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Abstract The generation of realistic spatio-temporal trajectories of human mobility

is of fundamental importance in a wide range of applications, such as the develop-

ing of protocols for mobile ad-hoc networks or what-if analysis in urban ecosystems.

Current generative algorithms fail in accurately reproducing the individuals’ recurrent

schedules and at the same time in accounting for the possibility that individuals may

break the routine during periods of variable duration. In this article we present Ditras

(DIary-based TRAjectory Simulator), a framework to simulate the spatio-temporal

patterns of human mobility. Ditras operates in two steps: the generation of a mobility

diary and the translation of the mobility diary into a mobility trajectory. We propose a

data-driven algorithm which constructs a diary generator from real data, capturing the

tendency of individuals to follow or break their routine. We also propose a trajectory

generator based on the concept of preferential exploration and preferential return. We

instantiate Ditras with the proposed diary and trajectory generators and compare

the resulting algorithm with real data and synthetic data produced by other genera-

tive algorithms, built by instantiating Ditras with several combinations of diary and

trajectory generators. We show that the proposed algorithm reproduces the statistical
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properties of real trajectories in the most accurate way, making a step forward the

understanding of the origin of the spatio-temporal patterns of human mobility.

Keywords Data science · Human mobility · Complex systems · Mathematical

modelling · Big data · Spatiotemporal data · Human dynamics · Urban dynamics ·

Mobile phone data · GPS data · Smart cities

1 Introduction

Understanding the complex mechanisms governing human mobility is of fundamental

importance in different contexts, from public health (Colizza et al. 2007; Lenormand

et al. 2015) to official statistics (Marchetti et al. 2015; Pappalardo et al. 2016b), urban

planning (Wang et al. 2012; De Nadai et al. 2016) and transportation engineering

(Janssens 2013). In particular, human mobility modelling has attracted a lot of interest

in recent years for two main reasons. On one side, it is crucial in the performance

analysis of networking protocols such as mobile ad hoc networks, where the displace-

ments of network users are exploited to route and deliver the messages (Karamshuk

et al. 2011; Hess et al. 2015). On the other side human mobility modelling is crucial

for urban simulation and what-if analysis (Meloni et al. 2011; Kopp et al. 2014), e.g.,

simulating changes in urban mobility after the construction of a new infrastructure

or when traumatic events occur like epidemic diffusion, terrorist attacks or interna-

tional events. In both scenarios the developing of generative algorithms that reproduce

human mobility patterns in an accurate way is fundamental to design more efficient and

suitable protocols, as well as to design smarter and more sustainable infrastructures,

economies, services and cities (Batty et al. 2012; Kitchin 2013).

Clearly, the first step in human mobility modelling is to understand how people

move. The availability of big mobility data, such as massive traces from GPS devices

(Pappalardo et al. 2013b), mobile phone networks (González et al. 2008) and social

media records (Spinsanti et al. 2013), offers nowadays the possibility to observe human

movements at large scales and in great detail (Barbosa-Filho et al. 2017). Many studies

relied on this opportunity to provide a series of novel insights on the quantitative

spatio-temporal patterns characterizing human mobility. These studies observe that

human mobility is characterized by a stunning heterogeneity of travel patterns, i.e.,

a heavy tail distribution in trip distances (Brockmann et al. 2006; González et al.

2008) and the characteristic distance traveled by individuals, the so-called radius of

gyration (González et al. 2008; Pappalardo et al. 2015b). Moreover human mobility is

characterized by a high degree of predictability (Eagle and Pentland 2009; Song et al.

2010b), a strong tendency to spend most of the time in a few locations (Song et al.

2010a), and a propensity to visit specific locations at specific times (Jiang et al. 2012;

Rinzivillo et al. 2014).

Building upon the above findings, many generative algorithms of human mobility

have been proposed which try to reproduce the characteristic properties of human

mobility trajectories (Karamshuk et al. 2011; Barbosa-Filho et al. 2017). The goal

of generative algorithms of human mobility is to create a population of agents whose

mobility patterns are statistically indistinguishable from those of real individuals. Typ-
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ically each generative algorithm focuses on just a few properties of human mobility.

A class of algorithms aims to realistically represent spatial properties: they are mainly

concerned with reproducing the trip distance distribution (Brockmann et al. 2006;

González et al. 2008) or the visitation frequency to a set of preferred locations (Song

et al. 2010a; Pappalardo et al. 2015b). Another class of algorithms focus on the accu-

rate representation of the time-varying behavior of individuals, relying on detailed

schedules of human activities (Jiang et al. 2012; Rinzivillo et al. 2014). However, the

major challenge for generative algorithms lies in the creation of realistic temporal

patterns, in which various temporal statistics observed empirically are simultaneously

reproduced, including the number and sequence of visited locations together with the

time and duration of the visits. In particular, the biggest hurdle consists in the simulta-

neous description of an individual’s routine and sporadic mobility patterns. Currently

there is no algorithm able to reproduce the individuals’ recurrent or quasi-periodic

daily schedules, and at the same time to allow for the possibility that individuals may

break the routine and modify their habits during periods of unpredictability of variable

duration.

In this work we present Ditras (DIary-based TRAjectory Simulator), a framework

to simulate the spatio-temporal patterns of human mobility. The key idea of Ditras is

to separate the temporal characteristics of human mobility from its spatial character-

istics. In order to do that, Ditras operates in two steps. First, it generates a mobility

diary using a diary generator. A mobility diary captures the temporal patterns of human

mobility by specifying the arrival time and the time spent in each location visited by

the individual. A diary generator is an algorithm which generates a mobility diary for

an individual given a diary length. In this paper we propose a data-driven algorithm

called Mobility Diary Learner (MDL) which is able to infer from real mobility data a

diary generator, MD, represented as a Markov model. The Markov model captures the

propensity of individuals to follow quasi-periodic daily schedules as well as to break

the routine and modify their mobility habits.

Second, Ditras transforms the mobility diary into a mobility trajectory by using

proper mechanisms for the exploration of locations on the mobility space, so capturing

the spatial patterns of human movements. The trajectory generator we propose, d-EPR,

is based on previous research by the authors (Pappalardo et al. 2015b, 2016a) and

embeds mechanisms to explore new locations and return to already visited locations.

The exploration phase takes into account both the distance between locations and

their relevance on the mobility space, though taking into account the underlying urban

structure and the distribution of population density.

We instantiate Ditras with the proposed diary and trajectory generators and com-

pare it with nation-wide mobile phone data, region-wide GPS vehicular data and

synthetic trajectories produced by other generative algorithms on a set of nine dif-

ferent standard mobility measures. We show that d-EPR MD, a generative algorithm

created by combining diary generator MD with trajectory generator d-EPR, simu-

lates the spatio-temporal properties of human mobility in a realistic manner, typically

reproducing the mobility patterns of real individuals better than the other considered

algorithms. Moreover, we show that the distribution of standard mobility measures

can be accurately reproduced only by modelling both the spatial and the temporal

aspects of human mobility. In other words, the spatial mechanisms and the temporal
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mechanisms have to be modeled together by proper diary and trajectory generators in

order to reproduce the observed human mobility patterns in an accurate way. The gen-

erative algorithm we propose, d-EPR MD, captures both the spatial and the temporal

dimensions of human mobility and is a useful tool to develop more reliable protocols

for ad hoc networks as well as to perform realistic simulation and what-if scenarios

in urban contexts. In summary this paper provides the following novel contributions:

– the modeling framework Ditras which allows for the combinations of different

spatial and temporal mechanisms of human mobility and whose code is freely

available (https://github.com/jonpappalord/DITRAS);

– the data-driven algorithm MDL to construct from real mobility data a diary gen-

erator (MD) which is realistic in reproducing the temporal patterns of human

mobility;

– a comparison of existing algorithms as well as algorithms resulting from novel

combinations of temporal and spatial mechanisms, on a set of nine mobility mea-

sures and two large-scale mobility datasets.

Our modeling framework goes towards a comprehensive approach which combines a

network science perspective and a data mining perspective to improve the accuracy

and the realism of human mobility models.

This paper is organized as follows. Section 2 revises the relevant literature on human

mobility modelling. In Sect. 3 we present the structure of the Ditras framework.

Section 4 describes the first step of Ditras, the generation of the mobility diary,

and in Sect. 4.1 we describe the mobility diary learner MDL and the Markov model.

Section 5 describes the second step of Ditras, the generation of the mobility trajectory,

and in Sect. 5.1 we propose a trajectory generator called d-EPR. Section 6 shows the

comparison between an instantiation of Ditras with the proposed diary and trajectory

generators with real trajectory data and the trajectories produced by other generative

algorithms. In Sect. 6.4 we discuss the obtained results and, finally, Sect. 7 concludes

the paper.

2 Related work

All the main studies in human mobility document a stunning heterogeneity of human

travel patterns that coexists with a high degree of predictability: individuals exhibit a

broad spectrum of mobility ranges while repeating daily schedules dictated by routine

(Giannotti et al. 2013). Brockmann et al. study the scaling laws of human mobility by

observing the circulation of bank notes in United States, finding that travel distances

of bank notes follow a power-law behavior (Brockmann et al. 2006). González et al.

analyze a nation-wide mobile phone dataset and find a large heterogeneity in human

mobility ranges (González et al. 2008): (i) travel distances of individuals follow a

power-law behavior, confirming the results by Brockmann et al.; (ii) the radius of

gyration of individuals, i.e., their characteristic traveled distance, follows a power-

law behavior with an exponential cutoff. Song et al. observe on mobile phone data

that individuals are characterized by a power-law behavior in waiting times, i.e., the

time between a displacement and the next displacement by an individual (Song et al.
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2010a). Pappalardo et al. find the same mobility patterns on a dataset storing the

GPS traces of 150,000 private vehicles traveling during one month in Tuscany, Italy

(Pappalardo et al. 2013b). Song et al. study the entropy of individuals’ movements and

find a high predictability in human mobility, with a distribution of users’ predictability

peaked at approximately 93% and having a lower cutoff at 80% (Song et al. 2010b).

Pappalardo et al. analyze mobile phone data and GPS tracks from private vehicles and

discover that individuals split into two profiles, returners and explorers, with distinct

mobility and geographical patterns (Pappalardo et al. 2015b). Several studies focus

on the prediction of the kind of activity associated to individuals’ trips on the only

basis of the observed displacements (Liao et al. 2007; Jiang et al. 2012; Rinzivillo

et al. 2014), and to discover geographic borders according to recurrent trips of private

vehicles (Rinzivillo et al. 2012; Thiemann et al. 2010), or to predict the formation of

social ties (Cho et al. 2011; Wang et al. 2011). Other works demonstrate the connection

between human mobility and social networks, highlighting that friendships and other

types of social relations are significant drivers of human movements (Brown et al.

2013b; Hristova et al. 2016; Wang et al. 2011; Volkovich et al. 2012; Brown et al.

2013a; Hossmann et al. 2011a, b).

How to combine the discovered patterns to create a generative algorithm that repro-

duces the salient aspects of human mobility is an open task. This task is particularly

challenging because generative algorithms should be as simple, scalable and flexible

as possible, since they are generally purposed to large-scale simulation and what-if

analysis. In the literature many generative algorithms have been proposed so far to

model individual human mobility patterns (Karamshuk et al. 2011; Barbosa-Filho

et al. 2017).

Some algorithms try to reproduce the heterogeneity of individual human mobility

and simulate how individuals visits locations. ORBIT (Ghosh et al. 2005) is an exam-

ple of such algorithms. It splits into two phases: (i) at the beginning of the simulation it

generates a predefined set of locations on a bi-dimensional space; (ii) then every syn-

thetic individual selects a subset of these locations and moves between them according

to a Markov chain. In the Markov chain every state represents a specific location in the

scenario and proper probability of transitions guarantee a realistic distribution of loca-

tion frequencies. SLAW (Self-similar Least-Action Walk) produces mobility traces

having specific statistical features observed on human mobility data, namely power-

law waiting times and travel distances with a heavy-tail distribution (Lee et al. 2012,

2009). In a first step SLAW generates a set of locations on a bi-dimensional space so

that the distance among them features a heavy-tailed distribution. Then, a synthetic

individual starts a trip by randomly choosing a location as starting point and making

movement decisions based on the LATP (Least-Action Trip Planning) algorithm. In

LATP every location has a probability to be chosen as next location that decreases with

the power-law of the distance to the synthetic individual’s current location. SLAW is

used in several studies of networking and human mobility modelling and is the base

for other generative algorithms for human mobility, such as SMOOTH (Munjal et al.

2011), MSLAW (Schwamborn and Aschenbruck 2013) and TP (Solmaz et al. 2015,

2012).

Small World In Motion (SWIM) is based on the concept of location preference

(Kosta et al. 2010). First, each synthetic individual is assigned to a home location,
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which is chosen uniformly at random on a bi-dimensional space. Then the synthetic

individual selects a destination for the next move depending of the weight of each

location, which grows with the popularity of the location and decreases with the dis-

tance from the home location. The popularity of a location depends on a collective

preference calculated as the number of other people encountered the last time the

synthetic individual visited the location. Another category of generative algorithms

combine notions about the sociality of individuals with mobility patterns to define

socio-mobility models, demonstrating how they can be exploited to design more real-

istic protocols for ad hoc and opportunistic networks (Borrel et al. 2009; Yang et al.

2010; Fischer et al. 2010; Boldrini and Passarella 2010; Musolesi and Mascolo 2007).

In contrast with many generative algorithms of human mobility, the Exploration

and Preferential Return (EPR) model does not fix in advance the number of visited

locations on a bi-dimensional space but let them emerge spontaneously (Song et al.

2010a). The model exploits two basic mechanisms that together describe human mobil-

ity: exploration and preferential return. Exploration is a random walk process with a

truncated power-law jump size distribution (Song et al. 2010a). Preferential return

reproduces the propensity of humans to return to the locations they visited frequently

before (González et al. 2008). A synthetic individual in the model selects between

these two mechanisms: with a given probability the synthetic individual returns to

one of the previously visited places, with the preference for a location proportional

to the frequency of the individual’s previous visits. With complementary probability

the synthetic individual moves to a new location, whose distance from the current one

is chosen from the truncated power-law distribution of travel distances as measured

on empirical data (González et al. 2008). The probability to explore decreases as the

number of visited locations increases and, as a result, the model has a warmup period

of greedy exploration, while in the long run individuals mainly move around a set

of previously visited places. Recently the EPR model has been improved in different

directions, such as by adding information about the recency of location visits during

the preferential return step (Barbosa et al. 2015), or adding a preferential exploration

step to account for the collective preference for locations and the returners and explor-

ers dichotomy, as the authors of this paper have done in previous research by defining

the d-EPR model (Pappalardo et al. 2015b, 2016a). It is worth noting that although

the algorithms described above are able to reproduce accurately the heterogeneity of

mobility patterns, none of them can reproduce realistic temporal patterns of human

movements.

Recent research on human mobility show that individuals are characterized by a

high regularity and the tendency to come back to the same few locations over and over

at specific times (González et al. 2008; Pappalardo et al. 2013b). Temporal models

focus on these temporal patterns and try to reproduce accurately human daily activ-

ities, schedules and regularities. Zheng et al. (Zheng et al. 2010) use data from a

national survey in the US to extract realistic distribution of address type, activity type,

visiting time and population heterogeneity in terms of occupation. They first describe

streets and avenues on a bi-dimensional space as horizontal and vertical lines with

random length, and then use the Dijkstra’s algorithm to find the shortest path between

two activities taking into account different speed limits assigned to each street. WDM

(Working Day Movement) distinguishes between inter-building and intra-building
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movements (Ekman et al. 2008). It consists of several submodels to describe mobility

in home, office, evening and different transportation means. For example a home model

reproduces a sojourn in a particular point of a home location while an office model

reproduces a star-like trajectory pattern around the desk of an individual at specific

coordinates inside an office building. Although Zheng et al.’s algorithm and WDM

provide an extremely thorough representations of human movements in particular sce-

narios, they suffer two main drawbacks: (i) they represent specific scenarios and their

applicability to other scenarios is not guaranteed; (ii) they are too complex for ana-

lytical tractability; (iii) they generally fail in capturing some global mobility patterns

observed in individual human mobility, e.g., the distribution of radius of gyration. A

recent study (McInerney et al. 2013) proposes methods to identify and predict depar-

tures from routine in individual mobility using information-theoretic metrics, such

as the instantaneous entropy, and developing a Bayesian framework that explicitly

models the tendency of individuals to break from routine.

Position of our work. From the literature it clearly emerges that existing generative

algorithms for human mobility are not able to accurately capture at the same time the

heterogeneity of human travel patterns and the temporal regularity of human move-

ments. On the one hand exploration models accurately reproduce the heterogeneity

of human mobility but do not account for regularities in human temporal patterns.

On the other hand temporal models accurately reproduce human mobility schedules

paying the price in complexity, but fail in capturing some important global mobility

patterns observed in human mobility. In this paper we try to fill this gap and propose

d-EPR MD, a scalable generative algorithm that creates synthetic individual trajecto-

ries able to capture both the heterogeneity of human mobility and the regularity of

human movements. Despite its great flexibility, d-EPR MD is to a large extent analyti-

cally tractable and several statistics about the visits to routine and non-routine locations

can be derived mathematically. In fact, since the temporal mechanism of d-EPR MD is

based on a Markov chain, using standard results in probability theory one can compute

various quantities, including the probability to go between any two states in a given

number of steps, the average number of visits to a state before visiting another state,

the average time to go from one state to another and the probability to visit one state

before another. Moreover the spatial mechanism of d-EPR MD is based on the EPR

model for which various analytical results, such as the distributions of the radii of

gyration and of the location frequencies, have been derived (Song et al. 2010a). The

data-driven algorithm MDL (Mobility Diary Learner), is another novel contribution

of this paper. MDL infers from real mobility data a diary generator for realistic mobil-

ity diaries. It is highly adaptive and can be applied to different geographic areas and

different types of mobility data.

The modelling framework we propose, Ditras, can generate synthetic mobility

trajectories and can be easily integrated in transportation forecast models to infer trip

demand. Our approach has some similarity with activity-based models (Bellemans

et al. 2010), as they both aim to estimate trip demand by reproducing realistic indi-

vidual temporal patterns, however there are important differences between the two

approaches. In fact, while the goal of activity-based models is to produce detailed

agendas filled with activities performed by the agents and are calibrated on surveys
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with a limited number of participants, our framework produces mobility diaries con-

taining the time and duration of the visits in the various locations without explicitly

specifying the type of activity performed there, and is calibrated on a large population

of mobile phone users.

A recent paper introduces TimeGeo, a modelling framework to generate a popula-

tion of synthetic agents with realistic spatio-temporal trajectories (Yang et al. 2016).

Similarly to the modelling framework presented here, TimeGeo combines a Markov

model to generate temporal patterns with the correct periodicity and duration of visits,

with a model to reproduce spatial patterns with the characteristic number of visits and

distribution of distances. Albeit having similar aims, there are important differences

between our modelling approach and TimeGeo’s. In fact, while TimeGeo proposes a

parsimonious model which is based on few tunable parameters and is to some extent

analytically tractable, the approach proposed in this paper is markedly data driven

and parameter-free, with a greater level of complexity which ensures the necessary

flexibility to reproduce realistic temporal patterns.

3 The DITRAS modelling framework

Ditras is a modelling framework to simulate the spatio-temporal patterns of human

mobility in a realistic way.1 The key idea of Ditras is to separate the temporal char-

acteristics of human mobility from its spatial characteristics. For this reason, Ditras

consists of two main phases (Fig. 1): first, it generates a mobility diary which captures

the temporal patterns of human mobility; second it transforms the mobility diary into a

sampled mobility trajectory which captures the spatial patterns of human movements.

In this section we define the main concepts which constitute the mechanism of Ditras.

The output of a Ditras simulation is a sampled mobility trajectory for a synthetic

individual. A mobility trajectory describes the movement of an object as a sequence

of time-stamped locations. The location is described by two coordinates, usually a

latitude-longitude pair or ordinary Cartesian coordinates, as formally stated by the

following definition:

Definition 1 (Mobility trajectory) A mobility trajectory is a sequence of triples T =

〈(x1, y1, t1), . . . , (xn, yn, tn)〉, where ti (i = 1, . . . , n) is a timestamp, ∀1≤i<n ti <

ti+1 and xi , yi are coordinates on a bi-dimensional space.

For modelling purposes it is convenient to define a sampled mobility trajectory, S(t),

which can be obtained by sampling the mobility trajectory at regular time intervals of

length t seconds:

Definition 2 (Sampled mobility trajectory) A sampled mobility trajectory is a

sequence S(t) = 〈l1, . . . , lN 〉, where li (i = 1, . . . , N ) is the geographic location

where the individual spent the majority of time during time slot i , i.e., between (i −1)t

and t i seconds from the first observation. N is the total number of time slots considered.

A location li is described by coordinates on a bi-dimensional space.

1 The Python code of Ditras is freely available for download on a public GitHub repository: https://github.

com/jonpappalord/DITRAS
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Fig. 1 Outline of the DITRAS framework. Ditras combines two probabilistic models: a diary generator

(e.g., MD(t)) and trajectory generator (e.g., d-EPR). The diary generator uses a typical diary W (t) to produce

a mobility diary D. The mobility diary D is the input of the trajectory generator together with a weighted

spatial tessellation of the territory L . From D and L the trajectory generator produces a sampled mobility

trajectory S

To generate a sampled mobility trajectory Ditras exploits two probabilistic models:

a diary generator and a trajectory generator (see Fig. 1). In this paper we propose as

diary generator MD(t), a Markov model responsible for reproducing realistic temporal

mobility patterns, such as the distribution of the number of trips per day and the

tendency of individuals to change location at specific hours of the day (González

et al. 2008; Jiang et al. 2012). Essentially, MD(t) captures the tendency of individuals

to follow or break a temporal routine at specific times. As trajectory generator we

propose the d-EPR generative model (Pappalardo et al. 2015b, 2016a), which is able

to reproduce realistic spatial mobility patterns, such as the heavy-tail distributions of

trip distances (Brockmann et al. 2006; González et al. 2008; Pappalardo et al. 2013b)

and radii of gyration (González et al. 2008; Pappalardo et al. 2013b, 2015b), as well

as the characteristic visitation patterns, such as the uneven distribution of time spent

in the various locations (Song et al. 2010a; Pappalardo et al. 2013b). d-EPR embeds

a mechanism to choose a location to visit on a bi-dimensional space given the current

location, the spatial distances between locations and the relevance of each location.

Figure 1 provides an outline of Ditras and Algorithm 1 describes its pseudocode.

Ditras is composed of two main steps. During the first step, the diary generator builds

a mobility diary D of N time slots, each of duration t . The operation of this step is

described in detail in Sect. 4. During the second step, Ditras uses the trajectory gen-

erator and a given spatial tessellation L to transform the mobility diary into a sampled

mobility trajectory. We describe in detail the second step of Ditras in Sect. 5. Note
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The DITRAS framework

input : L = {(l1, r1), . . . , (ln , rn)}, weighted spatial tessellation

G, diary generator

N , length of trajectory to generate

W , typical diary

output: S = 〈(x1, y1, t1), . . . , (xn , yn , tn)〉, sampled mobility trajectory of length N

1 D = generateMobilityDiary(G, N ) // use the diary generator DG to create a

mobility diary D of length N

2 S = generateMobilityTrajectory(D, L , W ) // scan the mobility diary D and create

a sample mobility trajectory S of length N

3 return S

1 Function generateMobilityTrajectory(D, L, W)

2 S = newList ()

3 t = 1

4 Wm = assignLocationsTo(W ) // assign a physical location to every abstract

location in typical diary W

5 while d < length(D) do

6 // scan the mobility diary D

7 if D[d] = | then

8 // when it sees a separator ‘|’

9 d = d + 1

10 continue

11 end

12 if D[d] = 0 then

13 // the individual follows the routine (i.e., she visits a typical

location)

14 S.append((Wm [t], t))

15 t = t + 1

16 end

17 else

18 // the individual breaks the routine

19 l = TG(S, P) // call the trajectory generator TG to obtain the next

location to visit

20 S.append((l, t))

21 t = t + 1

22 j = d + 1

23 while D[d] = D[ j] do

24 // stay in location l until the next separator appears

25 S.append((l, t))

26 t = t + 1

27 j = j + 1

28 end

29 d = j − 1

30 end

31 d = d + 1

32 end

33 return S

Algorithm 1: The algorithm describing the Ditras framework. Python code is

freely available at https://github.com/jonpappalord/DITRAS.
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that the two-step process described above is a general framework common to many

generative models of human mobility, which are often composed by two sequential

parts, the first generating temporal patterns and the second determining the spatial

trajectory. However, in some models the division between the temporal and the spatial

mechanisms is present but not explicitly acknowledged.

In Sect. 6 we will instantiate Ditras by using MD(t) and d-EPR and compare it

with other generative models obtained combining diary generators (first step) with

trajectory generators (second step).

4 Step 1: Generation of mobility diary

A diary generator G produces a mobility diary, D(t), containing the sequence of trips

made by a synthetic individual during a time period divided in time slots of t seconds.

For example, G(3600) and G(60) produce mobility diaries with temporal resolutions of

one hour and one minute, respectively. In Sect. 4.1 we illustrate a data-driven algorithm

to construct a diary generator, MD(t), using real mobility trajectory data such as mobile

phone data.

To separate the temporal patterns from the spatial ones, we define the abstract

mobility trajectory, A(t), which contains the time ordered list of the “abstract loca-

tions” visited by a synthetic individual during a period divided in time slots of t

seconds. An abstract location uniquely identifies a place where the individual is sta-

tionary, like home or the workplace, but it does not contain any information on the

specific geographic position of the location (i.e., its coordinates). The abstract mobility

trajectory is thus equivalent to the sampled mobility trajectory where the geographic

locations, lk , are substituted by placeholders, ak , called abstract locations:

Definition 3 (Abstract mobility trajectory) An abstract mobility trajectory is a

sequence A(t) = 〈a1, . . . , aN 〉, where ai (i = 1, . . . , N ) is the abstract location where

the individual spent the majority of time during time slot i , i.e., between (i − 1)t and

i t seconds from the first observation.

The mobility diary, D(t), is generated with respect to a typical mobility diary, W (t),

which represents the individual’s routine. W (t) is a sequence of time slots of duration t

seconds and specifies the typical and most likely abstract location the individual visits

in every time slot. Here we consider the simplest choice of typical mobility diary, in

which the most likely location where a synthetic individual can be found at any time is

her home location. It is possible to relax this simplifying assumption and estimate an

individual’s typical mobility diary from the data by computing her mobility regularity,

which is the time series of the most visited location in each time slot (Song et al. 2010b).

Computing the weekly mobility regularity of individuals on real large-scale mobile

phone data and GPS vehicular data and performing a clustering of their typical diaries

we find that there is one dominant cluster containing ≈90% of the individuals and

whose representative typical diary has a single location (see “Appendix A”). This result

supports the validity of the simplifying assumption to consider one typical diary with a

single location for all agents. The proposed generative model does not change if there

are two or more typical mobility diaries which have more than one typical location.
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When a synthetic individual is generated it can be randomly assigned to one of the

typical diaries in proportion to the overall frequency of the various diaries among real

users. Then, the rest of the algorithm remains the same.

Definition 4 (Typical mobility diary) A typical mobility diary is a sequence W (t) =

〈w1, . . . , wN 〉 where wk = w ∀k = 1, . . . , N denotes the home location of the

synthetic individual. N is the total number of time slots considered.

The mobility diary, D(t), specifies whether an individual’s abstract mobility trajec-

tory, A(t), follows her typical mobility diary, W (t), or not. In particular, for every time

slot i , D(t)(i) can assume two values:

– D(t)(i) = 1 if A(t)(i) = W (t)(i), meaning that the individual visits the abstract

location W (t)(i) following her routine, i.e., she is at home;

– D(t)(i) = 0 if A(t)(i) �= W (t)(i), meaning that the individual visits a location

other than the abstract location W (t)(i) being out of her routine.

Definition 5 (Mobility Diary) A mobility diary is a sequence D(t) of time slots of

duration t seconds generated by the regular language L = (1+|(0+|)∗)∗, where 1 at

time slot i indicates that the individual visits the abstract location in her typical diary at

time i , W (t)(i), and 0 indicates a visit to a location different from the abstract location

W (t)(i). The symbol “|” indicates a transition or trip between two different abstract

locations.

An example of mobility diary generated by language L is D(t) = 〈11|00|0|1〉.

The first two entries indicate that A(t)(1) = W (t)(1) and A(t)(2) = W (t)(2), i.e., the

individual follows her routine and she is at home. Next, the third, fourth and fifth entries

indicate that A(t)(3) �= W (t)(3), A(t)(4) �= W (t)(4) and A(t)(5) �= W (t)(5), i.e., the

individual breaks the routine and visits a non-typical location for two consecutive

time slots, then she visits a different non-typical location for one time slot. Finally,

the last time slot indicates that A(t)(6) = W (t)(6), the individual follows the routine

and returns home. We assume that the travel time between any two locations is of

negligible duration.

4.1 Mobility diary learner (MDL)

In this section we propose diary generator MD(t) and illustrate MDL (Mobility Diary

Learner), a data-driven algorithm to compute MD from the abstract mobility trajec-

tories of a set of real individuals (Algorithm 2). We use a Markov model to describe

the probability that an individual follows her routine and visits a typical location

at the usual time, or she breaks the routine and visits another location. First, MDL

translates mobility trajectory data of real individuals into abstract mobility trajecto-

ries (Sect. 4.1.1). Second, it uses the obtained abstract trajectory data to compute the

transition probabilities of the Markov model MD(t) (Sect. 4.1.2).

4.1.1 Mobility trajectory data

The construction of MD(t) is based on mobility trajectory data of real individuals.

We assume that raw mobility trajectory data describing the movements of a set of
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MDL (Mobility Diary Learner)

input : D = {T1 , . . . , Tn }, dataset of real trajectories of n agents

t , time slot length

output: G, a Markov chain

1 G = emptyMarkovChain()

2 forall the i ∈ {1, . . . , n} do

3 Ai = createTimeSeries(Ti ) // create abstract trajectory of i

4 G = updateMarkovChain(Ai ) // update the Markov chain using Ai

5 end

6 return G

1 Function updateMarkovChain(A, G)
2 slot = 0

3 while slot < len(A) − 1 do

4 h = slot%24 // hour of the day

5 nexth = (h + 1)%24 // next hour of the day

6 loch = A[slot] // abstract location at the slot

7 loch+1 = A[slot + 1] // abstract location at next slot

8 if loch == 1 then

9 if loch+1 == 1 then

10 // Case 1: loch is typical and loch+1 is typical

11 G[(h, 1), (nexth , 1)] = G[(h, 1), (nexth , 1)] + 1

12 end

13 else

14 // Case 2: loch is typical and loch+1 is not typical

15 τ = 1

16 for j = slot + 2 to len(A) do

17 loc2h = A[ j]
18 if loc2h == loc2h+1 then

19 τ = τ + 1

20 end

21 else

22 break

23 end

24 end

25 hτ = (h + τ)%24

26 G[(h, 1), (hτ , 0)] = G[(h, 1), (hτ , 0)] + 1

27 slot = j − 1

28 end

29 end

30 else

31 if loch+1 == 1 then

32 // Case 3: loch is not typical and loch+1 is typical

33 G[(h, 0), (nexth , 1)] = G[(h, 0), (nexth , 1)] + 1

34 end

35 else

36 // Case 4: both loch and loch+1 are not typical

37 τ = 1

38 for j = slot + 2 to len(A) do

39 loc2h = A[ j]
40 if loc2h == loc2h+1 then

41 τ = τ + 1

42 end

43 else

44 break

45 end

46 hτ = (h + τ)%24

47 G[(h, 0), (hτ , 0)] = G[(h, 0), (hτ , 0)] + 1

48 slot = j − 1

49 end

50 end

51 end

52 slot = slot + 1

53 end

54 G = normalizeMarkovChain(G)

55 return G

Algorithm 2: Algorithm for the construction of the MD generator.
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individuals are in the form 〈(u1, x1, y1, t1), . . . , (un, xn, yn, tn)〉 where ui indicates

the individual who visits location (xi , yi ) at time ti , ∀1≤i<n ti < ti+1.

Mobility trajectory data can be obtained from various sources (e.g., mobile phones,

GPS devices, geosocial networks) and describe the movements of individuals on a

territory. Since the purpose of MD(t) is to capture the temporal patterns regardless

the geographic position of locations, we translate raw mobility trajectory data into

abstract mobility trajectories (see definition in Section 3).

Starting from the raw trajectory data, we assign an abstract location to every time

slot in an individual’s abstract mobility trajectory A(t) according to the following

method. If the individual visits just one location during time slot i , we assign that

location to i . If the individual visits multiple locations during slot i , we choose the

most frequent location in i , i.e., the location where the individual spends most of

the time during the time slot. If there are multiple locations with the same visitation

frequency in time slot i , we choose the location with the highest overall frequency. If

there is no information in the abstract trajectory data about the location visited in time

slot i (e.g., no calls during the time slot in the case of mobile phone data), we assume

no movement and choose the location assigned to time slot i − 1.

To clarify the method let us consider the following example. A mobile phone user

has the following hourly time series of calls: [A, A, •, •, B, (C, C, B, B)], where

A, B, C are placeholders for different cell phone towers (i.e., abstract locations). Here

the symbol • indicates that there is no information in the data about the location

visited during the 1-hour time slot, while all the locations in round brackets are visited

during the same time slot. Using the method described above, the abstract mobility

trajectory of the individual becomes A(3600) = 〈A, A, A, A, B, B〉 because: (i) the

two • symbols in the third and fourth time slots are substituted by location A assuming

no movement with respect to the second time slot; (ii) the location assigned to the last

time slot is B since C and B have the same visitation frequency in (C, C, B, B) but

f (B) > f (C), i.e., B has the highest overall visitation frequency.

It is worth noting that the choice of the duration of the time slot, t , is crucial and

depends on the specific kind of mobility trajectory data used. GPS data from private

vehicles, for example, generally provide accurate information about the location of

the vehicle every few seconds. In this scenario, a time slot duration of one minute can

be a reasonable choice. In contrast when dealing with mobile phone data a time slot

duration of an hour or half an hour is a more reliable choice, since the majority of

individuals have a low call frequency during the day (Pappalardo et al. 2015b).

4.1.2 Markov model transition probabilities

Let Au = 〈a
(u)
0 , . . . , a

(u)
n−1〉 and Wu = 〈w

(u)
0 , . . . , w

(u)
n−1〉 be the abstract mobility

trajectory and the typical mobility diary of individual u ∈ U , where U is the set of all

individuals in the data – we omit the superscript (t) for clarity. Elements a
(u)
h ∈ Au

and w
(u)
h ∈ Wu denote the abstract and the typical locations visited by individual u at

time slot h with h = 0, . . . , N−1.

A state in the Markov model MD is a tuple of two elements s = (h, R). The state’s

first element, h, is the time slot of the time series denoted by an integer between 0
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Table 1 Formulae to compute the transition probabilities of the Markov chain MD from abstract mobility

trajectories

Transition, s → s′ Frequency, MDss′

(h, 1) → (h + 1, 1)

∑

u∈U

∑

a∈Au
δu
h
(a)δu

h+1
(a)

∑

u∈U

∑

a∈Au
δu
h
(a)

(h, 1) → (h + τ, 0)

∑

u∈U

∑

a∈Au
δu
h
(a)[1−δu

h+1
(a)]

∏τ−1
i=1

δ̂u
h+i

(a)[1−δ̂u
h+τ

(a)]
∑

u∈U

∑

a∈Au
δu
h
(a)

(h, 0) → (h + 1, 1)

∑

u∈U

∑

a∈Au
[1−δu

h
(a)]δu

h+1
(a)

∑

u∈U

∑

a∈Au
[1−δu

h
(a)]

(h, 0) → (h + τ, 0)

∑

d∈D [1−δu
h
(a)][1−δu

h+1
(a)][1−δ̂u

h
(a)]

∏τ−1
i=1

δ̂u
h+i

(a)[1−δ̂u
h+τ

(a)]
∑

u∈U

∑

a∈Au
[1−δu

h
(a)]

and N−1. The state’s second element, R, is a boolean variable that is 1 (True) if at

time slot h the individual is in her typical location, w
(u)
h , and 0 (False) otherwise –

just like in the mobility diary. In total there are N × 2 = 2N possible states in the

model. The transition matrix, MD, is a 2N × 2N stochastic matrix whose element

MDss′ corresponds to the conditional probability of a transition from state s to state s′,

MDss′ ≡ p(s′|s). The normalization condition imposes that the sum over all elements

of any row s is equal to 1,
∑

s′ MDss′ = 1,∀s. We consider two types of transitions,

s → s′, depending on whether in state s the individual is in typical location or not:

– if the individual is in the typical location at time slot h, i.e., s = (h, 1), then

she can either go to the next typical location at time slot h + 1, s = (h, 1) →

s′ = (h + 1, 1), or go to a non-typical location and stay there for τ time slots,

s = (h, 1) → s′ = (h + τ, 0);

– if instead the individual is not in the typical location at time slot h, i.e., s = (h, 0),

then she can either go to the typical location at time slot h + 1, s = (h, 0) → s′ =

(h + 1, 1), or go to a different non-typical location and stay there for τ time slots,

s = (h, 0) → s′ = (h + τ, 0).

The formulae to compute the empirical frequencies for the four types of transitions

are shown in Table 1. In the table, δu
x (a) = δ(a

(u)
x , w

(u)
x ), δ̂u

x (a) = δ(a
(u)
x , a

(u)
x+1),

where δ(i, j) = 1 if i = j and 0 otherwise, is the Kronecker delta. By convention,

the product
∏τ−1

i=1 . . . is equal to 1 if τ = 1.

5 Step 2: Generation of sampled mobility trajectory

Starting from the mobility diary D(t), the sampled mobility trajectory S(t) is generated

to describe the movement of a synthetic individual between a set of discrete locations

called weighted spatial tessellation. A weighted spatial tessellation is a partition of a bi-

dimensional space into locations each having a weight corresponding to its relevance.

Definition 6 (Weighted spatial tessellation) A weighted spatial tessellation is a set of

tuples L = {(l1, r1), . . . , (lm, rm)}, where r j ∈ N ( j = 1, . . . , m) is the relevance of a

location and the l j are a set of non-overlapping polygons that cover the bi-dimensional
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space where individuals can move. The location of each polygon is identified by the

coordinates of its centroid, (x j , y j ).

The weighted spatial tessellation indicates the possible physical locations on a

finite bi-dimensional space a synthetic individual can visit during the simulation. The

relevance of a location measures its popularity among real individuals: locations of

high relevance are the ones most frequently visited by the individuals (Pappalardo

et al. 2015b, 2016a). The relevance is introduced to generate synthetic trajectories

that take into account the underlying urban structure. An example of weighted spatial

tessellation is the one defined by a set of mobile phone towers, where the relevance of a

tower can be estimated as the number of calls performed by mobile phone users during

a period of observation, and the polygons correspond to the regions obtained from the

Voronoi partition induced by the towers. If information about location relevance is

not available to the user of the simulator, the distribution of population can be used

to estimate the relevance of the locations. For example, the websites http://sedac.

ciesin.columbia.edu/ and http://www.worldpop.org.uk/ provide a fine-grained spatial

tessellation for the entire globe, together with an estimate of population density in

every location.

First, Ditras assigns to every abstract location in the typical mobility diary W (t) a

physical location on the weighted spatial tessellation L , creating W
(t)
m , a typical mobil-

ity diary where each abstract location has a specific geographic position (Algorithm 1,

line 4, procedure assignLocationsTo). The geographic position of an abstract

location is chosen according to the distribution of location relevance specified in the

spatial tessellation, i.e., the more relevant a location is the more likely it is chosen as

a geographic position of an abstract location. This choice ensures the generation of

synthetic data with a realistic distribution of locations across the territory (Pappalardo

et al. 2016a). Next, Ditras scans D(t) to assign a physical location to every entry. For

every entry D(t)(i) ∈ D(t) we have two possible scenarios:

– D(t)(i) = 1, the entry indicates a visit to a typical location, i.e., the abstract location

in W (t)(i) (Algorithm 1, line 12). In this scenario the synthetic individual visits

location l = W
(t)
m (i) which is added to the sampled trajectory at time slot i , i.e.

S(t)(i) = W
(t)
m (i) (Algorithm 1, lines 14);

– D(t)(i) = 0, the entry indicates a visit to a non-typical location (Algorithm 1,

line 17). In this second scenario Ditras calls the trajectory generator to choose a

location l to visit, where l �= W
(t)
m (i) (Algorithm 1, lines 19). The chosen location

l is added to the sampled mobility trajectory k times, where k is the number of

consecutive 0 characters before the next separator character ‘|’ appears in D(t),

i.e., the total number of time slots spent in location l (Algorithm 1, lines 23-27).

Example of trajectory generation To clarify how the second step of Ditras works

let us consider the following example. A synthetic individual is assigned a mobility

diary D(t) = 〈1|00|1〉 and the chosen typical diary is W (t) = 〈w,w,w,w〉, where w

denotes the individual’s home. To generate a synthetic sampled mobility trajectory S,

Ditras operates as follows. First, Ditras assigns a physical location to the individual’s

home w, generating W
(t)
m = 〈(x1, y1), (x1, y1), (x1, y1), (x1, y1)〉. Next, Ditras starts
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from the first entry D(t)(1). Since D(t)(1) = 1 the synthetic individual is at home.

Therefore, tuple (x1, y1, 1) is added to trajectory S. Next, Ditras processes the second

entry D(t)(2), sees a separator and then proceeds to entry D(t)(3). Since D(t)(3) = 0,

the synthetic individual is not at home in the third time slot. Hence, Ditras calls a

trajectory generator (e.g., d-EPR) which chooses to visit physical location (x2, y2).

Ditras hence adds the tuples (x2, y2, 2) and (x2, y2, 3) to trajectory S, since there two

0 characters until the next separator in D(t). The last entry D(t)(6) = 1 indicates that

the synthetic individual returns home in the fourth time slot. So, Ditras adds tuple

(x1, y1, 4) to trajectory S. At the end of the execution, the sampled mobility trajectory

generated by Ditras is S = 〈(x1, y1, 1), (x2, y2, 2), (x2, y2, 3), (x1, y1, 4)〉.

5.1 The d-EPR model

As trajectory generator we propose the d-EPR individual mobility model (Pappalardo

et al. 2015b, 2016a) that assigns a location on the bi-dimensional space to an entry in

mobility diary D(t). The d-EPR (density-Exploration and Preferential Return) is based

on the evidence that an individual is more likely to visit relevant locations than non-

relevant locations (Pappalardo et al. 2015b, 2016a). For this reason d-EPR incorporates

two competing mechanisms, one driven by an individual force (preferential return)

and the other driven by a collective force (preferential exploration). The intuition

underlying the model can be easily understood: when an individual returns, she is

attracted to previously visited places with a force that depends on the relevance of such

places at an individual level. In contrast, when an individual explores she is attracted to

new places with a force that depends on the relevance of such places at a collective level.

In the preferential exploration phase a synthetic individual selects a new location to

visit depending on both its distance from the current location, as well as its relevance

measured as the collective location’s relevance in the bi-dimensional space. In the

model, hence, the synthetic individual follows a personal preference when returning

and a collective preference when exploring. The d-EPR uses the gravity model (Zipf

1946; Jung et al. 2008; Lenormand et al. 2016) to assign the probability of a trip

between any two locations in L , which automatically constrains individuals within

a territory’s boundaries. The usage of the gravity model is justified by the accuracy

of the gravity model to estimate origin-destination matrices even at the country level

(Erlander and Stewart 1990; Wilson 1969; Simini et al. 2012; Balcan et al. 2009;

Lenormand et al. 2016).

Algorithm 3 describes how d-EPR assigns a location on the bi-dimensional space

defined by a spatial tessellation L for an entry in mobility diary D(t). The d-EPR takes

in input two variables: (i) the current sampled mobility trajectory of the synthetic

individual S = 〈(x1, y1, t1), . . . , (xn, yn, tn)〉; (ii) a probability matrix P indicating,

for every pair of locations i, j ∈ L , i �= j the probability of moving from i to j . Every

probability pi j is computed as:

pi j =
1

Z

rir j

d2
i j

,
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The d-EPR model

input : S = 〈(x1, y1, t1), . . . , (xn , yn , tn)〉, the current sample mobility trajectory of the synthetic individual

P , the gravity-probability matrix

output: j , the next location to visit

ρ = 0.6, γ = 0.21 // distributions’ constants (Pappalardo et al. 2015b, 2016a;

Song et al. 2010a)

1 N = |set (S)| // number of distinct visited locations

2 i = last (S)// the current location of the synthetic individual

3 pnew = getReturnProbability() // generate a probability to return or explore

4 if pnew ≤ ρN−γ then

5 j = PreferentialExploration(i, P) // explore a new location

77 return j

8 end

9 else

10 j = PreferentialReturn(S) // return to a previously visited location

1212 return j

13 end

1 Function PreferentialExploration(i)

2 j = weightedRandom(P[i]) // choose j according to prob.s in P[i]

44 return j

1 Function PreferentialReturn(S)

2 j = weightedRandom(S) // choose j according to visitation frequency of

locations in S

44 return j

Algorithm 3: The psuedo-code of the d-EPR trajectory generator. The function

weightedRandom randomly chooses an element in a vector according to its

probability.

where ri( j) is the relevance of location i( j) as specified in the weighted spatial tes-

sellation L , di j is the geographic distance between i and j , and Z =
∑

i, j �=i pi j is a

normalization constant. The matrix P is computed before the execution of the Ditras

model by using the spatial tessellation L .

With probability pnew = ρN−γ where N is the number of distinct locations in

S and ρ = 0.6, γ = 0.21 are constants (Pappalardo et al. 2015b, 2016a; Song

et al. 2010a), the individual chooses to explore a new location (Algorithm 3, line 5),

otherwise she returns to a previously visited location (Algorithm 3, line 10). If the

individual explores and is in location i , the new location j �= i is selected according to

the probability pi j ∈ P (Algorithm 3, function PreferentialExploration).

If the individual returns to a previously visited location, it is chosen with probability

proportional to the number of her previous visits to that location (Algorithm 3, function

preferentialReturn). The d-EPR model hence returns the chosen location j .

It is worth highlighting the difference between typical locations and preferred loca-

tions. Typical locations indicate places where individuals repeatedly return as part

of their mobility routine. Examples of typical locations are home and work loca-

tions, where individuals regularly return in their everyday routine. Besides typical
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locations, individuals can also return to preferred locations, i.e., places which are not

part of a schematic routine but where people return occasionally, such as cinemas or

restaurants. The preferential return mechanism of d-EPR models the existence of such

preferred locations, allowing the agents to return to previously visited locations with

a probability depending of the past visitation frequency.

6 Results

In this section we show the results of simulation experiments where we instantiate

Ditras by using d-EPR as trajectory generator and MD(t) as diary generator. We

construct MD(t) from nation-wide mobile phone data covering a period of three month

using MDL. We refer to the spatio-temporal model as d-EPR
(CDR)

MD and use it to generate

sampled mobility trajectories of 10,000 agents. We compare the resulting sampled

mobility trajectories with:

– the trajectories of 10,000 mobile phone users whose mobility is tracked during 3

months in a European country;

– the sampled mobility trajectories produced by other 8 spatio-temporal mobility

models created through the Ditras framework by combining different diary and

trajectory generators, whose parameters are fitted on the mobile phone data.

Similarly we instantiate Ditras by using d-EPR and MD(t) constructed on GPS

vehicular tracks covering a period of one month. We refer to the spatio-temporal model

as d-EPR
(GPS)

MD. We use this model to generate sample mobility trajectories of 10,000

agents and compare the resulting sample mobility trajectories with:

– the trajectories of 10,000 private vehicles whose mobility is tracked through on-

board GPS devices during 4 weeks in Tuscany;

– the sampled mobility trajectories produced by other 8 spatio-temporal mobility

models created through the Ditras framework by combining different diary and

trajectory generators, whose parameters are fitted on the GPS vehicular data.

In Sect. 6.1 and in Sect. 6.2 we describe respectively the mobile phone data and

the GPS vehicular data we use in our experiments to describe the mobility of real

individuals and the pre-processing operations we carry out on the data. In Sect. 6.3

we provide a comparison on a set of spatio-temporal mobility patterns of d-EPR
(CDR)

MD’s

trajectories, mobile phone data’s trajectories, and the trajectories produced by the

other models. These simulations are performed by using a weighted spatial tessellation

induced by the mobile phone towers. Analogously, we provide a comparison on a set of

spatio-temporal mobility patterns of d-EPR
(GPS)

MD’s trajectories, GPS data’s trajectories,

and the trajectories produced by the other models. These simulations are performed

by using a weighted spatial tessellation induced by the census cells in Tuscany. All

the simulations are performed using a time slot duration t = 3600s = 1h.
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6.1 CDR data

We have access to a set of Call Detail Records (CDRs) gathered by a European carrier

for billing and operational purposes. The dataset records all the calls made during 11

weeks by ≈1 million anonymized mobile phone users. CDRs collect geographical,

temporal and interaction information on mobile phone use and show an enormous

potential to empirically investigate the structure and dynamics of human mobility on a

society wide scale (Reades et al. 2007; Hidalgo and Rodriguez-Sickert 2008; González

et al. 2008; Jiang et al. 2012; Calabrese et al. 2011; Pappalardo et al. 2015b, a). Each

time an individual makes a call the mobile phone operator registers the connection

between the caller and the callee, the duration of the call and the coordinates of

the phone tower communicating with the phone, allowing to reconstruct the user’s

approximate position. Table 2 illustrates an example of the structure of CDRs.

CDRs have been extensively used in literature to study different aspects of human

mobility, due to several advantages: they provide a means of sampling user locations

at large population scales; they can be retrieved for different countries and geographic

scales given their worldwide diffusion; they provide an objective concept of location,

i.e., the phone tower. Nevertheless, CDR data suffer different types of bias (Ranjan

et al. 2012; Iovan et al. 2013), such as: (i) the position of an individual is known at

the granularity level of phone towers; (ii) the position of an individual is known only

when she makes a phone call; (iii) phone calls are sparse in time, i.e., the time between

consecutive calls follows a heavy tail distribution (González et al. 2008; Barabási

2005). In other words, since individuals are inactive most of their time, CDRs allow

to reconstruct only a subset of an individual’s mobility. Several works in literature

study the bias in CDRs by comparing the mobility patterns observed on CDRs to the

same patterns observed on GPS data (Pappalardo et al. 2013b, 2015b, 2013a, c) or

handover data (data capturing the location of mobile phone users recorded every hour

Table 2 Example of call detail

records (CDRs)
Timestamp Tower Caller Callee

(a)

2007/09/10 23:34 36 4F80460 4F80331

2007/10/10 01:12 36 2B01359 9H80125

2007/10/10 01:43 38 2B19935 6W1199

.

.

.
.
.
.

.

.

.
.
.
.

Tower Latitude Longitude

(b)

36 49.54 3.64

37 48.28 1.258

38 48.22 −1.52

.

.

.
.
.
.

.

.

.

Every time a user makes a call, a

record is created with timestamp,

the phone tower serving the call,

the caller identifier and the

callee identifier (a). For each

tower, the latitude and longitude

coordinates are available to map

the tower on the territory (b)
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or so) (González et al. 2008). The studies agree that the bias in CDRs does not affect

significantly the study of human mobility patterns.

Data preprocessing In order to cope with sparsity in time of CDRs and focus

on individuals with reliable call statistics, we carry out some preprocessing steps.

Firstly, for each individual u we discard all the locations with a visitation frequency

f = ni/N ≤ 0.005, where ni is the number of calls performed by u in location

i and N the total number of calls performed by u during the period of observation

(Schneider et al. 2013; Pappalardo et al. 2015b). This condition checks whether the

location is relevant with respect to the specific call volume of the individual. Since it is

meaningless to analyze the mobility of individuals who do not move, all the individuals

with only one location after the previous filter are discarded. We select only active

individuals with a call frequency threshold of f = N/(h ∗ d) ≥ 0.5 calls per hour,

where N is the total number of calls made by u, h = 24 is the hours in a day and

d = 77 the days in our period of observation. Starting from ≈1 millions users, the

filtering results in 50, 000 active mobile phone users.

Weighted spatial tessellation The weighted spatial tessellation L we use in the

experiments is defined by the mobile phone towers in the CDR data. The relevance

of a phone tower is estimated as the total number of calls served by that tower by the

50,000 active mobile phone users during the 3 months. Every location’s position on

the space is identified by the latitude and longitude coordinates of a phone tower.

6.2 GPS data

The GPS dataset stores information of approximately 9.8 Million different trips from

159,000 private vehicles tracked during one month (May 2011) which passed through

Tuscany (central Italy). The GPS traces are provided by Octo Telematics Italia Srl,2

a company that provides a data collection service for insurance companies. The GPS

device is embedded in the private vehicles’ engine and automatically turns on when the

vehicle starts. The sequence of GPS points that the device transmits every 30 seconds

to the server via a GPRS connection forms the global trajectory of a vehicle. When

the vehicle stops no points are logged nor sent.

We exploit these stops to split the global trajectory into several sub-trajectories,

corresponding to the trips performed by the vehicle. Clearly, the vehicle may have

stops of different duration, corresponding to different activities. To ignore small stops

like gas stations, traffic lights, bring and get activities and so on, we choose a stop

duration threshold of at least 20 minutes: if the time interval between two consecutive

observations of the vehicle is larger than 20 minutes, the first observation is considered

as the end of a trip and the second observation is considered as the start of another trip.

We also performed the extraction of the trips by using different stop duration thresholds

(5, 10, 15, 20, 30, 40 minutes), without finding significant differences in the sample

of short trips and in the statistical analysis we present in the paper. Since GPS data

do not provide explicit information about visited locations, we assign each origin and

destination point of the obtained sub-trajectories to the corresponding census cell,

2 http://www.octotelematics.com/.
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according to the information provided by the Italian National Institute of Statistics

(ISTAT).3 We hence obtain a data format similar to CDR data, where we describe

the movements of a vehicle by the time-ordered list of census cells where the vehicle

stopped. We filter the data by discarding all the vehicles with only one visited location

or with less than one trip per day on average during the period of observation. This

filtering results in a dataset of 46,121 vehicles.

Weighted spatial tessellation The weighted spatial tessellation L we use in the

experiments is defined by the census cells in Tuscany. The relevance of a location is

estimated as the total number of stops in the corresponding cell by the 159,000 private

vehicles during the month of observation. Every location’s position on the space is

identified by the latitude and longitude coordinates of the census cell.

6.3 Models comparison and validation

We use the Ditras framework to build 18 models (9 models fitted on CDRs and 9

models fitted on GPS data) which use different combinations for the diary generator

and the trajectory generator. In particular, we consider three diary generators – MD, RD

and WT – and three trajectory generators – d-EPR, SWIM and LATP. For every model

we simulate the mobility of 10,000 agents for a period of N = 1, 848 hours (3 months)

and N = 744 hours (1 month) for models fitted on CDRs and GPS data respectively.

Tables 3 and 4 show the ability of every model in reproducing a set of characteristic

statistical distributions derived from the CDR and the GPS data respectively, quantified

by two measures: (i) the Root Mean Square Error, RMSE(y, ŷ) =

√

∑n
i=1(ŷi −yi )

2

n
where

ŷi ∈ ŷ indicates a point of the synthetic distribution ŷ, yi ∈ y the corresponding point in

the empirical distribution y and n the number of observations; (ii) the Kullback-Leibler

divergence, KL(y||ŷ) = H(y, ŷ)− H(y), where H(y, ŷ) is the cross entropy between

the real distribution and the empirical distribution and H(y) is the entropy of the real

distribution. Here we use the notation TG DG to specify that trajectory generator TG

is used in combination with diary generator DG. For example, d-EPR MD indicates

the model using diary generator MD in combination with trajectory generator d-EPR.

Notation TG{DG1,..., DGk } indicates the set of models {TG DG1
, …, TG DGk

}. Similarly,

notation {TG1, …, TGk} DG indicates the set of models {TG1
DG, …, TGk

DG}.

Diary generators In the Random Diary (RD) generator a synthetic individual is in

perpetuum motion: in every time slot of the simulation she chooses a new location to

visit. We use RD to highlight the difference between the diary generator we propose,

MD (Sect. 4.1), and the temporal patterns of a non-realistic diary generator.

In the Waiting Time (WT) diary generator a synthetic individual chooses a waiting

time ∆t between a trip and the next one from the empirical distribution P(∆t) ∼

∆t−1−β exp−∆t/τ , with β = 0.8 and τ = 17 hours as measured on CDR data (Song

et al. 2010a). WT is the temporal mechanism usually used in combination with mobility

models like EPR (Song et al. 2010a) and SWIM (Kosta et al. 2010). It reproduces in

a realistic way the distribution of the time between two consecutive trips (Song et al.

3 www.istat.it.
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Table 3 Error of fit between CDR data and synthetic data

CDR ∆r rg Sunc T D ∆t V N f (L)

MD

d-EPR .0001 .0026 .9643 .0061 .0659 .0014 2.6E−5 .0218 .0122

.0006 .0247 29.34 .0101 .0682 .1915 .0016 .5449 .1200

SWIM .0005 – 3.6069 .0062 .0683 .0029 5.6E−5 – .0669

.0067 60.97 .0101 .0808 .4996 .0451 1.2892

LATP .0001 .0061 3.2236 .0062 .0684 .0027 6.3E−5 – .0625

.0008 .3223 258.46 .0101 .0802 .3282 .0600 .9353

RD

d-EPR .0004 .0027 1.1745 .0232 .2098 .0024 4.1E−5 .0235 .0521

.0029 .0161 20.8015 .197 4.3558 .2048 .0191 1.1773 .3876

SWIM .0041 – – .0232 – .0033 7.2E−5 – .0947

.1501 .1974 .3773 .0460 4.4057

LATP .0002 – – .0232 – .0033 4.6E−5 – .0874

.0014 .1974 .6967 .0321 2.2051

WT

d-EPR .0003 .0024 1.1666 .0232 .1790 .0023 4.0E−5 .0224 .0502

.0019 .0130 20.00 .1970 3.9769 .1946 .0189 1.0395 .3537

SWIM .0033 – – .0232 .2036 .0033 1.9E−5 – .0943

.0601 .1975 4.3806 .1146 .0070 3.9605

LATP .0001 – – .0232 .2037 .0033 7.2E−5 – .0866

.0010 .1975 4.5672 .6322 .0309 2.1015

Best model d-EPR d-EPR d-EPR d-EPR d-EPR d-EPR SWIM d-EPR d-EPR

MD WT MD MD MD MD WT MD MD

Every row i is a model and every column j a mobility measure. A cell (i, j) indicates the RMSE (first

row) and the KL divergence (second row) of a synthetic distribution w.r.t. the real distribution. The best

RMSE values are in italic. Symbol—indicates that the synthetic distribution is not comparable with the

real distribution. We highlight in bold the combination of temporal and spatial model leading to the highest

number of Italic cells

2010a; Pappalardo et al. 2013b) but does not model the circadian rhythm and the

tendency of individuals to be in certain places and specific times.

We construct two diary generators, MD (CDR) and MD (GPS), by applying algorithm

MDL (Sect. 4.1) on CDR data and GPS data respectively. These diary generators are

based on Markov models and can reproduce the circadian rhythm of individuals and

their tendency to follow or break the routine.

Trajectory generators The trajectory generator SWIM (Kosta et al. 2010) is a mod-

elling approach based on location preference. The model initially assigns to each

synthetic individual a home location Lh chosen randomly from the spatial tessellation.

The synthetic individual then selects a destination for the next movements depending

on the weight of each location (Kosta et al. 2010):
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Table 4 Error of fit between GPS data and synthetic data

GPS ∆r rg Sunc T D ∆t V N f (L)

MD

d-EPR .0254 .0148 1.9855 .0053 .1334 .0738 .0123 .0113 .0323

.5346 .2850 156.92 .0156 .2992 .7567 .1415 .0411 .2429

SWIM .0229 – 3.8403 .0054 .1232 .0589 .0123 .0319 .0358

.8970 210.87 .0156 .2634 .7321 .1522 1.6923 .4914

LATP .0258 .0225 3.7636 .0054 .1233 .0655 .0178 .0315 .0324

.5968 .9508 151.35 .0157 .2636 .7148 .4639 1.9085 .3811

RD

d-EPR .0031 .0237 – .0231 .0923 .0349 .0042 .0271 .0560

.0420 .9939 .1906 1.2493 .4221 .0360 3.3216 .5258

SWIM .0274 – – .0231 – .2647 .0102 – .0915

1.6628 .1912 1.4443 .0919 3.6641

LATP .0169 – – .0231 – .1599 .0168 – .0899

.1381 .1912 1.1524 .3609 2.9663

WT

d-EPR .0069 .0223 – .0231 .0923 .0291 .0045 .0270 .0530

.0518 .8217 .1906 1.0593 .4369 .0394 2.132 .4623

SWIM .0180 – – .0231 .0923 .1608 .0095 – .0908

.7278 .1912 .9510 1.0941 .0823 3.2346

LATP .0190 – – .0231 .0923 .1027 .0166 – .0890

.1840 .1913 1.0398 .9187 .4282 2.6838

Best model d-EPR d-EPR d-EPR d-EPR SWIM d-EPR SWIM d-EPR d-EPR

RD MD MD MD WT WT WT MD MD

Every row i is a model and every column j a mobility measure. A cell (i, j) indicates the RMSE (first

row) and the KL divergence (second row) of a synthetic distribution w.r.t. the real distribution. The best

RMSE values are in italic. Symbol—indicates that the synthetic distribution is not comparable with the

real distribution. We highlight in bold the combination of temporal and spatial model leading to the highest

number of italic cells

w(L)swim = α ∗ d(Lh, L) + (1 − α) ∗ r(L), α = 0.75 (1)

which grows with the relevance r(L) of the location and decreases with the distance

from the home (Kosta et al. 2010):

d(Lh, L) =
1

(1 + distance(Lh, L))2
.

SWIM tries to model both the preference for short trips and the preference for relevant

locations, though it does not model the preferential return mechanism.

The trajectory generator LATP (Least Action Trip Planning) (Lee et al. 2012, 2009)

is a trip planning algorithm used as exploration mechanism in several mobility models,

such as SLAW (Lee et al. 2012, 2009), SMOOTH (Munjal et al. 2011), MSLAW

(Schwamborn and Aschenbruck 2013) and TP (Solmaz et al. 2015, 2012). In LATP
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a synthetic individual selects the next location to visit according to a weight function

(Lee et al. 2012, 2009):

w(L)latp =
1

distance(c, L)1.5
. (2)

LATP only models the preference for short distances and does not consider the rele-

vance of a location nor model the preferential return mechanism.

We compare the synthetic mobility trajectories of the nine models with CDR trajec-

tories and GPS trajectories on the distributions of several measures capturing salient

characteristics of human mobility. Tables 3 and 4 display the mobility measures we

consider, which are: trip distance ∆r (González et al. 2008; Pappalardo et al. 2013b),

radius of gyration rg (González et al. 2008; Pappalardo et al. 2013b, 2015b), mobility

entropy Sunc (Song et al. 2010b; Eagle and Pentland 2009; Pappalardo et al. 2016b),

location frequency f (L) (Song et al. 2010a; Hasan et al. 2013; Pappalardo et al.

2013b), visits per location V (Pappalardo et al. 2016a), locations per user N (Pap-

palardo et al. 2016a), trips per hour T (González et al. 2008; Pappalardo et al. 2013b),

time of stays ∆t (Song et al. 2010a; Hasan et al. 2013) and trips per day D.

Trip distance The distance of a trip ∆r is the geographical distance between the

trip’s origin and destination locations. We compute the trip distances for every indi-

vidual and then plot the distribution P(∆r) of trip distances in Fig. 2a–c (CDR data)

and Fig. 3a–c (GPS data). Figure 2a compares the distribution of trip distance of CDR

data with the distributions produced by d-EPR
(CDR)

MD, SWIM
(CDR)

MD and LATP
(CDR)

MD. We

observe that d-EPR
(CDR)

MD and LATP
(CDR)

MD are able to reproduce the distribution of P(∆r)

although slightly overestimating long-distance trips. In contrast SWIM
(CDR)

MD cannot

reproduce the shape of the empirical distribution resulting in a RMSE(SWIM
(CDR)

MD)

and KL(SWIM
(CDR)

MD) higher than the other two models (see Table 3). The shape of

the synthetic distributions do not vary significantly by changing the diary generator

(Fig. 2b–c). In other words, the choice of the diary generator does not affect the ability

of the model to capture the distribution P(∆r). This is also evident from Table 3

where the RMSEs and the KLs in the first column vary a little by changing the diary

generator. Model d-EPR
(CDR)

MD produces the best fit with CDR data, as we notef in Fig. 2c

and Table 3. This suggests that modelling preferential return and location preference is

crucial to reproduce P(∆r) as well as the preference for short-distance trips. Although

SWIM embeds a preference for short-distance trips (Eq. 1) the distance is chosen with

respect to the home location Lh leading to an underestimation of short-distance trips

(Fig. 2a–c). Figure 3a–c compares the distribution of trip distance of GPS data with

the distributions produced by the generative algorithms. Results on GPS data con-

firm the observations on CDRs: in contrast with SWIM, d-EPR and LATP are able to

reproduce the distribution of P(∆r), regardless the diary generator. Also in this case,

d-EPR
(GPS)

RD is the model generating the most realistic synthetic data (Table 4).

Radius of gyration The radius of gyration rg is the characteristic distance traveled by

an individual during the period of observation (González et al. 2008; Pappalardo et al.

2013b, 2015b). In detail, rg characterizes the spatial spread of the locations visited by

an individual u from the trajectories’ center of mass (i.e., the weighted mean point of

the locations visited by an individual), defined as:
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CDR

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Distributions of human mobility patterns (CDR). The figure compares the models and CDR data on

trip distance, radius of gyration and mobility entropy. Plots in (a–c) show the distribution of trip distances

P(∆r) for real data (black squares) and data produced by three trajectory generators (d-EPR, SWIM and

LATP) in combination with the MD generator (a), the RD generator (b) and the WT generator (c). Plots in

(d–f) show the distribution of radius of gyration rg , while plots in (g–i) show the distribution of mobility

entropy Sunc

rg =

√

∑

i∈L(u)

pi (li − lcm)2, (3)

where li and lcm are the vectors of coordinates of location i and center of mass,

respectively (González et al. 2008; Pappalardo et al. 2013b, 2015b), L(u) ⊆ L is
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(a) (b) (c)

(d) (e) (f)

(g) (h)

GPS

(i)

Fig. 3 Distributions of human mobility patterns (GPS). The figure compares the models and GPS data on

trip distance, radius of gyration and mobility entropy

the set of locations visited by individual u, pi = ni/|L
(u)| is the individual’s visita-

tion frequency of location li , equal to the number of visits to li divided by the total

number of visits to all locations. In Fig. 2a we observe that d-EPR
(CDR)

MD is the only

model capable of reproducing the shape of P(rg) of CDR data, though overestimating

the presence of large radii (see Fig. 2d). RMSE(d-EPR
(CDR)

MD) for rg is indeed lower

than RMSE(SWIM
(CDR)

MD) and RMSE(LATP
(CDR)

MD) as shown in Table 3. SWIM
(CDR)

MD and

LATP
(CDR)

MD cannot reproduce the shape of P(rg) because rg also depends on the pref-

erential return mechanism (Song et al. 2010a; Pappalardo et al. 2015b) which is not
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modeled in SWIM and LATP. In a previous work (Pappalardo et al. 2016a) we also

show that P(rg) depends on the preferential exploration mechanism of d-EPR since a

version of d-EPR without preferential exploration – the s-EPR model – is not able to

reproduce the shape of P(rg). We also observe that while d-EPR
(CDR)

{MD,RD,WT} produce

similar distributions of rg , SWIM and LATP produce different distributions of rg with

different choices of the diary generator (Fig. 2e, f). The shape of P(rg) for GPS data

is slightly different from the same distribution of CDR data, since short radii are less

likely in GPS due to the nature of car travels (Pappalardo et al. 2013c, b, a). Also for

GPS we observe that, in contrast with LATP and SWIM, d-EPR is the only model that

can reproduce the shape of P(rg). In particular d-EPR
(GPS)

MD produces the best fitting

with GPS data in terms of both RMSE and KL (Table 4).

Mobility entropy The mobility entropy Sunc of an individual u is defined as the Shan-

non entropy of her visited locations (Song et al. 2010b; Eagle and Pentland 2009;

Pappalardo et al. 2016b):

Sunc(u) =

∑

i∈L(u) pi log(pi )

log |L(u)|
, (4)

where pi is the probability that individual u visits location i during the period of

observation and log |L(u)| is a normalization factor. The mobility entropy of an indi-

vidual quantifies the possibility to predict individual’s future whereabouts. Individuals

having a very regular movement pattern possess a mobility entropy close to zero and

their whereabouts are rather predictable. Conversely, individuals with a high mobility

entropy are less predictable.

We observe that the average S
unc

produced by d-EPR
(CDR)

MD data equals the average

S
unc

=0.61 in CDR data, although d-EPR
(CDR)

MD underestimates the variance of distri-

bution P(Sunc) (Fig. 2g). In contrast, SWIM
(CDR)

MD and LATP
(CDR)

MD largely overestimate

S
unc

and underestimate the variance of P(Sunc), resulting in RMSE and KL much

higher than RMSE(d-EPR
(CDR)

MD) and KL(d-EPR
(CDR)

MD), as shown in Table 3. This is

because SWIM and LATP do not model the preferential return mechanism, which

increases the predictability of individuals since they tend to come back to already vis-

ited locations. P(Sunc) is not robust to the choice of diary generator: diary generator

RD and WT make the models to largely overestimate S
unc

(Fig. 2h, i). In particular

SWIM
(CDR)

{RD,WT} and LATP
(CDR)

{RD,WT} produce distributions with S̄unc ≈ 1, indicating that

the typical synthetic individual is much more unpredictable than a typical individual

in CDR data. This makes those distributions not comparable with the distribution of

MD models. Hence, distribution P(Sunc) highly depends on both the choice of the

trajectory generator and the choice of the diary generator. We observe similar results

for GPS data, where only {d-EPR, SWIM, LATP}
(GPS)

MD can reproduce P(Sunc) in rea-

sonable agreement with real data. All the other models produce distributions that are

not comparable with the entropies of private vehicles (Fig. 3g–i).

Location frequency Another important characteristic of an individual’s mobility is

the probability of visiting a location given the location’s rank. The rank of a location
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CDR

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Distributions of human mobility patterns (CDR). The figure compares the models and CDR data on

location frequency, visits per location and locations per users. Plots in (a–c) show the distribution of location

frequency f (L) for d-EPR, SWIM and LATP used in combination with MD, RD and WT respectively. Plots

in (d–f) show the distribution of the number V of visits per location and plots in (g–i) show the distribution

of the number N of distinct visited locations per user

depends on the number of times the individual visits the locations over the period

of observation. For instance, rank 1 represents the most visited location (generally

home place); rank 2 the second most visited location (e.g., work place) and so on. We

compute the frequency of each of these ranked locations for every individual and plot

the distribution of frequencies f (L i ) in Figs. 4a–c (CDR) and 5a–c (GPS). For CDR
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GPS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Distributions of human mobility patterns (GPS). The figure compares the models and GPS data on

location frequency, visits per location and locations per users

data, we observe that d-EPR
(CDR)

MD reproduces the shape of f (L i ) (with RMSE=0.0122

and KL = 0.12) better than SWIM
(CDR)

MD and LATP
(CDR)

MD (which have RMSE = 0.0669,

KL = 1.2892 and RMSE=0.0626, KL = 0.9353 respectively). If we change the diary

generator in the model, d-EPR
(CDR)

{RD,WT} underestimate the frequency of the top-ranked

location and slightly overestimate the frequency of the less visited locations with

respect to CDR data (Fig. 4b, c). A reason for this discrepancy is that RD and WT do

not take into account the circadian rhythm of individuals, hence underestimating the
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number of returns to the most frequent location (usually the home place). In SWIM
(CDR)

MD
and LATP

(CDR)

MD , the absence of a preferential return mechanism produce a more uni-

form distribution of location frequencies (Fig. 4b, c), which is further exacerbated for

SWIM
(CDR)

{RD,WT} and LATP
(CDR)

{RD,WT}. Location frequency f (L i ) is another case where

the choice of the diary generator and the choice of the trajectory generator are both

crucial to reproduce the shape of the distribution in an accurate way. Experiments on

GPS data confirm results observed on CDRs (Fig. 5a–c): model d-EPR
(GPS)

MD produces

the best fit with real data, while changing either the diary or the trajectory generators

produces worse fits.

Visits per location A useful measure to understand how a set of individuals exploit the

mobility space is the number V of overall visits per location, i.e., the total number of

visits by all the individuals in every location during the period of observation. For every

dataset, we compute the number of visits for every location of the weighted spatial

tessellation and plot the distribution P(V ) in Fig. 6d–f (CDR) and Fig. 7d–f (GPS).

As for CDR data, d-EPR
(CDR)

MD produces a P(V ) which follows a heavy tail distribution:

the majority of locations have just one visit while a minority of locations have up to

several thousands visits during the 11 weeks. The value of V of a location depends on

two factors: (i) its relevance in the weighted spatial tessellation; (ii) its position in the

weighted spatial tessellation. The higher the relevance of a location in the weighted

spatial tessellation, the higher is the probability for the location to be visited in the

exploration mechanisms of d-EPR and SWIM. Indeed, from Fig. 6e, f we observe that

d-EPR and SWIM are the models which better fit P(V ). In contrast LATP does not

take into account the relevance of a location during the exploration being unable to cap-

ture the shape of P(V ). Experiments on GPS data substantially confirm these results

(Fig. 7d–f): d-EPR and SWIM generates the most realistic distributions of P(V ).

Locations per user The number Nu of distinct locations visited by an individual during

the period of observation describes the degree of exploration of an individual, i.e., how

the single individuals exploit the mobility space. In Fig. 4g we observe that the MD

models do not capture the shape of P(Nu) in CDR data: the average number of distinct

locations N according to d-EPR
(CDR)

MD is about twice N in CDR data, while SWIM
(CDR)

MD

and LATP
(CDR)

MD produce distributions whose N is more than ten times N in CDR data.

By changing diary generator (Fig. 4h, i) the difference with CDR data becomes even

larger: d-EPR
(CDR)

{RD,WT} produce a much broader variance of P(Nu), SWIM
(CDR)

{RD,WT} and

LATP
(CDR)

{RD,WT} predict a number of distinct visited locations very far from CDR data.

These results suggest that the considered models overestimate the degree of explo-

ration of individuals. In the case of d-EPR
(CDR)

MD the overestimation may depend on

the distribution of time of stays, as the distribution of time stays P(∆t) produced by

d-EPR
(CDR)

MD overestimates the number of short stay times, leading to a larger total num-

ber of visited locations (Fig. 6g). For GPS data, model d-EPR
(GPS)

MD produces a P(N ) that

is more realistic than the other models, as it is evident from Fig. 7g and from Table 4.

Trips per hour Human movements follow the circadian rhythm, i.e., they are preva-

lently stationary during the night and move preferably at specific times of the day
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CDR

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Distributions of human mobility patterns (CDR). The figure compares the models and CDR data on

trips per hour, trips per day and time of stays. Plots in (a–c) show the distribution of the number T of trips

per hour of the day for d-EPR, SWIM and LATP used in combination with MD, RD and WT respectively.

Plots in (d–f) show the distribution of the number D of trips per day, plots in (g–i) show the distribution of

time of stays ∆t

(González et al. 2008; Pappalardo et al. 2013b). To verify whether the considered

models are able to capture this characteristic of human mobility, we compute the

number of trips T made by the individuals at every hour of the period of observation.

Figures 6a–c and 7a–c show how T distribute across the 24 hours of the day, for CDRs

and GPS data respectively. We observe that, regardless the trajectory generator used,
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GPS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Distributions of human mobility patterns (GPS). The figure compares the models and GPS data on

trips per hour, trips per day and time of stays

diary generator MD produces a distribution of trips per hour very similar to real data

(Figs. 6a and 7a). The mobility diary generator MD proposed in Sect. 4 is hence able

to create mobility diaries which reproduce the circadian rhythm of individuals in an

accurate way. In contrast, diary generators RD and WT are not able to capture this

distribution, regardless the trajectory generator used (Figs. 6b, c and 7b, c). This is

because: (i) in RD individuals are always in motion; (ii) WT takes into account the
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waiting times but not the preference of individuals to move at specific times of the

day.

Trips per day The number of trips per day D indicates the tendency of individuals to

travel in their every-day life. For every dataset, we compute the number of trips per

day made by each individual during the period of observation and plot the distribu-

tion P(D) in Fig. 6d–f (CDR) and Fig. 7d–f (GPS). We observe that d-EPR
(CDR, GPS)

MD ,

SWIM
(CDR, GPS)

MD and LATP
(CDR, GPS)

MD are able to capture the shape of P(D) but overestimate

the variance of the distribution (Fig. 6d). The other diary generators, RD and WT, are

not able to reproduce the CDR distribution since the average number D of trips per

day is much higher than CDR data (Fig. 6e, f). Again, this is because in RD individuals

are always in motion and because WT does not take into account the circadian rhythm

of individuals.

Time of stays The distribution of stay times ∆t is another important temporal features

observed in human mobility. Stay time is the amount of time an individual spends at

a particular location. In our experiments we compute the stay time as the number of

hours every individual spends in her visited locations and plot the distribution P(∆t)

in Fig. 4g–i (CDR) and Fig. 5g–i (GPS). We observe that, for both CDRs and GPS

data, d-EPR
(CDR, GPS)

{MD,RD,WT} capture the shape of the distribution while the other models

do not, though overestimating the presence of short time stays.

6.4 Discussion of results

Two main results emerge from our experiments. First, model d-EPR MD produces

sampled mobility trajectories having in general the best fit to both CDR data and GPS

data (i.e., having the lowest RMSE and KL for most of the measures), as evident in

Tables 3 and 4. Diary generator MD, indeed, simulates in a realistic way temporal

human mobility patterns such as the distribution of location frequency (Fig. 4a) and

the distribution of trips per hour (Figs. 6a, 7a). This is mainly because MD reproduces

the circadian rhythm of individuals, while RD and WT do not. Moreover, trajectory

generator d-EPR embeds two mobility mechanisms: preferential return and preferen-

tial exploration. The preferential return mechanism – absent in SWIM and LATP –

allows for a realistic simulation of, for example, the distribution of radius of gyration

(Figs. 2d, 3d) and the distribution of stay times (Fig. 6g). The preferential exploration

mechanism, which is modeled by both d-EPR and SWIM but it is absent in LATP,

allows for a realistic description of the territory exploitation by individuals, in terms

of the distribution of the number of visits per location (Figs. 4d, 5d). Also, model

d-EPR MD produces realistic distributions for both CDR and GPS data, suggesting

that it can be used in different simulation scenarios where its parameters are fitted on

different types of data and different spatio-temporal resolutions.

Second interesting result is that the temporal and the spatial mechanisms have dif-

ferent roles in shaping the distribution of standard mobility measures. Some measures,

such as trip distance (Figs. 2a–c, 3a–c), radius of gyration (Figs. 2d–f, 3d–f), visits

per location (Figs. 4d–f, 5d–f) and time of stays (Fig. 2g–i) mainly depend on the
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choice of the trajectory generator, i.e., on the spatial mechanism of the model. Indeed,

by changing the underlying diary generator the shape of these distribution, the RMSE

and the KL divergence w.r.t. real data do not change in a significant way. Other mea-

sures, such as trips per hour (Figs. 6a–c, 7a–c) and trips per day (Fig. 6d–f) mainly

depend on the choice of the diary generator, i.e., on the temporal mechanism of the

model. Conversely, both the spatial and the temporal mechanism are determinant in

reproducing the distribution of some other measures like mobility entropy (Figs. 2g–i,

3g–i) and locations per user (Figs. 4g–i, 5g–i). Moreover the right combination of

diary and trajectory generator, d-EPR MD, leads to more accurate fits w.r.t. both CDR

data and GPS data for the majority of measures (Tables 3, 4). Human mobility pat-

terns depend on both where people go and when people move: our results show that

to reproduce them in an accurate way we need proper choices for the spatial and the

temporal generative models to use in the Ditras framework.

7 Conclusion and future work

In this paper we propose Ditras, a framework for the generation of individual human

mobility trajectories with realistic spatio-temporal patterns. The framework consists

of two steps: (i) the generation of a mobility diary by using a diary generator; (ii) the

generation of a mobility trajectory by using a trajectory generator. In the paper we

propose a novel diary generator MD together with MDL, a data-driven algorithm to

build it from real mobility data.

We instantiate Ditras by using MD and the state-of-the-art trajectory generator

d-EPR and obtain a novel generative algorithm, d-EPR MD. We use it to generate the

spatio-temporal trajectories of thousands of agents visiting the locations on a large

European country and a region in Italy. The generated sampled mobility trajectories

are compared with CDR data, GPS vehicular data, and the trajectories produced by

other generative algorithms, each obtained by using a different combination of diary

generator and trajectory generator in the Ditras framework. Among the considered

algorithms, d-EPR MD produces the best fit with respect to both CDR data and GPS

data. We also observe that different combinations of diary and trajectory generators

show different abilities to reproduce the distribution of standard mobility measures.

This result highlights the importance of considering both the spatial and temporal

dimensions in human mobility modelling.

The proposed model d-EPR MD has a limited number of parameters to fit. The

generation of the mobility diary is parameter-free as the Markov chain is a non-

parametric model where each element of the transition matrix MD is estimated using

the empirical frequencies observed in the data. The generation of the mobility trajectory

is based on the d-EPR model. The details on how to fit the d-EPR parameters are

explained in detail in (Pappalardo et al. 2015b, 2016a). Here, for the two parameters

of the exploration probability pnew, we choose the values ρ = 0.6 and γ = 0.21 that

have been estimated in previous work (Song et al. 2010a). For the gravity model used

in the exploration phase, we use a power law deterrence function of the distance with

exponent −2, although other types of gravity or intervening opportunities models can

be used. Given that the model is non-parametric or depends on a very small number
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of parameters, it does not suffer from training/test issues and its calibration is quite

robust to changes in the size of the training set.

Applications Given its flexibility, Ditras can be used in a wide range of applications.

Here we provide three examples where Ditras and d-EPR MD can be particularly

useful and profitably applied.

In urban science, the generation of what-if scenarios to imagine the new mobility

that could emerge from the construction of new infrastructures requires the generation

of realistic mobility data and hence the presence of an accurate generative algorithm

(Barbosa-Filho et al. 2017; Kopp et al. 2014). d-EPR MD could be used to generate

synthetic data given the tessellation of the territory that emerges from the construction

of the new infrastructure, allowing urban planners and managers to quantify changes

in urban mobility and visualize preferred path that could emerge from the simula-

tion.

Computational epidemiology has attracted particular attention in the last decade, as

the arrival of the 2009 flu pandemic prompted scientists to develop realistic mobility

models to simulate the spread of viruses on a territory (Merler et al. 2013; Ajelli et al.

2010; Venkatramanan et al. 2017). The possibility to use Ditras to combine different

temporal and spatial mechanisms is particularly valuable for this type of studies, as

generative algorithms for individual human mobility are the basic mechanism used in

computational epidemiology to generate synthetic population mimicking at an indi-

vidual level the realistic aspects related to disease propagation.

Opportunistic Networks (OppNets) enable communications in disconnected envi-

ronments in the absence of an end-to-end path between the sender and the receiver.

In OppNets, the mobility of nodes (e.g., mobile devices such as smartphones and

tables) help the delivery of messages by connecting, asynchronously in time, other-

wise disconnected subnetworks. This means that the network protocols responsible

for finding a route between two disconnected devices must embed patterns in human

movements and make prediction of future encounters. Realistic generative algorithms

for human mobility are fundamental for testing the efficiency of OppNets protocol,

as real data about the functioning of the network is obviously not available during the

protocol design (Tomasini et al. 2017). Ditras can be used to instantiate many gen-

erative algorithms and then generate realistic mobility routines to test the efficiency

of a given network protocol for OppNets. Given its accuracy in reproducing human

mobility patterns, d-EPR MD can be used to uncover the characteristics of the network

protocol in real-life, such as the speed of message delivery.

A possible application of Ditras and d-EPR MD in data mining is anomaly detec-

tion. The proposed model can be used to detect individuals with an anomalous mobility

behavior with respect to the typical mobility patterns of the majority of the individuals.

In particular, within our framework an individual is anomalous if her trajectory is not

a likely outcome of the model, i.e., if the probability that the model would generate

such trajectory is below a given threshold. To this end, the log-likelihood of each indi-

vidual’s trajectory can be computed and the individuals can be ranked according to

their log-likelihood values: individuals with a low rank and a very high log-likelihood

values would be the most typical, whereas individuals with the highest ranks and low

log-likelihood values would be the most anomalous.
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Improvements The instantiation of Ditras we propose, d-EPR MD, can be further

improved in several directions. First, in this work the construction of the diary generator

MD(t) through the mobility diary learner MDL is based on the simplest possible typical

diary W (t), where the most likely location where a synthetic individual can be found at

any time is her home location. More complex typical diaries can be used specifying, for

example, the typical times where an individual can be found at work, school, friends’

home and so on. Such a composition of W (t) can be constructed by using surveys

or generative algorithms describing the daily schedule of human activities (Rinzivillo

et al. 2014; Jiang et al. 2012; Liao et al. 2007) as a way to enrich an individual’s

trajectory with information about the type of activity associated to a location.

Second, in d-EPR the preference for short-distance trips is embedded in the prefer-

ential exploration phase only. A preference for short-distance trips can be introduced

during the preferential return mechanisms as well, in order to eliminate the overesti-

mation of long-distance trips and long-distance radii observed in Figs. 2a and 2d.

Third, in d-EPR MD we make the simplifying assumption that the travel time is of

negligible duration. This may not be a good assumption especially when the duration of

the time slot is one hour or less. The proposed algorithm can be modified to explicitly

include realistic information on the travel time between locations, which imposes

constraints on the locations that are reachable in a given time window and on the

time that can be spent in a location given the travel time needed to reach the next

location in the mobility diary. Moreover, another interesting improvement can be to

map the sampled mobility trajectories to a road network specifying specific road routes

with specific velocities. This mapping would be of great help, for example, in what-if

analysis where we want to study how human mobility changes with the construction

of a new infrastructure in an urban context.

Finally, there is a large number of studies that demonstrate the connection between

human mobility and social networks (Brown et al. 2013b; Hristova et al. 2016; Wang

et al. 2011; Volkovich et al. 2012; Brown et al. 2013a; Hossmann et al. 2011a, b), as

well as several approaches that include information on social connections in human

mobility models (Borrel et al. 2009; Yang et al. 2010; Fischer et al. 2010; Boldrini

and Passarella 2010; Musolesi and Mascolo 2007). A mechanism to account for the

influence of social connections on human mobility can be introduced in DITRAS

as a third phase, between the mobility diary generation and the sampled trajectory

construction.

We leave these improvements of DITRAS for future work.
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Appendix A: Homogeneity of typical mobility diaries

We investigate to what extent the typical mobility diaries of real individuals are homo-

geneous by performing a clustering experiment. For every individual in the GPS dataset

we compute her typical week, i.e. a time series of length 168 hours. Every time slot is

the most frequent location of the individual in that hour of the week. We then apply

the DBSCAN clustering algorithm (Ester et al. 1996) to group the typical weeks in

dense clusters. We use the Levenshtein metric (Navarro 2001) to measure the sim-

ilarity between two typical weeks. DBSCAN takes two input parameters: min Pts

and eps (Ester et al. 1996). We set min Pts = 4 and eps = 70. We estimate the

value of these parameters using the procedure suggested in (Tan et al. 2005): (i) we

fix min Pts = 4 and compute for every typical week the distance d to its 4th nearest

neighbor; (ii) we sort the typical weeks in increasing order with respect to d and set

eps to the distance corresponding to an elbow in the curve of Fig. 8a. We observe no

significant differences in the clustering results by varying min Pts in the range [2, 5].

DBSCAN produces two clusters, one of them consisting of ≈90% of the typical

weeks (Fig. 8b). The silhouette coefficient of the clustering (Rousseeuw 1987), a

measure of how similar a typical diary is to its own cluster compared to other clusters,

is s = 0.50 (in general, s ∈ [−1, 1]). The typical weeks in the biggest cluster have

typically one or two locations, while the representative typical week (i.e., the medoid

of the cluster) consists of just one location, the most frequent location of the individual

(Fig. 8c, d). This result supports the validity of the simplifying assumption to consider

one typical diary with a single location for all agents.

Appendix B: Computational complexity of d-EPR MD

Learning phase. In the learning phase, two main tasks are performed:

(1) the construction of the MD model by the MDL algorithm (Algorithm 2). The pro-

cedure UpdateMarkovChain has computational complexity O(N ), where N

is the number of slots in the period of observation. As we repeat the procedure for

all the n individuals in the dataset, the computational complexity of Algorithm 2

is O(Nn). When n ≫ N , (e.g., when the period of observation is short and the

dataset contains hundreds of thousands of individuals), the factor N is negligible

and the computational complexity of Algorithm 2 can be approximated to O(n).

(2) the construction of the probability matrix P in the d-EPR model, which has

complexity O(L2) where L is the number of locations in the spatial tessellation.

Generation phase. In the generation phase, the generation of the mobility diary with

MD has complexity O(N ). The generation of the trajectory from the mobility diary

has complexity O(L Nn) (Algorithm 3): in the worst case, for each individual we

assign a spatial location in each time slot, and the assignment of a spatial location

requires a call to procedure weightedRandom which has complexity O(L). When

n ≫ N , the computational complexity can be approximated to O(Ln).

The total complexity of the generation phase is hence O(L2 + Ln) when the prob-

ability matrix has to be constructed for the first time. In this case, when L ∼ n the
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(a) (b)

(c) (d)

Fig. 8 First row: a Typical weeks sorted by distance to the 4th nearest neighbor, the elbow suggests to

use eps = 70; b relative size of the clusters resulting from DBSCAN algorithm with min Pts = 4 and

eps = 70 and their relative size. Second row: c Visualization of a day of the typical weeks of 100 individuals

in the GPS dataset for the first cluster. Every color represents a different abstract location in the typical

diary. d Distribution of abstract location entropy and number of distinct abstract locations of time series of

individuals in cluster 1

computational complexity can be approximated to O(L2). If the probability matrix is

already available or has been already computed, the computational complexity of the

generation phase is O(L Nn), which can be approximated to O(Ln) when n ≫ N .
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Solmaz G, Akbaş Mİ, Turgut D (2012) Modeling visitor movement in theme parks. In: 2012 IEEE 37th

conference on local computer networks (LCN). pp 36–43. https://doi.org/10.1109/LCN.2012.6423650

123

https://doi.org/10.1186/1741-7015-11-252
https://doi.org/10.1186/1741-7015-11-252
https://doi.org/10.1145/2068897.2068957
https://doi.org/10.1145/2068897.2068957
https://doi.org/10.1145/1317425.1317433
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/BRICS-CCI-CBIC.2013.116
https://doi.org/10.1109/BigData.2015.7363835
https://doi.org/10.1109/BigData.2015.7363835
https://doi.org/10.1038/ncomms9166
https://doi.org/10.1016/j.procs.2016.04.188
https://doi.org/10.1007/s41060-016-0013-2
https://doi.org/10.1007/s41060-016-0013-2
https://doi.org/10.1145/2412096.2412101
https://doi.org/10.1109/MPRV.2007.53
https://doi.org/10.1007/s13218-012-0181-8
https://doi.org/10.1109/DSAA.2014.7058090
https://doi.org/10.1109/DSAA.2014.7058090
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1098/rsif.2013.0246
https://doi.org/10.1109/MASCOTS.2013.34
https://doi.org/10.1038/nature10856
https://doi.org/10.1109/LCN.2012.6423650


Data-driven generation of spatio-temporal routines 829
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