We will say that x̂ ∈ F is an ǫ-approximate solution to VI(f,F) if

f(x̂)T (x − x̂) ≥ −ǫ, ∀x ∈ F . (7)

This notion of an approximate solution is not new to the VI literature—it corresponds

exactly to the condition that the primal gap function of the VI is bounded above by ǫ and

is frequently used in the analysis of numerical procedures for solving the VI. We point

out that ǫ-approximate solutions also frequently have a modeling interpretation. For

example, consider the case of constrained convex optimization [cf. Eq. (2)]. Let x∗ be

an optimal solution. Since F is convex, we have F(x̂)−F(x∗) ≤ −∇F(x̂)T (x∗−x̂) ≤
ǫ. In other words, ǫ-approximate solutions to VIs generalize the idea of ǫ-optimal

solutions to convex optimization problems. Similarly, in a Nash equilibrium, an ǫ-

approximate solution to the VI (5) describes the situation where each player i does not

necessarily play her best response given what the other players are doing, but plays a

strategy which is no worse than ǫ from her best response.

The idea of ǫ-approximate solutions is not the only notion of an approximate equi-

librium. An alternative notion of approximation is that ‖x̂ − x∗‖ ≤ δ where x∗ is a

solution to the VI(f,F). We say such a x̂ ∈ F is δ-near a solution to the VI(f,F). As

shown in Theorem 1, these two ideas are closely related. The theorem was proven in

[33] to provide stopping criteria for certain types of iterative algorithms for solving

VIs. We reinterpret it here in the context of approximate equilibria.

Before stating the theorem, we define strong monotonicity. We will say that f(·) is

strongly monotone if ∃γ > 0 such that

(f(x) − f(y))T (x − y) ≥ γ ‖x − y‖2 ∀x, y ∈ F .

When the VI corresponds to constrained optimization [cf. Eqs. (2, 3)], strong

monotonicity of f corresponds to strong convexity of F . Intuitively, strong monotonic-

ity ensures that f does not have large, flat regions.

Theorem 1 ([33]) Suppose f is strongly monotone with parameter γ . Then every

ǫ-approximate solution to VI(f,F) is
√

ǫ
γ

-near an exact solution.

We require Theorem 1 in Sect. 7 to prove some of our generalization results.

2.3 Characterizing approximate solutions to VIs over conic representable sets

In this section we provide an alternative characterization of an ǫ-approximate solution

[cf. Eq. (7)] in the case when F is represented by the intersection of conic inequalities.

Specifically, for the remainder of the paper, we will assume:

Assumption 1 F can be represented as the intersection of a small number of conic

inequalities in standard form, F = {x : Ax = b, x ∈ C}.

Assumption 2 F satisfies a Slater-condition.
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The assumption that F is given in standard form is not crucial. All of our results extend

to the case that F is not given in standard form at the expense of some notation. It is,

however, crucial, that F is conic representable. Observe that when C is the nonnegative

orthant, we recover the special case where F is a polyhedron. With other choices of

C , e.g., the second-order cone, we can model more complex sets, such as intersection

of ellipsoids. To stress the dependence on A, b, C , we will write VI(f, A, b, C).

The following result was first proven in [2] to describe a reformulation of

VI(f, A, b, C) as a single-level optimization problem. We reinterpret here as a char-

acterization of approximate equilibria and sketch a short proof for completeness.

Theorem 2 ([2]) Under assumptions A1, A2, the solution x̂ is an ǫ-approximate

equilibrium to VI(f, A, b, C) if and only if ∃y s.t.

AT y ≤C f(x̂), (8)

f(x̂)T x̂ − bT y ≤ ǫ. (9)

Proof First suppose that x̂ is an ǫ-approximate equilibrium. Then, from Eq. (7),

f(x̂)T x̂ − ǫ ≤ f(x̂)T x, ∀x ∈ F ,

which is equivalent to f(x̂)T x̂ − ǫ ≤ minx∈F f(x̂)T x. The right hand side is a conic

optimization problem in x, and the above shows it is bounded below. Since F has

non-empty interior, strong duality holds (see [12]), which implies that there exists a

dual solution y that attains the optimum. In other words,

min
x∈F

f(x̂)T x = max
y:AT y≤C f(x̂)

bT y.

Substituting this dual solution into the above inequality and rearranging terms yields

the result. The reverse direction is proven analogously using weak conic duality. ⊓⊔

The above proof leverages the fact that the duality gap between an optimal primal and

dual solution pair is zero. We can instead formulate a slightly different characteriza-

tion by leveraging complementary slackness. In this case, Eq. (9) is replaced by the

additional constraints

n
∑

i=1

xi ( fi (x̂) − yT Aei ) ≤ ǫ. (10)

Depending on the application, either the strong duality representation [cf. Eqs. (8, 9)]

or the complementary slackness representation [cf. Eqs. (8, 10)] may be more natural.

We will use the strong duality formulation in Sect. 8.3 and the the complementary

slackness formulation in Sect. 8.1.
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3 The inverse variational inequality problem

3.1 Problem formulation

We are now in a position to pose the inverse variational inequality problem. We are

given observations (x j , A j , b j , C j ) for j = 1, . . . , N . In this context, we modify

Assumption A2 to read.

Assumption The set F j = {x ∈ Rn : A j x = b j , x ∈ C j } is non-empty and satisfies

a Slater condition for each j .

This is not a particularly stringent condition; given data that does not satisfy it, we can

always pre-process the data ensure it does satisfy this assumption.

We seek a function f such that x j is an approximate solution to VI(f, A j , b j , C j )

for each j . Note, the function f is common to all observations. Specifically, we would

like to solve:

min
f,ǫ

‖ǫ‖

s.t. x j is an ǫ j -approximate solution to VI(f, A j , b j , C j ), j = 1, . . . , N , (11)

f ∈ S.

where ‖ · ‖ represents some choice of norm, and S represents the set of admissible

functions. In the parametric case, treated in the following section, we will assume that

S is indexed by a vector of parameters θ ∈ � ⊆ RM . In the nonparametric case, S

will be a general set of functions that satisfy certain smoothness properties. We defer

this extension until Sect. 5.

3.2 Parametric estimation

In this section, we assume that the function f is known to belong to a parametric

family indexed by a vector θ ∈ �. We write f(x; θ) to denote this dependence. We

will assume throughout that � is compact and f(x; θ) is continuous in θ . A direct

application of Theorem 2 yields the following reformulation:

Theorem 3 Under assumptions 1, 2 and the additional constraint that f = f(x; θ)

for some θ ∈ �, problem Eq. (11) can be reformulated as

min
θ∈�,y,ǫ

‖ǫ‖ (12)

s.t. AT
j y j ≤C f(x j ; θ), j = 1, . . . N ,

f(x j ; θ)T x j − bT
j y j ≤ ǫ j , j = 1, . . . , N ,

where y = (y1, . . . , yN ).

Remark 1 (Multiple equilibria) We stress that since Theorem 2 is true for any ǫ-

approximate solution to the VI, Theorem 3 is valid even when the function f might give
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Data-driven estimation in equilibrium 605

rise to multiple distinct equilibria. This robustness to multiple equilibria is an important

strength of our approach that distinguishes it from other specialized approaches that

require uniqueness of the equilibrium.

Remark 2 (Equilibria on the boundary) In Theorem 2, we did not need to assume that

the x j or the solutions to V I (f, A j , b j ) belonged to the interior of F j . Consequently,

Theorem 3 is valid even if the observations x j or induced solutions to V I (f, A j , b j )

occur on the boundary. This is in contrast to many other techniques which require that

the solutions occur on the relative interior of the feasible set.

Remark 3 (Computational complexity) Observe that x j are data in Problem (12), not

decision variables. Consequently, the complexity of this optimization depends on the

cone C and the dependence of f on θ , but not on the dependence of f on x. For a number

of interesting parametric forms, we can show that Problem (12) is in fact tractable.

As an example, suppose f(x; θ) =
∑M

i=1 θiφi (x) where φ1(x), . . . ,φM (x) is a

set of (nonlinear) basis functions. Since f depends linearly on θ , Problem (12) is a

conic optimization problem, even though the basis functions φi (x) may be arbitrary

nonlinear functions. Indeed, if C is the nonnegative orthant, Problem (12) is a linear

optimization problem. Similarly, if C is the second-order cone, Problem (12) is a

second-order cone problem.

Finally, although structural estimation is not the focus of our paper, in Appendix 2

we briefly illustrate how to use Theorem 2 to formulate an alternate optimization prob-

lem that is similar to, but different from, Problem (12) and closer in spirit to structural

estimation techniques. Moreover, we show that this formulation is equivalent to certain

structural estimation techniques in the sense that they produce the same estimators.

This section may prove useful to readers interested in comparing these methodology.

3.3 Application: demand estimation under Bertrand–Nash competition

In this section, we use Theorem 3 to estimate an unknown demand function for a

product so that observed prices are approximately in Bertrand–Nash equilibrium.

This is a somewhat stylized example inspired by various influential works in the

econometrics literature, such as [9] and [10]. We include this stylized example for two

reasons: 1) To illustrate a simple problem where equilibria may occur on the boundary

of the feasible region. 2) To further clarify how the choice of parameterization of

f(·; θ) affects the computational complexity of the estimation problem.

For simplicity, consider two firms competing by setting prices p1, p2, respectively.

Demand for firm i’s product, denoted Di (p1, p2, ξ), is a function of both prices,

and other economic indicators, such as GDP, denoted by ξ . Each firm sets prices to

maximize its own revenues Ui (p1, p2, ξ) = pi Di (p1, p2, ξ) subject to the constraint

0 ≤ pi ≤ p. The upper bound p might be interpreted as a government regulation as is

frequent in some markets for public goods, like electricity. We assume a priori that each

demand function belongs to some given parametric family indexed by (θ1, θ2) ∈ �:

D1(p1, p2, ξ ; θ1), D2(p1, p2, ξ ; θ2). We seek to estimate θ1, θ2 ∈ � so that the data

(p
j
1 , p

j
2 , ξ) for j = 1, . . . , N correspond approximately to Nash equilibria.
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Both [9] and [10] assume that equilibrium prices do not occur on the boundary, i.e.,

that pi < p since they leverage Eq. (6) in their analysis. These methods are, thus, not

directly applicable.

By contrast, Theorem 3 directly applies yielding (after some arithmetic)

min
y,ǫ

(θ1,θ2)∈�

‖ǫ‖

s.t. y j ≥ 0, j = 1, . . . , N ,

y
j

i ≥ p
j

i

∂

∂pi

Di (p
j
1 , p

j
2 , ξ j ; θ i ) + Di (p

j
1 , p

j
2 , ξ j ; θ i ), i = 1, 2, j = 1, . . . , N ,

2
∑

i=1

p j y
j
i − (p

j
i )2 ∂

∂pi

Di (p
j
1 , p

j
2 , ξ j ; θ i )

− p
j
i Di (p

j
1 , p

j
2 , ξ j ; θ i ) ≤ ǫ j , j = 1, . . . , N . (13)

We stress that potentially more complex constraints on the feasible region can be

incorporated just as easily.

Next, recall that the complexity of the optimization problem (13) depends on the

parameterization of Di (p1, p2, ξ, θ i ). For example, when demand is linear,

Di (p1, p2, ξ ; θ i ) = θi0 + θi1 p1 + θi2 p2 + θi3ξ (14)

problem (13) reduces to the linear optimization problem:

min
y,ǫ,(θ1,θ2)∈�,d

‖ǫ‖

s.t. y j ≥ 0, j = 1, . . . , N ,

y
j
i ≥ d

j
i + θi i p

j
i , i = 1, 2, j = 1, . . . , N ,

p

2
∑

i=1

y
j
i − p

j
i d

j
i − (p

j
i )2θi i ≤ ǫ j , j = 1, . . . , N , (15)

d
j

i = θi0 + θi1 p
j
1 + θi2 p

j
2 + θi3ξ

j , i = 1, 2, j = 1, . . . , N .

Alternatively, if we assume demand is given by the multinomial logit model [23],

Di (p1, p2, ξ ; θ) = eθi0+θi1 pi +θi3ξ

eθ10+θ11 p1+θ13ξ +eθ20+θ21 p2+θ23ξ +θ00
, the problem (13) becomes

min
y,ǫ,θ1,θ2,d1,d2

‖ǫ‖

s.t. y j ≥ 0, j = 1, . . . , N ,

y
j
i ≥ p

j
i θi1d

j
1 d

j
2 + d

j
i , i = 1, 2,

2
∑

i=1

p j y
j
i + p

j
i d

j
i − (p

j
i )2θ1i d

j
i (1 − d

j
i ) ≤ ǫ j
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d
j

i = eθ0i +θi1 p
j
i +θi3ξ

j

eθ10+θ11 p
j
1+θ13ξ j + eθ20+θ21 p

j
2+θ23ξ + θ00

, i =1, 2, j = 1, . . . N ,

which is non-convex. Non-convex optimization problems can be challenging numer-

ically and may scale poorly.

Finally, we point out that although it more common in the econometrics literature

to specify the demand functions Di directly as we have above, one could equivalently

specify the marginal revenue functions

Mi (p1, p2, ξ ; θ i ) = pi∂i Di (p1, p2, ξ ; θ i ) + Di (p1, p2, ξ ; θ i )

and then impute the demand function as necessary. We adopt this equivalent approach

later in Sect. 8.1.

4 Kernel methods: background

Intuitively, our nonparametric approach in the next section seeks the “smoothest”

function f which make the observed data approximate equilibria, where the precise

notion of smoothness is determined by the choice of kernel. Kernel methods have been

used extensively in machine learning, most recently for feature extraction in context of

support-vector machines or principal component analysis. Our use of kernels, however,

more closely resembles their application in spline interpolation and regularization

networks ([24,39]).

Our goal in this section is to develop a sufficiently rich set of scalar valued func-

tions over which we can tractably optimize using kernel methods. Consequently, we

first develop some background. Our review is not comprehensive. A more thorough

treatment of kernel methods can be found in either [36,38] or [21].

Let F ⊆ Rn denote some domain. Let k : F × F → R be a symmetric function.

We will say that k is a kernel if k is positive semidefinite over F , i.e., if

N
∑

i=1

N
∑

j=1

ci c j k(xi , x j ) ≥ 0 for any choice of N ∈ N, c ∈ RN , xi ∈ F .

Examples of kernels over Rn include:

Linear: k(x, y) ≡ xT y,

Polynomial: k(x, y) ≡ (c + xT y)d for some choice of c ≥ 0 and d ∈ N,

Gaussian: k(x, y) ≡ exp(−c‖x − y‖2) for some choice of c > 0.

Let kx(·) ≡ k(x, ·) denote the function of one variable obtained by fixing the first

argument of k to x for any x ∈ F . Define H0 to be the vector space of scalar valued

functions which are representable as finite linear combinations of elements kx for some

x ∈ F , i.e.,
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H0 =

⎧

⎨

⎩

N
∑

j=1

α j kx j
: x j ∈ F , N ∈ N, α j ∈ R, j = 1, . . . , N , N ∈ N

⎫

⎬

⎭

. (16)

Observe that kx ∈ H0 for all x ∈ F , so that in a sense these elements form a basis of

the space H0. On the other hand, for a given f ∈ H0, its representation in terms of

these elements kx j
for x j ∈ F need not be unique. In this sense, the elements kx are

not like a basis.

For any f, g ∈ H0 such that

f =
N
∑

j=1

α j kx j
, g =

N
∑

i=1

βi kxi
, α,β ∈ RN (17)

we define a scalar product

〈 f, g〉H0
=

N
∑

i=1

N
∑

j=1

αiβ j 〈kxi
, kx j

〉H0
≡

N
∑

i=1

N
∑

j=1

αiβ j k(xi , x j ). (18)

Since the representation in (17) is not unique, for this to be a valid definition one

must prove that the right-hand side of the last equality is independent of the choice

of representation. It is possible to do so. See [36] for the details. Finally, given this

scalar-product, we define the norm ‖ f ‖H0
≡

√
〈 f, f 〉H0

.

In what follows, we will actually be interested in the closure of H0, i.e.,

H = H0. (19)

We extend the scalar product 〈·, ·〉H0
and norm ‖ · ‖H0

to H by continuity. (Again, see

[36] for the details). Working with H instead of H0 simplifies many results.1

As an example, in the case of the linear and polynomial kernels, the space H is

finite dimensional and corresponds to the space of linear functions and the space of

polynomials of degree at most d, respectively. In the case of the Gaussian kernel, the

space H is infinite dimensional and is a subspace of all continuous functions.

If f ∈ H0 admits a finite representation as in Eq. (17), note that from Eq. (18) we

have for all x ∈ F

〈kx, f 〉H =
N
∑

j=1

α j k(x, x j ) = f (x). (20)

In fact, it can be shown that this property applies to all f ∈ H ([30]). This is the

most fundamental property of H as it allows us to relate the scalar product of the

space to function evaluation. Equation (20) is termed the reproducing property and as

a consequence, H is called a Reproducing Kernel Hilbert Space (RKHS).

1 For the avoidance of doubt, the closure in (19) is with respect to the norm ‖ · ‖H0
.
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At this point, it may appear that RKHS are very restrictive spaces of functions.

In fact, it can be shown that any Hilbert space of scalar-valued functions for which

there exists a c ∈ R such that for each f ∈ H, | f (x)| ≤ c‖ f ‖H for all x ∈ F is an

RKHS ([30]). Thus, RKHS are fairly general. Practically speaking, though, our three

previous examples of kernels –linear, polynomial, and Gaussian –are by far the most

common in the literature.

We conclude this section with a discussion about the norm ‖ f ‖H. We claim that

in each of our previous examples, the norm ‖ f ‖H makes precise a different notion of

“smoothness” of the function f . For example, it is not hard to see that if f (x) = wT x,

then under the linear kernel ‖ f ‖H = ‖w‖. Thus, functions with small norm have

small gradients and are “smooth” in the sense that they do not change value rapidly

in a small neighborhood.

Similarly, it can be shown (see [24]) that under the Gaussian kernel,

‖ f ‖2
H

= 1

(2π)n

∫

| f̃ (ω)|2e
‖ω‖2

2c dω, (21)

where f̃ is the Fourier transformation of f . Thus, functions with small norms do not

have many high-frequency Fourier coefficients and are “smooth” in the sense that they

do not oscillate very quickly.

The case of the polynomial kernel is somewhat more involved as there does not

exist a simple explicit expression for the norm (see [24]). However, it is easily con-

firmed numerically using Eq. (18) that functions with small norms do not have large

coefficients and do not have have high degree. Consequently, they are “smooth” in the

sense that their derivatives do not change value rapidly in a small neighborhood.

Although the above reasoning is somewhat heuristic, it is possible to make the

intuition that the norm on an RKHS describes a notion of smoothness completely

formal. The theoretical details go beyond the scope of this paper (see [24]). For our

purposes, an intuitive appreciation that the H-norm penalizes non-smooth functions

and that the particular notion of smoothness is defined by the kernel will be sufficient

for the remainder.

5 The inverse variational inequality problem: a nonparametric approach

5.1 Kernel based formulation

In this section, we develop a nonparametric approach to the inverse variational inequal-

ity problem. The principal difficulty in formulating a nonparametric equivalent to (11)

is that the problem is ill-posed. Specifically, if the set S is sufficiently rich, we expect

there to be many, potentially infinitely many, different functions f which all reconcile

the data, and make each observation an exact equilibrium. Intuitively, this multiplicity

of solutions is similar to the case of interpolation where, given a small set of points,

many different functions will interpolate between them exactly. Which function, then,

is the “right” one?

We propose to select the function f of minimal H-norm among those that approxi-

mately reconcile the data. This choice has several advantages. First, as mentioned ear-

lier, functions with small norm are “smooth”, where the precise definition of smooth-
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ness will be determined by the choice of kernel. We feel that in many applications,

assuming that the function defining a VI is smooth is very natural. Second, as we shall

prove, identifying the function f with minimal norm is computationally tractable, even

when the RKHS H is infinite dimensional. Finally, as we will show in Sect. 7, functions

with bounded H-norm will have good generalization properties.

Using Theorem 2, we reformulate Problem (11) as

min
f,y,ǫ

n
∑

i=1

‖ fi‖2
H

s.t. AT
j y j ≤ f(x j ), j = 1, . . . , N , (22a)

xT
j f(x j ) − bT

j y j ≤ ǫ j , j = 1, . . . , N , (22b)

‖ǫ‖ ≤ κ, ǫ ≥ 0, fi ∈ H, i = 1, . . . , n,

1

N

N
∑

j=1

xT
j f(x j ) = 1. (22c)

Here fi is the i-th component of the vector function f and H is an RKHS. Since we

may always scale the function f in VI(f,F) by a positive constant without affecting

the solution, we require the last constraint as a normalization condition. Finally, the

exogenous parameter κ allows us to balance the norm of f against how closely f

reconciles the data; decreasing κ will make the observed data closer to equilibria at

the price of f having greater norm.

Problem (22) is an optimization over functions, and it is not obvious how to solve

it. We show in the next theorem, however, that this can be done in a tractable way.

This theorem is an extension of a representation theorem from the kernel literature

(see [39]) to the constrained multivariate case. See the Appendix for a proof.

Theorem 4 Suppose Problem (22) is feasible. Then, there exists an optimal solution

f∗ = ( f ∗
1 , . . . , f ∗

n ) with the following form:

f ∗
i =

N
∑

j=1

αi, j kx j
, (23)

for some αi, j ∈ R, where k denotes the kernel of H.

By definition of H, when Problem (22) is feasible, its solution is a potentially infi-

nite expansion in terms of the kernel function evaluated at various points of F . The

importance of Theorem 4 is that it allows us to conclude, first, that this expansion is in

fact finite, and second, that the relevant points of evaluation are exactly the data points

x j . This fact further allows us to replace the optimization problem (22), which is over

an infinite dimensional space, with an optimization problem over a finite dimensional

space.
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Theorem 5 Problem (22) is feasible if and only if the following optimization problem

is feasible:

min
α,y,ǫ

n
∑

i=1

eT
i αKαT ei

s.t. A j y j ≤ αKe j j = 1, . . . , N ,

xT
j αKe j − bT

j y j ≤ ǫ j j = 1, . . . , N ,

‖ǫ‖ ≤ κ, ǫ ≥ 0, (24)

1

N

N
∑

j=1

xT
j αKe j = 1.

Here α = (αi j )
i=n, j=N
i=1, j=1 ∈ Rn×N , and K = (k(xi , x j ))

i, j=N
i, j=1 . Moreover, given an opti-

mal solution α to the above optimization problem, an optimal solution to Problem (22)

is given by Eq. (23).

See the Appendix for a proof. Given the optimal parameters α, f can be evaluated at

new points t using (23). Note that K is positive semidefinite (as a matrix) since k is

positive definite (as a function). Thus, (24) is a convex, quadratic optimization problem.

Such optimization problems are very tractable numerically and theoretically, even

for large-scale instances. (See [12]). Moreover, this quadratic optimization problem

exhibits block structure—only the variables α j couple the subproblems defined by the

y j —which can be further exploited in large-scale instances. Finally, the size of this

optimization scales with N , the number of observations, not with the dimension of the

original space H, which may be infinite.

Observe that Problem (22) is bounded, but may be infeasible. We claim it will

be feasible whenever κ is sufficiently large. Indeed, let f̂i ∈ H be any functions

from the RKHS. By scaling, we can always ensure (22c) is satisfied. The follow-

ing convex optimization minx:A j x=b j ,x≥0 f̂(x j )
T x is bounded and satisfies a Slater

condition by Assumption A2. Let ŷ j be the dual variables to this optimization, so

that ŷ j satisfy (22a) and define ǫ̂ j according to (22b). Then as long as κ ≥ ‖ǫ̂‖,

Problem (22), and consequently Problem (24), will be feasible and obtain an optimal

solution.

Computationally, treating the possible infeasibility of (24) can be cumbersome,

so in what follows, we find it more convenient to dualize this constraint so that the

objective becomes,

min
α,y

αT Kα + λ‖ǫ‖, (25)

and then solve this problem for various choices of λ > 0. Note this version of the

problem is always feasible, and, indeed, we will employ this formulation later in

Sect. 8.

We conclude this section by contrasting our parametric and nonparametric formula-

tions. Unlike the parametric approach, the nonparametric approach is always a convex

optimization problem. This highlights a key tradeoff in the two approaches. The para-

metric approach offers us fine-grained control over the specific form of the function
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f at the potential expense of the tractability of the optimization. The nonparametric

approach offers less control but is more tractable.

We next illustrate our nonparametric approach below with an example.

5.2 Application: estimating the cost function in Wardrop equilibrium

Recall the example of Wardrop equilibrium from Sect. 2.1. In practice, while the net-

work (V,A) is readily observable, the demands dw and cost function ca(·) must be

estimated. Although several techniques already exist for estimating the demands dw

([1,40]), there are fewer approaches for estimating ca(·). Those techniques that do

exist often use stylized networks, e.g., one origin–destination pair, to build insights.

See [31] for a maximum likelihood approach, and [34] for kinematic wave analyses.

By contrast, we focus on estimating ca(·) from observed flows or traffic counts on

real, large scale networks. Specifically, we assume we are given networks (V j ,A j ),

j = 1, . . . , N , and have access to estimated demands on these networks dw j for

all w j ∈ W j . In practice, this may be the same network observed at different

times of day, or different times of year, causing each observation to have different

demands.

In the transportation literature, one typically assumes that ca(·) only depends on arc

a, and in fact, can be written in the form ca(xa) = c0ag
(

xa

ma

)

, for some nondecreasing

function g. The constant c0a is sometimes called the free-flow travel time of the arc, and

ma is the effective capacity of the arc. These constants are computed from particular

characteristics of the arc, such as its length, the number of lanes or the posted speed

limit. (Note the capacity ma is not a hard constraint; it not unusual to see arcs where

x∗
a > ma in equilibrium.) We will also assume this form for the cost function, and

seek to estimate the function g(·).
Using (24) and (25) we obtain the quadratic optimization problem

min
α,y,ǫ

αT Kα + λ‖ǫ‖ (26)

s.t. eT
a NT

j yw ≤ c0aαT Kea, ∀w ∈ W j , a ∈ A j , j = 1, . . . , N ,

αT Kea ≤ αT Kea′ , ∀a, a′ ∈ A0 s.t.
xa

ma

≤ xa′

ma′
, (27)

∑

a∈A j

c0a xaαT Kea −
∑

w∈W j

(dw)T yw ≤ ǫ j , ,∀w ∈ W j , j = 1, . . . , N ,

αT Kea0 = 1.

In the above formulation A0 is a subset of
⋃N

j=1 A j and K ∈ R
∑N

j=1 |A j |×
∑N

j=1 |A j |.
Constraint (27) enforces that the function g(·) be non-decreasing on these arcs. Finally,

a0 is some (arbitrary) arc chosen to normalize the function.

Notice, the above optimization can be quite large. If the various networks are of sim-

ilar size, the problem has O(N (|A1|+ |W1||V1|) variables and O(N |W1||A1|+ |A0|)
constraints. As mentioned previously, however, this optimization exhibits significant

structure. First, for many choices of kernel, the matrix K is typically (approximately)

123

Author's personal copy



Data-driven estimation in equilibrium 613

low-rank. Thus, it is usually possible to reformulate the optimization in a much lower

dimensional space. At the same time, for a fixed value of α, the optimization decou-

ples by w ∈ W j and j . Each of these subproblems, in turn, is a shortest path problem

which can be solved very efficiently, even for large-scale networks. Thus, combining

an appropriate transformation of variables with block decomposition, we can solve

fairly large instances of this problem. We take this approach in Sect. 8.3.

6 Extensions

Before proceeding, we note that Theorem 4 actually holds in a more general setting.

Specifically, a minimization over an RKHS will admit a solution of the form (23)

whenever

(a) the optimization only depends on the norms of the components ‖ fi‖H and the

function evaluated at a finite set of points f(x j ), and

(b) the objective is nondecreasing in the norms ‖ fi‖H.

The proof is identical to the one presented above, and we omit it for conciseness. An

important consequence is that we can leverage the finite representation of Theorem 4

in a number of other estimation problems and to facilitate inference. In this section,

we describe some of these extensions.

6.1 Incorporating priors and semi-parametric estimation

Suppose we believe a priori that the function f describing the VI should be close to a

particular function f0 (a prior). In other words, f = f0 + g for some function g which

we believe is small. We might then solve

min
g,y,ǫ

n
∑

i=1

‖gi‖2
H

s.t. AT
j y j ≤ f0(x j ) + g(x j ) j = 1, . . . , N ,

xT
j (f0(x j ) + g(x j )) − bT

j y j ≤ ǫ j j = 1, . . . , N ,

‖ǫ‖ ≤ κ, ǫ ≥ 0, gi ∈ H, i = 1, . . . , n.

From our previous remarks, it follows that this optimization is equivalent to

min
α,y,ǫ

n
∑

i=1

eT
i αKαT ei

s.t. A j y j ≤ f0(x j ) + αKe j j = 1, . . . , N

xT
j (f0(x j ) + αKe j ) − bT

j y j ≤ ǫ j j = 1, . . . , N ,

‖ǫ‖ ≤ κ, ǫ ≥ 0,

which is still a convex quadratic optimization problem.

In a similar way we can handle semi-parametric variants where f decomposes into

the sum of two functions, one of which is known to belong to a parametric family and
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the other of which is defined nonparmetrically, i.e., f(·) = f0(·; θ) + g for some θ and

g ∈ Hn .

Remark 4 (A Challenge with Partial Derivatives) There are natural modeling cir-

cumstances where Theorem 4 is not applicable. For example, recall in our demand

estimation example from Sect. 3.3 that the inverse variational inequality problem

depends not only on the demand functions D1(·), D2(·) evaluated at a finite set of

points (p
j
1 , p

j
2), but also on their partial derivatives at those points. Intuitively, the

partial derivative ∂i Di (p
j
1 , p

j
2) requires information about the function in a small

neighborhood of (p
j
1 , p

j
2), not just at the point, itself. Consequently, Theorem 4 is

not applicable. Extending the above techniques to this case remains an open area of

research.

6.2 Ambiguity sets

In many applications, there may be multiple distinct models which all reconcile the

data equally well. Breiman termed this phenomenon the “Rashomon” effect. It can

occur even with parametric models that are well-identified, since there may exist mod-

els outside the parametric family which will also reconcile the data. Consequently, we

would often like to identify the range of functions which may explain our data, and

how much they differ.

We can determine this range by computing the upper and lower envelopes of the set

of all functions within an RKHS that make the observed data approximate equilibria.

We call this set the ambiguity set for the estimator. To construct these upper and lower

bounds on the ambiguity set, consider fixing the value of κ in (22) and replacing the

objective by fi (x̂) for some x̂ ∈ F . This optimization problem satisfies the two con-

ditions listed at the beginning of this section. Consequently, Theorem 4 applies, and

we can use the finite representation to rewrite the optimization problem as a linear

optimization problem in α, y. Using software for linear optimization, it is possible to

generate lower and upper bounds on the function f(x̂) for various choices of x̂ quickly

and efficiently.

To what value should we set the constant κ? One possibility is to let κ be the optimal

objective value of (12), or a small multiple of it. This choice of κ yields the set of

functions which “best” reconcile the given data. We discuss an alternative approach

in Sect. 7 that yields a set of functions which are statistically similar to the current

estimator.

Regardless of how we choose, κ , though, ambiguity sets can be combined with our

previous parametric formulations to assess the appropriateness of the particular choice

of parametric family. Indeed, the ambiguity set formed from the nonparametric kernel

contains a set of alternatives to our parametric form which are, in some sense, equally

plausible from the data. If these alternatives have significantly different behavior from

our parametric choice, we should exercise caution when interpreting the fitted function.

Can we ever resolve the Rashomon effect? In some cases, we can use application-

specific knowledge to identify a unique choice. In other cases, we need appeal to some

extra, a priori criterion. A typical approach in machine learning is to focus on a choice
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with good generalizability properties. In the next section, we show that our proposed

estimators enjoy such properties.

7 Generalization guarantees

In this section, we seek to prove generalization guarantees on the estimators from

Problem (12) and (22). Proving various types of generalization guarantees for various

algorithms is a central problem in machine learning. These guarantees ensure that

the performance of our estimator on new, future data will be similar to its observed

performance on existing data.

We impose a mild assumption on the generating process which is common through-

out the machine learning literature:

Assumption 3 The data (x j , A j , b j , C j ) are i.i.d. realizations of random variables

(x̃, Ã, b̃, C̃) drawn from some probability measure P.

Notice, we make no assumptions on potential dependence between (x̃, Ã, b̃, C̃), nor

do we need to know the precise form of P. We also assume

Assumption 4 The random set F̃ = {x : Ãx = b̃, x ∈ C̃} satisfies a Slater Condition

almost surely.

Assumption 5 x̃ ∈ F̃ almost surely.

Assumptions 4 and 5 are not particularly stringent. If these condition may fail, we

can consider pre-processing the data so that they succeed, and then consider a new

measure Q induced by this processing of P.

We now prove a bound for a special case of Problem (12). Let zN , θ N denote the

optimal value and optimal solution of (12). If for some N , there exist multiple optimal

solutions, choose θ N by some tie-breaking rule, e.g., the optimal solution with minimal

ℓ2-norm. For any 0 < α < 1, define

β(α) ≡
dim(θ)
∑

i=0

(

N

i

)

αi (1 − α)N−i .

Theorem 6 Consider Problem (12) where the norm ‖ · ‖ = ‖ · ‖∞. Suppose that

this problem is convex in θ and that Assumptions A1, A3–A5 hold. Then, for any

0 < α < 1, with probability at least 1 − β(α) with respect to the sampling,

P

(

x̃ is a zN -approximate equilibrium for VI(f(·, θ N ), Ã, b̃, C̃)
)

≥ 1 − α.

The proof relies on relating Problem (12) to an uncertain convex program [18], and

leveraging results on the randomized counterparts of such programs. See the Appendix

for the details.
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Remark 5 There are two probability measures in the theorem. The first (explicit) is

the probability measure of the new data point (x̃, Ã, b̃, C̃). The second (implicit) is the

probability measure of the random quantities zN , θ N . One way to interpret the theorem

is as follows: One can ask, “For a fixed pair zN , θ N , is the probability that xN+1 is a

zN -approximate equilibrium for VI(f(·, θ N ), AN+1, bN+1, CN+1) with respect to the

first measure at least 1−α?” The theorem asserts the answer is, “Yes” with probability

at least 1−β(α) with respect to the second measure. More loosely, the theorem asserts

that for “typical” values of zN , θ N , the answer is “yes.” This type of generalization

result, i.e., a result which is conditional on the data-sampling measure, is typical in

machine learning.

Remark 6 Notice that β(α) corresponds to the tail probability of a binomial distribu-

tion, and, hence, converges exponentially fast in N .

Remark 7 (ℓ1 Regularization) The value β(α) depends strongly on the dimension

of θ . In [17], the authors show that including an ℓ1 regularization of the form ‖θ‖1

to reduce the effective dimension of θ can significantly improve the above bound

in the context of uncertain convex programs.2 Motivated by this idea, we propose

modifying our original procedure by including a regularization λ‖θ‖1 in the objective

of Problem (12). Since the problem is convex this formulation is equivalent to including

a constraint of the form ‖θ‖1 ≤ κ for some value of κ that implicitly depends on λ, and,

consequently, Theorem 6 still applies but with zN redefined to exclude the contribution

of the regularization to the objective value.

Unfortunately, the proof of Theorem 6 doesn’t generalize easily to other prob-

lems, such as other norms or Problem (22). A more general approach to proving

generalization bounds is based upon Rademacher complexity. Rademacher complex-

ity is a popular measure of the complexity of a class of functions, related to the

perhaps better known VC-bounds. Loosely speaking, for function classes with small

Rademacher complexity, empirical averages of functions in the class converge to their

true expectation uniformly over the class, and there exist bounds on the rate of con-

vergence which are tight up to constant factors. We refer the reader to [7] for a formal

treatment.

We will use bounds based upon the Rademacher complexity of an appropriate class

of functions to prove generalization bounds for both our parametric and nonparametric

approaches. In the case of our nonparametric approach, however, it will prove easier

to analyze the following optimization problem instead of Problem (22):

min
f,y,ǫ

‖ǫ‖p
p

N

s.t. AT
j y j ≤ f(x j ), j = 1, . . . , N ,

xT
j f(x j ) − bT

j y j ≤ ǫ j , j = 1, . . . , N , (28)

2 In fact, the authors show more: they give an algorithm leveraging ℓ1 regularization to reduce the dimen-

sionality of θ and then an improved bound based on the reduced dimension. The analysis of this improved

bound can be adapted to our current context at the expense of more notation. We omit the details for space.
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‖ fi‖2
H

≤ κi , fi ∈ H, i = 1, . . . , n,

1

N

N
∑

j=1

xT
j f(x j ) = 1,

for some fixed p, 1 ≤ p < ∞. We have made two alterations from Problem (22) with

the dualized objective (25). First, using Lagrangian duality, we have moved the term

λ
∑n

i=1 ‖ fi‖H from the objective to the constraints. Indeed, for any value of λ, there

exists values κi so that these two problems are equivalent. Second, we have specialized

the choice of norm to a p-norm, and then made an increasing transformation of the

objective. If we can show that solutions to Problem (28) enjoy strong generalization

guarantees, Problem (22) should satisfy similar guarantees. Now, introduce

Assumption 6 The set F̃ is contained within a ball of radius R almost surely.

Next, we introduce some additional notation. Consider Problem (12). Define

2 sup
x:‖x‖2≤R

θ∈�

‖f(x; θ)‖2 ≡ B. (29)

Observe B < ∞. Let fN = f(·; θ N ) denote the function corresponding to the optimal

solution of Problem (12). With a slight abuse of language, we call fN a solution to

Problem (12).

We define analogous quantities for Problem (28). Given a kernel k(·, ·), let K
2 ≡

supx:‖x‖2≤R k(x, x). Notice, if k is continuous, K is finite by A6. For example,

K
2 =

⎧

⎪

⎨

⎪

⎩

R2 for the linear kernel

(c + R2)d for the polynomial kernel

1 for the Gaussian kernel

(30)

With a slight abuse of notation, let zN , fN denote the optimal value and an optimal

solution to Problem (28), and let B ≡ 2RK

√

∑n
i=1 κ2

i . This mild abuse of notation

allows us to express our results in a unified manner. It will be clear from context

whether we are treating Problem (12) or Problem (28), and consequently be clear

which definition of fN , B we mean.

Finally, define ǫ(fN , x̃, Ã, b̃, C̃) to be the smallest ǫ ≥ 0 such that x̃ is an ǫ-

approximate solution to VI(fN , Ã, b̃, C̃).

Theorem 7 Let zN , fN be the optimal objective and an optimal solution to Prob-

lem (12) or (28). Assume A1, A3–A6. For any 0 < β < 1, with probability at least

1 − β with respect to the sampling,

(i)

E[(ǫ(fN , x̃, Ã, b̃, C̃))p] ≤ zN + 1√
N

(

4pB
p + 2B

p/2√

2 log(2/β)
)

. (31)
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(ii) For any α > 0,

P(x̃ is a zN +α-approximate equilibrium for VI(fN , Ã, b̃, C̃))

≥ 1 − 1

α p
√

N

(

4pB
p + 2B

p/2√

2 log(2/β)
)

.

Remark 8 To build some intuition, consider the case p = 1. The quantity zN is the

average error on the data set for fN . The theorem shows with high-probability, fN

will make a new data point an ǫ-approximate equilibrium, where ǫ is only O(1/
√

N )

larger than zN . In other words, the fitted function will perform not much worse than

the average error on the old data. Note, this does not guarantee that zN is small. Indeed,

zN will only be small if in fact a VI is a good model for the system.

Remark 9 (Specifying Ambiguity Sets) We can use Theorem 7 to motivate an alternate

proposal for specifying κ in ambiguity sets as in Sect. 6. Specifically, let RN denote

the second term on the righthand side of (31). Given another feasible function f ′ in

Problem (28) whose objective value is strictly greater than zN + RN , we can claim

that with probability at least 1 − β, fN has a smaller expected approximation error

than f ′. However, if the objective value of f ′ is smaller than zN + RN , we cannot reject

it at level 1 − β; it is statistically as plausible as fN . Setting κ = RN in our ambiguity

set recovers all such “statistically plausible” functions.

Theorems 6 and 7 provide a guarantee on the generalization error of our method.

We may also be interested in its predictive power. Namely, given a new point

(xN+1, AN+1, bN+1, CN+1), let x̂ be a solution to VI(fN , AN+1, bN+1, CN+1)) The

value x̂ is a prediction of the state of a system described by (AN+1, bN+1, CN+1)

using our fitted function and xN+1 represents true state of that system. We have the

following theorem:

Theorem 8 Assume fN is strongly monotone with parameter γ .

(i) Suppose the conditions of Theorem 6 hold. Then, for any 0 < α < 1, with

probability at least 1 − β(α) with respect to the sampling,

‖xN+1 − x̂‖ ≤
√

zN

γ
.

(ii) Suppose the conditions of Theorem 7 hold. Then, for any 0 < β < 1, with

probability at least 1 − β with respect to the sampling, for any α > 0

P

(

‖xN+1 − x̂‖ >

√

zN + α

γ

)

≤ 1

α p
√

N

(

4pB
p + 2B

p/2√

2 log(2/β)
)

.

In words, Theorem 8 asserts that solutions to our VI using our fitted function

serve as good predictions to future data realizations. This is an important strength of

our approach as it allows us to predict future behavior of the system. Again, this is

contingent on the fact that zN is small, i.e., that the VI well-explains the current data.
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We conclude this section by noting that experimental evidence from machine learn-

ing suggests that bounds such as those above based on Rademacher complexity can

be loose in small-samples. The recommended remedy is that, when computationally

feasible, to use a more numerically intensive method like cross-validation or bootstrap-

ping to estimate approximation and prediction errors. This approach applies equally

well to choosing parameters like the threshold in an ambiguity set κ as described in

Remark 9. We employ both approaches in Sect. 8.

8 Computational experiments

In this section, we provide some computational experiments illustrating our approach.

For concreteness, we focus on our two previous examples: estimating the demand

function in Bertrand–Nash equilibrium from Sect. 3.3 and estimating cost functions

in traffic equilibrium from Sect. 5.2.

Before providing the details of the experiments, we summarize our major insights.

1. In settings where there are potentially many distinct functions that explain the

data equally well, our nonparametric ambiguity sets are able to identify this set

of functions. By contrast, parametric methods may misleadingly suggest there is

only one possible function.

2. Even in the presence of endogenous, correlated noise, our parametric and non-

parametric techniques are able to learn functions with good generalizability, even

if the specified class does not contain the true function generating the data.

3. Sometimes, the functions obtained by our method are not strongly monotone.

Nonetheless, they frequently still have reasonable predictive power.

8.1 Bertrand–Nash equilibrium (full-information)

We first consider an idealized, full-information setting to illustrate the importance of

our ambiguity set technique. Specifically, we assume the true, demand functions are

given by the nonlinear model

D∗
i (p1, p2, ξi ) = log(pi ) + θ∗

i1 p1 + θ∗
i2 p2 + θ∗

i3ξi + θ∗
i4, i = 1, 2

with θ∗
1 = [−1.2, .5, 1,−9]T and θ∗

2 = [.3,−1, 1,−9]T . We assume (for now) that

although we know the parametric form of these demand functions, we do not know

the precise values of θ1, θ2 and seek to estimate them. The corresponding marginal

revenue functions are

M∗
i (p1, p2, ξi ; θ∗

i ) = log(pi ) + θ∗
i1 p1 + θ∗

i2 p2 + θ∗
i3ξi + θ∗

i4 + 1 + θ∗
i i pi , i = 1, 2.

(32)

Here ξ1, ξ2 are random variables representing firm-specific knowledge which change

over time (“demand shocks”) causing prices to shift.

Our idealized assumption is that ξ1 = ξ2 ≡ ξ , and ξ is common knowledge to

both the firms and to the researcher (full-information). In our simulations, we take ξ
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620 D. Bertsimas et al.

Fig. 1 An idealized scenario. The true marginal revenue function (dashed black line), our nonparametric

fit (black line, square markers), and the ambiguity set (grey region) for both firms. Every function in the

ambiguity set exactly reconciles all the data. A sample member (blue line, triangle markers) shown for

comparison. All variables other than the firm’s own price have been fixed to the median observation (color

figure online)

to be i.i.d normals with mean 5 and standard deviation 1.5. Using these parameters

with p = .45, we simulate values of ξ and solve for the equilibrium prices p
j
1 , p

j
2 for

j = 1, . . . , 250. The values (ξ j , p
j
1 , p

j
2) constitute our data set.

To estimate θ1, θ2, we substitute the functional form Eq. (32) into Problem (13),

adding additional constraints that 1) the marginal revenue of firm i is positive for the

minimal price p
j
i observed in the data, 2) the marginal revenue of firm i is decreasing

in firm i’s price, and 3) a normalization constraint. (See Appendix “Formulation from

Sect. 8.1” for an explicit formulation).

Unsurprisingly, solving this optimization recovers the true marginal revenue func-

tions exactly. We say “unsurprisingly” because with full-information a correctly spec-

ified, known parametric form, we believe any reasonable estimation procedure should

recover the true marginal revenue functions. We point out that the optimal solution to

the optimization problem is unique, and the optimal value of the residuals is ǫ = 0.

We plot the true marginal revenue functions for each firm (which is the same as

our fitted function) in Fig. 1 (dashed black line). To graph these functions we fixed ξ

to be its median value over the dataset, and fixed the other firm’s price to be the price

observed for this median value. For convenience in what follows, we term this type of

fixing of the other variables, fixing to the median observation.

Next consider the more realistic setting where we do not know the true paramet-

ric form (32), and so use our nonparametric method [cf. Problem 22 with dualized

objective (25)]. We use a Gaussian kernel and tune the parameter c and regularization

constant λ by tenfold cross-validation. The resulting fitted function is shown in Fig. 1

as a black line with square markers. Notice, in particular, this function does not coin-

cide with the true function. However, this function also exactly reconciles the data, i.e.

the optimal value of the residuals is ǫ = 0. This may seem surprising; the issue is that

although there is only one function within the parametric family (32) which reconciles

the data, there are many potential smooth, nonparametric functions which also exactly

reconcile this data. Using our ambiguity set technique, we compute the upper and

lower envelopes of this set of functions, and display the corresponding region as the
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grey ribbon in Figure 1. We also plot a sample function from this set (blue line with

triangle markers).

This multiplicity phenomenon is not unusual; many inverse problems share it.

Moreover, it often persists even for very large samples N . In this particular case,

the crux of the issue is that, intuitively, the equilibrium conditions only give local

information about the revenue function about its minimum. (Notice all three marginal

revenue functions cross zero at the same price). The conditions themselves give no

information about the global behavior of the function, even as N → ∞.

We see our ambiguity set technique and nonparametric analysis as important tools

to protect against potentially faulty inference in these settings. Indeed, parametric

estimation might have incorrectly led us to believe that the unique marginal revenue

function which recovered the data was the dashed line in Fig. 1—its residual error is

zero and it is well-identified within the class. We might then have been tempted to make

claims about the slope of the marginal revenue function at the optima, or use it to impute

a particular functional form for the demand function. In reality, however, any function

from the ambiguity set might have just as easily generated this data, e.g., the blue

line with triangle markers. Those previous claims about the slope or demand function,

then, need not hold. The data does not support them. Calculating nonparametric sets

of plausible alternatives helps guard against these types of unwarranted claims.

Finally, in the absence of any other information, we argue that our proposed non-

parametric fit (red line with circles) is a reasonable candidate function in this space of

alternatives. By construction it will be smooth and well-behaved. More generally, of

all those functions which reconcile the data, it has the smallest H-norm, and thus, by

our generalization results in Sect. 7, likely has the strongest generalization properties.

8.2 Bertrand–Nash equilibrium (unobserved effects)

We now proceed to a more realistic example. Specifically, we no longer assume that

ξ1 = ξ2, but rather these values represent (potentially different), firm-specific knowl-

edge that is unobservable to us (the researchers). We assume instead that we only have

access to the noisy proxy ξ . In our simulations, we take ξ1, ξ2, ξ
′ to be i.i.d normal

with mean 5 and standard deviation 1.5, and let ξ = (ξ1 + ξ2 + ξ ′)/3. Moreover, we

assume that we we have incorrectly specified that the marginal revenue functions are

of the form

Mi (p1, p2, ξ ; θ i ) =
9
∑

k=1

θi1ke−kp1 +
9
∑

k=1

θi2ke−kp2 +θi1 p1+θi2 p2+θi3ξ3+θi4 (33)

for some values of θ1, θ2. Notice that the true parametric is not contained in this

class. This setup thus includes correlated noise, and endogenous effect, and parametric

mispecification. These features are known to cause statistical challenges in simple

estimation procedures. We simulate N = 40 observations (ξ j , p
j
1 , p

j
2) from this

model.

We again fit this model first by solving a modification of Problem (13) as before.

(See Appendix “Formulation from Sect. 8.1” for an explicit formulation). We only use
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Fig. 2 The true marginal revenue function (dashed line), fitted parametric marginal revenue function

(solid red line, circular markers), fitted non-parametric marginal revenue function (solid black line, square

markers)and ambiguity sets (grey region) for each firm. We fix all variables except the firm’s own price to

the median observation (color figure online)

0.0
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1.0

1.5

2.0

Approximation Error

Firm1 Firm2

0

5

10

0.0 0.5 1.0 1.5 −0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2

Fig. 3 Bertrand–Nash example of Sect. 8.2. The left panel shows the out-of-sample approximation error.

The right panel shows the out-of-sample prediction error

half the day (20 observations) for reasons that will become clear momentarily. We use

the ℓ∞-norm for the residuals ǫ and an ℓ1-regularization of θ1, θ2 in the objective as

discussed in Remark 7. We tune the value of λ in the regularization to minimize the

mean squared error in price prediction obtaining the value λ = .01.

Unfortunately, because we used cross-validation to choose λ, Theorem 6 does not

directly apply. Consequently, we now refit θ1, θ2 with λ = .1 using the other half of

our training set. The fitted marginal revenue functions for λ = .01 can be seen in Fig. 2

(red line, circular markers). Notice that the fitted function does not exactly recover the

original function, but does recover its approximate shape.

To assess the out of sample performance of this model, we generate a new set of

Nout = 200 points. For each point we compute the approximation error (minimal ǫ to

make this point an ǫ-approximate equilbria), and the prediction error had we attempted

to predict this point by the solution to our VI with our fitted function. Histograms of

both quantities are in Fig. 3.

The maximal residual on the second half of the training set was zN ≈ 1.06, indicated

by the dotted line in the left panel. By Theorem 6, we would expect that with at least

90 % probability with respect to the data sampling, a new point would not be an 1.06-
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equilibrium with probability at most .21. Our out-of-sample estimate of this probability

is .025. In other words, our estimator has much stronger generalization than predicted

by our theorem. At the same time, our estimator yields reasonably good predictions.

The mean out-of-sample prediction error is (−.002, 0.02) with standard deviation

(.048, .047).

Finally, we fit our a nonparametric estimator to this data, using a Gaussian kernel.

We again tune the parameter c and regularization constant λ by cross-validation. The

resulting fit is shown in Fig. 2 (black line, square markers), along with the correspond-

ing ambiguity set. We chose the value of κ to be twice the standard deviation of the

ℓ1-norm of the residuals, estimated by cross-validation as discussed in Remark 9 and

the end of Sect. 7. The out-of-sample approximation error is similar to the parametric

case. Unfortunately, the fitted function is not monotone, and, consequently, there exist

multiple Nash equilibria. It is thus hard to compare prediction error on the out-of-

sample set; which equilibria should we use to predict? This non-monotonicity is a

potential weakness of the nonparametric approach in this example.

8.3 Wardrop equilibrium

Our experiments will use the Sioux Falls network [29], a standard benchmark through-

out the transportation literature. It is modestly sized with 24 nodes and 76 arcs, and

all pairs of nodes represent origin–destination pairs.

We assume that the true function g(·) is given by the US Bureau of Public Roads

(BPR) function, g(t) = 1 + .15t4 which is by far the most commonly used for traffic

modeling ([14,16]). Baseline demand levels, arc capacities, and free-flow travel times

were taken from the repository of traffic problems at [6]. We consider the network

structure including arc capacities and free-flow travel times as fixed. We generate data

on this network by first randomly perturbing the demand levels a relative amount drawn

uniformly from [0, 10 %]. We then use the BPR function to solve for the equilibrium

flows on each arc, x∗
a . Finally, we perturb these true flows by a relative amount, again

drawn uniformly from [0, 10 %]. We repeat this process N = 40 times. Notice that

because both errors are computed as relative perturbations, they both are correlated to

the observed values. We use the perturbed demands and flows as our data set.

We then fit the function g nonparametrically using (26), again only using half of

the data set. The use of low order polynomials in traffic modeling is preferred in

the literature for a number of computational reasons. Consequently, we choose k to

be a polynomial kernel with degree at most 6, and tune the choice of c by fivefold

cross-validation, minimizing the approximation error. The fitted functions for various

choices of d are shown in left panel of Fig. 4, alongside the true function. Notice that

the fit is quite stable to choice of class of function, and matches the true function very

closely. In what remains, we focus on our fit of polynomial of degree 3. We note, this

class does not contain the true BPR function (which has degree 4). We refit the degree

3 polynomial with the second-half of our training set (not shown).

To assess the quality of our degree 3 fit, we create a new out-of-sample test-set of

size Nout = 500. On each sample we compute the approximation error of our fit and

the ℓ2-norm of the prediction error when predicting new flows by solving the fitted
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Fig. 4 The left panel shows the true BPR function and fits based on polynomials of degrees 3, 4, 5, and 6.

The right panel shows the true BPR function (dashed line), our degree 3 fit (solid black line with markers),

and an ambiguity set around this function (grey region) (color figure online)

VI. These numbers are large and somewhat hard to interpret. Consequently we also

compute normalized quantities, normalizing the first by the minimal cost of travel on

that network with respect to the fitted function and demands, and the second by the

ℓ2 norm of the observed flows. Histograms for the normalized quantities are shown

in Fig. 5. The mean (relative) approximation error is 6.5 %, while the mean predictive

(relative error) is about 5.5 %.

The in-sample approximation error on the second-half of the training sample was

zN ≈ 8.14 × 105. By Theorem 7, we can compute that with probability at least 90 %

with respect to the data sampling, a new data point will be at most a 9.73 × 105

approximate equilibrium with respect to the fitted function with probability at least

90 %. A cross-validation estimate of the same quantity is 6.24 × 105. Our out of

sample estimate of this quantity from the above histogram is 7.78 × 105. In other

words, the performance of our estimator is again better than predicted by the theorem.

Cross-validation provides a slightly better, albeit biased, bound.

Finally, as in the previous section, we consider constructing an ambiguity set around

the fitted function, selecting κ to be two standard deviations as computed by cross-

validation. The resulting envelopes are also shown in the right panel of Fig. 4. Notice

that in contrast to the envelopes of the previous section, they are quite small, meaning

we can have relatively high confidence in the shape of the fitted function.

9 Conclusion

In this paper, we propose a computationally tractable technique for estimation in

equilibrium based on an inverse variational inequality formulation. Our approach is

generally applicable and focuses on fitting models with good generalization guarantees

and predictive power. We prove our estimators enjoy both properties and illustrate their

usage in two applications—demand estimation under Nash equilibrium and congestion

function estimation under user equilibrium . Our results suggest this technique can

successfully model systems presumed to be in equilibrium and make meaningful

predictive claims about them.
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Fig. 5 The left panel shows the histogram of of out-sample approximation errors induced by our nonpara-

metric fit from Sect. 8.3. The right panel shows the norm of the difference of this flow from the observed

flow, relative to the norm of the observed flow
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Appendix 1: Omitted proofs

Proof of Theorem 4

Proof Let f∗ = ( f ∗
1 , . . . , f ∗

n ) be any solution. We will construct a new solution with

potentially lower cost with the required representation. We do this iteratively beginning

with f ∗
1 .

Consider the subspace T ⊂ H1 defined by T = span(kx1 , . . . , kxN
), and let T ⊥ be

its orthogonal complement. It follows that f ∗
1 decomposes uniquely into f ∗

1 = f0+ f ⊥
0

with f0 ∈ T and f ⊥
0 ∈ T ⊥. Consequently,

f ∗
1 (x j ) = 〈kx j

, f ∗
1 〉, [by (20)]

= 〈kx j
, f0〉 + 〈kx j

, f ⊥
0 〉

= 〈kx j
, f0〉 (since f ⊥

0 ∈ T
⊥)

= f0(x j ) [by (20)].

Thus, the solution f = ( f0, f ∗
2 , . . . , f ∗

n ) is feasible to (22). Furthermore, by orthogo-

nality ‖ f ∗
1 ‖H1

= ‖ f0‖H1
+‖ f ⊥

0 ‖H1
≥ ‖ f0‖H1

. Since the objective is non-decreasing

in ‖ f1‖H, f has an objective value which is no worse than f∗. We can now proceed iter-

atively, considering each coordinate in turn. After at most n steps, we have constructed

a solution with the required representation. ⊓⊔
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Proof of Theorem 5

Proof Suppose Problem (24) is feasible and let α be a feasible solution. Define f via

eq. (23). It is straightforward to check that f is feasible in Problem (22) with the same

objective value.

On the other hand, let f be some feasible solution to Problem (22). By Theorem 4,

there exists α such that fi (x j ) = eT
i αKe j , and ‖ fi‖2

H
= eT

i αKαT ei . It straightfor-

ward to check that such α is feasible in Problem (24) and that they yield the same

objective value. Thus, Problem (22) is feasible if and only if Problem (24) is feasible,

and we can construct an optimal solution to Problem (22) from an optimal solution to

Problem (24) via (23). ⊓⊔

Proof of Theorem 6

Proof As mentioned in the text, the key idea in the proof is to relate (12) with a

randomized uncertain convex program. To this end, notice that if zN , θ N are an optimal

solution to (12) with the ℓ∞-norm, then (zN , θ N ) ∈
⋂N

j=1 X (x j , A j , b j , C j ) where

X (x, A, b, C) =
{

z, θ ∈ � : ∃y ∈ Rm s.t. AT y ≤ f(x, θ), xT f(x, θ) − bT y ≤ z
}

.

The sets X (x j , A j , b j , C j ) are convex. Consider then the problem

min
z≥0,θ

z s.t. (z, θ) ∈
N
⋂

j=1

X (x j , A j , b j , C j ).

This is exactly of the form Eq. 2.1 in [18]. Applying Theorem 2.4 of that work shows

that with probability β(α) with respect to the sampling, the “violation probability” of

the pair (zN , θN ) is a most α. In our context, the probability of violation is exactly

the probability that (x̃, Ã, b̃, C̃) is not a zN approximate equilibria. This proves the

theorem. ⊓⊔

Observe that the original proof in [18] requires that the solution θ N be unique almost

surely. However, as mentioned on pg. 7 discussion point 5 of that text, it suffices to

pick a tie-breaking rule for the θ N in the case of multiple solutions. The tie-breaking

rule discussed in the main text is one possible example.

Proof of Theorem 7

We require auxiliary results. Our treatment closely follows [7]. Let ζ1, . . . , ζN be i.i.d.

For any class of functions S, define the empirical Rademacher complexity RN (S) by

RN (S) = E

[

sup
f ∈S

2

N

∣

∣

∣

∣

∣

N
∑

i=1

σi f (ζi )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζ1, . . . , ζN

]

,

where σi are independent uniform {±1}-valued random variables. Notice this quantity

is random, because it depends on the data ζ1, . . . , ζN .
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Our interest in Rademacher complexity stems from the following lemma.

Lemma 1 Let S be a class of functions whose range is contained in [0, M]. Then, for

any N, and any 0 < β < 1, with probability at least 1 − β with respect to P, every

f ∈ F simultaneously satisfies

E[ f (ζ )] ≤ 1

N

N
∑

i=1

f (ζi ) + RN (S) +
√

8M log(2/β)

N
(34)

Proof The result follows by specializing Theorem 8 of [7]. Namely, using the notation

of that work, let φ(y, a) = L(y, a) = a/M , δ = β and then apply the theorem.

Multiply the resulting inequality by M and use Theorem 12, part 3 of the same work

to conclude that MRN (M−1S) = RN (S) to finish the proof. ⊓⊔

Remark 10 The constants in the above lemma are not tight. Indeed, modifying the

proof of Theorem 8 in [7] to exclude the centering of φ to φ̃, one can reduce the

constant 8 in the above bound to 2. For simplicity in what follows, we will not be

concerned with improvements at constant order.

Remark 11 Lemma 1 relates the empirical expectation of a function to its true expec-

tation. If f ∈ S were fixed a priori, stronger statements can be proven more simply by

invoking the weak law of large numbers. The importance of Lemma 1 is that it asserts

the inequality holds uniformly for all f ∈ S. This is important since in what follows,

we will be identifying the relevant function f by an optimization, and hence it will

not be known to us a priori, but will instead depend on the data.

Our goal is to use Lemma 1 to bound the E[ǫ(fN , x̃, Ã, b̃, C̃)]. To do so, we must

compute an upper-bound on the Rademacher complexity of a suitable class of func-

tions. As a preliminary step,

Lemma 2 For any f which is feasible in (12) or (28), we have

ǫ̃(f, x̃, Ã, b̃, C̃) ≤ B a.s. (35)

Proof Using strong duality as in Theorem 2,

ǫ̃(f, x̃, Ã, b̃, C̃) = max
x∈F̃

(x̃ − x)T f(x̃) ≤ 2R sup

x̃∈F̃

‖f(x̃)‖2, (36)

by A6. For Problem (12), the result follows from the definition of B. For Problem (28),

observe that for any x̃ ∈ F̃ ,

| fi (x̃)|2 = 〈 fi , kx̃〉2 ≤ ‖ fi‖2
H

sup
‖x‖2≤R

k(x, x) = ‖ fi‖2
H

K
2 ≤ κ2

i K
2
, (37)

where the middle inequality follows from Cauchy–Schwartz. Plugging this into

Eq. (36) and using the definition of B yields the result.
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Now consider the class of functions

F =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{

(x, A, b, C) �→ ǫ(f, x, A, b, C) : f = f(·, θ), θ ∈ �
}

for Problem (12)
{

(x, A, b, C) �→ ǫ(f, x, A, b, C) : fi ∈ H, ‖ fi‖H ≤ κi i = 1, . . . , N
}

for Problem (28).

Lemma 3

RN (F) ≤ 2B√
N

Proof We prove the lemma for Problem (12). The proof in the other case is identical.

Let S = {f(·, θ) : θ ∈ �}. Then,

RN (F) = 2

N
E

⎡

⎣sup
f ∈S

∣

∣

∣

∣

∣

∣

N
∑

j=1

σ jǫ(x j , A j , b j , C j )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(x j , A j , b j , C j )
N
j=1

⎤

⎦

≤ 2B

N
E

⎡

⎢

⎣

⎛

⎝

N
∑

j=1

σ 2
j

⎞

⎠

1
2

⎤

⎥

⎦
[using (35)]

≤ 2B

N

√

√

√

√

√E

⎡

⎣

N
∑

j=1

σ 2
j

⎤

⎦ (Jensen’s inequality)

= 2B√
N

(σ 2
j = 1 a.s.).

⊓⊔

We are now in a position to prove the theorem.

Proof (Theorem 7) Observe that zN = 1
N

∑N
j=1(ǫ(fN , x j , A j , b j , C j ))

p. Next, the

function φ(z) = z p satisfies φ(0) = 0 and is Lipschitz with constant Lφ = pB
p−1

on the interval [0, B]. Consequently, from Theorem 12 part 4 of [7],

RN (φ ◦ F) ≤ 2LφRN (F)

≤ 2pB
p−1 2B√

N

= 4pB
p

√
N

.

Now applying Lemma 1 with ζ → (x̃, Ã, b̃, C̃), f (·) → ǫ(·)p, and M = B
p

yields

the first part of the theorem.
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For the second part of the theorem, observe that, conditional on the sample, the event

x̃ is not a zN +α-approximate equilibrium is equivalent to the event that ǫN > zN +α.

Now use Markov’s inequality and apply the first part of the theorem. ⊓⊔

Proof of Theorem 8

Proof Consider the first part of the theorem.

By construction, x̂ solves VI(f(·, θN ), AN+1, bN+1, CN+1). The theorem, then,

claims that xN+1 is δ′ ≡
√

zN

γ
near a solution to this VI. From Theorem 1, if xN+1

were not δ′ near a solution, then it must be the case that ǫ(f(·, θN ), xN+1, AN+1, bN+1,

CN+1)

> zN . By Theorem 6, this happens only with probability β(α).

The second part is similar to the first with Theorem 6 replaced by Theorem 7. ⊓⊔

Appendix 2: Casting structural estimation as an inverse variational inequality

In the spirit of structural estimation, assume there exists a true θ∗ ∈ � that generates

solutions x∗
j to VI(f(·, θ∗), A∗

j , b∗
j , C∗

j ). We observe (x j , A j , b j , C j ) which are noisy

versions of these true parameters. We additionally are given a precise mechanism for

the noise, e.g., that

x j = x∗
j + �x j , A j = A∗

j + �A j , b j = b∗
j + �b j , C j = C∗

j ,

where (�x j ,�A j ,�b j ) are i.i.d. realizations of a random vector (�̃x, �̃A, �̃b) and

�̃x, �̃A, �̃b are mutually uncorrelated.

We use Theorem 2 to estimate θ under these assumptions by solving

min
y≥0,θ∈�,�x,�A,�b

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

˜�x j

˜�Ak

˜�b j

⎞

⎠

j=1,...,N

∥

∥

∥

∥

∥

∥

∥

s.t. (A j − �A j )
T y j ≤C j

f(x j − �x j , θ), j = 1, . . . , N ,

(x j − �x j )
T f(x j − �x j , θ) = bT

j y j , j = 1, . . . , N , (38)

where ‖ · ‖ refers to some norm. Notice this formulation also supports the case where

potentially some of the components of x are unobserved; simply replace them as

optimization variables in the above. In words, this formulation assumes that the “de-

noised” data constitute a perfect equilibrium with respect to the fitted θ .

We next claim that if we assume all equilibria occur on the strict interior of the

feasible region, Problem (38) is equivalent to a least-squares approximate solution

to the equations f(x∗) = 0. Specifically, when x∗ occurs on the interior of F , the

VI condition Eq. (1) is equivalent to the equations f(x∗) = 0. At the same time, by

Theorem 2, Eq. (1) is equivalent to the system (8, 9) with ǫ = 0 which motivated the
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constraints in Problem (38). Thus, Problem (38) is equivalent to finding a minimal

(with respect to the given norm) perturbation which satisfies the structural equations.

We can relate this weighted least-squares problem to some structural estimation

techniques. Indeed, [20] and [37] observed that many structural estimation techniques

can be reinterpreted as a constrained optimization problem which minimizes the size of

the perturbation necessary to make the observed data satisfy the structural equations,

and, additionally, satisfy constraints motivated by orthogonality conditions and the

generalized method of moments (GMM). In light of our previous comments, if we

augment Problem (38) with the same orthogonality constraints, and all equilibria occur

on the strict interior of the feasible region, the solutions to this problem will coincide

traditional estimators.

Of course, some structural estimation techniques incorporate even more sophis-

ticated adaptations. They may also pre-process the data (e.g., 2 stage least squares

technique in econometrics) incorporate additional constraints (e.g. orthogonality of

instruments approach), or tune the choice of norm in the least-squares computation

(two-stage GMM estimation). These application-specific adaptations improve the sta-

tistical properties of the estimator given certain assumptions about the data generating

process. What we would like to stress is that, provided we make the same adaptations

to Problem (38)—i.e., preprocess the data, incorporate orthogonality of instruments,

and tune the choice of norm—and provided that all equilibria occur on the interior,

the solution to Problem (38) must coincide exactly with these techniques. Thus, they

necessarily inherit all of the same statistical properties.

Recasting (at least some) structural estimation techniques in our framework facil-

itates a number of comparisons to our proposed approach based on Problem (12).

First, it is clear how our perspective on data alters the formulation. Problem (38) seeks

minimal perturbations so that the observed data are exact equilibria with respect to θ ,

while Problem (12) seeks a θ that makes the observed data approximate equilibria and

minimizes the size of the approximation. Secondly, the complexity of the proposed

optimization problems differs greatly. The complexity of Problem (38) depends on

the dependence of f on x and θ (as opposed to just θ for (12)), and there are unavoid-

able non-convex, bilinear terms like �AT
j y j . These terms are well-known to cause

difficulties for numerical solvers. Thus, we expect that solving this optimization to be

significantly more difficult than solving Problem (12). Finally, as we will see in the

next section, Problem (12) generalizes naturally to a nonparametric setting.

Appendix 3: Omitted formulations

Formulation from Sect. 8.1

Let ξmed be the median value of ξ over the dataset. Breaking ties arbitrarily, ξmed occurs

for some observation j = jmed . Let pmed
1 , pmed

2 , ξmed
1 , ξmed

2 be the corresponding

prices and demand shocks at time jmed . (Recall that in this section ξ = ξ1 = ξ2.) These

definitiosn make precise what we mean in the main text by “fixing other variables to the

median observation. Denote by p
1
, p

2
the minimum prices observed over the data set.
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Our parametric formation in Sect. 8.1 is

min
y,ǫ,θ1,θ2

‖ǫ‖∞ (39a)

s.t. y j ≥ 0, j = 1, . . . , N ,

y
j
i ≥ Mi (p

j
1 , p

j
2 , ξ j ; θ i ), i = 1, 2, j = 1, . . . , N ,

2
∑

i=1

p j y
j
i − (p

j
i )Mi (p

j
1 , p

j
2 , ξ j ; θ i ) ≤ ǫ j , j = 1, . . . , N ,

M1(p
j
1 , pmed

2 , ξmed; θ1)≥ M1(pk
1, pmed

2 , ξmed; θ1), ∀1≤ j, k ≤ N s.t. p
j
1 ≤ pk

1,

(39b)

M2(pmed
1 , p

j
2 , ξmed; θ2)≥ M2(pmed

1 , pk
2, ξ

med; θ2), ∀1≤ j, k ≤ N s.t. p
j
2 ≤ pk

2,

(39c)

M1(p
1
, pmed

2 , ξmed; θ1) = M∗
1 (p

1
, pmed

2 , ξmed
1 ; θ∗

1) (39d)

M2(pmed
1 , p

2
, ξmed; θ2) = M∗

2 (pmed
1 , p

2
, ξmed

2 ; θ∗
2) (39e)

Here M1 and M2 are given by Eq. (32). Notice, for this choice, the optimization is a

linear optimization problem.

Equations (39b) and (39c) constrain the fitted function to be non-decreasing in the

firm’s own price. Equations (39d) and (39e) are normalization conditions. We have

chosen to normalize the functions to be equal to the true functions at this one point

to make the visual comparisons easier. In principle, any suitable normalization can be

used.

Our nonparametric formulation is similar to the above, but we replace

– The parametric M1(·, θ1), M2(·, θ2) with nonparametric M1(·), M2(·) ∈ H

– The objective by ‖ǫ‖1 + λ(‖M1‖H + ‖M2‖H).

By Theorem 4 and the discussion in Sect. 6, we can rewrite this optimization as a

convex quadratic program.

Formulation from Sect. 8.2

Our parametric formulation is nearly identical to the parametric formulation in Appen-

dix “Formulation from Sect. 8.1”, with the following changes:

– Replace Eq. (39a) by ‖ǫ‖∞ + λ(‖θ1‖1 + ‖θ2‖1)

– Replace the definition of M1, M2 by Eq. (33).

Our nonparametric formulation is identical to the nonparametric formulation of the

previous section.
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