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Data-Driven False Data Injection Attacks Against

Power Grid: A Random Matrix Approach
Subhash Lakshminarayana Member, IEEE, Abla Kammoun Member, IEEE, Merouane Debbah Fellow, IEEE and

H. Vincent Poor Fellow, IEEE

Abstract—We address the problem of constructing false data
injection (FDI) attacks that can bypass the bad data detector
(BDD) of a power grid. The attacker is assumed to have access to
only power flow measurement data traces (collected over a limited
period of time) and no other prior knowledge about the grid.
Existing related algorithms are formulated under the assumption
that the attacker has access to measurements collected over a long
(asymptotically infinite) time period, which may not be realistic.
We show that these approaches do not perform well when the
attacker has a limited number of data samples only. We design an
enhanced algorithm to construct FDI attack vectors in the face
of limited measurements that can nevertheless bypass the BDD
with high probability. The algorithm design is guided by results
from random matrix theory. Furthermore, we characterize an
important trade-off between the attack’s BDD-bypass probability
and its sparsity, which affects the spatial extent of the attack
that must be achieved. Extensive simulations using data traces
collected from the MATPOWER simulator and benchmark IEEE
bus systems validate our findings.

I. INTRODUCTION

Information and communication technologies (ICTs) play a

key role in reducing costs and improving the quality of service

in critical infrastructures such as the power grid. However,

they also make the infrastructures vulnerable to cyber attacks,

which may cause widespread damage as witnessed in a recent

attack against the Ukraine power grid [2]. Hence, it is critical

to assess the vulnerabilities of ICT-enabled critical infrastruc-

tures and devise ways to protect them.

In this work, we study the problem of constructing false

data injection (FDI) attacks against state estimation (SE) in a

power grid from an attacker’s perspective. It has been shown

[3] that if the attacker obtains detailed knowledge of the power

grid topology and transmission line reactance values – i.e.,

the system’s measurement matrix – then he can construct

FDI attacks that bypass the grid’s bad data detector (BDD).

Subsequent research [4], [5], [6], [7] has shown that an attacker

can learn the power grid’s measurement matrix [4], or learn the

structure of its column space by estimating the basis vectors

[5], [6], [7] from accessed measurement data (i.e., nodal power

injections and line power flows) only. The focus of our work

is on constructing these data-driven FDI attacks.

S. Lakshminarayana is with the University of Warwick, Coventry, UK
(email: subhash.lakshminarayana@warwick.ac.uk). A. Kammoun is with the
Electrical Engineering Department, King Abdullah University of Science and
Technology, Thuwal, Saudi Arabia (abla.kammoun@gmail.com). M. Debbah
is with the Mathematical and Algorithmic Sciences Lab, Huawei Technologies
Co. Ltd., France (merouane.debbah@huawei.com). H. Vincent Poor is with
the Department of Electrical Engineering, Princeton University, USA (email:
poor@princeton.edu).
The work was partially presented at ICASSP-2018 [1].

Prior work on designing data-driven BDD-bypass attacks

[5], [6], [7] has studied the setting of a long measurement

period encompassing (asymptotically infinitely) many sam-

ples. These works are based on principal component analysis

(PCA), whose basic idea is to use the sample covariance

matrix to identify the eigen modes along which the data

exhibits the greatest variance. It is well known that PCA

performs efficiently when the measurement period is signif-

icantly large compared to the signal dimension [8]. Thus, FDI

attacks constructed using these techniques perform well when

the attacker has access to measurements from a large time

window.

However, for practical purposes, it is important to un-

derstand these attacks under a limited measurement time

window. The reasons include (i) active topology control [9]

or renewable energy integration [10] that leads to an in-

herently dynamic operating environment, thereby rendering

measurements outdated and irrelevant after some time; and

(ii) an attacker’s desire or need (e.g., due to limited resources

or limited exploitation time windows) to launch the attack

quickly. Thus, in a practical scenario, the measurement time

period may not be asymptotically large compared to the

signal dimension, especially for large power grids (refer to the

example presented in Section III-B). It has been demonstrated

that under such a regime, the principal component estimated

by PCA is inconsistent [11]. Indeed, our experiments show that

FDI attacks constructed by the existing PCA-based algorithms

[5], [6], [7] do not perform well (in terms of the BDD-bypass

probability) when applied in a limited measurement period

setting.

To address these shortcomings, in this paper, we analyze

the problem of finding BDD-bypassing attack using measure-

ment data collected from a limited time window (comparable

to the measurement signal dimension), and identify guiding

principles for the solution in this context. Under the limited

measurement period setting, a key issue is that only a few

eigen modes can be reliably estimated from the sample co-

variance matrix. This number in turn depends on the length

of the measurement period relative to the signal dimension.

To bypass the BDD with a high probability, it is important

for the attacker to identify these critical eigen modes. Direct

application of the PCA method as in [5], [6], [7] does not use

this knowledge, and hence, performs poorly. In this work, we

propose an enhanced algorithm to construct FDI attacks in the

face of limited measurements that can nevertheless bypass the

BDD with high probability.

Our algorithm design is based on results from random
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matrix theory (RMT). The application is based on an important

observation that the power grid’s SE utilizes several redundant

sensor measurements to filter the effect of measurement noise

and obtain an optimal estimate on the system state [12], [13].

In other words, the dimension of the measurement vector is

much greater than the size of the system state. Under this

setting, the covariance matrix of the sensor measurements has

a structure similar to the so-called “spiked models” in RMT

[14], [15], which comprises of a low-rank perturbation of a

scaled identity matrix. Here, the leading few eigen modes

correspond to the subspace spanned by the signal (i.e., system

state), where as the bulk of the eigen modes (corresponding

to the redundant measurements) correspond to the noise sub-

space. For data obtained from the spiked model, RMT results

can be used to characterize the number of eigen modes that can

be estimated accurately as a function of the measurement time

window, as well as the corresponding estimation accuracy [14],

[15]. Using these results, the attacker can carefully design the

attack vector by restricting it to a lower-dimensional subspace

that is spanned by the accurately estimated eigen modes only,

and bypass the BDD with a high probability. Otherwise, the

inaccurately estimated basis vectors may mislead the attack

vector to a subspace that is different from the intended one,

thereby risking detection by the BDD.

However, restricting the attack vector to a lower-

dimensional subspace of the estimated column space limits

the attacker’s freedom in crafting the FDI attack. In particular,

a resource-constrained attacker may wish to minimize the

number of the meters that must be compromised, or equiva-

lently find a sparsest attack vector in the execution [16], [17].

Clearly, maximizing the sparsity of the attack vector is best

achieved if we have an unconstrained choice of this vector over

the full estimated column space of the measurement matrix.

Hence, the attacker faces a fundamental tradeoff. On the one

hand, as we observed, restricting the attack vector to a lower-

dimensional subspace (spanned by the accurately estimated

basis vectors) will enhance the BDD-bypass probability under

limited measurements; i.e., the restriction makes the attack

efficient temporally. On the other hand, this restriction may

reduce the sparsity of the optimized attack vector, thus making

it less efficient spatially. To understand the tradeoffs between

the conflicting objectives, we compute the sparsest attack

vector while constraining it to subspaces of varying lower

dimensions of the full estimated column space.

To summarize, the contributions of this work are as follows.

• We propose an enhanced algorithm to construct data-

driven FDI attacks in the limited measurement period

setting that can bypass the BDD with high probability

using results from RMT.

• We characterize an important trade-off between the FDI

attack’s BDD-bypass probability and the number of

power meters in the grid that the attacker has to com-

promise in achieving the attack.

• We illustrate the fundamental trade-off by performing

extensive simulations using benchmark IEEE bus sys-

tems. The results show that the attacker can significantly

enhance the BDD-bypass probability using our proposed

approach.

Our results provide important understanding about the de-

sign of FDI attacks by a temporal and/or spatial resource-

limited attacker against power systems. We note that although

this work analyzes the problem from an attacker’s point

of view, our results have practical relevance in the design

of defense strategies as well. For instance, moving target

defense (MTD) has been recently proposed as an effective

strategy to thwart FDI attacks by invalidating the attacker’s

existing knowledge of the grid [18]. The frequency of MTD

perturbations depends on the attacker’s ability to learn the

system parameters [18], since the system must be perturbed

before the attacker can gather sufficient information to learn

the MTD perturbations. In this context, our analysis presents

a fundamental understanding of the attacker’s capabilities in

designing FDI attacks by accessing the system measurements.

To the best of our knowledge, this work is the first to apply

RMT results in the context of smart grids. While RMT results

have found wide application in other domains such as wireless

communications, finance, physics etc. (we refer the reader to

reference [19], Chapter 1 for a comprehensive review of RMT

applications), its application to smart grids has been scarce. In

particular, the application of the RMT spiked model results to

FDI attack construction is novel and has not been considered

previously, and this is a key contribution of our work.

The rest of the paper is organized as follows. We describe

the system model in Section II. We review existing subspace

method based algorithms to construct data-driven FDI attacks

and point our their drawbacks in Section III. In Section IV,

we present data-driven FDI attacks with limited number of

measurements using RMT results and analyze its performance.

The trade-offs in data-driven FDI attacks are discussed in

Section V. The simulation results are presented in Section VI.

Finally, conclusions are drawn in Section VII. The technical

proofs are omitted due to the lack of space and can be found

in the supplementary material.

II. SYSTEM MODEL

We consider a power grid that is characterized by a set

of buses N = {0, 1, 2, . . . , N} and transmission lines L =
{1, 2, . . . , L}. The node with index 0 is used to represent

the reference node. The grid is assumed to operate in a

time slotted manner indexed by t = 1, 2, . . . , T. To model

power flows within the grid, we adopt the direct current (dc)

power flow model [13]. Under this model, the system state

corresponds to the nodal voltage phase angles, which we

denote by θ[t] = [θ1[t], . . . , θN [t]]T ; i.e., θi[t], i ∈ N is

the voltage phase angle at bus i during the time slot t. For

the reference bus, θ0[t] = 0, ∀t. We assume that the system

state fluctuates around a mean value, e.g., due to the temporal

variations of the load. Thus, θ[t] = θ̄ + ǫ[t], where ǫ[t]
is assumed to be an independent and identically distributed

(i.i.d.) random vector (across time) whose fourth order moment

is bounded and its covariance matrix is given by σ2
θI, (where

I denotes an identity matrix). Here in, θ̄ represents the bus

voltage phase angles due at a base load (e.g., obtained by

solving the optimal power flow considering a base load).

The temporal independence assumption of the system state



3

fluctuations can be met by taking measurements with sufficient

load/angle variations over time.

State Estimation & Bad Data Detection: The system state

θ[t] is monitored using sensors deployed at the buses and

transmission lines. These sensors measure respectively the

nodal power injections and the forward/reverse line power

flows. Under the DC power flow model, these measurements,

which we denote by z[t] ∈ R
M (where M denotes the number

of measurements), are related to the system state θ[t] ∈ R
N

as

z[t] = Hθ[t] + n[t], t = 1, 2, · · · , T, (1)

where H ∈ R
M×N is the measurement matrix and n[t] is the

sensor measurement noise. The noise is assumed to be zero-

mean Gaussian with covariance matrix σ2
nI, and independent

of the system state θ[t]. It is also assumed to be i.i.d. across

the time slots. Without the loss of generality we set σ2
n = 1

throughout the paper, and scale the covariance of the θ[t]
appropriately (i.e., we set (σ′

θ)
2 = (σ2

θ/σ
2
n) in our analysis).

The measurement matrix H depends on the system topology

(i.e., the bus connectivity) and the branch reactances [13]. We

assume that within the considered time interval T , H does not

change. The estimate of the system state, denoted by θ̂[t], is re-

covered from the measurement vector z[t] using a maximum-

likelihood (ML) technique [12]: θ̂[t] =
(
HTH

)
−1

HTz[t].
After state estimation, the residual vector is given by r[t] =

z[t] − Hθ̂[t]. The BDD checks for possible measurement

inconsistencies in z[t] works by comparing the norm of the

residual vector r = ||r[t]||2 against a pre-defined threshold τ.
It raises an alarm if r ≥ τ. The threshold τ is selected to

ensure a certain false-positive (FP) rate.

Attacker Model: We consider an attacker who can eavesdrop

on the measurement data communicated between the field de-

vices and the control center by exploiting vulnerabilities in the

communication system. However, the attacker is assumed to

be unaware of the semantics of the accessed data. Furthermore,

the attacker has no other information about the grid (e.g., its

topology or bus system).

The attacker’s objective is to craft FDI attacks against the

state estimation. Denote the attack vector by a[t] ∈ R
M
, the

sensor measurements under attack by za[t], where za[t] =
z[t] + a[t], and the BDD residual under attack by ra[t] =
||za[t]−Hθ̂a[t]||2. It has been shown [3] that for an attack of

the form a[t] = Hc[t], the residual value remains unchanged

under the attack, i.e., ra[t] = r[t]. Hence, the BDD’s detection

probability for such attacks is no greater than the FP rate. We

will henceforth refer to these attacks as undetectable attacks.

Note that constructing an undetectable FDI attack requires the

knowledge of H. In data-driven FDI attack, the attacker strives

to construct an undetectable FDI attack by learning the system

parameters using the accessed measurement data.

III. SUBSPACE METHOD BASED ALGORITHM AND THE

DRAWBACKS

In this section, we review existing subspace based approach

for constructing undetectable data-driven FDI attacks [5], [6],

[7], and point out its drawbacks under a practical regime of

limited observation time window.

A. Algorithm Description

Note that designing an undetectable attack is equivalent

to finding a non-zero vector in Col(H), or equivalently, a

linear combination of the basis vectors that span Col(H).
The attacker must estimate the basis vectors using the noisy

measurement data z[t], t = 1, . . . , T. This problem is well

studied in the signal processing literature [20], and has been

used to guide the construction of data-driven FDI attacks.

The key idea is to use the covariance matrix of the mea-

surements Σz = E[(z[t]−E[z[t]])(z[t]−E[z[t]])T ]. From (1),

it follows that

Σz = σ2
θHHT + I. (2)

Let UΛUT be the SVD of Σz, where U = [u1, . . . ,uM ],
is a matrix consisting of the eigen vectors of Σz, and Λ =
diag(λ1, . . . , λM ) is a matrix consisting of the eigen values of

Σz. Note that the rank of the matrix σ2
θHHT is N. Thus, the

first N columns of U corresponding to the N largest singular

values must form the basis vectors of Col(σ2
θHHT ). Since,

Col(σ2
θHHT ) is equivalent to Col(H), they also form the

basis vectors of Col(H) [20]. Thus, the attacker must estimate

the eigen vectors of Σz in order to construct an undetectable

FDI attack vector.

We note that the attacker cannot directly execute the proce-

dure stated above since the Σz is unknown. However, it can

be estimated using the measurement data {z[t]}Tt=1. Based on

this observation, the procedure to construct data-driven FDI

attacks is summarized in Alg.1. (We use the superscript̂ to

denote estimates of the corresponding quantities. The notation

As denotes a matrix consisting of the first s columns of the

matrix A, i.e., As = [a1, . . . ,as], for any integer value s. ).

ALGORITHM 1: Construction of Data-driven FDI attack

1. Using measurements {z[1], . . . , z[T ]}, compute the

sample covariance matrix Σ̂z as

Σ̂z =
1

T − 1

T∑

t=1

(z[t]− z̄) (z[t]− z̄)
T
,

where z̄ denotes the sample mean given by

z̄ = 1
T−1

∑T
t=1 z[t].

2. Perform singular value decomposition (SVD) of Σ̂z as

Σ̂z = ÛΛ̂ÛT , where Û = [û1, . . . , ûM ] and

Λ̂ = diag(λ̂1, . . . , λ̂M ).
3. Construct an undetectable FDI attack vector as

a[t] = ÛNc[t], where c[t] ∈ R
N
.

B. Drawbacks of Existing Techniques

The aforementioned subspace estimation algorithm per-

forms well in a classical setting when the number of temporal

measurements are far greater than the system dimension (i.e.,

T ≫ M,M/T → 0). However, under a practical setting, it is

unreasonable to expect the availability of an “infinite time win-

dow”, especially for large bus systems. For instance, consider

the IEEE-118 bus system which has M = 490 measurements

per time slot (assuming a fully measured system). Under an
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Fig. 1: Limting eigen value distribution of sample covariance

matrix. Figure due to [19].

optimistic assumption of obtaining a temporally decorrelated

measurement every minute, the attacker would require a mea-

surement time window of 4900 minutes, or approximately,

80 hours, for the ratio of M/T = 10. However, the system

topology may have changed well before this duration.

Thus, we focus on a practically relevant scenario, where

the number of measurements M and the measurement time

window T are reasonably large, where as their ratio of

M/T = p > 0 is a finite constant. This scenario is espe-

cially relevant for large power grids. Under this regime, the

principal components estimated by Algorithm 1 are known to

be inconsistent [11]. Thus, in rest of the paper, we present an

enhanced algorithm for strengthening the attack’s BDD-bypass

probability when the attacker has access to measurements from

a limited time window. Furthermore, we characterize an im-

portant trade-off between the attack’s BDD-bypass probability

and the number of compromised measurements in executing

the attack.

IV. DATA-DRIVEN FDI ATTACKS WITH LIMITED NUMBER

OF MEASUREMENTS

In this section, we present an enhanced algorithm for data-

driven FDI attacks based on RMT results [19]. From the

discussion in Section III, note that the problem at hand is

equivalent to estimating the principal eigen values/vectors of

Σz from the corresponding sample covariance matrix Σ̂z. In

this section, we characterize analytical results that address this

problem.

The covariance matrix of the measurements Σz can be

expressed through eigen decomposition as

Σz = I+

N∑

i=1

µiuiu
H
i , (3)

where {µi}Ni=1 denote the eigen values of σ2
θHHH and

{ui}Ni=1 the corresponding eigen vectors. We will henceforth

refer to µ1, . . . , µN as the “spike” eigen values. The attacker

must estimate the spikes and the corresponding eigen vectors

from Σ̂z (which we will henceforth refer to as the sample

covariance matrix and its eigen values are given by λ̂i). This

can be done as follows.

First, consider the case with no spikes, i.e., measurements

generated as z[t] ∼ N (0,Σz) where Σz = I. The eigen values

of Σz are given by [1, . . . , 1] ∈ R
M
. For this model, the

limiting eigen value distribution1 of Σ̂z is known to converege

to the Marcenko-Pastur (MP) law [21]. We denote the limiting

distribution by F, which is shown in Fig. 1. Now consider

measurements whose covariance matrix given is by (3). The

eigen values of Σz are given by

[µ1 + 1, . . . , µN + 1︸ ︷︷ ︸
N terms

, 1, . . . , 1︸ ︷︷ ︸
M−N terms

]. (4)

We focus on the limiting eigen value distribution of Σ̂z for

this model (i.e., measurements from the covariance model (3)).

Following (4), one would expect the “leading N eigen values”

of Σ̂z to be found outside the distribution of MP law, F (see

Fig. 1). Surprisingly, the number of eigen values that can be

found outside F depends critically on the ratio p = M/T.
This result was formalized in [14] and stated in Theorem 2,

Appendix A. Herein, we only present the main idea. Consider

µ1 > µ2 > · · · > µs >
√
p, 1 ≤ s ≤ N, (5)

where s ≤ N is the number of spike eigen values that are less

than
√
p. Then, the result [14] states that for all µi >

√
p,

when M,T → ∞,M/T = p > 0, there exists a deterministic

and one-to-one mapping between eigen value of the sample

covariance matrix (Σ̂z), i.e., between λ̂i and µi. In other

words, all µi which satisfy µi >
√
p can be recovered from

the eigen values of sample covariance matrix. A similar result

also holds for estimating the corresponding eigen vectors [15],

i.e., the corresponding eigen vectors (for which µi >
√
p) can

be reliably recovered from the eigen vectors of the sample

covariance matrix (see Theorem 2). It is important to note that

for eigen modes corresponding to µi <
√
p, these relationships

do not hold, and the corresponding eigen value/vectors cannot

be recovered. Thus, the quantity
√
p represents a fundamental

“phase transition” point in estimating the spike eigen val-

ues/vectors from the sample covariance matrix.

The result is important in this context, since it precisely

characterizes the information about Col(H) that the attacker

can recover from the measurements as a function of the

observation time window T (specifically, the ratio p = M/T ).

To construct a data-driven FDI that can bypass the BDD with a

high probability, the attacker must first estimate the number of

eigen values/vectors, s, that can be reliably recovered from the

measurements {z[t]}Tt=1. Note that the attacker cannot directly

use (5) to determine s, since he does not have the knowledge

of µi. Using the result of Theorem 2 (Appendix A), it follows

that for µi >
√
p, with probability 1, we have λ̂i > (1+

√
p)2.

Thus the attacker can determine s by counting the number

of eigen values of the sample covariance matrix that exceed

(1 +
√
p)2 , i.e.,

s = {#i, λ̂i > (1 +
√
p)2}. (6)

Note that direct application of subspace estimation algorithm

as proposed in [5], [6], [7] (Algorithm 1) uses all N estimated

1Limiting eigen value distribution is the distribution of eigen values of Σ̂z

when M,T → ∞,M/T = p > 0.
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eigen modes for the construction of the FDI attack. However,

following the application of RMT spiked model results, it is

clear that eigen modes for which µi <
√
p cannot be recovered

from the sample covariance matrix, and hence, must not be

used in the construction of FDI attack.

After determining s, the attacker can construct a data-

driven FDI attack as a = Ûscs, where cs ∈ R
s

denotes an

s−dimensional vector. In particular, the vector cs can be tuned

by the attacker to achieve his objectives, such as minimizing

the attack’s detection probability or causing a desired attack

impact. In this rest of this section, we describe how the attacker

can achieve these objectives using results from RMT.

We first focus on the attack detection probability. To this

end, we characterize the BDD residual with data driven FDI

attack.

Lemma 1. For a data-driven FDI attack a = Ûscs, the BDD

residual with attack, ra, follows a non-central χ2 distribution

with M−N degrees of freedom and a non-centrality parameter

ν given by

ν = cTs cs − cTs Û
T
s UNUT

NÛscs. (7)

For M,T → ∞,M/T = p the second term of the right hand

side of (7) converges to

cTs Û
T
s UNUT

NÛscs − cTs Ωscs
a.s.−→ 0, (8)

where Ωs = diag(ω1, . . . , ωs) and

ωi =
1− p/µ2

i

1 + p/µi
, i = 1, . . . , s. (9)

Further, the attacker can obtain a consistent estimator ω̂i of

ωi as |ωi − ω̂i| a.s.−→ 0, i = 1, . . . , s where,

ω̂i =
1− p/µ̂2

i

1 + p/µ̂i
, i = 1, . . . , s, (10)

and µ̂i =
λ̂i + 1− p+

√
(λ̂i + 1− p)2 − 4λ̂i

2
− 1.

Thus, it follows that

ν − cTs (I− Ω̂s)cs
a.s.−→ 0, (11)

where Ω̂s = diag(ω̂1, . . . , ω̂s).

Proof. The proof is omitted due to the lack of space and can

be found in Appendix A, Part I of the supplementary material.

The result of (7) along with the asymptotic approximations

(8)-(10) provides a tractable expression for the attacker to

compute the detection probability for a given data-driven FDI

attack a = Ûscs. Observe that all the quantities required to

compute the asymptotic approximation of ν depend on the

estimated parameters only (i.e., λ̂i). Using these expressions,

the attacker can tune cs to minimize the attack’s detection

probability. We analyze the results further.

Note that the entries of the matrix ÛT
s UNUT

NÛs represent

the projection of the eigen vectors of the sample covariance

matrix Σ̂z onto the eigen vectors of the population covariance

matrix Σz. In particular, the result of Lemma 1 states that

asymptotically, the estimated eigen vectors ûi are orthogonal

to uj , j 6= i, since Ωs is diagonal. Specifically, |ûT
i ui|2 a.s.−→

ωi and |ûT
i uj |2 a.s.−→ 0, i 6= j. The following lemma illustrates

the relationship between the projections.

Lemma 2. The diagonal elements {ωi}si=1 and {ω̂i}si=1 follow

1 > ω1 ≥ ω2 ≥, . . . ,≥ ωs > 0 and 1 > ω̂1 ≥ ω̂2 ≥, . . . ,≥
ω̂s > 0 respectively.

Proof. The proof can be found in Appendix B of the supple-

mentary material.

From Lemma 1 and Lemma 2, it follows that the projection

of ûi onto ui is in the decreasing order of the eigen mode

index. Note that minimizing the detection probability is equiv-

alent to minimizing the non-centrality parameter ν of the χ2

distribution. From (11), it follows the attacker can compute cs
which minimizes cTs (I−Ω̂s)cs. However, directly minimizing

this expression would result in a trivial solution cs = 0, (i.e.,

a zero attack). Thus, we must constrain the attack impact in

order to obtain a meaningful attack.

We quantify the attack impact in terms of the second norm

of the error in state estimate (for the system operator) due

to the FDI attack. Specifically, we let θ̂
a

denote the estimate

of the system state from measurements with FDI attack, za.

Then, ∆θ
△

= θ̂ − θ̂
a

is the error in the state estimate due to

the FDI attack. Using this, the data-driven FDI attack can be

formulated as the following optimization problem:

min
cs

cTs (I− Ω̂s)cs (12)

s.t. ||∆θ||22 ≥ τ

In the optimization problem (12), the attacker designs cs
to minimize the probability of detection among all attacks

that satisfy ||∆θ||22 ≥ τ. However, (12) cannot be solved by

the attacker directly, as ||∆θ||22 depends on the measurement

matrix H, that is unknown to the attacker. To address this

issue, we present a consistent estimate of ||∆θ||22 in the large

system regime that depends only on the attacker’s estimated

parameters in the following lemma:

Lemma 3. For M,T → ∞, the quantity ||∆θ||22 converges to

||∆θ||22 − σ2
θc

T
s M

−1Ωcs
a.s.−→ 0. (13)

Further, we have

σ2
θc

T
s M

−1Ωcs − σ̂2
θc

T
s M̂

−1Ω̂cs
a.s.−→ 0, (14)

where M = diag(µ1, . . . , µN ) and M̂ = diag(µ̂1, . . . , µ̂N ).

Proof. The proof is presented in Appendix A, Part II of the

supplementary material.

Note from Lemma 3 that the asymptotic approximation

of ||∆θ||22 depends on the estimate of the variance of the

system state σ̂2
θ . The attacker can estimate this by monitoring

historical fluctuations of the system load (note that this is a

second-order statistic and hence, need not be estimated in real

time).
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Based on the result of Lemma 3, optimization problem (12)

can be reformulated as follows:

min
cs

cTs (I− Ω̂s)cs (15)

s.t. σ̂2
θc

T
s M̂

−1Ω̂scs ≥ τ

The solution to (15) can be characterized in closed form and

its result leads to the following theorem:

Theorem 1. For M,T → ∞,M/T = p, the optimal data-

driven FDI attack that solves (15) is given by

a =

√
τ

σ̂2
θ(ω̂1/µ̂1)

û1. (16)

Proof. The proof of Theorem 1 follows by noting that the

solution to optimization problem (15) is given by c1 =√
τ

σ̂2

θ
(ω̂1/µ̂1)

and c2 = c3 = · · · = cs = 0. The details are

presented in Appendix C of the supplementary material.

Theorem 1 implies that the attacker can minimize the

detection probability by aligning the attack vector along û1

while achieving the desired attack impact. Coincidentally, from

Lemma 2, û1 is also the most accurately estimated eigen

mode.

Theorem 1 also implies that the optimal attack must be

restricted to a 1−dimensional subspace of the estimated space

ÛN . A natural question is whether there a cost to pay for this

restriction? We will address this question in the next section

where we consider the attack’s sparsity in addition to the

factors considered in this section.

A. Discussion

We note from Theorem 2 (Appendix A) that the application

of spiked model requires N to be fixed and independent of

M and T. Strictly speaking, the power grid model does not

satisfy this condition, since N (dimension of the state vector)

also grows for large grids. However, despite this limitation, we

will show by simulations in Section VI that RMT spiked model

results are accurate for various power grid bus configurations

as long as the number of sensor measurements M is large

compared to N. In other words, there are a significant number

of redundant measurements, which is reasonable for the state

estimation problem [12], [13]. Thus, the RMT spiked model

can be used for analysing the data-driven FDI attacks.

V. TRADE-OFFS IN DATA-DRIVEN FDI ATTACKS

The analysis considered thus far in this paper only focusses

on attacker’s learning of Col(H). The learning phase only

requires the attacker to obtain read access to the sensor

measurements. However, executing the FDI attack requires the

attacker to modify the sensor measurements values, which in

turn requires write access. A graphical illustration is presented

in Fig. 2. Note that from an attacker’s point of view, read

access to sensor measurements is easier to obtain compared

to write access, since it only involves passive sniffing of the

network data, where as write access requires modification of

the network packets. Thus, a resource constrained may wish

to minimize the number of sensors he must compromise to

Fig. 2: Learning and execution phase of data-driven FDI

attack.

execute the FDI attack, or equivalently, maximize the attack’s

sparsity.

Recall that from our analysis in the previous section, the

optimal data-driven FDI attack is one that is restricted to a

1− dimensional subspace of the estimated space. Restricting

the attack to a lower-dimensional subspace makes it hard to

enforce sparsity. Naturally, maximum sparsity of the attack

vector can be achieved if we have an unconstrained choice of

the attack vector over the full estimated column space. On the

other hand, using the innacurately estimated basis vectors will

increase the attack’s detection probability (recall that the first

basis is estimated most accurately, followed by the second, etc.

refer to Lemma 2). Thus, the attacker faces a fundamental

trade-off between the attack’s BDD-bypass probability and

the attack’s sparsity. In particular, the number of estimated

eigen modes for constructing the FDI attack must be chosen

to balance between the two factors.

To formalize this trade-off, we cast the FDI attack construc-

tion as a sparse optimization problem for all m = 1, . . . , s as

follows:

K∗

m = min
cm

‖Ûmcm‖0, (17)

s.t. cTmM̂−1Ω̂cm ≥ τ.

The objective function of (17) gives the number of non-zero

elements in the FDI attack vector while restricting the attack

vector to a m−dimensional subspace of the estimated column

space, where m ≤ s ((6)). The optimization problem (17) can

be solved using an l1−relaxation based approach. We omit

the details here and refer the reader to [17]. We illustrate the

trade-off by simulations in Section VI.

VI. SIMULATION RESULTS

In this section, we present the simulation results. All the

simulations are conducted using the MATPOWER simulator

[22]. In these simulations, the eigen modes are estimated

following the steps 1 and 2 of Algorithm 1. The measurement

data is generated according to (1), where θ[t] = θ̄ + ǫ[t].
Here in, θ̄ is obtained by solving the optimal power flow

formulation considering base load values provided in the

MATPOWER case file. The fluctuations ǫ[t] are assumed

to be i.i.d. Gaussian random vectors with variance σ2
θ . The

FDI attacks are constructed using the estimated eigen modes

and their detection probability is computed by averaging the

BDD’s detection results over 1000 independent trials. The

BDD threshold is adjusted such that the FP rate is set to 0.02.
The results are presented next.

First, we examine the estimation accuracy of different eigen

modes by evaluating the projection metric |ûT
i ui|2. We also

verify the accuracy of the RMT approximation in Theorem 2.
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Fig. 3: Eigen mode estimation accuracy using simulations and

RMT approximation. Top: non-asymptotic regime, p = 0.5
(s = 7), Bottom: asymptotic regime, p = 0.005 (s = 12).

To this end, we compare |ûT
i ui|2 obtained from simulations

with ω̂i computed according to (10). For the measurement time

window T, we consider two regimes, (i) a non-asymptotic

regime with T = 0.5M and (ii) an asymptotic regime with

T = 100M. The results are plotted in Fig. 3 by averaging

across 1000 trails. The bars represent mean values over the

trials and the vertical lines (on top of the bars) represent the

flutuation around this mean value. We make the following

observations.

Firstly, in the non-asymptotic regime, the estimation accu-

racies of the different eigen modes vary. In particular, they

are arranged in the decreasing order of the eigen mode index.

This is consistent with our observation in Lemma 2. Secondly,

it can be observed that the RMT approximations ω̂i (red

bars) are reasonably accurate, though there is a non-zero but

negligible gap between the simulations and RMT results. The

gap exists due to the fact that the number of spikes in the power

grid model are large and equal to the dimension of the state

vector (see the discussion in Section IV-A). However, despite

this limitation, the gap is small and the RMT results are a

good approximation. Thirdly, recall that RMT approximations

only exist for the eigen modes i ≤ s where s is computed

according to (8). The value of s for each of the simulation

cases is indicated in the figure description. It can be observed

that the estimation accuracy for eigen modes beyond this

value of s is poor. Hence, they must not be utilized for FDI

attack construction as prescribed by our analysis based on the

RMT spiked model. Finally, we observe that in the asymptotic

regime however, i.e. T = 100M , all the eigen modes can be

estimated with a high accuracy and Algorithm 1 can be used

directly for the design of FDI attack.

Next, we examine the detection probability of FDI attacks

constructed using different estimated eigen modes. Specifi-

Fig. 4: Detection probability for FDI attacks constructed using

different eigen modes. s = 9 for p = 0.5, s = 12 for p = 0.05,
and s = 13 for p = 0.005 respectively.

Fig. 5: Detection probability for FDI attacks as a function of

the measurement time window. Attack 1 : optimal data-driven

FDI attack (Theorem 1), Attack 2: FDI attack constructed

using the entire estimated subspace.

cally, for each estimated eigen mode i, the FDI attack is

constructed as a = ciûi, where ci is set to ci =
√

τ
ω̂i/µ̂i

,

such that is satisfies the constraint of (15). Recall that asymp-

totically this ensures that ||∆θ||22 ≥ τ . We conduct 1000
simulation trials and plot the results in Fig. 4. The RMT

approximations of the detection probability are also plotted in

Fig. 4. They are computed by evaluating the P(X ≥ τ), where

X is a χ2 distributed random variable with M − N degrees

of freedom and a non-centrality parameter ν = cTs Ω̂scs
(following the result of Lemma 1). Once again, we make

the following observations. Firstly, the detection probability

increases with the eigen mode index and the attack a = c1û1

has the lowest detection probability, confirming the result

of Theorem 1. Secondly, it can be observed for i ≥ s,
the detection probability becomes very high, thus confirming

the phase transition phenomenon of the RMT spiked model.

Finally, the detection probability becomes lower as we increase

the training time T .

We also compare our results to data-driven FDI attacks

proposed in prior work [5], [6] in Figure 5. Here in, attack 1 is

constructed according to Theorem 1. Attack 2 is constructed

using the entire estimated subspace, i.e., a2 = ÛNcN , where

the elements of cN are set to ci =
√

τ
Nω̂i/µ̂i

, i = 1, . . . , N.

Note that cN is adjusted to satisfy ||∆θ||22 ≥ τ. As expected,

the detection probability of attack 1 is significantly lower

compared to attack 2.

Next, we illustrate the trade-off between attack’s sparsity

and the detection probability in Fig. 6. The points on the

trade-off curve are obtained by varying m in (17). Specifically,



8

Fig. 6: Trade-off between attack sparsity and the attack detec-

tion probability.

we compute an attack vector for each value of m, and

then compute the corresponding detection probability and the

attack’s sparsity. Note that sparsity of the attack vector is equal

to M −K∗

m. We repeat the simulations for different training

times T (i.e. varying p). It can be observed that in the non-

asymptotic regime (i.e, small T ), the attack’s sparsity can be

enhanced if the attacker can tolerate an increase in the attack

detection probability (refer to the red and blue curves). For

large T however, the attacker can simply utilize the entire

estimated subspace without having to compromise the attack’s

detection probability (green and black curves). In practice,

the attacker can make use of such trade-off curves to select

suitable parameters for the construction of the FDI attack, e.g.,

based on the resources available to him.

VII. CONCLUSIONS

We have studied the construction of data-driven FDI attacks

when the attacker has access to only a limited number of

measurements. We showed that in this regime, the attacker

can enhance the BDD-bypass probability by constraining the

attack vector to a lower-dimensional subspace spanned by

the accurately estimated basis vectors. We used results from

RMT spiked model to analyze the algorithm performance.

We also characterized an important trade-off between the

attacker’s ability to bypass the BDD and the sparsity the attack

vector. Our framework gives practical guidance to a resource-

constrained attacker in designing stealthy FDI attacks. In the

future, we will explore how the results of this work can be

used to address the defense problem against these attackers

(e.g., MTD).

APPENDIX A: RELEVANT RESULTS FROM RANDOM

MATRIX THEORY

Theorem 2. Consider y[t] = N (0,Σz) ∈ R
M×1

, where

Σz = I +
∑N

i=1 µiuiu
H
i . Let ÛΛ̂ÛT denote the eigen

value decomposition of Σ̂z = 1
T

∑T
t=1 y[t]y[t]

T , where

Û = [û1, . . . , ûM ], and Λ̂ = diag(λ̂1, . . . , λ̂M ). Assume

N is fixed, and independent of M and T. Then, when

M,T → ∞,M/T = c, for all µi >
√
p, with probability

one, λ̂i ≥ (1 +
√
pN )2 and

∣∣∣λ̂i − 1− µi −
p(1 + µi)

µi

∣∣∣ a.s.−→ 0. (18)

Moreover, |µi−µ̂i| a.s.−→ 0, where µ̂i can be obtained from λ̂i as

µ̂i =
λ̂i+1−p+

√
(λ̂i+1−p)2−4λ̂i

2 − 1. Further, for all µi >
√
p,

we also have

∣∣∣ûT
i uju

T
j ûi −

1− p/µ2
i

1 + p/µi
δi=j

∣∣∣ a.s.−→ 0, i, j = 1, . . . , s. (19)

APPENDIX B: UNDETECTABLE ATTACKS

Part I: Proof of Lemma 1

First recall that the residual vector is given by

r = z−Hθ̂ = (I−K)z, (20)

where in (20), we have substituted θ̂ = (HTH)−1HT z (note

W = IM ) and denoted K = H(HTH)−1HT . Further

substituting z = Hθ + n, we obtain,

r = (I−K)(Hθ + n) = (I−K)n, (21)

where (21) follows since (I−K)H = 0.

Now consider the residual for measurements with FDI attack

za = z+ a. The residual denoted by ra is given by:

ra = (I−K)za
(a)
= (I−K)(n+ a)

(b)
= (I−UNUT

N )(n+ a), (22)

where in (a), we have once again use (I − K)H = 0, and

in (b), we have used the fact that K can be decomposed as

K = UNUT
N . Since the noise is Gaussian, ‖ra‖22 follows a

non central chi-square distribution with M − N degrees of

freedom and noncentrality parameter ν given by

E
[
‖ra‖22

]
= ν = aTa− aTUNUT

NÛsas. (23)

In particular, for a data-driven FDI attack of the form a =
Ûscs, we have

ν = cTs cs − cTs Û
T
s UNUT

NÛscs. (24)

For M,T → ∞,M/T = c, using the result of Theorem 2

(main paper), the matrix ÛT
s UNUT

NÛs converges to a diag-

onal matrix whose diagonal elements are given by ωi defined

in (9). Since N is assumed to be fixed (and finite) and

independent of M and T (see Theorem 2, main paper), we

obtain,

cTs Û
T
s UNUT

NÛscs − cTs Ωscs
a.s.−→ 0.

Further, using the result |µi − µ̂i| a.s.−→ 0, i = 1, . . . , s
(Theorem 2, main paper), from continuous mapping theorem

[23], it follows that

|ωi − ω̂i| a.s.−→ 0, i = 1, . . . , s.

Note that ωi is a continuous function µi (see (9)).
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A. Part II: Proof of Lemma 3

Since θ̂ = (HTH)−1HT z, it follows that ∆θ̂ is given by

∆θ̂ = (HTH)−1HT (za − z)

∆θ̂ = (HTH)−1HT Ûscs. (25)

From (25), we obtain,

||∆θ̂||2 = cTs Û
T
s H(HTH)−2HT Ûscs

(a)
= cTs Û

T
s UND−1UT

NÛscs,

(b)
= σ2

θc
T
s Û

T
s UNM−1UT

NÛscs.

where (a) follows since H(HTH)−2HT = UT
ND−1UT

N .
Here in, D = diag(d1, . . . , dN ), where {di}Ni=1 are the first

N eigen values of HHT (in decreasing order). In (b), recall

that M = diag(µ1, . . . , µN ), where µi are the eigen values of

σ2
θHHT . Similar to the proof of Lemma 1 (Part I), it can be

shown that

cTs Û
T
s UNM−1UT

s ÛNcs − σ̂2
θc

T
s M̂

−1Ω̂cs
a.s.−→ 0.

APPENDIX C: PROOF OF LEMMA 2

First, we consider the proof of 1 > ω1 ≥ ω2 ≥, . . . ,≥ ωs >
0.

We first show that 0 ≤ ωi ≤ 1, ∀i. By definition µi >
√
p

for i = 1, . . . , s. For µi >
√
p, we have 1− p/µ2

i > 0. Thus,

ωi > 0, ∀i.
Also, it is straighforward to note that 1 − p/µ2

i < 1 and

1 + p/µi > 1. Thus, ωi =
1−p/µ2

i

1+p/µi
< 1, ∀i.

Finally, note that the derivative of ωi with respect to µi is

given by

dωi

dµi
=

µ2
i p+ 2µip+ p2

µi(µi + p)
> 0. (26)

where in (26), the inequality follows since all terms in the

derivative are positive. Thus, we conclude that ωi is an increas-

ing function of µi. Since by definition, µ1 ≥ µ2 ≥, . . . ,≥ µs,
it follows that 1 > ω1 ≥ ω2 ≥, . . . ,≥ ωs.

Next, we consider the proof of 1 > ω̂1 ≥ ω̂2 ≥, . . . ,≥
ω̂s > 0.

Once again, by definition, we have λ̂i > (1+
√
p)2 for i =

1, . . . , s. It can be verified from Theorem 2 (Appendix A) that

for λ̂i > (1 +
√
p)2, µ̂i >

√
p. Thus, 1 > ω̂1 ≥ ω̂2 ≥, . . . ,≥

ω̂s > 0 can be proved by arguments identical to the previous

case (i.e., the proof of 1 > ω1 ≥ ω2 ≥, . . . ,≥ ωs > 0).

APPENDIX D: PROOF OF THEOREM 1

Note that optimization problem (15) can be rewritten as

min
c

s∑

i=1

(1− ω̂i)c
2
i (27)

s.t.

s∑

i=1

σ̂2
θ

(
ω̂i

µ̂i

)
c2i ≥ τ

By a simple replacement of the variable yi = c2i , (27) becomes

min
y

s∑

i=1

(1− ω̂i)yi (28)

s.t.

s∑

i=1

σ̂2
θ

(
ω̂i

µ̂i

)
yi ≥ τ

Note that (28) is a linear programming (LP) problem. Since the

coefficients of the objective function as well as the constraints

are positive (see Appendix C), the optimal solution of (28)

must satisfy the constraint with equality, i.e.,
∑s

i=1

(
ω̂i

µ̂i

)
yi =

τ . Thus, we can replace the inequality constraint of (28) with

equality. We perform one more change of variable as

yi = ηi

(
τ

σ̂2
θ(ω̂i/µ̂i)

)
, i = 1, . . . , s.

The LP (28) along with replacing the constraint with equality

now becomes

min
η

s∑

i=1

(
1− ω̂i

σ̂2
θ(ω̂i/µ̂i)

)
ηi (29)

s.t.

s∑

i=1

ηi = 1.

It can be verified that the coefficients of the objective function

1− ω̂i

σ̂2
θ(ω̂i/µ̂i)

is a decreasing function of µ̂i. (This can be verified by differ-

entiating the coefficient terms with respect to µi and noting

that the derivative is negative.) Since µ1 ≥ µ2 ≥ · · · ≥ µs,

we have,

1− ω̂1

σ̂2
θ(ω̂1/µ̂1)

≥ 1− ω̂2

σ̂2
θ(ω̂2/µ̂2)

≥ · · · ≥ 1− ω̂s

σ̂2
θ(ω̂s/µ̂s)

.

The solution to (29) is thus given by η1 = 1, η2 = η3 = · · · =
ηs = 0. Hence, the solution to (27) becomes

c1 =

√
τ

σ̂2
θ(ω̂i/µ̂i)

and c2 = c3 = · · · = cs = 0.
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