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Abstract To guarantee the reliable power supply, the

expected operation of all the components in the power

system is critical. Distance protection system is primarily

responsible of isolating the faulty section from the healthy

part of the grid. Failure in protection devices can result in

multiple conflicting alarms at the power grid operation

center and complex events analysis to manually find the

root cause of the observed system state. If not handled in

time, it may lead to the propagation of the faults/failures to

the adjacent transmission lines and components. With

availability of the synchronized measurements from phasor

measurement units (PMUs), real-time system monitoring

and automated failure diagnosis is feasible. With multiple

adverse events and possible data anomalies, the complexity

of the problem will be escalated. In this paper, a PMU

based algorithm is presented and discussed to detect the

root cause of the failure in transmission protection system

based on the observed state, e.g. multiple line tripping,

breaker failures. The failure diagnosis algorithm is further

enhanced to come up with the fully functional version of

the failure diagnosis tool, which is tailored for the cases in

which the PMU anomalies are present. In the developed

algorithm the validity of the PMU data is critical; however,

such causes as communication errors or cyber-attacks

might lead to the PMU data anomalies. This issue is well-

addressed in this paper and some major types of anomaly

detection methods suitable for PMU data are discussed.

Results show that the ensemble approach has some distinct

advantages in data anomaly detection compared to the

previously used standalone algorithms. Additionally, the

enhanced failure diagnosis method is developed to clean

the inaccurate data in case of the anomaly in measured

voltage magnitudes. Finally, both original and enhanced

versions of the tool are tested on 96-bus test system using

the real-time OPAL-RT simulator. The results show the

accuracy of the enhanced tool and its advantages over the

primary version of the tool.

Keywords Failure diagnosis, Transmission protection

system, Protection mis-operation, Phasor measurement unit

(PMU) data anomaly and cleaning, Ensemble method

1 Introduction

In order to have a reliable delivery of electricity, it is

necessary to continuously monitor the operation of the

protection system in the generation, transmission, and

distribution [1]. In the transmission system, distance pro-

tection relays and associated breakers are responsible for

detecting the fault as well as disconnecting the faulty part

from the rest of the grid [2]. This is generally done by

setting hard thresholds based on the local measurements,

which in turn, will trigger the relays and breakers to

operate in their corresponding zones of function [3, 4].

However, any malfunction or failure in protection devices

can escalate the effects of the fault to endanger the
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operation of the grid [5]. By the general definition, distance

protection mis-operation can be defined as any type of

operation which is not the normal expected operation of the

protection device at the time of contingency [6], including

failure of any protection devices to timely operate, any

operation out of the designed protection zone, and unin-

tentional operation when there is no fault [7]. Some of the

established fault analysis tools, mentioned in [8–10], are

primarily using either line impedances or frequency anal-

ysis of the transients to detect the location of the fault.

The possibility of the malfunctioning in protection

system is addressed in [11] and a vulnerability study of

protection system is conducted in [12]. However, different

conflicting data and alarms in control center, which are

primarily triggered by the fault and aggravated by the

protection mis-operation, motivate the need for an algo-

rithmic outage identification tool to automatically pinpoint

the location of the fault and the malfunctioned devices

[13]. Authors of [13] have proposed a systematic 5-digit

algorithm, in which a 5-digit number will be assigned to

each phasor measurement unit (PMU) data and different

possible scenarios will be extracted and investigated. Fur-

thermore, post-fault system status will be combined by the

acquired PMU data and the credibility values will be

assigned to each hypothesis. Finally, based on the gener-

ated credibility values, the scenario with the maximum

credibility will be determined as the actual event. In this

work, the authors have developed the next version of

failure diagnosis tool primarily reported in [13]. However,

[13] has the underlying assumption of fully accurate PMU

data, which might not be practical in many situations

[14, 15]. The preliminary tool has been further developed

to a fully functional level to work in real time with inac-

curacy in measurements. Measurement anomalies can be

triggered by such several reasons as the communication

failures and/or cyber-attacks, and the validity of the PMU

data can be endangered accordingly [16]. Such several

methods are developed in [17, 18] to detect the anomaly in

PMU time series data. Reference [19] has considered the

bad PMU data as the outliers and has developed an outlier

detection technique to detect the presence of bad data. In

terms of the accuracy and the needed manual effort, there is

no major difference among different types of standalone

outlier detection methods, as they all need great amount of

manual work to adjust the parameters to achieve an

acceptable accuracy. Moreover, due to the response time

and quality restrictions, not all the outlier detection meth-

ods can be applied to the real-life PMU data [20]. State

estimation based PMU bad data detection has also been

widely researched. The major drawback of the state esti-

mation methods is that they require the topology infor-

mation as well as strategic placement of multiple PMUs in

the system. The results presented in [21], has an average

recall of 0.95 and false detection of 0.07 whereas the

average recall of our algorithm is about 0.97 and the false

detection is about 0.01. The aforementioned challenges

inspire the need for a more efficient and faster PMU data

anomaly detection method which is developed in [20] and

named as ‘‘ensemble based algorithm’’. The algorithm

requires less amount of manual work for parameter tuning

and at the same time it keeps the accuracy at a reasonable

level. After the bad data is detected, the next step is to

either remove or recover the inaccurate measurements.

Finally, by combining the anomaly detection and failure

diagnosis, the more suitable failure diagnosis tool can be

developed.

In this paper, we will first elaborate upon the ensemble

method for PMU anomaly detection. Further on, Prony-

based transient window estimation will be detailed and a

developed methodology for invalid data recovering will be

discussed. In the next step, a centralized 5-digit algorithm,

proposed in [13] as a systematical tool for transmission line

outage, location identification, will be reviewed. In the rest

of the paper, the discussed failure diagnosis tool is exten-

ded and the presence of PMU invalid measurements is also

taken into account.

Contributions of this research work beyond our previous

work are:

1) Further enhancing the 5-digit algorithm to address the

PMU bad data.

2) Further enhancing the Prony scheme to compensate for

the inaccurate measurements and developing a proce-

dure to clean and mitigate the detected bad data.

3) Exploiting the enhanced bad data processing algorithm

and the failure diagnosis tool to create a complete

framework for transmission line failure diagnosis tool

with the bad data and PMU anomalies.

4) Developing real-time test cases and validating the

performance of the original fault diagnosis tool in real

time with the assumption of fully accurate input

measurements.

5) Conducting a comparison between the performance of

the original failure diagnosis tool and the enhanced

version of the tool on 96-bus transmission system

using the real-time OPAL-RT simulator and validating

the performance of the extended tool.

2 PMU anomaly detection and cleaning

Figure 1 shows the general outline of the failure diag-

nosis with bad data which is developed in this paper, where

CB represents circuit breaker.
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The synchrophasor anomaly detection (SyncAD) tool

developed by our research group for PMUs [10], has been

designed to analyze the anomalies in PMU data at different

reporting rates. Users can browse and input PMU data in an

Excel or comma-separated value (CSV) format. The tool

will recognize the PMU ID and users can choose a PMU

for anomaly detection analysis. Users can choose to flag the

detected anomaly instances or can choose an option to

clean the anomalies. Anomaly flagging will simply create

an extra column in the output file with a flag associated to

the anomaly instances. Clean data anomalies option will

impute the anomalies by taking the average of data points

which lies before and after the detected anomaly point.

This tool provides the option to view the graph of original

data, anomaly plot and clean data plot. Finally, an output

file can be saved to be used for different tools. The SyncAD

algorithm first uses three base detectors for the anomaly

detection individually. The scores of these base detectors

are then used by the maximum likelihood estimator (MLE)

ensemble model to get a final score and bad data assess-

ment. Further, the Prony analysis is used to determine if the

bad data is a misinterpretation of transients in the system.

2.1 Base detectors

The base detectors used are based on linear regression,

Chebyshev, and density-based spatial clustering of appli-

cations with noise (DBSCAN) methods.

1) Linear regression-based detector: a window size of one

second is chosen based on experiments which provides

a balance between computational expenditure and

accuracy. From the selected window the regression

line model is obtained by minimizing the sum of

squared residuals, i.e. the vertical distance between

data points of the window and the regression line [22].

The regression line fr is represented as below:

fr ¼ bxþ a ð1Þ

where b is the slope; a is the y-axis intercept of the

regression line; and x is the closest point on the

regression line from the actual data point. Based on

this regression line, any data point lying outside the

low or high thresholds can be considered as possible

bad data. The high and low thresholds Dh and Dl are

set based on (2) and (3).

Dh ¼bxþ aþ kVdev ð2Þ

Dl ¼bxþ a� kVdev ð3Þ

where k is the number of standard deviations, which is

a preset number that decides the high and low

thresholds; and Vdev is the root mean squared value

of y-distance from the regression line as given by (4).

Vdev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

X

N

i¼1

xðiÞ � xrðiÞð Þ2

v

u

u

t ð4Þ

where N is the number of points within the window;

and x(i) and xrðiÞ are the actual and regression line

data points, respectively.

2) Chebyshev-based detector: this detector is a two-step

process [23] and is often used when the distribution of

the data set is unknown. In the first step, a strict

threshold is usually set and the detected data points are

omitted for the next step. In the second step, the

threshold is again computed but k is larger than the

first step. If the data point still fails to lie within this

wider threshold, it is considered to be an anomaly.

Chebyshev inequality is shown in (5):

PðjX � lj � krÞ� 1�
1

k2
ð5Þ

where X represents the input PMU data; l is the mean

of data within a window; and r is the standard devi-

ation of the data within the window.

3) DBSCAN-based clustering: DBSCAN is applied to

detect outliers and missing data. The DBSCAN

algorithm [24] uses two parameters � and the mini-

mum number of points. Data points lying within the �
radius of a cluster becomes the part of the cluster. Data

points which are outside the reach of cluster points are

considered as anomalies as shown in Fig. 2.

Once the existing cluster cannot be expanded, the

algorithm forms new clusters.
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Fig. 1 Proposed architecture for failure diagnosis in distance protection system with data anomalies
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2.2 Ensemble method

An architectural schematic of the anomaly detection

algorithm is shown in Fig. 3, where PDC represents phasor

data concentrator. The base detectors find anomalies

independently on the PMU data (D1, D2 and D3), followed

by the normalization of the scores (f1, f2 and f3) using

expectation maximization (EM) algorithm [25]. Once the

outlier scores from the base detectors are normalized

(Fnormalized), they are then integrated using the MLE

ensemble model. The output from unsupervised MLE

ensemble model (YMLEða; bÞ) is then fed to an inference

algorithm for anomaly assessment. It was observed that

almost all the inserted bad data were detected as data

anomalies by the algorithm correctly. However, a few

transient data points were also flagged as data anomalies

leading to low precision. To overcome this issue Prony

analysis is used. The details of the ensemble based

anomaly detection is discussed with equations in [20].

2.3 Prony-based transient window estimation

The Prony analysis [26] is used to determine the tran-

sient window, which is usually a result of an event in the

system. Here the Prony analysis is used to determine the

steady-state window. Steady-state window of voltage

magnitude might have small oscillations due to PMU

measurement uncertainty. These small oscillations are

modeled as noise by the window selection filter. The

window selection filter is designed by arranging the sam-

pled values of the voltage magnitude measurements in the

Hankel matrix Y as shown in (6). The method is rigorously

tuned on simulated data as well as industry data to obtain

the transient window. A 2.5-second window (this size

window selection provides a trade-off between speed and

accuracy) of voltage measurement data is used, the total

number of samples for a 2.5-second window having a PMU

reporting rate of 120 frames per second is J ¼ 300.

Y ¼

yð0Þ yð1Þ ::: yð
J

2
� 1Þ

yð1Þ yð2Þ ::: yð
J

2
Þ

.

.

.

.

.

.

.

.

.

yð
J

2
� 1Þ yð

J

2
Þ ::: yðJ � 1Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð6Þ

where yð�Þ is the element of the 2.5-second measurement

window.

The rank of the Hankel matrix is estimated by the eigen

decomposition of the sample correlation matrix as follows:

QSQ0 ¼ YY0 ¼ RYY ð7Þ

where Q is an orthogonal matrix whose columns are the

eigenvectors of RYY ; and S is the diagonal matrix, which

has the singular values of the sample correlation matrix in

descending order of magnitude, and can be expressed as:

S ¼ diagðd1[ d2[ :::[ dk[ :::[ dJ
2
Þ ð8Þ

The logarithms of the singular values d2; d3; � � � ; dJ
2
are

divided by the logarithm of the first singular value, which

is denoted by:

rk ¼
lg dk

lg d1
ð9Þ

The p singular values from d1 to dp correspond to the

complex sinusoidal presented in the signal. The remaining

J=2� p singular values from dpþ1 to dJ
2
correspond to

noise. The values of rk for k ¼ 2; 3; � � � ; p depend on the

amplitude frequency and damping of each component.

The singular values of matrix Y consist of signal sin-

gular values and noise singular values. For a perfect

noiseless signal, the noise singular values are zero. Hence,
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even a DC signal will have one singular value with finite

real part and zero imaginary part. A signal with more

variation will have many significant singular values. We

have analyzed offline by randomly generating the matrix

from continuous voltage measurements, whether the matrix

is singular. We could never find a case when the deter-

minant of the matrix was zero and the matrix was singular

for continuous PMU measurements. However, as an extra

step the algorithm could be updated to check for the sin-

gularity and if found to be singular the matrix could be

formed by shifting the measurements by say 10 measure-

ment points. This will not affect the performance of the

algorithm as we are only interested in the dominant modes

and we want to determine, if the given window is a tran-

sient or a quasi-steady state window. Here we are only

interested in the dominant modes (one or two modes)

which are less than the dimension of the matrix.

Events cause ripples throughout the system. PMUs

located near to the event might see a larger variation in

measurements than the ones which are farther. A transient

window has more frequency modes due to transients and

oscillations. The threshold for rk is set as � 4:27 by tuning

it using the known events obtained from real-time digital

simulator (RTDS) simulation and industry data. Data

points lying in the transient window if flagged as bad data

by the ensemble method are unflagged as normal data

resulting in higher precision.

2.4 Data cleaning by SyncAD

SyncAD tool provides two methods of addressing data

anomalies, flagging anomalies and replacing the anomalous

data by taking the average of the data points that lie before

and after the anomaly data point. On a clean PMU data set

anomalies were randomly inserted as seen in Fig. 4. This

set of anomalous data had single point anomalies, which

was detected and cleaned by the averaging method. This

produces a data set which is close to the clean data set. The

difference is also plotted and it can be seen that except a

couple of data points, the cleaned data set matches the data

set without anomalies. However, in case where missing

packet data anomalies are inserted, the averaging technique

is not effective as can be seen in Fig. 5. The missing packet

data occurs during transients and replacing these missing

data by averaging results into a plot, i.e. data set which is

not similar to the original data plot. The difference between

this clean data and original data plot is very large. There-

fore, for these cases flagging the anomaly instances will be

useful.

2.5 SyncAD performance

The SyncAD tool for PMU anomaly detection was tes-

ted by adding anomalies to clean data set obtained from

real PMUs in Smart Grid Demonstration and Research

Investigation Lab (SGDRIL) at Washington State Univer-

sity (WSU). The results are presented in Table 1 based on

the precision Pp and true positive Pt as discussed by (10)

and (11).

Pp ¼
DD \ DA

DD

ð10Þ

Pt ¼
DD \ DA

DA

ð11Þ

where DD and DA are the detected bad data and actual bad

data, respectively.

3 Automated failure diagnosis

This section discusses the centralized 5-digit algorithm

[13], to systematically identify the location of the trans-

mission line outage based on the PMU measurements in the

presence of the protection system malfunctioning. This tool

is developed to run in the control center and reduces the
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confusion of the conflicting alarms triggered by the outage.

The tool needs at least one cycle of PMU data before the

first distance relay tripping is reported. By running the tool,

the operator can easily find the malfunctioned protection

devices as well as the accurate location of the fault. The

automated failure diagnosis tool consists of four different

stages which are protection net (ProNet) selection and data

collection, 5-digit data calculation, multiple hypothesis

generation, and hypothesis selection. Each of the four

stages are described as the following subsections.

3.1 ProNet selection and data collection

The very first step of the 5-digit algorithm is to deter-

mine the ProNet. The ProNet can be generally defined as

all the relays of the whole grid that can see the fault in each

of their three zones of protection. In this work, zone 1, zone

2, and zone 3 cover up to 0.8, 1.2, and 2 times of the length

of the transmission line, respectively. Once the first trip-

ping relay is reported, the ProNet selection process will

begin and will include all the lines with an open breaker

accompanied by all the neighbouring lines and buses. The

main idea of selecting the ProNet is to confine the number

of PMUs that are of interest in the algorithm and to

expedite the fault location identification process.

3.2 5-digit data calculation

5-digit number is a string message consisting of com-

binations of 0 and 1 as each of the digits. The first digit is

considered as the ‘‘trust digit’’. Based on the PMU status

flag, the trust digit will be 1 when the PMU data are

accurate and will be 0 when the measurements are not

valid. The second and third digits are together called as the

fault digits. Based on the accurate PMU measurements, the

line impedance Z can be obtained by:

Z ¼
ðV1 � V2ÞðV1 þ V2Þ

V1I2 þ V2I1
ð12Þ

where V1 and V2 represent the sending and receiving end

measured voltages, respectively; and I1 and I2 represent the

sending and receiving end measured currents,

respectively.

If Z is within any protection zones of the relay, then the

second digit will be 1, meaning that the corresponding

relay can see the fault in any of its protection zones.

Otherwise, it will be 0. The third digit is the breaker digit,

which is equal to 1 if the corresponding breaker is open and

is equal to 0 if the breaker is closed. The fourth and fifth

digits are called zone digits together and will represent the

zone of protection of the corresponding relay, in which 00,

01, 10, and 11 mean zones 1, 2, 3, and none of the zones,

respectively.

3.3 Multiple hypothesis generation

This step is to examine all the possible scenarios of the

existing status of the ProNet. All the transmission lines

within the ProNet will be tested for the fault location and

the compatibility of the status of relays and breakers with

those assumptions will be examined. As the result of this

step, all the scenarios of possible fault locations and

combinations of protection malfunctioning will be extrac-

ted. The detailed calculations of this step can be found in

[8].

3.4 Hypothesis selection

This step is to determine the actual event by comparing

the several different possible hypothesizes, developed in

previous step. A credibility value will be assigned to each

hypothesis by comparing the last four digits of the data

string for all the PMUs within the ProNet, as shown in

Fig. 6. The comparison is between the last four digits of the

relays in each hypothesis with the last four digits of relays

constructed by the PMU measurements. The scenario with

the maximum credibility will be chosen as the actual event,

Start

ProNet configuration

Do the fault
digits equal?

Do the zone
digits equal?

Credibility is 1

End

Credibility is 0.5 Credibility is 0

N

N

Y

Y

Fig. 6 Failure diagnosis with accurate PMU data

Table 1 Performance of anomaly detectors

Data set Without Prony With Prony

Precision Recall Precision Recall

1 0.9859 0.9333 0.9560 0.9437

2 0.9745 0.9562 0.9928 0.9437

3 0.9803 0.9677 0.9934 0.9612

4 0.9875 0.9575 0.9939 0.9939

5 0.9820 0.9761 0.9940 0.9880
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as it explains the status of the relays and breakers within

the ProNet more accurately.

CkðHÞ represents the credibility for the PMU k in the

hypothesis H. Considering n number of PMUs in the

ProNet, the total credibility value for the hypothesis H is as

follows:

CtotðHÞ ¼

P

n

k¼1

CkðHÞ

n
� 100

ð13Þ

The presented failure diagnosis algorithm is proven to

have a higher accuracy of finding the location of the faults

and protection device failures/malfunctioning. Also the

time for the identification is considerably less than the

other similar algorithms. However, the main specific

advantage of the 5-digit algorithm compared to the other

existing failure diagnosis methods lies in the automation

process and ability to work with multiple failures. Manual

work always accompanies with high chances of making

mistakes, which can primarily affect the final decision of

finding the location of the fault or the malfunctioned

protective devices. To address the aforementioned issue,

the 5-digit algorithm is an automated tool with the minimal

participation from the operator. The only task needed by

the operator is to launch the tool and provide the PMU time

series data including at least one cycle of data before and

after the event/fault happens. Considering different

categories of existing fault location identification

methods, the following features of the 5-digit algorithm

makes it a better option for many cases to be run in the

control center: � based on multiple hypothesis; ` being

quantitative; ´ as a result of being based on multiple

hypothesis and being quantitative, the algorithm operation

time is faster than the existing methods; ˆ accurate

performance of finding the location of the fault even with

presence of protection devices malfunction; ˜ being

automated in real time.

4 Failure diagnosis with data anomalies

After the detection of outliers in the PMU measure-

ments, the outliers can be either totally discarded or

recovered, depending on the time length and the location of

the invalid data. As a general rule, recovering the inaccu-

rate data is preferred and discarding the data is

prevented.

In order to clean the bad data, the measured values of the

neighbouring buses and lines can be exploited to get an

estimation of the error of invalid measurements. On the

other hand, in case of large time periods of missing/inac-

curate data, or several neighbouring faulty measurements,

the elimination of the bad data would be inevitable.

As for the purpose of the practical situations in power

system, at most of the time there are some types of unre-

liable measurements in the PMU streaming data which are

generally flagged by the PMU. Therefore, the need for an

automatic PMU invalid data detection and cleaning is of

paramount importance in any event detection procedure.

This paper develops an algorithmic extension, to com-

pensate for the gap in the presented failure diagnosis tool.

The presented tool, expects the full authentic PMU

streaming data as the input. However, as discussed earlier,

unavoidable presence of the bad measurements in the time

series data, highly impacts the performance of the failure

diagnosis tool. Figure 7 shows the block diagram of the

extended failure diagnosis tool with addressing the pres-

ence of invalid data.

Once the credibility value for each PMU is calculated,

the rest of the failure diagnosis algorithm is the same as

discussed in Section 3.4.

5 Real-time validation

The performance of the presented 5-digit algorithm is

tested on the 96-bus transmission system using the hard-

ware in the loop (HIL) OPAL-RT real-time simulator.

Protection malfunctioning case study for the 96-bus test

system is developed and the possible hypotheses have been

investigated. Then the developed case study is simulated in

Start

ProNet selection

Post-fault topology

configuration

5-digit message m1

Recovering process

5-digit message m2

PMU data

acquisition

Outlier detection

Is the data
clean?

Credibility is 1

End

Credibility is 0.5 Credibility is 0

N

N

Y

Y

Y

Do the fault
digits equal?

Do the zone
digits equal?
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Fig. 7 Anomaly detection architecture
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OPAL-RT real-time simulator and the acquired PMU data

are provided for the fault location identifier. Finally, the

results are compared with the actual scenario and the

credibility values are assigned. Further on, the case study is

extended and the PMU data anomaly is taken into account.

As a result, the flag digit for some of the PMUs gets equal

to 0, meaning the presence of bad data. Then the ensemble-

based algorithm is applied to detect and clean the outliers

of the measurements. As the last step, the fault location

identifier tool is provided with the recovered PMU data and

using the generated credibility values, the actual scenario is

flagged.

In this work, the protection scheme is set to be non-pilot

and with the distance relays. The ProNets are programmed

to operate within their three zones of operation. As for the

settings of the distance relays, the observed admittance in

the three zones of operation are set to be 80%, 120% and

200% of the length of the transmission line, respectively,

for the first, second, and third zones of operation.

For the HIL simulation of the system, the current

transformer (CT) sampling rate is assumed to be 2000 Hz

and the PMU reporting rate is 60 Hz, and all the further

analysis on the system for all the case studies have been

done based on the same rate of data acquisition and report.

5.1 Protection malfunctioning case 1

A three-phase symmetrical line to ground fault is sim-

ulated at t ¼ 0:6 s in the transmission line 1 as shown in

Fig. 8. The relays 1 and 2 at the transmission line 1, detect

the fault in their first zone of protection and are expected to

send the trip signal to their corresponding breakers. Relay 1

operates at t ¼ 1 s and sends the trip command to the

breaker 1, and as a result of the appropriate operation of the

breaker 1, the fault isolates from this end. However, relay 2

is assumed to malfunction and refuses to send the trip

command. As a consequence, the breaker 2 will not be able

to timely operate, and the fault current will be propagated

into the neighbouring lines. In the second zone of distance

relay protection, relays 4, 6, and 8 are in charge of the

detection of the fault. All three relays detect the fault and

send the trip command to their corresponding breakers.

Breakers 6 and 8 are expected to properly operate and

disconnect the fault. However, the breaker 4 is assumed to

malfunction and thus the fault current spreads into the

transmission lines 5 and 6. To get the fault current dis-

connected from the rest of the grid, the relays 12 and 10

will operate in their third zones of protection and will

properly send the trip command to their corresponding

breakers. After receiving the trip command in the third

zone of protection, all the corresponding breakers are

assumed to work appropriately and as a result the fault will

get isolated at t ¼ 2:4 s.

Figure 9a shows the fault current. At t ¼ 0:6 s, the fault

happens, and the breaker 1 is assumed to operate at t ¼ 1 s

and disconnects the fault by its end. At t ¼ 2:4 s, After

operation of all the affected breakers, the line gets com-

pletely isolated and the fault current drops to zero.

Due to the malfunction of the breaker 2, the fault current

propagates to the transmission lines 2, 3, and 4. After a

delay of 1.2 s, which is the designed second zone delay in

this work, the breakers 6 and 8 trip at

0:6 s þ 1:2 s ¼ 1:8 s. Figure 9b and c shows the phase A

currents at lines 3 and 4, respectively.

After the isolation of fault at lines 3 and 4 at t ¼ 1:8 s,

the mis-operation of breaker 4 causes a huge overload

current at line 2, as shown in Fig. 9d.

At the final step of the isolation process, breakers 10 and

12 get actuated and trip at t ¼ 2:4 s, and the faulty section

segregates from the remaining healthy part of the system.

Currents at lines 5 and 6 are shown in Fig. 9e and f,

respectively.

After t ¼ 2:4 s, the ProNet is completely isolated from

the healthy part of the network, thus, the current for all the

transmission lines in the ProNet will be equal to 0.

Figure 10 summarizes all the expected operations and

malfunctions of the breakers with the corresponding time-

line of the activities.

The existing status of the system, after operating all the

relays and breakers, can be explained by several different

possibilities.

The presented failure diagnosis tool, aims to investigate

all the possible hypotheses which can account for the

current status of the system. It exploits the post-fault

topology of the system shown in the Fig. 11 to calculate

the 5-digit data for each of the relays in all the suspect

lines, and at the next step, by comparing the actual PMU

measurements with the calculated values, the most possible

hypothesis will be adopted as the actual happening.

The tool tests the possibility of fault at all the trans-

mission lines 1, 2, 3, 4, 5, and 6 in Fig. 11, and examines
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whether or not each hypothesis complies with the current

status of the system.

As for the developed case study in this work, there are 6

different transmission line candidates for the location of

fault and considering three different possibilities of fault

happening at 0–20%, 20%–80%, 80%–100% portion of the

line, there are 18 different hypotheses, which are all

investigated. There are 12 total number of relays/PMUs

within the final ProNet, that are all valued a 5-digit number

based on each of the hypotheses as well as a 5-digit number

based on the PMU measurements. At this step, bad data is

not considered in the measurements, therefore the PMU

flag is 1 for all the 12 PMUs.

Tables 2, 3, 4, and 5 respectively show the measurement

based 5-digit data (total number of hypotheses is 18) as
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Table 2 Measurement-based 5-digit message

PMU number Trust digits Fault digits Zone digits

1 1 11 00

2 1 10 00

3 1 00 11

4 1 10 01

5 1 00 11

6 1 11 01

7 1 00 11

8 1 11 01

9 1 00 11

10 1 11 10

11 1 00 11

12 1 11 10
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Breaker 8

Breaker 6

Breaker 12
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activity
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well as the calculated values for the three hypothesizes of

faults at lines 1, 2, and 6 in addition to their corresponding

credibility values, which are calculated using (13). Due to

the limitation of space, we will just create the tables and

investigate the post-fault quantities for transmission lines 1,

2, 3, and 4, as these lines include all the three different

zones of operation and exploit the symmetry of the

ProNet.

Based on the PMU measurements and the comparison

between the calculated credibility values for each hypoth-

esis, the failure diagnosis tool recognizes the first hypoth-

esis as the actual event.

The presence of bad data in PMU measurements can

lead to wrong measured 5-digit messages for some PMUs/

relays within the ProNet, which in turn will lead to the

inaccurate calculation of the credibility values for the dif-

ferent hypotheses and accordingly the final accuracy of the

failure diagnosis process will be jeopardized.

In order to consider the effect of bad data in the failure

diagnosis tool, anomalies are assumed to be present in the

measurements of the PMU which is connected to bus 1. For

the purpose of this paper, we assume that the anomaly is in

the form of voltage magnitude outliers in the

measurements.

Figure 12 shows the flag values for the PMU measure-

ments at bus 1.

Considering the anomalies of Fig. 12 in the measure-

ments of the PMU at bus 2, the voltage waveform of this

bus, is as shown in Fig. 13. In the next step, the anomalous

measurements are accordingly cleaned and the corre-

sponding credibility values for the case of anomalous and

cleaned data are calculated as shown in Table 6.

Without the invalid data detection and cleaning process,

the failure diagnosis tool mistakenly chooses the second

hypothesis as the true event, whereas when the invalid data

are recovered, the first hypothesis is correctly pinpointed as

the actual happening.

5.2 Protection malfunctioning case 2

Considering a cyber-attack to relays 3 and 7, the normal

operation of these relays is affected and as a result of

injecting the false data to the corresponding current and

voltage transformers, unexpected tripping of circuit

Table 3 Hypothesis 1, fault at 20%–80% line 1

PMU number 5-digit message Credibility

1 11100 1

2 11000 1

3 10011 1

4 11001 1

5 10011 1

6 11101 1

7 10011 1

8 11101 1

9 10011 1

10 11110 1

11 10011 1

12 11110 1

Total 1

Table 4 Hypothesis 2, fault at 20%–80% line 2

PMU number 5-digit message Credibility

1 11101 0.500

2 10011 0

3 11000 0

4 11000 0.500

5 10011 1.000

6 11101 1.000

7 10011 1.000

8 11101 1.000

9 10011 1.000

10 11101 0.500

11 10011 1.000

12 11101 0.500

Total 0.666

Table 5 Hypothesis 3, fault at 20%–80% line 6

PMU number 5-digit message Credibility

1 11110 0.500

2 10111 0

3 11001 0

4 10111 0

5 10011 1.000

6 11110 0.500

7 10011 1.000

8 11110 0.500

9 10011 1.000

10 11101 0.500

11 11000 0

12 11100 0.500

Total 0.416
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Fig. 12 Flag values for PMU measurements
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breakers 3 and 7 at t ¼ 2:6 s is assumed. The ProNet for

this scenario is the same as Fig. 8. Post-fault topology of

the system after operating all the relays and breakers is

shown in Fig. 14.

For this scenario, we continue with investigating the

possibility of fault at lines 1, 2, and 6. Table 7 shows the

final credibility values for each hypothesis with PMU

anomalies as well as the credibility values for the recovered

measurements.

In case of the anomalous data, the performance of the

failure diagnosis without anomaly detection is inaccurate,

and the third hypothesis is by mistake selected as the

correct happening. However, after the PMU outlier detec-

tion and cleaning is applied, the credibility of the first

hypothesis increases to the maximum value and is accepted

by the tool as the actual event.

As for the required computation time by the developed

tool, it is worth-mentioning that the complexity of the

event highly impacts the required time of the fault diag-

nosis tool to find the solution. Such factors as number of

transmission lines within the ProNet, number of malfunc-

tioned devices, and the extent of the anomaly occurred in

PMU data will determine the complexity of the event and

affects the operational time of the tool accordingly. Note

that time taken will still be much faster compared to the

manual analysis.

6 Conclusion

In this paper, the failure diagnosis in transmission line

protection system is addressed in presence of measurement

data anomalies. An automated 5-digit protection system

failure diagnosis tool is discussed and the dependency of

the failure diagnosis to the accuracy of the PMU mea-

surements is specified. The outlier detection methodologies

tailored for PMU data are outlined and the ensemble-based

tool SyncAD is presented. By integrating the 5-digit

algorithm as well as the PMU outlier detection and

cleaning, a complete protection failure identification algo-

rithm is developed, which can automatically run in oper-

ation center and reduces the amount of time taken to

analyze the conflicting alarms created by multiple adverse

events with data anomalies. The developed technique

considers the presence of bad data in PMU

measurements.

The accuracy of the developed methodology is validated

using the OPAL-RT real-time simulator, and the simulation

results show the superior performance of the proposed

algorithms for different test cases.
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Table 6 Credibility scores for anomalous and cleaned data

Hypothesis Credibility

Anomalous data Cleaned data

1 0.583 1.000

2 0.750 0.666

3 0.375 0.416

Table 7 Credibility scores for more complex scenario

Hypothesis Credibility

Anomalous data Cleaned data

1 0.500 0.833

2 0.625 0.583

3 0.875 0.375
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