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Abstract— Noninvasive measurement of blood pressure by
optical methods receives considerable interest, but the complex-
ity of the measurement and the difficulty of adjusting parame-
ters restrict applications. We develop a method for estimating
the systolic and diastolic blood pressure using a single-point
optical recording of a photoplethysmographic (PPG) signal. The
estimation is data-driven, we use automated machine learning
algorithms instead of mathematical models. Combining super-
vised learning with a discrete wavelet transform, the method
is insensitive to minor irregularities in the PPG waveform,
hence both pulse oximeters and smartphone cameras can record
the signal. We evaluate the accuracy of the estimation on 78
samples from 65 subjects (40 male, 25 female, age 29±7) with no
history of cardiovascular disease. The estimate for systolic blood
pressure has a mean error 4.9±4.9 mm Hg, and 4.3±3.7 mm Hg
for diastolic blood pressure when using the oximeter-obtained
PPG. The same values are 5.1±4.3 mm Hg and 4.6±4.3 mm Hg
when using the phone-obtained PPG, comparing with A&D UA-
767PBT result as gold standard. The simplicity of the method
encourages ambulatory measurement, and given the ease of
sharing the measured data, we expect a shift to data-oriented
approaches deriving insight from ubiquitous mobile devices that
will yield more accurate machine learning models in monitoring
blood pressure.

Index Terms— Machine Learning, Discrete Wavelet Trans-
form, Blood Pressure, Mobile Health, Big Data

I. INTRODUCTION

Monitoring blood pressure (BP) is an active field of
research. Home measurement is more accurate in predicting
health problems than in-office sampling [1], hence simple,
easy-to-use devices are desirable. Recent developments focus
on measurements that cause the least amount of discomfort to
patients, as improved convenience leads to higher acceptance
rate [2]. An ideal sensor is thus non-invasive, light-weight,
unobtrusive, and trivial to place, which point towards cuf-
fless, optical methods [3].

A photoplethysmograph (PPG) is a device to optically
obtain a volumetric measurement of an organ. Peripheral
volumetric changes and arterial BP are linked [4], but there
is no simple, continuous relationship [5]. The placement
of the PPG device is crucial: finger BP may be different
from arterial BP in the arm [6], but strong correlation is
apparent if the circumstances are given – for instance, during
sleep [7]. Even given a high correlation with the BP wave,
explicit mathematical models get complex as they attempt
to incorporate free parameters, such as arm position and
motion [5]. Machine learning methods address this problem
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by automatically extracting the relationship between BP and
the PPG waveform. The seminal work in this field modelled
the relationship between peripheral BP and blood volume
pulses with linear auto-regressive with exogenous variable
model and an artificial neural network for the nonlinear
components [8]. Type-2 fuzzy logic also produced error rates
below 10 % [9]. Previous data-driven methods like [10] col-
lect a lot of data and show good accuracy. It includes invasive
BP measurement as the gold standard and professional PPG
sensor, which makes it restricted to hospital settings and
usually need to collect PPG signals for a long time like 30
minutes. This makes it difficult to collect a large enough
quantity of data to validate such methods and make the data-
driven approach really useful.

We continue the line of work using machine learning,
combining the approach with wavelet transforms. We per-
form single-point measurement with a pulse oximeter or
a smartphone, which translates to an ability to improve
accuracy by collecting more data from millions of potential
users outside a controlled clinical experiment. We use a data-
driven methodology with no explicit mathematical models
which leads to resilience to adapt to different application
scenarios.

We must also point out the limitations of our approach. We
process the data off-line, hence continuous estimates are not
yet feasible [11]. Until more data become available, sampling
is restricted to a calm, seated position. The arm position
relative to the heart is especially important [9], [5], [12]. As
measurements leave a clinical setting and smartphones enable
PPG recording, patients need more guidance to obtain a clean
signal, as even the contact force with the sensor matters [13].

II. METHODS

We acquire a PPG signal from a single-point measurement
on the finger using an Android application (Section II-A),
and extract periodic characteristics by a discrete wavelet
transform (Section II-B). Using the wavelet coefficients and
other characteristics of the data, we select a small subset
of features by automatic means (Section II-C). A support
vector regression estimates systolic and diastolic BP readings
using the selected subset of features (Section II-D). This
workflow was applied on the PPG signals obtained by the
pulse oximeter and by the phone camera, on both SBP and
DBP, leading to a total of four workflows1.

1The Android application that collected the data, the Mathematica and
RapidMiner processing pipeline are shared at https://github.com/
thmedialab/DataDrivenBP.



A. PPG signal collection on human subjects

Since our approach is data-driven, we had to obtain
a relatively large number of PPG readings matched with
SBP/DBP values. The number of subjects is critical. We
recruited 65 volunteers, 40 male and 25 female subjects.
Their age varied from 22 to 65, with a mean age of 29±7.
They had no history of cardiovascular disease. We collected
a total of 78 records, 13 volunteer recorded two times in
different days.

Every subject had normal blood pressure, the mean
SBP was 109.8±11.9 mm Hg, and the mean DBP was
70.6±10.5 mm Hg, as measured by an ordinary electronic
blood pressure cuff model A&D UA-767PBT with error
±3 mm Hg. Sampling of PPG was performed while the
subjects were seated with both an Android phone and an
oximeter Etcomm HC-801 that sends data to phone via
Bluetooth with sampling rate 20 Hz. The camera picture
format was YUV420sp, which we converted to RGB888.
Each channel shows the PPG channel, but we found that
the green channel is the clearest, confirming the findings of
earlier studies [14], [15]. The subjects’ forearms were resting
on the table at heart level to steady the hand with finger
sensors attached to the index finger of the left and right hand.
The pulse oximeter was placed on the right index finger. The
participants held the phone in their left hand, placing the
left index finger on the camera lens. A custom-developed
application on the phone collected the data simultaneously
from the camera and the pulse oximeter. Synchronising the
beginning of the recording, we obtained pulse signals from
both the camera lens and the pulse oximeter for a total of 120
seconds. Subjects were often not familiar or comfortable with
the phone measurement procedure initially, adding excessive
noise to the signal in the first sixty seconds. There we only
process the remaining sixty seconds of the signal starting
from the 60th second.

B. PPG signal and discrete wavelet transform

PPG and arterial blood pressure are coupled in mid-term
signals, meaning between four to thirteen heartbeats [16],
[5]. This observation hints at an optimal sampling window
of twenty to ninety seconds. Given that we are interested in
low-frequency data, and the time window is clear, we find
detrending is unnecessary. Heart rate and respiratory rate are
not directly relevant [17], these frequencies are not of interest
in the processing.

A discrete wavelet transform (DWT) is a wavelet trans-
form for which the wavelets are discretely sampled. Shannon
wavelets are efficient for DWT, and they excel at finding pe-
riodic characteristics with a correctly chosen support length.
In this study, we use the DWT function, with Shannon
Wavelet evaluated on the equally spaced interval [-80, 80] in
Mathematica to extract the DWT coefficients of the recorded
60s period PPG signal.

C. Optimal feature selection

To construct a mathematical model or an automated
learner, we must identify those characteristics – features

– of the data that are relevant to the problem. Using
wavelet analysis, Teng and Zhang (2003) suggested using
two coefficients of a transform with a Mexican hat mother
wavelet, together with the systolic upstroke time and the
diastolic time of the pulse [18]. Others proposed normalized
harmonic area and the amplitude of PPG [19], [11]. We use
the systolic upstroke time and the diastolic time, gender,
age, together with thousands of DWT coefficients obtained
in Section II-B. The calculation of systolic upstroke time
and the diastolic time is done on the continuous wavelet
transform with Mexican hat wavelet smoothed series using
MinDetect and MaxDetect function in Mathematica.

The approach we use is using a linear support vector
machine for feature selection, and later a non-linear support
vector machine to train a model for prediction [20]. Com-
bining a linear method with a nonlinear learner resonates
well with the relationship between a PPG signal and BP, a
similar system achieved high accuracy [8]. We use forward
feature selection [21] – stop adding features when none of
the alternatives improves upon the merit of a current feature
subset based on the predictions of the underlining learner.

D. Machine learning with automated parameter tuning

Our aim is a form of regression: we would like to fit the
feature set describing the PPG signals and the subjects to the
corresponding SBP and DBP values.

We use the support vector regression machine [22] with
RBF kernel for regression on the selected features. An SVM
learner has parameters, most notably, the cost of making
a wrong prediction. It is expected that high accuracy will
require a large value for the cost parameter, as the number of
training examples is not especially high by machine learning
standards. As we are able to restrict the range of parameter
settings, a greedy search in the parameter space is feasible to
tune the learner. We use the Optimize Parameters Operator
with linear steps to do the grid search to automatically tune
the parameters of SVM in 10-fold cross-validation.

We changed the number of available training data from
20% to 100% and calculated the corresponding errors to
analyse the sensitivity of the learner as an estimate of
possible improvements through data collection.

III. RESULTS

Table I shows the outcome of feature selection.
Figure 1 plots the mean error for all configurations when

changing proportion of training data. The final mean error of
estimating the SBP and DBP is close: 4.9±4.9 mm Hg for
SBP, and 4.3±3.7 mm Hg for DBP. The gap was larger in
the case of the phone-obtained PPG, with values of 5.1±4.3
mm Hg and 4.6±4.3 mm Hg, but the standard variance of
the error was identically small, even with a small portion of
the training set. Except phone-obtained PPG estimate of SBP,
other three estimates are within the AAMI standard [23].

We did t-tests on the predicted SBP/DBP value with
oximeter/phone camera data during 10-fold cross validation
and the actual values. We got p-values of 0.8297, 0.9199
for SBP and DBP with oximeter, and 0.6565, 0.9402 for



Pulse oximeter Phone camera
Systolic Diastolic Systolic Diastolic

Selected Gender and Gender and Gender and Gender and
features 11 DWT coefficients 20 DWT coefficients 13 DWT coefficients 22 DWT coefficients

TABLE I
OVERVIEW OF THE SELECTED FEATURES. THE 2804 ORIGINAL FEATURES INCLUDE 2799 DWT COEFFICIENTS, THE UPSTROKE TIME, DOWNSTROKE

TIME, THE HEART RATE, AGE, AND GENDER. THE AUTOMATED FEATURE SELECTION FOUND DIFFERENT OPTIMAL FEATURES FOR ESTIMATING SBP
AND DBP.

SBP and DBP with phone camera. All p-values indicate the
predicted sample mean is the same with the actual value
sample mean.

IV. DISCUSSION

Contrary to our expectations, the number of selected
features was strikingly low. Barely a dozen DWT coefficients
suffice to achieve high accuracy with a linear predictor. This
finding hints at the amount of irrelevant information in the
signal: less than one percent of time-frequency decomposi-
tion is relevant.

Gender was included for predicting SBP and DBP with
both sources of PPG signals. Interestingly, heart rate was
not selected in any of the cases, confirming earlier findings
that BP and heart rate are not directly relevant [17].

As expected, the error rate drops as the number of training
examples increases. The decrease in error rate is not sharp,
although we must keep in mind that even the complete data
– 78 training samples – are few for a learning algorithm. The
overall error rate was similar for the PPG signals obtained
by the pulse oximeter and the phone camera: the learning
workflow is insensitive to noise, and therefore a device
already owned by most people can act as a recorder. There
seems to be no statistical difference in mean error between
all the experiments ≥ 60 % data for training, there could
be overfitting which could only be overcome by a lot more
data.

Since generalisation performance depends on model com-
plexity, we also plot the number of support vectors for each
case in Figure 2.
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Fig. 2. The number of support vectors as the function of training data
available

The model complexity is in line with our expectations.
Since nearly all blood pressure readings were different, an
estimator must consider most training examples in building
the model. With all examples included, we found between 31
and 42 support vectors, which is 40% to 54% of the number
of examples. This indicates a relatively complex model, and
the scaling of the number of support vectors is near-linear
with the ratio of training examples included. Naturally, on the
noisier samples obtained by the phone the number of support
vectors was consistently higher. We expect that including
more overlapping blood pressure readings, the curve would
flatten out, and the overall complexity would decrease.

The similar prediction accuracy between data from oxime-
ter and phone camera might guarantee the quality of less
rigorous data collection by a cell phone camera alone.
Future research in this area might be made possible with the
availability of open research frameworks like HealthKit by
Apple Inc. that can enable large-scale health data collection.

V. CONCLUSION

Purely data-driven modelling is tempting: even using
a noisy PPG obtained on a smartphone, we achieved a
mean error of 5.1±4.3 mm Hg for estimating SBP, and
4.6±4.3 mm Hg for estimating DBP. The workflow automat-
ically selected a small number of salient features, and tuned
the learner to find the best estimators. Given the simplicity
of data collection and the widespread use of smartphones,
potentially millions of end-users can get involved, paving
the way of big data analysis in blood pressure monitoring.

REFERENCES

[1] E. Dolan, A. Stanton, L. Thijs, K. Hinedi, N. Atkins, S. McClory,
E. Den Hond, P. McCormack, J. A. Staessen, and E. OBrien, “Su-
periority of ambulatory over clinic blood pressure measurement in
predicting mortality the Dublin outcome study,” Hypertension, vol. 46,
no. 1, pp. 156–161, 2005.

[2] T. H. Westhoff, H. Straub-Hohenbleicher, S. Schmidt, M. Tölle,
W. Zidek, and M. van der Giet, “Convenience of ambulatory blood
pressure monitoring: comparison of different devices,” Blood Press.
Monit., vol. 10, no. 5, pp. 239–242, 2005.

[3] P. A. Shaltis, A. Reisner, and H. H. Asada, “Wearable, cuff-less
PPG-based blood pressure monitor with novel height sensor,” in
Proceedings of EMBC-06, New York City, NY, USA, August 2006,
pp. 908–911.

[4] G. Langewouters, A. Zwart, R. Busse, and K. Wesseling, “Pressure-
diameter relationships of segments of human finger arteries,” Clin.
Phys. Physiol. Meas., vol. 7, no. 1, pp. 43–55, 1986.

[5] P. Shaltis, A. Reisner, and H. Asada, “Calibration of the photo-
plethysmogram to arterial blood pressure: capabilities and limitations
for continuous pressure monitoring,” in Proceedings of EMBC-05,
Shanghai, China, January 2005, pp. 3970–3973.



 0

 5

 10

 15

 20

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
e
a
n
 E

rr
o
r 

(m
m

 H
g
)

Ratio of data used

(a) Systolic blood pressure, oximeter
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(b) Diastolic blood pressure, oximeter
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(c) Systolic blood pressure, phone camera
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(d) Diastolic blood pressure, phone camera

Fig. 1. Mean error and error bars for estimating the systolic and diastolic blood pressure. The PPG signal was either obtained by a pulse oximeter – (a)
and (b) – or by a phone camera – (c) and (d).
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