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Abstract

For epidemic prevention and control, the identification of SARS-CoV-2 subpopulations sharing similar

micro-epidemiological patterns and evolutionary histories is necessary for a more targeted investigation into the links

among COVID-19 outbreaks caused by SARS-CoV-2 with similar genetic backgrounds. Genomic sequencing analysis has

demonstrated the ability to uncover viral genetic diversity. However, an objective analysis is necessary for the identification

of SARS-CoV-2 subpopulations. Herein, we detected all the mutations in 186 682 SARS-CoV-2 isolates. We found that the GC

content of the SARS-CoV-2 genome had evolved to be lower, which may be conducive to viral spread, and the frameshift

mutation was rare in the global population. Next, we encoded the genomic mutations in binary form and used an

unsupervised learning classifier, namely PhenoGraph, to classify this information. Consequently, PhenoGraph successfully

identified 303 SARS-CoV-2 subpopulations, and we found that the PhenoGraph classification was consistent with, but more

detailed and precise than the known GISAID clades (S, L, V, G, GH, GR, GV and O). By the change trend analysis, we found that

the growth rate of SARS-CoV-2 diversity has slowed down significantly. We also analyzed the temporal, spatial and

phylogenetic relationships among the subpopulations and revealed the evolutionary trajectory of SARS-CoV-2 to a certain

extent. Hence, our results provide a better understanding of the patterns and trends in the genomic evolution and

epidemiology of SARS-CoV-2.
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Introduction

Since late 2019, the sudden emergence of severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-

nCoV), which caused the coronavirus disease 2019 (COVID-19)

pandemic, and its subsequent continuing spread have posed

serious threats to both global public health and economic pros-

perity [1]. SARS-CoV-2 is the third highly pathogenic coronavirus

introduced into the human population [2, 3], and it is more

infectious than the previous SARS-CoV at different temperatures

[4]. Due to its high transmissibility and pathogenicity, this novel

coronavirus has rapidly spread worldwide [5]. As of 12 January

2021, more than 88 million cases of COVID-19 and over 1.9

million associated deaths have been reported [6]. Evolutionary

analysis suggests that SARS-CoV-2 has adaptively evolved in

the process of human infection and human-to-human transmis-

sion, which explains its abundant genetic diversity [7, 8]. Hence,

extensive genomic data collection and prompt trend discovery

would play a vital role in global epidemic surveillance and pro-

vide important support for decision-making in the prevention

and control of COVID-19.

Currently, there are more than 235 038 publicly available

complete or near-complete genomic sequences of SARS-CoV-

2 (as of 7 December 2020), and the number continues to grow.

The full length of the SARS-CoV-2 genome is about 30 kb, and

the detailed protein-coding genes in the genome predicted by

ZCURVE_CoV 2.0 can be found at http://tubic.tju.edu.cn/CoVdb

[9]. Its large genome size and high evolutionary rate (a striking

feature of RNA viruses) facilitate easy accumulation of genomic

polymorphisms during epidemic outbreaks [10, 11]. Based on

the growing number of available sequences, genomic epidemi-

ology generates a wealth of information, which may answer

the evolutionary and epidemiological questions, ranging from

global transmission dynamics to genotype/phenotype relation-

ship. There is a need for an objective and robust classification

method to partition and describe the genetic diversity of SARS-

CoV-2, making it possible to capture the COVID-19 pandemic

dynamics and reveal the evolutionary change of its intermediate

stages [12, 13]. At present, there are two main types of clas-

sifications: single nucleotide polymorphism (SNP)-based and

phylogeny-based classifications. The SNP-based classification

is generally simple and straightforward, and it is suitable for

viruses with small-scale pandemic outbreaks (e.g., Ebola virus

[14]), slowly evolving viruses (e.g., John Cunningham virus [15]),

or rapidly evolving viruses with low lineage turnover rates (e.g.,

hepatitis C virus [16]). Chinese lineage [17] and Nextstrain clade

[18] typing are SNP-based classification methods, which pri-

marily depend on marker mutations or mutations with signif-

icant frequency and geographic spread. Hence, it is difficult to

completely resolve the complex genetic diversity of SARS-CoV-

2 [19]. As for the phylogeny-based classification, there are two

main methods, namely the Pangolin lineage [20] and GISAID

cluster [21] typing methods. The Pangolin lineage is defined

based on a set of predefined conditions from a phylogenetic

tree built from 27 767 SARS-CoV-2 genomes, and the GISAID

cluster is informed by the statistical distribution of the distance

calculated from a phylogenetic tree [22], avoiding the arbitrari-

ness of determining the intra/inter-cluster diversity thresholds.

Although the phylogeny-based method provides more detailed

clusters, it has some limitations [23]. For example, the align-

ment used for constructing a phylogenetic tree demands all the

sequences to be continuously homologous, which may lead to

the loss of useful information [23]. However, this is not always

the case, as it is almost impossible to simultaneously align

thousands of complete genomes due to huge computation time

and memory consumption, and a similar problem is also associ-

ated with the construction of a phylogenetic tree. Furthermore,

the phylogeny-based classification relies heavily on the genetic

distance thresholds to define the maximum genetic divergence

among closely related viruses [22]. Even thoughHan et al. defined

genetic distance thresholds based on statistical criteria [22],

it is important to recognize that this approach has statistical

uncertainty [20].

As previously reported, coronaviruses frequently recombine

[24]. So, there are concerns that the classification of SARS-CoV-2

may be affected by recombination events, and the phylogeny-

based classification may not accurately reflect the evolutionary

relationships among clades and/or lineages. It was found that

there was a strong linkage disequilibrium among the polymor-

phic sites, and the clonal pattern of inheritance was not dis-

rupted, which indicated that the recombinant strains of SARS-

CoV-2 were not widespread [25]. Varabyou et al. carried out

a recombination analysis of SARS-CoV-2 sequences collected

before October 2020 (available in the GISAID database), and

identified 225 anomalous genomes of likely recombinant origins

from 87 695 high-quality SARS-CoV-2 genomes with a recom-

binant frequency of only 0.26% [26]. A more recent research

(15 March 2021) has come to a similar conclusion the recom-

bination frequency of SARS-CoV-2 is only about 0.21% based

on 537 000 strains, and the number of circulating recombinant

viruses is much lower, accounting for only <5% of recombinants

[27]. Therefore, the recombination of SARS-CoV-2 is very rare,

which may be mainly caused by the following factors. First, co-

infections rarely occur. Second, recombinant viruses are more

likely to appear in the late stage of infection, hence less likely

to spread after the infection is confirmed. Third, local genetic

diversity remains limited, and the recombination is undetectable

since the genetic material exchanged at the time of recombina-

tion is identical. Considering these facts, even if recombination

may affect the classification of SARS-CoV-2, its effect could be

basically negligible.

In recent years, a wide variety of clustering methods, includ-

ing the supervised and unsupervised methods, have been suc-

cessfully developed for classification. The supervised method

requires training data with associated labels, whereas the unsu-

pervised method does not require the user-assigned training

labels and only uses the inherent structure of data, providing

more objectivity in the classification of species, subspecies, or

quasispecies [28, 29]. PhenoGraph is a top-performing unsu-

pervised tool, which can run efficiently on high-dimensional

data with substantially scaling and process millions of samples

only with modest computational resources [30]. By comparing

PhenoGraph with other cluster methods including the FLOCK

[31], flowMeans [32], SamSPECTRAL [33], Gaussianmixturemod-

eling (GMM) and hierarchical linkage clustering, Levine et al.

found that PhenoGraph displayed superior precision, recall, and

robustness based on benchmark datasets [30]. Liu et al. compared

nine methods based on six independent benchmark datasets,

and found that PhenoGraph performed better than other unsu-

pervised tools in precision, coherence, and stability. In addition,

PhenoGraph is more robust when detecting refined sub-clusters

[34]. Hence, PhenoGraph may be one of the best choices for the

classification of SARS-CoV-2.

As discussed above, PhenoGraph was originally developed

to algorithmically dissect functionally distinct subpopulations

from high-dimensional single-cell data with an accurate classi-

fication rate of up to 99.85% [30]. Although it is frequently used in

data-intensive biological fields, PhenoGraph has not been used
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for genetic data. In this study,we applied the PhenoGraph classi-

fier for the classification of SARS-CoV-2 based on amatrix coded

by the probability of every component in every position of the

genomic sequence, and this binary-coded genomic data would

not result in the loss of useful information. The computational

power of this machine learning-based unsupervised tool makes

it possible to achieve a detailed classification of hundreds of

thousands of SARS-CoV-2 genomes. Further, we integrated the

subpopulations of SARS-CoV-2 with its temporal and spatial dis-

tributions in a genomic epidemiology framework to enhance the

inference of origin and transmission of COVID-19 outbreak. This

provides invaluable information on the evolution and molecular

epidemiology of SARS-CoV-2 in the ongoing pandemic and will

probably play an important role in the surveillance, prediction,

control, and mitigation of COVID-19.

Materials and methods

Data collection and filtering

As of 7 December 2020, 5:00 CST (sequence submission date), 240

781 genomic sequences of SARS-CoV-2 were retrieved from the

Global Initiative on Sharing All Influenza Data (GISAID) EpiCoV

repository (https://www.epicov.org) [35]. A comprehensive table

(Supplementary Table 1) that acknowledges data contributors

was prepared by using the EpiCoV browser of the GISAID. The

genomic sequences of <29 000 bp length, with more than 1%

unknown bases, lacking geographic information, or belonging to

non-human or unknown hosts were excluded, leaving a total of

186 682 sequences for the downstream analysis.

Detection of genetic variation

A custom PERL script was implemented to perform the

alignment of every genome against the Wuhan-Hu-1 reference

genome (EPI_ISL_402125, NC_045512.2) [36] using MAFFT v7.475

[37, 38] and to identify themutations (SNP, INS/DEL). The deletion

and insertion events located at both ends of the sequence,which

may be caused by incomplete assembly, were excluded.

Dissection of population structure

PhenoGraph is a data-driven approach developed for classifying

subpopulations by Levine et al. in 2015 [30]. It is considered one

of the most popular and best methods for the classification

of high-dimensional single-cell RNA-seq data into distinct

subpopulations [34]. Herein, we applied this method to genomic

data to dissect the global population structure of SARS-CoV-2.

To make genomic data suitable for the PhenoGraph method

and make the classification more accurate and reliable, we

encoded the genomic data in a specific manner. To be specific,

we integrated the genetic variations of all the isolates into a large

dimensionality of the resulting data, in which each component

(there were six components, the base A, T, C, G, and the +(INS)

and -(DEL) variations, respectively) of every sample was coded

using a vector (Supplementary Figure 1), and the binary values

0 or 1 stored at each component in every site represented

the absence or presence of this component. Furthermore, to

obtain the final high-dimensional genomic data, we filtered

these vectors with a mutation frequency of less than 0.01%

in the global population because such ultra-low-frequency

variations were very likely to be caused by sequencing errors

or mutations blocking virus propagation. Finally, we used the

t-SNE [39] implemented in R package (Rtsne, version 0.15)

with non-default parameters (pca=FALSE, theta=0.0) to reduce

the high-dimensional genomic data to a two-dimensional

representation, and the distribution of SARS-CoV-2 population

structure was also plotted. We further compared GISAID and

PhenoGraph classifications to estimate the effect of PhenoGraph

classification and reveal their internal relationships.

Phylogenetic and network analyses

To estimate the phylogenetic relationships among subpopula-

tions, we randomly sampled every subpopulation and obtained

100 sample sets representing these subpopulations. For every

sample set, multiple genome alignments were performed using

MAFFT v7.475 [37], and only the SNPs in multiple alignments

were concatenated using a custom Perl script and analyzed

using FastTree v2.1.11 [40] with default settings to construct the

maximum likelihood tree. To fully represent the phylogenetic

relationship of subpopulations, the resulting trees constructed

from 100 sample sets were integrated into a coalescent phyloge-

netic tree using the ASTRAL program [41], which was displayed

along with the relevant information through the Interactive Tree

Of Life (iTOL) v4 [42]. Themedian-joining networks of Network 10

(https://www.fluxus-engineering.com/sharenet.htm) were used

to further estimate the phylogenetic network relationships of

the subpopulations [43, 44], where only the genomic sites with

SNP occurrence frequency≥80% in one or more subpopula-

tions were used to construct the haplotype network between

subpopulations.

Results

Geographical distribution of SARS-CoV-2

We screened 186 682 genomic sequences of the SARS-CoV-2

isolates with definite sources and high integrity from the GISAID

database.We analyzed the distribution of these isolates in differ-

ent countries and regions. As shown in Figure 1, the countries

with the most SARS-CoV-2 isolates in Europe, North America,

Oceania, Asia, South America and Africa were the UK, USA, Aus-

tralia, India, Brazil and South Africa, respectively. In particular,

the number of sequenced SARS-CoV-2 isolates in the United

Kingdom far exceeds that in other countries. In general, this

distribution reflects both the sequencing capacity of the country

and, indirectly, the prevalence of the virus.

Variant statistics

We totally detected 2 451 596 SNPs, 16 997 DELs and 933 INSs in

186 682 SARS-CoV-2 isolates. Then, we investigated the change

in SARS-CoV-2 mutations over time. As shown in Figure 2, the

number of newly emerged mutations and isolates with muta-

tions increased considerably from February to May 2020 (the

first wave of the COVID-19 epidemic). Until October 2020, the

newly emerged mutations became increasingly scarce, but the

number of mutated isolates seemed to grow at an increasing

rate. This indicated that a large number of dominant mutations

occurred, which might make the isolates carrying these muta-

tions more accommodating and diffusible because the number

of isolates carrying those mutations continue to rise sharply.

We also estimated the distribution of mutations over different

genomic regions, finding that the T->C and T->G changes

were far lower than those of C->T and G->T, respectively,

whereas the A->C change was also far lower than that of C->A,

and the difference between A->G and G->A changes was not
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Figure 1. Global distribution of SARS-CoV-2. The number of SARS-CoV-2 isolates present in every country is indicated by color depth.

significant (Supplementary Figure 2a). These changes indicate

that the GC content of the SARS-CoV-2 genome became lower,

and this may be beneficial to its replication because the A-T

and C-G pairs were able to form double and triple hydrogen

bonds, respectively, with the double hydrogen bond being more

easily unwound using less energy than triple hydrogen bonds.

The length of DEL/INS (especially the DEL) that emerged in

the CDS region was primarily concentrated in the multiple of

three (Supplementary Figure 2b) because such mutations did

not cause the frameshift mutation that completely altered the

coding of functional genes, which usually does not have a fatal

effect on SARS-CoV-2. In contrast, the length of DEL/INS in the

non-CDS regions was primarily concentrated in one and two

bases (Supplementary Figure 2b). All the results suggested that

SARS-CoV-2 had selectively evolved under the heredity laws and

the rules of survival of the fittest.

Subpopulations of SARS-CoV-2

Over the course of a few months, SARS-CoV-2 has already

mutated and evolved in a way that facilitates its spread [45].

However, there is currently a lack of objective and robust classifi-

cationmethods for viral genetic diversity below the species level

[20]. Herein, we determined the subpopulations of SARS-CoV-2

using an unsupervised machine learning approach and then

estimated the variation in the number of its subpopulations.

SARS-CoV-2 was classified into 303 subpopulations (Figure 3b).

It can be observed clearly that there is a predominant decreasing

tendency for the increase of the number of subpopulations

as the number of SARS-CoV-2 isolates increased, indicating

that growth rate of SARS-CoV-2 genetic diversity has slowed

down significantly, consistent with the trend of newly emerged

mutations (Figure 2a).

To determine the origin of the subpopulations, we per-

formed statistical analysis on the distribution of SARS-CoV-

2 isolates in every subpopulation across different countries

and assessed the country where each subpopulation first

appeared (Supplementary Figure 3). We found that the first

five subpopulations (S1, S2, S3, S4 and S5, consecutively) with

the largest number of isolates were first found in the UK,

France, China, Australia and the UK, respectively. As shown in

Supplementary Figure 3 and Supplementary Table 2, five coun-

tries with the largest number of newly emerged subpopulation

were the UK, USA, Denmark, Australia, and China, and the

corresponding number was 121, 55, 19, 12 and 12, respectively.

Furthermore, we analyzed the monthly changes in the number

of isolates in each subpopulation in the first 10 months of 2020

and preliminarily determined the monthly changing trend of

isolates in each subpopulation (Supplementary Figure 4). Of

the top 10 subpopulations, S10 was the last to appear. In the

last month (October 2020), S5, S8, S13, S14, S10 and S23 were

the top six subpopulations (Supplementary Figure 4). We also

observed that some subpopulations appeared or disappeared in

the last 2 months. We further estimated the average difference

in mutation frequency between these subpopulations based on

SNPs. As shown in Supplementary Figure 5, there are different

degrees of differences between subpopulations, most of which

are obvious, which reflects their relatedness to a certain extent.

To understand the homogeneity of each subpopulation, the

mutation frequency of each genomic site in these subpop-

ulations is shown in Supplementary Figure 6, from which it

can be observed that there are specific patterns of marker

variants with higher homogeneity for each subpopulation. As

shown in Supplementary Tables 3 and 4, some mutations are

heavily weighted in defining a subpopulation, but there are

also a few mutations present in most of subpopulations such

as C241, C3037, C14408 and A23403 (Supplementary Table 3).
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Figure 2. Time series of SARS-CoV-2mutation. Changing tendency of allmutations (namely, SNPs, INSs andDELs) (a), SNPs (b), INSs (c) andDELs (d) in the first 10months

of 2020. Dotted lines with circles and triangles indicate the cumulative number of newly emerged mutations and isolates with these mutations, respectively.

Figure 3. SARS-CoV-2 subpopulations classified by the PhenoGraph classifier. (a) Change trend of the number of subpopulations with increasing isolates. (b) t-SNE plot

based on the genetic data from mutations. Top 10 subpopulations with the highest number of isolates are marked in red circle.

Therefore,we preliminarily determined the population structure

of SARS-CoV-2 and the changing trend in each subpopulation.

Phylogenetic relationship of subpopulations

By random sampling, phylogenetic analysis, and reconstruc-

tion of the coalescent tree, we determined the evolutionary

relationship among different SARS-CoV-2 subpopulations

(Figure 4), which uncovered a well-structured classification of

the SARS-CoV-2 global population. GISAID has developed a well-

known nomenclature system that defines the clades of SARS-

CoV-2 based on the statistical criteria of PhyCLIP [22]. Hence,

we established a connection between the subpopulations and

GISAID clades based on the classified isolates; we found that the
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PhenoGraph classification was almost consistent with GISAID

classification, except for six subpopulations obviously mixed by

different GISAID clades (Supplementary Figure 7). We further

investigated this inconsistency via hierarchical clustering

analysis and found that the clustering result supported the

PhenoGraph classification (Supplementary Figure 8), indicating

that we obtained a reliable classification of SARS-CoV-2 through

the PhenoGraph classifier.

Next,we directlymatched the subpopulationswith themajor

GISAID clades, and when a subpopulation corresponded to mul-

tiple GISAID clades, the cladewith the highest number of isolates

was matched with such subpopulation. As shown in Figure 4, all

the GISAID clades almost matched the phylogenetic clusters of

SARS-CoV-2 subpopulations, except the G and L clades, which

were split into two different clusters. In fact, GISAID classifi-

cation is not strictly based on phylogenetic relationships, but

relies more on several marker variants, which could be observed

in NextStrain website (https://www.gisaid.org/phylodynamics/

global/nextstrain/) [18]. Furthermore, we found that the division

of major GISAID clades appeared to be challenging, as some

clades (GR, GV and GH) corresponded to the big phylogenetic

clusters but others (G, L, O, S and V) only matched the small

clusters (Figure 4), indicating the limitation of statistical classifi-

cation.We found that the subpopulations with a high number of

isolates were fairly evenly distributed in different phylogenetic

clusters (Figure 4), and the recently emerged subpopulations

were primarily concentrated in the GV clade of GISAID. When

a SARS-CoV-2 subpopulation existed in more than one country,

we considered the country with the most virus isolates in this

subpopulation as its primary country and associated each tree

node to these countries. We found that the UK, USA, Denmark,

Australia, India, and China had the largest number of subpopu-

lations: 173 (GH, 17; G, 23; L, 4; GV, 54; V, 5; GR, 70), 55 (G, 12; L, 1;

GH, 33; GR, 3; S, 6), 20 (GV, 4; G, 5; GH, 5; GR, 6), 11 (O, 1; S, 1; GR, 9),

7 (G, 1; GH, 1; O, 2; GR, 3) and 5 (S, 1;V, 1;L, 2;GR, 1) subpopulations,

respectively.

Phylogenetic network of subpopulations

As reported by Forster et al., the global SARS-CoV-2 population

has formed a clear phylogenetic network as the epidemic

continues to spread on a massive scale [43]. Herein, we

constructed the genealogical relationship of SARS-CoV-2 using

a median-joining network analysis based on 785 SNP sites with

occurrence frequency≥80% in one or more subpopulations

(Supplementary Table 3). The network relationship of 303

subpopulations is illustrated in Figure 5, through which we

can track the spread of pandemics and the evolution of SARS-

CoV-2. From this haplotype network (Figure 5), we observed

many nodes, each of which was a subpopulation, also known

as an outbreak cluster or infection cluster [11]. Overall, these

subpopulations showed a relationship between intra-clade

aggregation and inter-clade association. Consistent with what

the GISAID team had described but with slight differences

(https://www.gisaid.org/references/statements-clarifications/

clade-and-lineage-nomenclature-aids-in-genomic-epidemiolo

gy-of-active-hcov-19-viruses/), our results showed that the S

clade is actually a branch of the L clade (Figure 5a) because the

L clade is located on the torso of median-joining network, but

the S clade is extended from the L clade instead of on the torso

of this network. Along the torso of this haplotype network, the

L clade was divided into two major clades, namely the G and

V clades, and the O clade was actually a branch of the median

vector located between the L and V clades. The G clade was split

into the GR and GH clades, and the GV clade evolved from the GH

clade with a large evolutionary distance. By comparison, we also

found that this haplotype network was highly consistent with

the phylogenetic relationships (Figure 4). Consistent with the

evolutionary sequence reported by the GISAID team (Figure 5a),

the SARS-CoV-2 isolate sampled on 24 December 2019 belonged

to the L clade, and all the subpopulations corresponding to the

GV clade were the latest to appear (Figure 5b). Overall, most of

the surrounding subpopulations in the network are relatively

recent. Figure 5c shows the association of subpopulations with

country in the haplotype network. Therefore, we identified the

temporal, spatial, and phylogenetic relationships among dif-

ferent subpopulations, which would be useful for investigating

the evolutionary and epidemiological dynamics of the global

SARS-CoV-2 population.

Discussion

In the early outbreak, the Global Initiative on Sharing All

Influenza Data (GISAID) followed the definition of SARS-CoV-

2 lineages made by Tang et al. [17] and divided SARS-CoV-2

into two major clades ‘L’ and ‘S’ based on the mutation L84S

in ORF8 protein [21]. For the purpose of consistent reporting,

GISAID further defined the other six major clades (the V, O, G,

GH, GR, and GV) based on marker mutations within the high-

level phylogenetic groupings [46]. In these clades, S and L are

the earliest known clades, and L is the characteristic of the

Wuhan outbreak. V and G clades are descendants of L clade,

and V clade is genetically closely related to L clade. O refers to

other clades designated for virus isolates that do not meet the

clade definition of GISAID [47]. G clade is further split into GH

and GR clade, and the GV clade is evolved from the GH clade.

These clades can split further when they meet the definition of

a new clade. The marker mutations for each clade are provided

in GISAID website, from which we can see that these mutations

used for defining clades are so limited that it is hard to fully

represent the genetic diversity of SARS-CoV-2.

Similar to SARS-CoV, SARS-CoV-2 is an RNA virus character-

ized by a high mutation rate [9]. SARS-CoV-2 frequently adapts

to environmental changes (such as the changes in temperature,

humidity, acidity, atmospheric pressure, UV irradiation, host

genetic background, ionic strength, drug, immunity, etc.) in real

time via random mutations that are subject to natural selection

[48, 49]. Evidence has suggested that one or more mutations are

needed for a virus to cope with a new environmental challenge

or create an adaptive advantage [50]. Previous studies have

shown that certain levels of variation exist between isolates from

different patients and between isolates from different tissues of

the samepatient [51–54]. In a genome-wide analysis of 24 strains,

Xiong et al. found that the virusmutated at a rate similar to those

of other coronaviruses [55]. As this virus is highly infectious [5], it

produces a large number of mutations in the process of human-

to-human infection and transmission [11]. In most cases, the

fate of the emergingmutants is determined by natural selection,

and those that have a competitive advantage in viral replication,

transmission, or immune evasion will spread widely, whereas

unfavorable mutants slowly disappear from the viral population

[56]. In this study, we found that a large number of SARS-CoV-

2 mutants have emerged, and some have circulated widely in

the human population. These widespread mutants usually have

different adaptive advantages, such as immune evasion [57–59],

enhanced replication and transmission [60, 61], and increased

viral entry efficiency [62]. We also found that the genetic

diversity of SARS-CoV-2 is approaching saturation (Figure 2), and
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Figure 4. Maximum-likelihood phylogeny of SARS-CoV-2 subpopulations. Clade refers to eight major clades defined in GISAID; Number is reflected by the log10 value

(number of isolates). Country refers to the country that has the largest number of isolates in corresponding subpopulation. Date corresponds to the earlist sampling

date for each subpopulation, ranging from 24 December 2019 to 05 October 2020.

the population structure has become more stable (Figure 3a).

We found that the GC content of the SARS-CoV-2 genome was

reduced. In fact, AT and GC base pairs in DNA contain two and

three hydrogen bonds respectively, hence less energy is required

to unwind the AT base pair compared to GC base pair [63]. In

addition, lower GC content may also reduce biochemical costs

of GC base synthesis [64]. Hence, the decrease of GC content

may be beneficial to virus replication. In addition, the number of

frameshift mutation is very low, indicating that a drastic change

in the function of any protein would be detrimental to this virus.

Genetic diversity of SARS-CoV-2 would continually grow

as SARS-CoV-2 continues to spread around the world and
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8 Yang et al.

Figure 5. Haplotype network of SARS-CoV-2 inferred with the median-joining method. The torso of network is marked in bold lines, and the size of dots represents

the relative number of SARS-CoV-2 isolates in each subpopulation.

mutate to adopt various environments or hosts [65]. Due

to the continuously expanding diversity, the present GISAID

clades are not sufficient for us to understand the patterns

and determinants of the global COVID-19 pandemic spread.

Hence, it is needed to be improved with detailed lineages

assigned by other tools [21]. The identification of SARS-CoV-2

subpopulations is essential for better characterization of the

genetic diversity and evolutionary trajectory that accompany

its global expansion. Since the outbreak of COVID-19 pandemic,

different studies have classified SARS-CoV-2 population. Tang

et al. classified SARS-CoV-2 into L and S lineages based on two

closely linked SNPs. Forster et al. classified this virus into three

types (A, B and C) based on amino acid mutations. GISAID team

further divided SARS-CoV-2 into eight branches, namely S, L, V,

G, GV, GR, GH and O, based on a series of amino acidmutations in

each phylogenetic branch. Moreover, Nextstrain team classified
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virus isolates withmutations of more than 20% global frequency

as new branches and Rambaut et al. defined different levels

of pedigree according to a set of conditions based on a

phylogenetic framework. Owing to distinct algorithm and focus,

the aforementioned methods have different outcomes. Herein,

we used the PhenoGraph classifier to automatically segment the

genetic data of SARS-CoV-2 isolates into an optimum number

of subpopulations. We used PhenoGraph because it is a graph-

based partitioning method that takes a matrix composed of

genetic data of N viral isolates as input and partitions the

data into genotypically distinct subpopulations by clustering a

weighted graph constructed based on the k-nearest neighbors for

each isolate. PhenoGraph is an effective method for the spatial

organization of mass cytometry and single-cell RNA-sequencing

data [66]. We thought that the graph-based clustering nature

of PhenoGraph would facilitate the identification of genetic

differences among SARS-CoV-2 subpopulations.

Phylogeny-based classification primarily utilizes SNPs in

multiple sequence alignment. Because the deletion mutations

are often present in one or more sequences in sequence

alignment, SNPs in these regions will also be excluded, thus

reducing the available information for this classification. In

this study, we coded each sequence position using a probability

vector with as many numbers of components as possible to

capture more information, in which the component in each

position was composed of six characters, A, C, G, T, −(DEL),

+(INS), and the values stored at each component were 0 or 1

(0 represented the absence, and 1 represented the presence).

Considering that these ultra-low frequency mutations may be

caused by sequencing errors, we filtered out these mutations,

which helped to improve the accuracy of the classification. All

SARS-CoV-2 isolates were grouped into 303 subpopulations.

With the increase in the number of isolates, the number of

subpopulations increased more slowly. By comparison, the

PhenoGraph classification is highly consistent with the clade

of GISAID with little difference. Hierarchical clustering analysis

of obviously inconsistent subpopulations revealed that the

PhenoGraph classification was more reliable and meticulous

than GISAID. Phylogenetic analysis and phylogenetic network

analysis showed that the PhenoGraph classification was well

structured and could be used to improve the GISAID clades. We

also determined the evolutionary relationships of the SARS-CoV-

2 subpopulations and their spatial and temporal distributions.

As discussed above, SARS-CoV-2 already has rich genetic

diversity, in which mutations are its main source, and recom-

bination contributes very little though recombination event

caused by co-infection of a single patient with viral particles

of distinct clades may lead to the emergence of novel lineages

[26]. However, regardless of the origin of the genetic diver-

sity, our classification can accurately determine its refined

subpopulations because our method is designed to dissect

the inner structure of global SARS-CoV-2 population. Based

on our classification, it is possible to capture the local and

global patterns of SARS-CoV-2 genetic diversity in a timely and

coherent manner, and track newly emerging lineages as they

move between regions or human populations. It also involves

but is not limited to the following potential applications [67]:

(1) assist in developing the subpopulation-specific vaccines

according to the structural differences in antigens; (2) contribute

to develop specific tests to characterize whether a COVID-19

patient is caused by imported viruses or by viruses circulating in

the domestic community and (3) identify viral subpopulations

associated with different clinical outcomes in different regions

and patients.

Conclusion

In conclusion, genetic diversification is a key factor in the con-

tinuous global outbreak of COVID-19, affecting epidemic preven-

tion and control. SARS-CoV-2 subpopulations are almost clin-

ically indistinguishable, but they have a molecular genotype

that allows enhanced inference of the time origin and trans-

mission dynamics of disease outbreaks that influences disease

outcomes. The identification of SARS-CoV-2 subpopulations is

of utmost importance for understanding its ongoing evolution

and epidemiology during the pandemic and will possibly play

an important role in surveillance and its eventual mitigation

and control. Although researchers have established some rules

for the genotyping and naming of SARS-CoV-2, different classi-

fication rules have their respective limitations; hence, there are

needs for improvement [19]. In this study, we detected genetic

mutations in 186 682 SARS-CoV-2 isolates. Our results indicated

that the genome of SARS-CoV-2 evolved into a genome with

lower GC content, and its genetic diversity soon approached

saturation; therefore, it is necessary to perform objective clas-

sification. The PhenoGraph classification reported here adopted

an unsupervised learning algorithm to perform an unbiased

cluster analysis of the SARS-CoV-2 population, which has an

advantage over other classifications. In summary, this study

provides comprehensive information on the evolution of SARS-

CoV-2 and objectively distinguishes the subpopulations of global

SARS-CoV-2.

Key Points

• Mutational characteristics reflect the effects of

mutant selection. Our results suggest that the SARS-

CoV-2 genome has evolved into a genome with

lower GC content, which may facilitate rapid mass

reproduction. We also found that the frameshift

mutation was rare because such mutations may deter

SARS-CoV-2 from completing the entire replication

process or from evading natural immunity.
• One major challenge in classifying genetic diversity

below the species level is the inability to accurately

dissect the population structure from its population

divergence. PhenoGraph is a top-performing unsuper-

vised tool for partitioning high-dimensional data into

subpopulations according to the natural structure of

the data. Herein, we first applied this algorithm to the

classification of SARS-CoV-2 and successfully identi-

fied 303 subpopulations that were highly consistent

with GISAID classification, but more objective, reliable

and meticulous.
• SARS-CoV-2 has accumulated many mutations since

the outbreak. Herein, we analyzed the monthly

changes in the cumulative number of newly emerged

mutations and isolates carrying these mutations and

the change in the number of subpopulations with

increasing isolates. Our results suggest that growth

rate of SARS-CoV-2 diversity has slowed down signifi-

cantly.
• Using phylogenetic network and correlation analyses,

we determined the temporal, spatial and phylogenetic

relationships of subpopulations, which was useful

for investigating the evolutionary and epidemiological

dynamics of the global SARS-CoV-2 population.
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Supplementary data

Supplementary data are available online at Briefings in Bioin-

formatics.

Acknowledgements

We would like to thank Prof. Chun-Ting Zhang for the

invaluable assistance and inspiring discussions. We grate-

fully acknowledge the authors from the originating and

submitting laboratories of the genomic sequences from

GISAID’s EpiFlu™ Database on which this research is based.

Funding

The National Key Research and Development Program of

China (grant number 2018YFA0903700); the Guangzhou Key

Laboratory Fund (grant number 201905010004); the National

Natural Science Foundation of China (grant numbers

21621004, 31571358 and 31801104).

References

1. Hartley DM, Perencevich EN. Public health interventions

for COVID-19: emerging evidence and implications for an

evolving public health crisis. JAMA 2020;323(19):1908–9.

2. Jiang RD, Liu MQ, Chen Y, et al. Pathogenesis of SARS-

CoV-2 in transgenic mice expressing human angiotensin-

converting enzyme 2. Cell 2020;182(1):50–8.

3. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of

coronavirus disease 2019 in China. New England J Med

2020;382(18):1708–20.

4. Yan FF, Gao F. Comparison of the binding characteris-

tics of SARS-CoV and SARS-CoV-2 RBDs to ACE2 at dif-

ferent temperatures by MD simulations. Brief Bioinform

2021;22(2):1122–36.

5. Hu B, Guo H, Zhou P, et al.Characteristics of SARS-CoV-2 and

COVID-19. Nat Rev Microbiol 2020;19(3):141–54.

6. WHO. Coronavirus disease (COVID-2019) situation reports.

2021. https://www.who.int/emergencies/diseases/novel-co

ronavirus-2019/situation-reports. (18 January 2021, date

accessed).

7. Benvenuto D,Giovanetti M, SalemiM, et al.The global spread

of 2019-nCoV: a molecular evolutionary analysis. Pathogens

and Global Health 2020;114(2):64–7.

8. Wei X, Li X, Cui J. Evolutionary perspectives on novel coron-

aviruses identified in pneumonia cases in China.Natl Sci Rev

2020;7(2):239–42.

9. Gao F,OuHY,Chen LL, et al.Prediction of proteinase cleavage

sites in polyproteins of coronaviruses and its applications in

analyzing SARS-CoV genomes. FEBS Lett 2003;553(3):451–6.

10. Holmes EC, Duchêne S. Evolutionary stasis of viruses? Nat

Rev Microbiol 2019;17(5):329.

11. Liu Q, Zhao S, Shi CM, et al. Population Genetics of

SARS-CoV-2: Disentangling Effects of Sampling Bias and

Infection Clusters. Genomics Proteomics Bioinformatics 2021.

10.1016/j.gpb.2020.06.001.

12. Foote AD. Sympatric speciation in the genomic era. Trends

Ecol Evol 2018;33(2):85–95.

13. Razifard H, Ramos A, Della Valle AL, et al. Genomic evidence

for complex domestication history of the cultivated tomato

in Latin America.Mol Biol Evol 2020;37(4):1118–32.

14. Ng S, Cowling BJ. Association between temperature, humid-

ity and ebolavirus disease outbreaks in Africa, 1976 to 2014.

Eur Secur 2014;19(35):20892.

15. Kitchen A,MiyamotoMM,Mulligan CJ. Utility of DNA viruses

for studying human host history: case study of JC virus.Mol

Phylogenet Evol 2008;46(2):673–82.

16. Smith DB, Bukh J, Kuiken C, et al. Expanded classification of

hepatitis C virus into 7 genotypes and 67 subtypes: updated

criteria and genotype assignment web resource. Hepatology

2014;59(1):318–27.

17. Tang X, Wu C, Li X, et al. On the origin and continuing

evolution of SARS-CoV-2. Natl Sci Rev 2020;7(6):1012–23.

18. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time

tracking of pathogen evolution. Bioinformatics 2018;34(23):

4121–3.

19. Song Y,XuW.Genomic analysis platforms and typingmeth-

ods for SARS-CoV-2 genome sequences. Chinese Journal of

Virology 2021;37(01):181–90.

20. Rambaut A, Holmes EC, Hill V, et al. A dynamic nomen-

clature proposal for SARS-CoV-2 lineages to assist genomic

epidemiology. Nat Microbiol 2020;5(11):1403–7.

21. GISAID. Clade and lineage nomenclature. 2021. https://www.gi

said.org/references/statements-clarifications/clade-and-li

neage-nomenclature-aids-in-genomic-epidemiology-of-a

ctive-hcov-19-viruses/ (8 March 2021, date accessed).

22. Han AX, Parker E, Scholer F, et al. Phylogenetic cluster-

ing by linear integer programming (PhyCLIP). Mol Biol Evol

2019;36(7):1580–95.

23. Zielezinski A, Vinga S, Almeida J, et al. Alignment-free

sequence comparison: benefits, applications, and tools.

Genome Biol 2017;18(1):186.

24. Li X, Giorgi EE, Marichannegowda MH, et al. Emergence of

SARS-CoV-2 through recombination and strong purifying

selection. Sci Adv 2020;6(27):eabb9153.

25. Nie Q, Li X, Chen W, et al. Phylogenetic and phylodynamic

analyses of SARS-CoV-2. Virus Res 2020;287:198098.

26. Varabyou A, Pockrandt C, Salzberg SL, et al. Rapid detection

of inter-clade recombination in SARS-CoV-2 with Bolotie.

Genetics 2021. 10.1093/genetics/iyab074.

27. VanInsberghe D, Neish AS, Lowen AC, et al. Recombinant

SARS-CoV-2 genomes are currently circulating at low levels.

bioRxiv 2021;2020–08. doi: 10.1101/2020.08.05.238386 2020,

preprint: not peer reviewed.

28. Derkarabetian S, Castillo S, Koo PK, et al.A demonstration of

unsupervised machine learning in species delimitation.Mol

Phylogenet Evol 2019;139:106562.

29. Gao R,ZuW,LiuY, et al.Quasispecies of SARS-CoV-2 revealed

by single nucleotide polymorphisms (SNPs) analysis. Viru-

lence 2021;12(1):1209–26.

30. Levine JH, Simonds EF, Bendall SC, et al. Data-driven

phenotypic dissection of AML reveals progenitor-like

cells that correlate with prognosis. Cell 2015;162(1):

184–97.

31. Qian Y, Wei C, Eun-Hyung Lee F, et al. Elucidation of sev-

enteen human peripheral blood B-cell subsets and quan-

tification of the tetanus response using a density-based

method for the automated identification of cell populations

in multidimensional flow cytometry data. Cytometry B Clin

Cytom 2010;78(S1):S69–82.

32. Aghaeepour N. flowType: Phenotyping Flow Cytometry

Assays. Bioconductor Repository 2011.

33. Zare H, Shooshtari P, Gupta A, et al.Data reduction for spec-

tral clustering to analyze high throughput flow cytometry

data. BMC Bioinformatics 2010;11:403.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

2
/6

/b
b
a
b
3
0
7
/6

3
4
8
3
2
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab307#supplementary-data
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.1016/j.gpb.2020.06.001
https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
https://doi.org/10.1093/genetics/iyab074
https://doi.org/10.1101/2020.08.05.238386


Data-driven identification of SARS-CoV-2 subpopulations using PhenoGraph 11

34. Liu X, Song W,Wong BY, et al. A comparison framework and

guideline of clustering methods for mass cytometry data.

Genome Biol 2019;20(1):297.

35. Shu Y, McCauley J. GISAID: global initiative on shar-

ing all influenza data–from vision to reality. Eur Secur

2017;22(13):30494.

36. Wu F, Zhao S, Yu B, et al. A new coronavirus associ-

ated with human respiratory disease in China. Nature

2020;579(7798):265–9.

37. Katoh K, Standley DM. A simple method to control over-

alignment in the MAFFT multiple sequence alignment pro-

gram. Bioinformatics 2016;32(13):1933–42.

38. Katoh K, Rozewicki J, Yamada KD. MAFFT online service:

multiple sequence alignment, interactive sequence choice

and visualization. Brief Bioinform 2019;20(4):1160–6.

39. van der Maaten LJP, Hinton GE. Visualizing high-

dimensional data using t-SNE. J Mach Learn Res

2008;9:2579–605.

40. Price MN, Dehal PS, Arkin AP. FastTree: computing large

minimum evolution trees with profiles instead of a distance

matrix.Mol Biol Evol 2009;26(7):1641–50.

41. Mirarab S, Reaz R, Bayzid MS, et al. ASTRAL: genome-

scale coalescent-based species tree estimation. Bioinformat-

ics 2014;30(17):i541–8.

42. Letunic I, Bork P. Interactive tree of life (iTOL) v4:

recent updates and new developments. Nucleic Acids Res

2019;47(W1):W256–9.

43. Forster P, Forster L, Renfrew C, et al. Phylogenetic net-

work analysis of SARS-CoV-2 genomes. Proceedings of the

National Academy of the Sciences of the United States of America

2020;117(17):9241–3.

44. Bandelt HJ, Forster P, Rohl A. Median-joining networks

for inferring intraspecific phylogenies. Mol Biol Evol

1999;16:37–48.

45. Day T, Gandon S, Lion S, et al. On the evolutionary epidemi-

ology of SARS-CoV-2. Curr Biol 2020;30(15):R849–57.

46. Potdar V, Vipat V, Ramdasi A, et al. Phylogenetic classifica-

tion of the whole-genome sequences of SARS-CoV-2 from

India & evolutionary trends. Indian J Med Res 2021;153(1):

166.

47. Mercatelli D, Giorgi FM. Geographic and genomic distribu-

tion of SARS-CoV-2 mutations. Front Microbiol 2020;11:1800.

48. Goldhill DH, Turner PE. The evolution of life history trade-

offs in viruses. Curr Opin Virol 2014;8:79–84.

49. Khalilov R, Hosainzadegan M, Eftekhari A, et al. Overview

of the environmental distribution, resistance,mortality, and

genetic diversity of new coronavirus (COVID-19).Advances in

Biology & Earth Sciences 2020;5:7–12.

50. Wasik BR, Turner PE. On the biological success of viruses.

Annu Rev Microbiol 2013;67:519–41.

51. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak

associated with a new coronavirus of probable bat origin.

Nature 2020;579(7798):270–3.

52. Lu R, Zhao X, Li J, et al. Genomic characterisation and epi-

demiology of 2019 novel coronavirus: implications for virus

origins and receptor binding. Lancet 2020;395(10224):565–74.

53. Wang Y,Wang D, Zhang L, et al. Intra-host variation and evo-

lutionary dynamics of SARS-CoV-2 populations in COVID-19

patients. Genome Med 2021;13(1):1–13.

54. Xiao M, Liu X, Ji J, et al. Multiple approaches for massively

parallel sequencing of SARS-CoV-2 genomes directly from

clinical samples. Genome Med 2020;12(1):1–15.

55. Xiong C, Jiang L, Chen Y, et al. Evolution and

variation of 2019-novel coronavirus. Biorxiv 2020.

doi:10.1101/2020.01.30.926477 30 January 2020, preprint:

not peer reviewed.

56. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2-

what do they mean? JAMA 2021;325(6):529–31.

57. Hoffmann M, Arora P, Groß R, et al. SARS-CoV-2 variants

B. 1.351 and P. 1 escape from neutralizing antibodies. Cell

2021;184(9):2384–2393.e12.

58. Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2

variants to neutralization bymonoclonal and serum-derived

polyclonal antibodies. Nat Med 2021;27(4):717–26.

59. Wang P, Nair MS, Liu L, et al. Antibody resistance

of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature

2021;593(7857):130–5.

60. Zhou B, Thao TTN, Hoffmann D, et al. SARS-CoV-2 spike

D614G change enhances replication and transmission.

Nature 2021;592(7852):122–7.

61. Davies NG, Abbott S, Barnard RC, et al. Estimated transmissi-

bility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England.

Science 2021;372(6538):eabg3055.

62. Ozono S, Zhang Y, Ode H, et al. SARS-CoV-2 D614G spike

mutation increases entry efficiency with enhanced ACE2-

binding affinity. Nat Commun 2021;12(1):848.

63. Mo Y. Probing the nature of hydrogen bonds in DNA base

pairs. J Mol Model 2006;12(5):665–72.
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