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Abstract—This paper presents a family of techniques that we call congealing for modeling image classes from data. The idea is to

start with a set of images and make them appear as similar as possible by removing variability along the known axes of variation. This

technique can be used to eliminate “nuisance” variables such as affine deformations from handwritten digits or unwanted bias fields

from magnetic resonance images. In addition to separating and modeling the latent images—i.e., the images without the nuisance

variables—we can model the nuisance variables themselves, leading to factorized generative image models. When nuisance variable

distributions are shared between classes, one can share the knowledge learned in one task with another task, leading to efficient

learning. We demonstrate this process by building a handwritten digit classifier from just a single example of each class. In addition to

applications in handwritten character recognition, we describe in detail the application of bias removal from magnetic resonance

images. Unlike previous methods, we use a separate, nonparametric model for the intensity values at each pixel. This allows us to

leverage the data from the MR images of different patients to remove bias from each other. Only very weak assumptions are made

about the distributions of intensity values in the images. In addition to the digit and MR applications, we discuss a number of other uses

of congealing and describe experiments about the robustness and consistency of the method.

Index Terms—Alignment, artifact removal, bias removal, congealing, clustering, correspondence, density estimation, entropy,

maximum likelihood, medical imaging, magnetic resonance imaging, nonparametric statistics, registration, unsupervised learning.
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1 INTRODUCTION

THE adoption of classical statistical modeling techniques
has revolutionized computer vision in the last two

decades. The well-developed tools from probability and
statistics are essential for dealing with the uncertainty
encountered in real-world vision problems and provide
solid principles on which to build robust and adaptive
systems. These tools, however, were not generally devel-
oped for problems like those encountered in computer
vision. Vision problems have peculiarities not well handled
by classical methods, including measurements with
millions of components (images), strong nonlinear depen-
dencies, and problems due to lack of alignment, causing
image values to have different meanings in different
images. In the last few years, a variety of modeling
techniques that address the specific challenges of computer
vision have been proposed. In this paper, we introduce
another such technique, which we call congealing, for model
building in computer vision.

Congealing is a nonparametric technique for factoring, or

separating, a set of images into sets of approximately

independent “ingredients” or causes. It can be applied to

problems in which there is shape variability within and

between classes (e.g., binary digit recognition), when varia-

bility occurs mostly in brightness or color or when any other

form of structured but continuous variation of a parameter

occurs. While we focus mostly on using pixel values directly

as features, the techniques are easily extended to arbitrary
features of an image.

With respect to other hidden variable models like
transformedmixtures ofGaussians (TMG,discussed indetail
below) [1], this paper makes the following contributions:
First,wemodelposeandotherhiddenvariables continuously
rather than as a discrete set. This allows our models to
ultimately be more precise, but it also provides an optimiza-
tion challenge. This leads to the second difference, which is
that we optimize our models by iteratively maximizing the
joint likelihood of a set of “latent” images, using a joint
gradient descent procedure,1 by finding the transformations
that make them most similar. A final difference is that we
model the residual images nonparametrically rather than as a
set of Gaussians or other parametric distributions. This has
important algorithmic andmodeling consequenceswhichwe
shall discuss. We illustrate these ideas on two problems in
detail: handwritten digit recognition and bias removal in
MR images. The organization of the paper is as follows:

In Section 2, we introduce congealing and illustrate its
use on the problem of handwritten digit recognition. Our
goal is not to break the record for accuracy in handwritten
digit recognition using large numbers of training examples.
Rather, it is to separate approximately independent factors
of an image set, latent images, and transformations from
each other. We then show how such generic factors as
distributions over transformations, when learned from one
set of characters (letters), can be used to build fairly good
models of characters from other classes (digits) using only a
single example of each new character class. That is, we
demonstrate the transferral of learning in one problem to
learning in another problem. We describe a handwritten
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digit recognizer with near 90 percent accuracy based on
only a single example of each digit.

Our binary digit example illustrates congealing on
binary images using the set of nonreflecting affine trans-
forms as the “corrupting” hidden variable. Congealing,
however, is not restricted to binary-valued images, to affine
transformations, or even to images themselves. In Section 3,
we show that congealing naturally extends to nonspatial
transformations, such as brightness distortions in magnetic
resonance (MR) medical images. We report in detail on
recent work using congealing to eliminate intensity bias
fields in MR images.

In Section 4, we briefly review other approaches that use
hiddenvariablemodels similar to our latent image-transform
model. Then, in Section 5, we discuss some additional
properties of congealing, including results of experiments
on alignment to localminima and robustness to noise. Section
6 concludes with a mention of other data types to which we
have applied congealing and to directions for future work.

2 CONGEALING: CONTINUOUS JOINT ALIGNMENT

Congealing is an algorithm for taking a set of images (or, in
general, a set of arrays of arbitrary dimension) and
transforming them according to a continuous set of
allowable transformations to make them more similar,
according to some measure of similarity [2]. Thus, there
are three ingredients in any application of congealing:

. a set of arrays of measurements,

. a continuous set of allowable transformations, and

. a measure of the joint similarity of the arrays within
the set.

Foreaseofexplication,we introduce thecongealingalgorithm
using binary images as our set of arraymeasurements, the set
of positive-determinant affine transformations as the set of
allowable transformations, and a sum-of-entropies criterion
as the measure of joint similarity of images within the set.
However, each of the three choices above can be replaced by a
varietyofpossiblechoices, leading toawiderangeofpotential
applications of congealing fitting a variety of modeling
assumptions.Weexploresomeof thesevariations inSection3.

The upper half of Fig. 1 shows two sets of handwritten
digits from Special Database 19 created at the National
Institute of Standards and Technology (NIST). The images
are presented in the size, position, and orientation originally
written into forms filled out by volunteers. They vary
significantly in size, position, orientation, anddegree of slant,
and other characteristics. In the bottomhalf of the figure, each
set of digits has been congealed to make the set as similar as
possible. That is, each character has been transformed using
an affine transformation (specific to that character) tomake it
as similar as possible to the other characters. For the zeros, it is
clear that the variability in position, size, and other shape
parameters has been dramatically reduced. While not as
obvious, the sameeffect canbe seen for the twoson thebottom
right. Congealing data sets in this way has a variety of
applications, asweshall seebelow.Wenowdiscuss thedetails
of the method for this particular problem.

2.1 Transform Parameterization

As noted above, congealing is defined with respect to a set
of transformations. These may be spatial transformations,
brightness transformations, color transformations, or other

operations on images or arrays that change some feature of
interest. We introduce congealing in the context of spatial
transformations since these are perhaps the simplest
conceptually and most intuitive. There are many choices
for sets of spatial transformations as well, but, to begin, we
congeal using affine transformations.

We parameterize this set of transforms T by composing a
transform from the following component transforms:
x-translation, y-translation, rotation, x-scale, y-scale, x-shear,
and y-shear. (We let the x-scale and y-scale parameters
represent the logarithm of the actual scale change, which
allows us to treat them as additive parameters.) Thus, given a
parameter vector v ¼ ðtx; ty; !; sx; sy; hx; hyÞ, a transforma-
tion matrix U is formed by multiplying the constituent
matrices in a fixed order (needed to ensure a unique mapping
between parameter vectors and the resulting matrices since
matrix multiplication is noncommutative):

U ¼ F ðtx; ty; !; sx; sy; hx; hyÞ

¼

1 0 tx

0 1 ty

0 0 1

2

6

4

3

7

5

cos ! $ sin ! 0

sin ! cos ! 0
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2
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0 esy 0
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2
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5

1 hx 0

0 1 0
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5

1 0 0

hy 1 0

0 0 1

2

6

4

3

7

5
:

Note that this is an overcomplete parameterization since
there are seven parameters and only six degrees of freedom
in the set of transforms.2 The current goal is to investigate
how to make a set of images more similar to each other by
independently transforming each one of them in an affine
manner. We now describe our similarity objective function.
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Fig. 1. (Upper left) Samples of zeros from the NIST database. (Upper

right) Samples of twos from the NIST database. (Lower left) The zeros

after congealing. (Lower right) The twos after congealing.

2. Because we are using a coordinate descent algorithm, extra parameters
can allow the algorithm to move “more directly” toward an optimum. For
example, while a rotation is not strictly necessary as it can be written as two
shearing operations followed by a scaling operation, a single step of the
extra rotation parameter will move more directly toward a solution if a pure
rotation is what is needed [3].



2.2 Entropy Estimation and Pixel Stacks

Consider a set of N observed binary images of a particular

class, each image having P pixels. Let the value of the

ith pixel in the jth image be denoted xj
i . Let the image

created by transforming the jth image by transform Uj be

denoted Ij
0
. We assume for the moment that this new image

is still binary, which can be achieved, for example, by

thresholding it after it is transformed. Let the ith pixel in

this transformed image be denoted xj
i

0
. Consider the set of

N pixels at a particular image location after each image has

undergone some transformation: fx1
i
0
; x2i

0
; . . . ; xN

i
0
g. We call

this set ofN pixels across the images a pixel stack. We denote

the ith pixel stack of the original image set xi and the

ith pixel stack of a transformed image set x0
i. A pixel stack is

illustrated in Fig. 2
This pixel stack can be viewed as a sample from a

random variable or pixel process at a particular location in the

image. We can estimate the entropy, or disorder, of this pixel

process by calculating the entropy of the empirical dis-

tribution of values in the pixel stack. This is also referred to

as the empirical entropy (see [4, p. 195]) of the set of values in

the pixel stack:3

ĤHðxiÞ ¼ $
N0

N
log2

N0

N
þ
N1

N
log2

N1

N

! "

; ð1Þ

where N0 and N1 are the number of occurrences of 0 (black)

and 1 (white) in the binary-valued pixel stack.4 The

empirical entropy of the pixel stack shown in Fig. 2 is

ĤHðx0
iÞ ¼ 1 bit since there are equal numbers of black and

white pixels in the stack. We also refer to pixel stack

entropies as pixelwise entropies.

2.3 Congealing as Joint Alignment

The main goal of congealing is to “align,” or reduce the

variability, in a set of images or other arrays. To achieve

this, the idea is to minimize the quantity

X

P

i¼1

ĤHðx0
iÞ; ð2Þ

the sum of the pixel-stack entropies, by transforming a set
of images of a class. Each image is assigned its own vector vj

of parameters and the criterion (2) is minimized with
respect to all components of all of these vectors.

The intuitionbehind thisminimization is as follows: If a set
of images were aligned as well as possible, we would expect
most of the pixel stacks to have low entropy. That is, our
notion of alignment can be expressed by the idea that the
variability, or entropy, within a pixel stack is low. Thus, the
idea of congealing is to drive a set of images, simultaneously,
toward this state of low pixel-stack entropies. At conver-
gence, assuming no problems with local minima, we expect
the images to be as “aligned” as possible.

Fig. 3 shows themeans of sets of twos and zeros before and
after congealing. Fig. 3a and Fig. 3c show the mean “0” and
mean “2” image at the beginning of the algorithm. The
relative abundance of intermediate gray values indicates that
many pixel stacks have high entropy since a middle gray
value represents apixel stack composedofhalfwhite andhalf
black pixels, with maximum possible entropy. Fig. 3b and
Fig. 3d show the pixel stack mean images at the end of the
algorithm.Here, we can see that the pixels have distributions
that are skewed much more heavily to pure black or pure
white and, hence, are of lower entropy. Notice that there is
greater entropy represented in the final mean “2” image than
in the “0” imagedue to the fact that zeros canbebetter aligned
through affine transforms than twos can.

One appealing property of congealing is that it defines a
notion of central tendency of the data. Often, alignment
algorithms proceed by choosing a particular example of a
character and then aligning each character to that example.
In this case, the aligned characters will be biased toward the
original chosen character. Congealing avoids this phenom-
enon by aligning all characters to each other. Another
approach is to align images to a “mean” image. While this
can work well in some cases, it does not work well when
pixel distributions are bimodal and the mean is not
representative of the exemplars in the distribution. Again,
congealing avoids this problem by maintaining the true
values of the pixels in each image.

2.4 Coherent Transform “Drift” and Parameter
Centering

There is a detail that must be addressed, however, to make
this idea work in practice. In some cases in which
congealing is applied, there may exist a set of transforma-
tions, one for each image, which reduces the pixel stack
entropies, but, nevertheless, does not align the images as
desired. If we restrict the set of transformations to rigid
transformations, then there is no such degenerate set of
transformations. However, for a set of nonrigid transforms,
like the affine transforms, shrinking all of the images until
the white digits in the center essentially disappear will
reduce all of the pixel stack entropies to zero. That is, we are
essentially eliminating the information in the images. Since
all of the transforms have a shared component (shrinkage),
we call this transform “drift.”5
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3. In this formula, 0 log2 0 is interpreted to have value 0.
4. A pixel whose value is between 0 and 1 is interpreted as a mixture of

underlying 0 and 1 “subpixels.” To extend (1) to handle these pixels, we
merely increment each count by the fraction of background and foreground
in the mixture. For example, for a 50 percent gray value pixel, we would
increment both N0 and N1 by 0:5.

5. When congealing using brightness or color transforms, a similar
problem arises in which images tend to be darkened until they are black,
resulting in low entropy image stacks. This can be avoided using the same
techniques discussed in this section, i.e., by forcing the transformation
parameters to stay balanced around zero.

Fig. 2. A pixel stack is a collection of pixels drawn from the same location in
eachof a set ofN images.Here, the ithpixel fromeachof six images forms
a pixel stack. Since half of the pixels are black and half are white, this
corresponds to a Bernoulli random variable with parameter p ¼ 0:5. The
entropy of such a random variable is $ð0:5 log2 0:5þ 0:5 log2 0:5Þ ¼ 1 bit.



This degenerate case can be avoided in two related ways.
One way is to add a term to our alignment criterion in (2)
that penalizes large transformations away from the initial
position. This can be done by adding a term to the criterion
equal to the sum of the squared magnitudes of the
transform parameter vectors v

j:

E ¼
X

P

i¼1

ĤHðx0
iÞ þ

X

N

j¼1

jvjj2: ð3Þ

We shall refer to this quantity as the penalized pixelwise
entropy.

Using the penalized pixelwise entropies prevents the
images from“collapsing” to size zero, but an algorithmbased
only on this functionwill still typically, on average, shrink the
images somewhat since an average shrinking of the images
tends to reduce pixel stack entropies simply by increasing the
number of pixel stacks that are completely black. Thus, the
penalty in (3) does not completely solve the drift problem.

A second technique for mitigating this shrinkage
problem is to constrain each parameter (x-translation,
y-log-scale, etc.) to have zero mean across the image set. That
is, if some images are translated to the left, then other
images should be translated to the right; if some images are
shrunk, then others should be magnified; etc. This can be
thought of as enforcing the property that the “mean
transformation” should be the identity transformation.6

To incorporate this idea into the congealing algorithm for
affine transformations, we “center” the parameter values
periodically during the alignment process. That is, we
subtract each parameter’s mean value from the value of that
parameter for each image, pinning the mean of each
parameter to zero. This forces the average x-position change,
the average shear, the average (log) scale, and the average
rotation to be zero across the image sets.

The congealing algorithm for binary images using affine

transformations, the penalized entropy (3), and parameter

centering are detailed in Algorithm 1, which is shown in

Fig. 4. Before moving on to applications of congealing, we

consider a probabilistic interpretation of the algorithm.

2.5 Congealing and Factored Models

In this section,wediscuss a slightlydifferent interpretation of

congealing, as the reversal of a certain generative process for

images. In particular, we show how this interpretation leads

to independent factor models for images, which in turn leads

to a variety of applications.We have presented congealing as

ameans for removing certain modes of variability, like affine

variation, from sets of image data. Rather than simply

removing this variability, however, we can develop a model

of the variability which can be used to improve simple

probabilistic image models.

We start with the observation that most any handwritten

digit, when modified by a small affine distortion, would

still be interpreted as the same digit. This is true irrespective

of the original “style” of the digit, i.e., whether it is a seven

with or without a cross-bar, whether it is a two with or

without a loop at the base. In other words, the variability of

the position, size, orientation, and slant of a character tends

to be independent of the particular style of the character.
We can take advantage of this approximate indepen-

dence of style and “pose” by building a generative model in
which these components are assumed to be independent for
each given class of characters. Such a generative model is
illustrated in Fig. 5.

This model shows the images generated by a process that
composes some random “latent image” of a digit, which
one can think of as a particular style of that character, with a
random transformation. For the following discussion, we let
I be an observed image, L be a latent image, and T be a
transform. According to the model, the probability of a
particular latent image-transform pair ðL; T Þ for a specific
class is given as pðL; T Þ ¼ pðLÞpðT Þ since L and T are
assumed to be independent conditioned on the class.

Given an observed image I, however, there are many
choices for a latent image-transform pair that explain it. In
fact, for any transform T &, one could argue that the latent
image-transform pair was ðT &$1ðIÞ; T &Þ, i.e., the inverse of
T & applied to the observed image coupled with T &.

If we define probability distributions over the latent
images and transforms, however, we can ask what is the
most likely pair ðL; T Þ that explains a particular image I.
Congealing can be seen as a way of simultaneously
determining these pairs across an entire image set.

In particular, if we use an independent pixel model to
evaluate the probability of an image and a uniform
distribution over all transformations, then we can see that
congealing finds the maximum likelihood latent images
through the following derivation. Let I;L;T be sets of
images, latent images, and transforms. Also, let T N

represent the N-fold product space of sets of transforms.
Then, the most likely set of transforms is given by
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6. Since the affine transformations do not form a vector space (because
the addition of two affine transforms is not an affine transform), it is not
immediately clear whether a concept such as the mean transformation is
well-defined. There are a variety of ways of defining a mean on a space that
is not a vector space, such as the Karcher mean.

Fig. 3. Mean images during the congealing process. (a) The initial mean image for the set of zeros. The blurriness is due to the misalignment of the

images. (b) The final mean image for the set of zeros. The coherence of the aligned images is indicated by the increased sharpness of the image.

(c) The initial mean image for the set of twos. (d) The final mean image for the set of twos.



arg max
T2T N

pðTjIÞ ¼
ðaÞ

arg max
T2T N

pðIjTÞpðTÞ

¼
ðbÞ

arg max
T2T N

pðIjTÞ

¼
ðcÞ

arg max
T2T N

pðLðI;TÞÞ

¼ arg max
T2T N

Y

P

i¼1

Y

N

j¼1

pðxj
i

0
Þ

¼ arg max
T2T N

X

P

i¼1

X

N

j¼1

log pðxj
i

0
Þ

'
ðdÞ

arg min
T2T N

X

P

i¼1

Hðpðxi
0ÞÞ

¼arg min
T2T N

X

P

i¼1

HðU1ðx1i Þ; U
2ðx2

i Þ; . . . ; U
NðxN

i ÞÞ;

ð4Þ

where U i is again the inverse of the transform T i. (a) follows

from Bayes rule, (b) from the uniform prior on transforma-

tions, (c) because the latent image is a deterministic function

of the observed image if the transform is given, and (d) is

just a sample approximation of the entropy. The final
expression is equivalent to (2).

Hence, the logarithm of the joint probability of a set of
images as defined above is approximately equal to a positive
constant times the negative of the sum of the pixelwise
entropies. Hence, minimizing the summed pixelwise empiri-
cal entropies is approximately equivalent to maximizing the
(latent) image probabilities under this model. It is interesting
to note that the sumof pixel entropies is an upper bound on the
entropy of the true image distribution, so minimizing this
sum is minimizing an upper bound on the entropy of the
images. This is equivalent to maximizing a lower bound on
the true likelihood of the images.

Congealing works very well for aligning images even
though the model it is based on, independent pixels and
uniformly likely transformations, is very crude. One reason
that the algorithm works well despite the poorness of the
model is related to the concavity of entropy as a function of
probability distributions. If a set of latent images are drawn
i.i.d. from anydistribution, thenperturbing these imageswith
any independent random permuting transformations, i.e.,
those transformations that only rearrange pixels, will always
increase the pixel-stack entropies. This is because the
distributions of the pixels in the transformed images will be
convex combinations of the original pixel distributions and
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Fig. 4. Algorithm 1: Image congealing with affine transforms.



the concavity of entropy guarantees that the resulting

“mixed” pixels will have higher entropy. Thus, despite the

poorness of the independent pixel model for representing

images of digits, the essential property needed for congea-

ling—that removing transform variability will reduce en-

tropy—holds.
Despite the utility of the independent pixel model for

“decoupling” the latent images and transforms, it will prove

useful to employ more sophisticated models for the latent

images and transforms once they have been separated. In the

next section, we discuss how a classifier can be built in the

congealing framework, using better models for the latent

images and transforms once they have been separated.

2.6 A Product Density Classifier

Assume that we wish to build a classifier for handwritten

digits, given a set of training examples for each class. To

perform classification, we wish to estimate the model with

the maximum posterior probability given a new observed

image I. Assuming a uniform prior over the classes cj, we

have, using Bayes’ rule:

argmax
j

P ðcjjIÞ ¼ argmax
j

pðIjcjÞ: ð5Þ

We introduce the transformation variable T and integrate

over it:

argmax
j

pðIjcjÞ ¼ argmax
j

Z

T2T

p T ; Ijcj
# $

dT ð6Þ

¼ argmax
j

Z

T2T

p T jcj
# $

p IjT; cj
# $

dT ð7Þ

¼ argmax
j

Z

T2T

p T jcj
# $

p LðI; T Þjcj
# $

dT : ð8Þ

Here, dT is the invariant measure for affine transformations,

which “measures” each transformation in the infinite set T

equally. (See [5] for details.) Equation (8) follows since the

latent image L corresponding to the image I is a

deterministic function of I, given the transform T .
We now make the key simplifying assumption that, with

high probability,

argmax
j

Z

T2T

p T jcj
# $

p Ljcj
# $

dT

¼ argmax
j

max
T2T

p T jcj
# $

p Ljcj
# $

:
ð9Þ

This is an approximation to the full Bayesian treatment of
the problem and assumes that the joint distribution
pðT; LjcjÞ peaks sharply around the maximum. This allows
us to avoid the integral on the left of (9) and search a full
space of possible transforms, rather than a discrete set as
some authors have done [1].

To use (9) in a classifier, we must do two things. First, we
must build models for the latent image and transform
distributions for each class. To do this, we will use the latent
images and associated transforms that come from congeal-
ing the set of training examples for each class. Second, we
must find the maximum likelihood latent image-transform
pair for a test image, conditioned on each class.

If we congeal a set of training images for a class, such as
those in Fig. 1a or Fig. 1b, we get a set of latent images for
the class, such as those in Fig. 1c or Fig. 1d. In our
experiments, we defined a class conditional probability on
latent images to be

pðLjcjÞ ¼
1

Z
exp $

D2

2

! "

; ð10Þ

where D is the minimum symmetric Hausdorff distance [6]
between theargument imageLand the latent imageset for the
class cj and Z is a normalization constant which is unknown,
but isassumedtobeapproximatelythesameforeachclassand
is, hence, ignored. Intuitively, the class conditional prob-
ability for a latent image is higher if it is closer (in the
Hausdorff sense) to some latent image of the training set.

Note that congealing produces not only a sample of latent
images, but also, implicitly, a sample of transformations. The
transformations used in the congealing process to align
images can be thought of as the inverses of the transforms
that produce the observed images from the latent images
in the generative model. Thus, by taking the matrix
inverses of the transforms used in congealing to align
images, we get a sample of transforms of the generative
process. From this set of transforms—we shall refer to
them as Tjs—we can estimate a probability density over
transforms using a Parzen windows style estimate

fðU;T1; T2; . . . ; TNÞ ¼
1

N

X

N

j¼1

KðU ;TjÞ:

The estimate uses a somewhat unusual kernel [5]:

KðU ;T Þ ¼
1

CðhÞ
exp $

1

2h
k logðU$1T Þk2F

! "

;

where h is a kernel bandwidth parameter, C is a normal-
ization constant that depends upon the bandwidth, log is a
matrix logarithm, and k ( kF is the Frobenius norm, the square
root of the sum of the products of the matrix components by
their complex conjugates. One appealing property of this
kernel is that it takes on itsmaximumvaluewhenU is equal to
T since U$1T is the identity matrix, which has the minimum
matrix log. The kernel is also symmetric in the arguments and
invariant when both arguments are transformed by the same
affine transformation [5].
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Fig. 5. A directed graphical model representing a general generative
image model. The latent image and transform are both dependent on
class and they are conditionally independent given the class.



Armedwithadensity for latent images and transforms,we
nowonly need to find the latent image and transform of a test
image, assuming it comes from a particular class, to evaluate
the likelihood of a class. Given a test image of unknown class,
we wish to separate it into a latent image and transform.
However, this separation will depend upon the class that we
assume the image is in. In other words, we will have a
separate factorization of a test image into latent image and
transform for each class. Fig. 6 shows the latent image
estimates for the image of an eight for each different class.

One way to obtain these latent image-transform esti-
mates for a test image is to insert it into the training set for
each class. Thus, to get the best latent image-transform for
an image assuming it is a zero, insert it into the training set
of zeros and congeal the zeros. While this process has a
certain elegance about it, it is extremely time-consuming as
we must run the congealing algorithm on the entire training
set for each class for every test character. Fortunately, there
is a much more efficient way to “congeal” a test character.

The idea for factoring a test image efficiently is as
follows: During the original congealing of the training set
for a class, save out the data sets at each stage of the
congealing. Then, when congealing a test image, the only
image that needs to be updated at each step is the test
image. Additional efficiencies in aligning a test example are
described in detail here [3].

Given a procedure for splitting a test image into latent
image-transform pairs for each class and latent image and
transform densities for each class, it is easy to make a
classifier for handwritten digits. Such a classifier has
reasonably good performance (about 98 percent correct)
when trained on 1,000 images of each class. However, the
purpose of congealing was not to do digit classification in
the presence of abundant training data, but rather to
separate observed images into approximately independent
factors. We now discuss how this automatic factorization of
images can be used to make a digit classifier from just a
single example of each class.

2.7 A One Example Classifier

While handwritten digit classifiers based on large training
sets are getting very close to human performance, if we
examine the performance of classifiers using a small amount
of data, in the limit, one example per class, there still seems to

be a large gap between the capabilities of machines and
humans. Consider the symbol for the new European
currency, the “Euro,” shown in Fig. 7. After seeing a single
example of such a character, humans can recognize the
character in a wide variety of contexts, styles, and positions.

Clearly, this is due at least in part to generalization based
on previously learned classes. That is, our knowledge about
handwriting in general allows us to bring prior knowledge to
the formation of our model for a new character based on a
single example.A long-standingquestion in computervision,
and inAI in general, is what form this prior knowledge takes.
The original idea behind congealing was to try to extract
generic forms of variation from one class or set of classes and
to use that knowledge of variation in developing models for
other classes from a small number of examples.

To test this idea, we congealed 10 sets of 100 handwritten
letters from the NIST database. This results in 10 sets of latent
images and 10 sets of transforms, leading to 10 separate
distributions over transformations. We compared each of
these letter transform distributions to another distribution,
which was a Gaussian over the coordinates of affine
transformations with mean at the identity. We found that
each of the letter transform distributions was closer to the
other letter transform distributions (in the estimated Kull-
back-Leibler divergence) than to the Gaussian transform
distribution. This suggests (although it is certainly not a
rigorous proof) that the letter transform distributions are
quitesimilar toeachother [3].Thissuggests that thevariability
described by transformation densities, at least for hand-
written characters, is generic and can be shared across classes.

Subsequently, we combined transform densities learned
from letters with a single hand-chosen example of each
handwritten digit (acting as a crude latent image model for
thatdigit) toproduceamodel for eachdigit class. Thisprocess
is illustrated in Fig. 8. We then ran a handwritten digit
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Fig. 6. A set of latent image estimates for an observed “8” image. The eight is aligned with each model in turn. Notice that alignment to the “1” model
produces a latent image that is a plausible “1.” Rejecting this model will depend upon penalizing the highly unlikely transformation that would be
paired with such a latent image to produce the observed image.

Fig. 7. The new symbol for the standard European currency. After
seeing a single example, people typically have no difficulty recognizing
the symbol in a wide variety of styles and variations.

Fig. 8. Diagram of our method for sharing models of affine variability. A
support set (shown as a set of “A”s) is given to the learner. From this
support set, a general model of affine variability is derived. Combining
the model of affine variability with a single example of a handwritten
digit, a digit model is constructed.



classification task using the single-example models of the
digits. The classification accuracy, using the transform
densities described in [5], was 89.3 percent. This is a huge
improvement over the best alternative method (a nearest
neighbor method using the Hausdorff distance) tried which
gave an accuracy of only 48.2 percent. Methods that require
training to set parameters (neural networks, SVMs, etc.) did
substantiallyworse, severely overfitting to the single training
example. Even when the single digit example was chosen
randomly, the average performance of our classifier was still
74.7 percent, compared to only 32.6 percent for the nearest
neighbor Hausdorff. Additional details of this work can be
found in [3].

In summary, the main contribution of congealing to the

area of handwriting recognition is not record breaking

performance on large data sets, but rather the idea that, by

modeling independent and generic modes of variability

(like affine deformation), new learning tasks can be made

more efficient based on previous learning tasks. Next, we

use congealing to solve a completely different problem,

removing bias from magnetic resonance images.

3 CONGEALING WITH BRIGHTNESS

TRANSFORMATIONS

In the last section, we introduced congealing by discussing

in detail the joint alignment of a set of binary digit images

via affine transformations. As mentioned in Section 1,

however, congealing can be applied to a wide range of data

types using a variety of transformations.

3.1 Bias Correction in MR Images

Our second example of congealing is applied to magnetic

resonance images, which are scalar-valued images of

human anatomy. The transformations used in this applica-

tion will be brightness transformations—none of the pixels

will be moved spatially—chosen again to minimize the

entropies of the pixel stacks in the image set.

The problem of bias fields in magnetic resonance (MR)

images is an important problem in medical imaging. This

problem is illustrated in Fig. 9. When a patient is imaged in

the MR scanner, the goal is to obtain an image which is a

function solely of the underlying tissue (left of Fig. 9).

However, typically, the desired anatomical image is

corrupted by a multiplicative bias field (second image of

Fig. 9) that is caused by engineering issues such as

imperfections in the radio frequency coils used to record

the MR signal. The result is a corrupted image (third image

of Fig. 9). (See [7] for background information.) The goal of

MR bias correction is to estimate the uncorrupted image

from the corrupted image.

A variety of statistical methods have been proposed to

address this problem. Wells et al. [8] developed a statistical

model using a discrete set of tissues, with the brightness

distribution for each tissue type (in a bias-free image)

represented by a one-dimensional Gaussian distribution.

An expectation-maximization (EM)procedurewas thenused

to simultaneously estimate the bias field, the tissue type, and

the residual noise. While this method works well in many

cases, it has several drawbacks: 1)Modelsmust be developed

a priori for each type of acquisition (for each different setting

of the MR scanner), for each new area of the body, and for

different patient populations (like infants and adults). 2)

Models must be developed from “bias-free” images, which

may be difficult or impossible to obtain. 3) The model

assumes a fixed number of tissues, which may be inaccurate.

For example, during development of the human brain, there

is continuous variability between gray matter and white

matter. In addition, a discrete tissue model does not handle

so-called partial volume effects in which a pixel represents a

combination of several tissue types. This occurs frequently

since many pixels occur at tissue boundaries.

Nonparametric approaches have also been suggested, as,

for example, by Viola [9]. In that work, a nonparametric

model of the tissuewasdeveloped froma single image.Using

the observation that the entropy of the pixel brightness

distribution for a single image is likely to increase when a bias

field is added, Viola’s method postulates a bias-correction

field by minimizing the entropy of the resulting pixel

brightness distribution. This approach addresses several of

the problems of fixed-tissue parametric models, but has its

owndrawbacks: 1) The statistical modelmay beweak since it

is based on data from only a single image. 2) There is no

mechanism for distinguishing between certain low-fre-

quency image components and a bias field. That is, the

method may mistake signal for noise when removal of the

true signal reduces the entropy of the brightness distribution.

We shall show that this is a problem in real medical images.

Congealing can overcome or improve upon problems

associated with both of these methods and their many

variations (see, e.g., [7] for recent techniques). It models

tissue brightness nonparametrically, but uses data from

multiple images to provide improved distribution estimates

and alleviate the need for bias-free images for making a
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Fig 9. On the left is an idealized mid-axial MR image of the human brain with little or no bias field. The second image is a simulated low-frequency

bias field. It has been exaggerated for ease of viewing. The third image is the result of pixelwise multiplication of the image by the bias field. The goal

of MR bias correction is to recover the low-bias image on the left from the biased image on the right. On the right is the sine/cosine basis, used to

construct band-limited bias fields (see text).



model. It conditions on spatial location, taking advantage of a

rich information source ignored in other methods. Experi-

mental results demonstrate the effectiveness of our method.

3.2 The Image Model and Problem Formulation

We assume we are given a set ðI1; . . . ; INÞ of observed

images, as shown on the left side of Fig. 10. Each of these

images is assumed to be the product of some bias-free

image Lj and a smooth bias field Bj 2 B.7 We shall refer to

the bias free images as latent images, as before with the

affine congealing. The set of all latent images shall be

denoted L and the set of unkown bias fields B. Then, each

observed image can be written as the product

Ijðx; yÞ ¼ Ljðx; yÞ &Bjðx; yÞ, where ðx; yÞ gives the pixel

coordinates of each point, with N pixels per image.
Consider again Fig. 10. A pixel-stack through each image

set is shown as the set of pixels corresponding to a

particular location in each image (not necessarily the same

tissue type). Our method again relies on the principle that

the pixel-stack values will have lower entropy when the

bias fields have been removed. Fig. 11 shows the simulated

effect, on the distribution of values in a pixel-stack, of

adding different bias fields to each image.
The latent image generation model assumes that each

pixel is drawn independently from a fixed distribution,

px;yð(Þ, which gives the probability of each gray value at the

the location ðx; yÞ in the image. It is also assumes that the

bias fields for each image are chosen independently from

some fixed distribution over bias fields. Unlike most models

for this problem, which rely on statistical regularities within

an image, we take a completely orthogonal approach by

assuming that pixel values are independent given their

image locations, but that pixel-stacks, in general, have low

entropy when bias fields are removed.
We formulate the problem as a maximum a posteriori

(MAP) problem, searching for the most probable bias fields

given the set of observed images. Letting BN represent the

N-fold product space of smooth bias fields, we wish to find

arg max
B2BN

pðBjIÞ ¼
ðaÞ

arg max
B2BN

pðIjBÞpðBÞ

¼
ðbÞ

arg max
B2BN

pðIjBÞ

¼
ðcÞ

arg max
B2BN

pðLðI;BÞÞ

¼ arg max
B2BN

Y

x;y

Y

N

j¼1

px;yðL
jðx; yÞÞ

¼ arg max
B2BN

X

x;y

X

N

j¼1

log px;yðL
jðx; yÞÞ

'
ðdÞ

arg min
B2BN

X

x;y

Hðpx;yÞ

'
ðeÞ

arg min
B2BN

X

x;y

ĤHVasicekðL
1ðx; yÞ; . . . ; LNðx; yÞÞ

¼ arg min
B2BN

X

x;y

ĤHVasicek

I1ðx; yÞ

B1ðx; yÞ
; . . . ;

INðx; yÞ

BNðx; yÞ

! "

:

ð11Þ

Here, H is the Shannon entropy ($Eðlog pðxÞÞ) and ĤHVasicek

is a sample-based entropy estimator. This estimator allows
the rapid estimation of entropy from a sample of a random
variable, without first estimating the distribution itself from
the data, as is often done.8 (a), (b), and (c) are equivalent to
the steps taken in derivation (4). The approximation (d)
replaces the empirical mean of the log probability at each
pixel with the negative entropy of the underlying distribu-
tion at that pixel. This entropy is in turn estimated, (e),
using the entropy estimator of Vasicek [11] directly from the
samples in the pixel-stack.

Equation (11) is once again the basic optimization of
congealing, as in (2), although this time we are calculating
the entropy of a continuous distribution of gray values,
rather than the entropy of a distribution with only two
values. To do congealing with this criterion, we simply need
to parameterize the smooth bias fields and to optimize the
criterion with respect to these parameters.
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Fig. 10. On the left are a set of mid-coronal brain images from eight different infants, showing clear signs of bias fields. A pixel-stack, a collection of
pixels at the same point in each image, is represented by the small square near the top of each image. Although there are probably no more than two
or three tissue types represented by the pixel-stack, the brightness distribution through the pixel-stack has high empirical entropy due to the
presence of different bias fields in each image. On the right are a set of images that have been corrected using our bias field removal algorithm.
While the images are still far from identical, the pixel-stack entropies have been reduced by mapping similar tissues to similar values in an
“unsupervised” fashion, i.e., without knowing or estimating the tissue types.

7. We assume that the images have been brought into approximate
correspondence using spatial congealing (spatial congealing is relatively
robust to bias fields) or any other method of alignment, such as [10].

8. The entropy estimator used is similar to Vasicek’s estimator [11], given

(up to minor details) by

ĤHVasicekðZ
1; . . . ; ZN Þ ¼ 1

N$m

PN$m
i¼1 log N

m ðZðiþmÞ $ ZðiÞÞ
# $

,

where Zis represent the values in a pixel-stack, ZðiÞs represent those same

values in rank order,N is the number of values in the pixel-stack, andm is a

function of N (like N0:5) such that m=N goes to 0 as m and N go to infinity.

These entropy estimators are discussed at length elsewhere [12].



3.3 The Algorithm

Using these ideas, it is straightforward to construct algo-
rithms for joint bias field removal. As mentioned above, we
chose to optimize (11) over the set of band-limited bias fields.
To do this, we parameterize the set of bias fields using the
sine/cosine basis images "k shown on the right of Fig. 9:

Bjðx; yÞ ¼
X

25

k¼1

#
j
k"kðx; yÞ:

We optimize (11) by simultaneously updating the bias
field estimates (taking a step along the numerical gradient)
for each image to reduce the overall entropy. That is, at time
step t, the coefficients #

j
ks for each bias field are updated

using the latent image estimates and entropy estimates from
time step t$ 1. After all #s have been updated, a new set of
latent images and pixel-stack entropies is calculated and
another gradient step is taken.

Though it is possible to do a full gradient descent to
convergence by optimizing one image at a time, the
optimization landscape tends to have more local minima
for the last few images in the process. The appeal of our
joint gradient descent method, on the other hand, is that the
ensemble of images provides a natural smoothing of the
optimization landscape in the joint process. Algorithm 2,
shown in Fig. 12, summarizes the process.

Upon convergence, it is assumed that the entropy has been
reduced as much as possible by changing the bias fields
unless one or more of the gradient descents is stuck in a local
minimum. Empirically, the likelihood of sticking in local
minima is dramatically reduced by increasing the number of
images N in the optimization. In our experiments described
below, with only 21 real infant brains, the algorithm appears
to have found a global minimum of all bias fields, at least to
the extent that this can be discerned visually.

Note that, for a set of identical images, the pixel-stack
entropies are not increased bymultiplying each image by the
same bias field (since all images will still be the same). More
generally, when images are approximately equivalent, their
pixel-stack entropies are not significantly affected by a
“common” bias field, i.e., one that occurs in all of the images.9

Thismeans that the algorithmcannot, in general, eliminate all
bias fields from a set of images, but can only set all of the bias
fields to be equivalent. We refer to any constant bias field
remaining in all of the images after convergence as the residual
bias field.

Fortunately, there is an effect that tends to minimize the
impact of the residual bias field in many test cases. In
particular, the residual bias field tends to consist of
components for each #j that approximate the mean of that
component across images. For example, if half of the
observed images have a positive value for a particular
component’s coefficient and half have a negative coefficient
for that component, the residual bias field will tend to have
a coefficient near zero for that component. Hence, the
algorithm naturally eliminates bias field effects that are
nonsystematic, i.e., that are not shared across images.

If the same type of bias field component occurs in a
majority of the images, then the algorithm will not remove it
as the component is indistinguishable, under our model,
from the underlying anatomy. In such a case, one could
resort to within-image methods to further reduce the
entropy. However, there is a risk that such methods will
remove components that actually represent smooth grada-
tions in the anatomy. This can be seen in the bottom third of
Fig. 13 and will be discussed in more detail below.

3.4 Experiments

To test our bias removal algorithm, we ran two sets of
experiments, the first on synthetic images for validation and
the second on real brain images. We obtained synthetic
brain images from the BrainWeb project [13] such as the one
shown on the left of Fig. 9. These images can be considered
“idealized” MR images in the sense that the brightness
values for each tissue are constant (up to a small amount of
manually added isotropic noise). That is, they contain no
bias fields. The initial goal was to ensure that our algorithm
could remove synthetically added bias fields in which the
bias field coefficients were known. Using N copies of a
single “latent” image, we added known but different bias
fields to each one. For as few as five images, we could
reliably recover the known bias field coefficients, up to a
fixed offset for each image, to within 1 percent of the power
of the original bias coefficients.

More interesting are the results on real images, in which
the latent images come from different patients. We obtained
21 preregistered10 infant brain images (top of Fig. 13) from
Brigham and Women’s Hospital in Boston, Massachusetts.
Large bias fields can be seen in many of the images.
Probably the most striking is a “ramp-like” bias field in the
sixth image of the second row. (The top of the brain is too
bright, while the bottom is too dark.) Because the brain’s
white matter is not fully developed in these infant scans, it
is difficult to categorize tissues into a fixed number of
classes as is typically done for adult brain images; hence,
these images are not amenable to methods based on specific
tissue models developed for adults (e.g., [8]).

The middle third of Fig. 13 shows the results of our
algorithm on the infant brain images. (These results must be
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Fig. 11. On the left is a simulated distribution from a pixel-stack taken
through a particular set of bias-free mid-axial MR images. The two sharp
peaks in the brightness distribution represent two tissues which are
commonly found at that particular pixel location. On the right is the
result of adding an independent bias field to each image. In particular,
the spread, or entropy, of the pixel distribution increases. In this work,
we seek to remove bias fields by seeking to reduce the entropy of the
pixel-stack distribution to its original state.

9. Actually, multiplying each image by a bias field of small magnitude
can artificially reduce the entropy of a pixel-stack, but this is only the result
of the brightness values shrinking toward zero. Such artificial reductions in
entropy can be avoided by normalizing a distribution to unit variance
between iterations of computing its entropy, as is done in this work.

10. It is interesting to note that registration is not strictly necessary for
this algorithm to work. The proposed MAP method works under very
broad conditions, the main condition being that the bias fields do not span
the same vector space as parts of the actual medical images. It is true,
however, that, as the latent images become less registered or differ in other
ways, a much larger number of images is needed to get good estimates of
the pixel-stack distributions.



viewed in color on a good monitor to fully appreciate the
results.) While a trained technician can see small imperfec-
tions in these images, the results are remarkably good. All
major bias artifacts have been removed.

It is interesting to compare these results to a method that

reduces the entropy of each image individually, without

using constraints between images. Using the results of our

algorithm as a starting point, we continued to reduce the

entropy of the pixelswithin each image (using a method akin

to Viola’s [9]), rather than across images. These results are

shown in the bottom third of Fig. 13.11 Carefully comparing

the central brain regions in the middle section of the figure

and the bottom section of the figure, one can see that the

butterfly shaped region in the middle of the brain, which

represents developing white matter, has been suppressed in

the lower images. This is most likely because the entropy of

the pixels within a particular image can be reduced by

increasing the bias field “correction” in the central part of

the image. In other words, the algorithm strives to make the

image more uniform by removing the bright part in the

middle of the image. However, our algorithm, which

compares pixels across images, does not suppress these real

structures since they occur across images. Hence, coupling

across images can produce superior results.

We have now seen congealing in two very different

scenarios. This second scenario differs from the first in two

significant ways. First, the transformations considered to

“align” images are brightness transformations rather than

spatial transformations. Second, the images are scalar-

valued instead of binary-valued, requiring a different

entropy estimator than used for the binary digits.

One more difference between the algorithms is worth

mentioning. The binary digit algorithm used a coordinate

descent method in the optimization where the optimization

criterion was explicitly evaluated for small perturbations of

the parameters in both the positive and negative directions.

The reason for this is that the optimization function is not a

very smooth function of the parameters since a small change

in the scale or rotation of an image can produce a discontin-

uous jump in the sum of entropies function. The reason for

this is that the binary digit images have sharp edges and, so, a

small transformation can cause a discrete jump in the value of

a pixel at a particular location. The brightness-based con-

gealing of the MR images, however, produces a much

smoother optimization landscape and, so, somewhat faster

gradient descent methods can be used in the optimization.

Other than these somewhat minor differences, the basic

algorithms are almost identical, however.
This work uses information unused in other methods, i.e.,

information across images. This suggests an iterative scheme

in which both types of information, both within and across

images, are used. Local models could be based on weighted

neighborhoods of pixels, pixel cylinders, rather than single

pixel-stacks, in sparse data scenarios. For “easy” bias

correction problems, such an approach may be overkill, but,

for difficult problems inbias correction,where thebias field is

difficult to separate from the underlying tissue, as discussed

in [7], such an approach couldproduce critical extra leverage.

4 ADDITIONAL RELATED WORK

Although we have generalized the scope of congealing, it
was originally proposed [2] as a way of dealing with spatial
variability in images. There have been numerous other
efforts to address shape variability in images using a latent
image-transform type of approach.

Much work in handwritten character recognition has

explicitly addressed the issue of shape deformations and

modeling. Revow et al. [14] developed a model for

characters by hand-specifying and then adapting a set of

“control points,” defining the probability of an observed

character as a function of the deviation of the character from

these predefined control points. The authors discounted the

affine component of such deviations, achieving an affine
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11. This particular result is not visible on a grayscale printout of the
paper and needs to be viewed in color on a high-fidelity monitor.

Fig. 12. Algorithm 2: Congealing with brightness transformations.



invariant character recognition model. In active appearance

models [15], the authors describe a system which models

observed images as a combination of “shape” variations

and “appearance” variations. These terms correspond to the

transform and latent image components of the model we

use. While these models have a number of interesting

potential applications in face recognition, tracking, and

other vision tasks, the models are built upon manually

identified correspondences. We shall focus our attention on

models that can be learned automatically.

Jones and Poggio have presented models for images that

consist of separate “texture” and “shape” components [16].
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Fig. 13. NOTE: This image must be viewed in color (preferably on a bright display) for full effect. (Images can be viewed online at http://

www.cs.umass.edu/elm/congealing.) Top. Original infant brain images. Middle. The same images after bias removal with our algorithm. Note that

developing white matter (butterfly-like structures in middle brain) is well-preserved. Bottom. Bias removal using a single image based algorithm.

Notice that white matter structures are repressed.



These parts correspond to the latent image and transform

components used in this paper. The shape components in

these models are linear models. That is, deformation vector

fields are combined linearly to produce variations in the

shape of latent images. Separating an observed image into

its shape and texture parts is termed vectorization by the

authors. These models were initially developed for images

of faces by manually identifying correspondences among all

of the prototype faces. The “flows” that put these faces in

correspondence then provide the model of deformation

with which one can do synthesis and analysis.

In [17], the authors introduce a technique for “boot-

strapping” these correspondences by iteratively estimating

more and more refined models of texture and shape with

the aid of an optical flow algorithm. The joint nature of this

optimization makes it quite similar to congealing. There are

several important differences as well. Unlike in congealing,

the deformation model is unconstrained. That is, virtually

any flow field can arise from the algorithm. This makes the

procedure both more flexible and more difficult to get

working correctly. Another difference is that the authors do

not explicitly define an optimization criterion other than the

subjective one of good visual alignment. Nevertheless, the

algorithm is ultimately very similar to one which minimizes

the entropies of the final latent images, like congealing.

The work of Frey and Jojic [18], [19] has the greatest

similarity to congealing. In these papers and in more recent

work, the authors use the generative latent image-transform

model of image production. They produce models of latent

images by simultaneously maximizing the posterior like-

lihood of a set of latent images under a fixed set of

transformations.

The authors use the EM algorithm to maximize the

likelihood of the latent images simultaneously under a set

of models. One key difference with our own work is that the

authors entertain a finite set of transformations rather than a

continuous set. This allows the authors to perform a full

Bayesian analysis at each step, calculating the likelihoodof an

observed image under a particularmodel by integrating over

all possible latent images and transforms. Hence, they do not

need to resort to using the “peakiness assumption” of (9).

However, with a fixed set of transforms, the number of

modes of spatial deformations that can bemodeled is limited.

The complexity of their algorithm is linear in the number of

possible transformations, whereas congealing is linear in the

number of parameters. Thismeans congealing can be usedwith

much larger sets of transforms and with unbounded

resolutionwithin eachparameter.Thismeans that congealing

can achieve potentially more accurate alignments.

Another key difference between ourwork and thework of

Frey and Jojic is that we model pixel distributions nonpar-

ametrically. This allows us to define accuratemodels of latent

image pixels even when they may be bimodal or even more

complicated.Forexample, indoingalignmentorbias removal

in MR images, pixel distributions are likely to have many

modes, even after alignment, due to the different tissues that

may appear at the same location in different brains.

5 OTHER PROPERTIES OF CONGEALING

Congealinghasanumberof appealingproperties.Wediscuss

below the issues of convergence to an optimum of the

alignment function and robustness to noise in the images.

One problem with iterative methods such as congealing

is that an image may fail to achieve the global minimum of

the objective function.12 This can be caused by the so-called

“zero-gradient” problem or the existence of local minima in

the objective function. An example of the zero-gradient

problem is shown in Fig. 14. Note that the gray “X” and the

white “X” do not overlap at all, despite the fact that their

centroids are aligned. Thus, a differential change in the

relative rotation of the two characters will not improve

alignment according to the minimum entropy cost function.

The figure illustrates a local minimum problem as well. It

arises when one leg of an “X” overlaps a leg of the other

“X,” while the other legs do not overlap. In such a scenario,

any perturbation of the rotation parameter would only

increase the entropy. This scenario thus represents a local

minimum of the entropy function.

The congealing process has a serendipitous advantage in

that it often circumvents these two types of optimization

problems. Because the alignment process is done over an

ensemble of images which has a data-dependent smoothing

effect, these two issues arise infrequently. This can be

understood by reexamining the average observed images of

Fig. 3, which show the relatively smooth “landscape” for

hill-climbing in the congealing setting.

We note that, for aligning a pair of images, a strategy of

blurring one of the images is commonly used [21], [22]. For

binary images, this can be thought of as a type of implicit

congealing over horizontal and vertical translations since

convolving an image with a circular Gaussian distribution is

equivalent to averaging a set of equivalent latent images that

have been shifted horizontally and vertically according to a

Gaussian distribution. Congealing improves upon this

method by using the true distribution over transforms as a
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Fig. 14. An example of two images that will not congeal to the global

minimum of the fitness function. This problem can usually be alleviated

in practice by congealing a large number of samples simultaneously.

12. Methods which optimize over a discrete set of transforms (e.g., [20],
[1]) of course are guaranteed to reach a minimum over their set of defined
transformations, but the best transform may not be close to the true global
optimum. A combined approach optimization approach can be used in
which a gradient descent is continued from the best discrete transform.



“convolution kernel.” In addition, a blurring technique used

onscalar-valued, color-valued, or feature-valued imagesmay

not achieve the desired effect since the average of two values

may not be a good representation of a bimodal distribution.

Thus, for anything other than binary images, it is not clear

how to interpret a blurring operation. A limitation of

congealing, however, is that enough images must be present

to form a good approximation of the distribution.

To study the problems of localminima and zero gradients,

the following experiments were performed: Training sets of

four different sizes were congealed for each digit. The

number of characters which failed to converge to the best

alignment was evaluated. This judgment was made subjec-

tively, based upon whether a human observer (the author)

could find a better alignment of the character. The results are

reported inTable 1.Whena small numberof examples is used

in congealing, the lack of sufficient smoothing causes a

greater number of local minima problems, as shown in the

first two rows of the table.

Another phenomenon may occur when the observed

data points are spread widely apart. In this case, congealing

may produce multiple convergence centers rather than a

single center. The following experiment was done to

examine this issue more systematically: Starting with a

single image of a “4” from the NIST database, we generated

a sequence of 100 images rotated at uniform intervals from

$ !
2

to !
2
. For ! < 68 degrees, the images congealed to a

unique position, but, when ! > 68 degrees, two “centers”

emerged. This is due to a local minimum in the congealing

process, as illustrated in Fig. 15. Although this lack of

convergence to a single global “center” is not ideal, it does

not preclude us from using the resulting density model,

which has relatively low entropy. That is, even in the

presence of multiple convergent “centers,” we are perform-

ing an important dimensionality reduction in the data by

congealing. The key property is that a test character will be

congealed to a predictable location for comparison with the

model, without losing information about the character. Such

multiple convergence centers were seen in the actual

training data in the case of the class of eights. An example

of each latent image is shown in Fig. 15c and Fig. 15d. A

number of other experiments were conducted to compare

the congealing algorithm to other preprocessing algorithms

for aligning digits. For the sake of brevity, we refer the

reader to [3] and do not replicate it here. The same reference

contains a discussion of the robustness of congealing to

noise, as well.

6 ADDITIONAL APPLICATIONS

In Section 2, we defined congealing as a general procedure

for jointly aligning arrays of data with respect to a set of

continuous transformations. This broad definition encom-

passes a wide range of data types and applications. It is

straightforward to apply the ideas of congealing to time

sequence data, like electroencephalograms (EEGs), to

eliminate location and scale parameters. In this case,

transformations could be linear or nonlinear remappings

of the time coordinate. Another example of time-sequence

data is data taken from a pen-tablet as an ordered sequence

of coordinate pairs. One problem with modeling characters

such as these is that different writers may draw characters

that appear very similar, but at different speeds. If data is

stored and indexed with a time coordinate, then the

similarity of characters may be obscured. Congealing can

be used to “realign” the time coordinates by minimizing the

entropies of sample locations, across characters, by “warp-

ing” time according to either a linear or nonlinear

transformation.
As we have seen already, congealing can be used to align

two-dimensional images and to remove brightness varia-

tions from two-dimensional images. Both of these techni-

ques can be applied to full three-dimensional volumes,

although the computational challenges become greater. In

[3], we report on the alignment of three-dimensional binary

brain volumes using congealing. The same techniques can

be applied to gray-valued 3D medical volumes.

There are three primary directions for our work in

extending these techniques. One of these is to apply

congealing to color images. To do this, we must consider

the entropy of pixel stacks in which each pixel is a three-

dimensional random variable, rather than simply a one-

dimensional variable. We have recently implemented fast

algorithms for estimating the entropy of three-dimensional

distributions from samples, so this is now within reach.

Second, we wish to extend congealing to feature spaces.

In particular, we aim to apply these ideas to images of edge-

strengths and other filter outputs. Part of the problem in the
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Fig. 15. (a) and (b) Two distinct centers of convergence for a set of
rotated “4” images. The algorithm aligned the horizontal part of some
fours with the vertical part of others and got stuck in this local minimum.
However, since any test character which happens to be a four should
rotate to one of these two positions, this can still make a good model for
classification. (c) and (d) Two centers for different “8” images.

TABLE 1
Percentages of Images that Do Not Reach Global Minimum

of the Probability Function



past with making this work is that slight misalignments in

edge images would cause the congealing to get stuck. In

other words, edges are so thin and their overlap from image

to image is so small that congealing didn’t work well. This

can be addressed by our third major line of investigation.

The third idea we hope to investigate was mentioned in

the context of the MR bias removal problem. In order to

form better estimates of pixel stack distributions when few

images are available, estimates could be built from the

neighborhood surrounding a pixel, i.e., by using pixel cylinders

rather than pixel stacks. Integration over neighborhoods

provides a gradient for the alignment algorithm without

destroying information, as would be done by blurring

images. We believe these augmentations of our ideas will

increase the applicability of congealing algorithms. Our

current goal is to apply these ideas to alignment and

structure learning in face images.
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