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Data-Driven Incipient Fault Detection via
Canonical Variate Dissimilarity and Mixed

Kernel Principal Component Analysis
Ping Wu , Riccardo M. G. Ferrari , Yichao Liu , and Jan-Willem van

Wingerden , Senior Member, IEEE

Abstract—Incipient fault detection plays a crucial role
in preventing the occurrence of serious faults or failures
in industrial processes. In most industrial processes, lin-
ear, and nonlinear relationships coexist. To improve fault
detection performance, both linear and nonlinear features
should be considered simultaneously. In this article, a novel
hybrid linear-nonlinear statistical modeling approach for
data-driven incipient fault detection is proposed by closely
integrating recently developed canonical variate dissimilar-
ity analysis and mixed kernel principal component analy-
sis (MKPCA) using a serial model structure. Specifically,
canonical variate analysis (CVA) is first applied to estimate
the canonical variables (CVs) from the collected process
data. Linear features are extracted from the estimated CVs.
Then, the canonical variate dissimilarity (CVD) which quan-
tifies model residuals in the CVA state-subspace is calcu-
lated using the estimated CVs. To explore the nonlinear
features, the nonlinear principal components are extracted
as nonlinear features through performing MKPCA on CVD.
Fault detection indices are formed based on Hotelling’s
T 2 as well as Q statistics from the extracted linear and
nonlinear features. Moreover, kernel density estimation is
utilized to determine the control limits. The effectiveness of
the proposed method is demonstrated by the comparisons
with other relevant methods via simulations based on a
closed-loop continuous stirred-tank reactor process.

Index Terms—Canonical variate analysis (CVA), dissim-
ilarity analysis, incipient fault detection, kernel principal
component analysis (KPCA), mixed kernel.
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I. INTRODUCTION

R
ECENTLY, data-driven fault detection techniques, espe-

cially multivariate statistical process monitoring (MSPM)

methods have attracted considerable interest from both the

academic and industrial spheres. Compared with model-based

or knowledge-based methods, MSPM methods are developed

to operate exclusively on process data without detailed first-

principle models or expert experience, which is usually infeasi-

ble or time-consuming to obtain in practice [1]–[3].

Widely used MSPM methods include principal component

analysis (PCA), partial least squares (PLS), canonical variate

analysis (CVA), [4]–[11]. A major limitation of PCA- and

PLS-based approaches is that both PCA and PLS rely on the

assumption that the process data are not time-dependent [12].

However, most real industrial processes are dynamic. Compared

to PCA and PLS, CVA is a state-space based method that

takes both serial correlation and relationship between correlated

process variables into consideration. Therefore, CVA is more

suitable for dynamic process modeling [13]–[15].

Although MSPM methods have been successfully applied

in fault detection, dealing with incipient faults is still a major

challenge. The main reason for this is that incipient faults often

have small amplitudes and are slowly developing changes, as

opposed to abrupt faults [16]. Incipient faults are easily com-

pensated by feedback control during their initial stage [17].

Unfortunately, incipient faults can slowly affect the process

behavior and gradually evolve into serious faults, even system

failures. Thus, incipient fault detection plays a crucial role in

the maintenance activities where timely and effective detection

of incipient faults can avoid more serious consequences [18].

Conventional MSPM methods as mentioned above are not sen-

sitive to incipient faults, resulting in a high missed detection rate

(MDR) and long detection delay (DD) time.

To detect incipient faults, Harmouche et al. [19] combined

Kullback–Leibler divergence (KLD) with PCA. A dissimilarity

measure is established by comparing the probability density of

each of the latent scores to a reference one using the KLD. In

a similar work, Chen et al. [20] presented an incipient fault de-

tection and diagnosis method based on KLD under probability-

relevant PCA, where KLD and Bayesian inference is integrated.

Another dissimilarity measure for process data called DISSIM

method was proposed by Kano et al. [21]. DISSIM method
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is to evaluate the difference between distributions of data sets

based on the Karhunen–Loeve expansion. Zhao et al. [22], [23]

proposed a subspace distribution monitoring strategy to evaluate

the changes of linear and nonlinear stationary and nonstationary

distribution structures based on the DISSIM method for incipient

fault detection. To observe the variation of process data statistics,

Shang et al. [24] proposed recursive dynamic transformed com-

ponent statistical analysis where the higher-order statistics of

projected data are monitored from a sliding window of process

data. Ji et al. [25] developed a generic fault detection index

in MSPM by using moving average and exponentially weighted

moving average for incipient fault detection. It should be noticed

that these dissimilarity-based techniques require a large window

width of samples for computing statistical patterns.

In recent work, Pilario et al. [26] proposed a method called

canonical variate dissimilarity analysis (CVDA) to cope with

incipient fault detection. In CVDA-based incipient fault detec-

tion the model residuals in the CVA state-subspace, namely

canonical variate dissimilarity (CVD) between past-projected

and future-projected canonical variables, are formed through

traditional CVA. Then a detection index is defined as the

squared Mahalanobis distance of the CVD for fault detection.

Furthermore, the kernel density estimation (KDE) method was

utilized to compute control limits. In [27], a combined index that

combines Hotelling’s T 2 statistic, Q statistic, and CVD-based

statistic was developed. Furthermore, Pilario et al. [28] extended

CVDA to nonlinear CVDA by preprocessing the original data

with a kernel principal component analysis (KPCA) method.

Then, CVDA was performed on the extracted nonlinear principal

components (NPCs). A mixed kernel was adopted to enhance the

interpolation and extrapolation abilities of single kernel-based

learning. The method was referred to as MKCVDA in [28]. Since

mixed kernel principal component analysis (MKPCA) was first

performed, only nonlinear features are explored in MKCVDA.

Both linear and nonlinear relationships always coexist in

complex industrial processes [29]–[31]. Using a single nonlinear

model may not be optimal for statistical modeling in process

monitoring and fault diagnosis [29]. A combined strategy would

thus be preferable, by exploring linear and nonlinear features.

Such a hybrid structure was successfully applied to describe the

underlying relationship for time series forecasting [32]. Chen

combined the linear and nonlinear statistical models to forecast

time series with possibly nonlinear characteristics [33]. In [34],

a linear model was first built via a projection algorithm, then a

feedforward neural network was used to model the unmodeled

dynamics. Recently, Deng et al. [29] integrated linear PCA

and kernel PCA methods in a serial model structure to extract

linear and nonlinear features. However, hybrid linear-nonlinear

statistical modeling is still little investigated for incipient fault

detection.

Motivated by the above discussions, we propose a novel data-

driven fault detector using a hybrid linear–nonlinear statistical

modeling approach. The main spirit of the proposed method is

to use CVDA to build a linear dynamic model from process data

and then extract nonlinear features from the CVD. This way, both

linear and nonlinear features are simultaneously leveraged for

fault detection. To extract the nonlinear features, neural networks

and kernel-based methods are widely used and studied [34].

Compared to neural network methods, kernel-based methods

have their foundation in the solid mathematical framework of

reproducing kernel Hilbert spaces. Kernel methods yield con-

vex optimization problems, can be used as universal nonlinear

approximators, and require only moderate computational com-

plexity [35]–[38]. Among the kernel-based methods, KPCA is

a powerful technique, widely applied in process monitoring and

fault diagnosis [1], [3], [39]–[41]. However, the commonly used

Gaussian radial basis function (RBF) may suffer from overfitting

problem, due to its lack of extrapolation ability, particularly

while an inappropriate kernel width is selected [28], [42], [43].

The combination of RBF and polynomial kernels can provide

enhanced modeling performance [44]. Following this idea, we

adopt MKPCA to extract the nonlinear features from the ob-

tained CVD for incipient fault detection. Moreover, five fault

detection indices are designed by computing Hotelling’s T 2 and

Q statistics based on the extracted linear and nonlinear features.

Therefore, here the proposed method is referred to as canonical

variate dissimilarity mixed kernel principal component analysis

(CVD-MKPCA).

CVD-MKPCA combines the merits of CVDA and MKPCA

methods. Compared to the recently developed MKCVDA [28],

CVD-MKPCA has two advantages. First, linear and nonlin-

ear features are simultaneously extracted in a natural way.

MKCVDA only considers nonlinear features, as the original

data is first projected into a nonlinear high-dimensional space.

In CVD-MKPCA, linear features are extracted by CVDA, and

then MKPCA extracts the nonlinear features from CVD. A more

reliable fault index can thus be derived for nonlinear dynamic

processes, compared to MKCVDA. Second, the computational

cost of the proposed CVD-MKPCA is lower than MKCVDA

in the online monitoring stage, since two mixed kernel matrices

are required to be computed for inputs and outputs in MKCVDA

versus only one for CVD in CVD-MKPCA.

The main contributions of this article lie in the following:

1) A hybrid statistical modeling approach is presented by

integrating CVDA and MKPCA in a serial model struc-

ture. Linear and nonlinear features are simultaneously

extracted from process data for incipient fault detection.

2) An improved incipient fault detection performance can be

attained for nonlinear dynamic processes. Furthermore, a

lower computational cost is required, compared to the

recently developed MKCVDA method.

Moreover, canonical correlation analysis (CCA) based fault

detection methods have been developed for a variety of indus-

trial applications [45]–[47]. These methods can be improved

through utilizing the similar statistical data modeling framework

proposed in this study.

The remainder of this article is structured as follows. The basic

idea of CVDA-based incipient fault detection is described in the

next section. Section III presents the proposed CVD-MKPCA

method in detail. Section IV gives the case study description,

results, and discussion. Finally, Section V concludes this article.

II. BRIEF REVIEW OF THE CVDA

Denote u(k) ∈ R
nu and y(k) ∈ R

ny as the process inputs

and outputs at time instant k. The past data vector zp(k) ∈
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R
(nu+ny)p containing the past inputs and outputs, and the future

data vector yf (k) ∈ R
nyf which consists of the future outputs

are defined

zp(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(k − 1)

u(k − 2)
...

u(k − p)

y(k − 1)

y(k − 2)
...

y(k − p)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

yf (k) =

⎡

⎢

⎢

⎢

⎢

⎣

y(k)

y(k + 1)
...

y(k + f − 1)

⎤

⎥

⎥

⎥

⎥

⎦

where p and f are the numbers of time lags in past and future

data vectors zp(k) and yf (k), respectively.

Supposed that a training data set with N measurements of

u(k) and y(k), k = 1, 2, . . . , N are collected under normal op-

erating condition, the past and future Hankel matricesZp andYf

are constructed fromzp(k) andyf (k) for allk ∈ [p+ 1, p+M ]
as follows:

Zp =
[

zp(p+ 1) zp(p+ 2) · · · zp(p+M)
]

(1)

Y f =
[

yf (p+ 1) yf (p+ 2) · · · yf (p+M)
]

(2)

whereM = N − p− f + 1. The sample covariance matrices of

the past and future vectors and cross-covariance matrix can be

estimated

Σpp =
1

M − 1
ZpZ

T
p (3)

Σff =
1

M − 1
Y fY

T
f (4)

Σfp =
1

M − 1
Y fZ

T
p . (5)

The goal of CVA is to find the projection matrices J and

L to maximize the correlation between Lyf (k) and Jzp(k),
where Lyf (k) and Jzp(k) are also called canonical variables.

Generally, the projection matrices J and L can be computed by

performing singular value decomposition (SVD)

Σ
−1/2

ff ΣfpΣ
−1/2
pp = USVT (6)

where U and V are the matrices consisting of the left and right

singular vectors, respectively. The diagonal matrix S consists of

ordered singular values. From the result of SVD, the projection

matrices J and L are formed by

J = VT
Σ

−1/2
pp (7)

L = UT
Σ

−1/2

ff . (8)

Further, the canonical variables c(k) and x(k) at time instant k

are obtained

c(k) = Lyf (k) (9)

x(k) = Jzp(k). (10)

In CVA-based fault detection method [48], [49], the state vec-

tors xn(k) are extracted from the past data vectors to represent

the process status

xn(k) = Jnzp(k) (11)

where Jn = VT
n Σ

−1/2
pp ∈ R

n×(nu+ny)p. Vn contains the first n

columns of V . The value for n can be determined by analyzing

the plot of the singular values curve from the result of SVD in

(6). In [26], n is selected as the point where a knee appears in

the singular values curve.

Additionally, the model residual vectors e(k) which span the

residual subspace is derived

e(k) = (I − VnVT
n )Σ−1/2

pp zp(k) (12)

where I is the identity matrix of appropriate dimension.

Remark 1: CVA is usually employed as a standard method for

system identification where the state space vector is different

from the xn in (11) [50]. Particularly, the estimation of the state

vector from (11) is biased in the closed-loop case. However, in

the process of monitoring and fault diagnosis framework, (11)

only builds the vector of the canonical variables for residuals

generation. As pointed out in [50], as far as the collected process

data do cover the major process operation scenarios, xn can be

used for process monitoring and fault diagnosis.

Two fault detection indices including Hotelling’s T 2
s and Qs

statistics are computed at time instant k

T 2
s (k) = xn(k)xn(k)

T (13)

Qs(k) = e(k)e(k)T . (14)

Here, T 2
s measures the variations of state vectors xn(k), while

Qs measures the variations of model residual vectors e(k).
It is noticed that the predictability of future canonical variables

from past canonical variables can effectively reflect the small

shifts in process data. To detect incipient faults such as decay

in process parameters, sensor drifts, the CVD between the past-

projected and future-projected canonical variables is employed

in CVDA [26]. The CVD dn(k) at time instant k is defined as

follows:

dn(k) = Lnyf (k)− SnJnzp(k) (15)

where Ln = UT
n Σ

−1/2

ff ∈ R
n×nyf . Un contains the first n

columns of U . Sn consists of the n largest singular values

Sn = diag(λ1, λ2, . . . , λn). For CCA-based methods [45]–[47],

it is noted that the residuals are generated in a similar way as

(15) for fault detection.

As presented in [26], [50], the covariance of dn can be

estimated by

Σdd = I − SnST
n . (16)

To detect incipient faults a fault detection index T 2
dc is intro-

duced, based on the squared Mahalanobis distance of dn [26]

T 2
dc(k) = dn(k)

T
Σ

−1
dd dn(k). (17)

KDE method is often employed to determine the upper control

limits (UCLs) [13], particularly for nonlinear or non-Gaussian

distributed process data. In CVDA-based fault detection, KDE is
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utilized to estimate the probability distributions of T 2
s , Qs, and

T 2
dc. The widely used kernel function in KDE is the Gaussian

kernel function which is defined by

K(g) =
1√
2π

exp−g2/2 . (18)

Given a specific significance level α, the UCL JUCL can be

calculated by solving the following problem:

P (J < JUCL) =

∫ JUCL

−∞

1

Mh

M
∑

k=1

K

(

J − J(k)

h

)

dJ

= α

(19)

where J(k), k = 1, 2, . . . ,M represents the samples of fault

detection index J ∈ {T 2
s , Qs, T

2
dc} under normal operating con-

ditions and h is the kernel bandwidth. JUCL represents the corre-

sponding UCL JUCL ∈ {T 2
UCL,s, QUCL,s, T

2
UCL,dc}. More details

for KDE can be found in [13]. In the proposed CVD-MKPCA

based fault detection, we also adopt KDE to determine UCLs.

Remark 2: The parametric approach of probability distribu-

tions estimation relies on the assumption of specific probability

distributions. KDE is a nonparametric one. Thus, KDE has

more flexibility for the determination of UCLs. A drawback

of KDE is that the kernel function and its parameters should

be selected appropriately. In KDE, the problem of finding the

appropriate bandwidth h is a key concern. Several approaches

have been proposed to find the optimal bandwidth such as the

least squares cross-validation, contrast methods [51]. In [52], a

simple estimation of bandwidth was developed from minimizing

the approximation of the mean integrated squared error

h = 1.06σM−0.2 (20)

where σ is the standard deviation of the established fault de-

tection indices using the collected process data under normal

conditions. It has been proved that this selection method (20) can

provide a promising performance in CVA-based fault detection

methods [13], [26].

In the online monitoring stage, fault detection indices T 2
s ,

Qs, and T 2
dc at every sampling instant are calculated using (13),

(14), and (17). For CVA-based fault detection, the occurrence

of a fault is detected when any one of T 2
s , Qs exceeds its

corresponding UCL, T 2
UCL,s, QUCL,s, respectively. For CVDA-

based fault detection, the occurrence of a fault is detected

when any one of T 2
s , Qs, T

2
dc exceeds its corresponding UCL,

T 2
UCL,s, QUCL,s, T

2
UCL,dc, respectively.

III. PROPOSED METHOD

Although the fault detection index T 2
dc has proved its effec-

tiveness for incipient fault detection as shown in [26], it can

only evaluate the variations of linear features in process data.

Nonlinear features usually occur in the residuals of the linear

model [29], [32] and their effect cannot be separated by that of

other normally occurring uncertainties. This leads to high UCLs

and, thus, low detectability of small faults such as incipient ones

at early stages. To extract these nonlinear features and improve

detectability, it is worthwhile to further analyze the CVD, which

Fig. 1. Schematic diagram of CVD-MKPCA statistical modeling.

is the model residuals in the CVA state-subspace, through non-

linear features extraction methods. Given the main objective of

this article and the simplicity of kernel-based methods, MKPCA

is applied for this goal. Along with this concept, MKPCA is

performed to examine the nonlinear features for fault detection

in the proposed CVD-MKPCA method. The proposed method

consists of two main steps, as shown in Fig. 1.

In Section II, the derivation of CVD has been introduced.

Besides xn and e, the residuals yr of y onto the state subspace

can also be used to construct a fault index, where

yr(k) = (I − UnUT
n )Σ

−1/2

ff yf (k). (21)

Similarly to what has been done before, the Qy statistic can be

introduced

Qy(k) = yr(k)yr(k)
T . (22)

As shown in Fig. 1, fault indices T 2
s , Qs, Qy are established

from linear features through CVDA model. To extract the non-

linear features, dn is further investigated. Assumed that dn

is implicitly mapped onto a high-dimensional feature space

F through a nonlinear function map φ(dn) : R
n → F , then

the sample covariance of high-dimensional features can be

calculated

C =
1

M

M
∑

i=1

φ(dn(i))φ(dn(i))
T (23)

where
∑M

i=1 φ(dn(i)) = 0. In KPCA, the loading vector ν in

the high-dimensional feature space can be computed by solving

the below eigenvalue problem

λν = Cν =
1

M

M
∑

i=1

(φ(dn(i))ν
T )φ(dn(i)) (24)

where λ > 0 and ν �= 0. However, since φ(dn(i)) can not be

expressed explicitly, the eigenvalue problem (24) cannot be

directly solved via eigenvalue decomposition. It is known that

ν lies in the subspace spanned by φ(dn(i)). Thus, there exist

some γ where γ = [γ1, . . . , γM ]T such that

ν =

M
∑

i=1

γiφ(dn(i)). (25)
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Substitute (25) into (24), and multiply φ(dn(j)) with the left

of both sides in (24),

λφ(dn(j))ν = φ(dn(j))
1

M

M
∑

i=1

φ(dn(i))φ(dn(i))
Tν. (26)

Moreover, the kernel matrix K ∈ R
M×M with ker-

nel function κ is defined as Ki,j = κ(dn(i),dn(j)) =
〈φ(dn(i)), φ(dn(j))〉, i, j = 1, 2, . . . ,M where 〈·, ·〉 represents

the inner-product operator. Then, the eigenvalue problem (26)

can be expressed in terms of the dot products of two mappings

to derive the eigenvectors γ

Mλγ = Kγ. (27)

The detailed explanation, discussion, and implementation of

KPCA can readily be found in the literature [28], [39], [53].

Based on Mercer’s theorem, the inner products are to be

calculated in a possible infinite-dimensional space, known as the

Hilbert space [53]. An appropriate kernel function should make

the kernel matrix K a positive semidefinite. Two representative

kernel functions, the Gaussian RBF and polynomial kernel are

widely used in process monitoring and fault diagnosis. The RBF

is defined by

κrbf(xi,xj) = exp

(

−‖xi − xj‖2

s

)

(28)

where s is the kernel width. The polynomial kernel is given as

κpoly(xi,xj) = (xix
T
j + 1)µ (29)

where µ is the user-defined degree of the polynomial.

For RBF kernel, only the data points in the neighborhood

of the test points are affected. The RBF kernel has good in-

terpolation ability but lacks extrapolation ability. Thus, it is

considered a local kernel. The overfitting problem may occur in

the learning while a single RBF kernel is employed. On the other

hand, the polynomial kernel can be considered as a global kernel

[43]. The polynomial kernel has good extrapolation ability but

poor interpolation ability. In [44], the mixtures of kernels were

proposed by combining RBF and polynomial kernels to enhance

the modeling performance of the support vector machine for

regression. To improve the performance of incipient fault detec-

tion, a mixed kernel was applied in [28]. Inspired by these ideas,

MKPCA is adopted in our study to extract nonlinear features

from CVD.

The mixed kernel is constructed by using a convex combina-

tion of RBF and polynomial kernels

κmix = βκrbf + (1 − β)κpoly (30)

where β(0 ≤ β ≤ 1) is the mixing coefficient to balance the

interpolation and extrapolation abilities.

Assumed that the mixed kernel Kmix has been centered [54],

then (26) is equivalent to

Mλγ = Kmixγ. (31)

For the mixed kernel, three important parameters should be

determined including the degree of the polynomial µ, the kernel

width s, and the mixing coefficient β. A large value of s would

weaken its interpolation ability of RBF kernel but strengthen

the extrapolation ability. Similarly, an appropriate µ should be

determined by considering the tradeoff between interpolation

and extrapolation abilities. Meanwhile, the mixing coefficient

β is of importance to achieve the optimal performance of the

learning task. Although several optimization methods such as

genetic algorithm, particle swarm optimization, have been de-

veloped for finding the optimal kernel parameters, they require

much effort and computational costs. A practical method is using

a grid search strategy to determine the optimal parameters of a

mixed kernel [28]. To find the optimal parameters, we use false

alarm rate (FAR) as a criterion in the offline training stage. FAR

is the ratio of the false alarming samples over all the fault-free

samples. The optimal parameters should be chosen to obtain

a FAR as lower as possible. Since µ is an integer, it is easy

to choose through cross-validation. In the case study, µ = 2 is

adopted. The other two parameters s and β are chosen through

the results of the grid search.

Remark 3: While the mixing coefficient β is set as 1, the

mixed kernel Kmix becomes a single RBF kernel Krbf. Usually,

a regularization term is imposed to deal with the ill-conditioned

kernel matrix which is constructed by a single RBF kernel

λγ =

(

1

M
Krbf + ζI

)

γ (32)

where ζ is the regularization parameter. A cross-validation can

be used to determine ζ. In KPCA-based fault detection methods

using RBF kernel function, s usually is specified as 500l [29],

where l is the dimension of process variables.

For a test dn(k), its retained NPCs tcm,i(k), i = 1, 2, . . . ,m

which are with the first m eigenvalues are extracted by

tcm,i(k) =
M
∑

j=1

γi
jκmix(dn(j),dn(k)). (33)

Denote tcm,m(k) = [tcm,1(k), . . . , tcm,m(k)]. A fault detec-

tion index is formed by using Hotelling’s T 2 statistic to monitor

the variation of retained NPCs

T 2
dm(k) = tcm,m(k)Λ−1

cmtcm,m(k)T (34)

where Λcm is the sample covariance of tcm,m.

The rest NPCs can be monitored by establishing the following

Qdm statistic as in [39]:

Qdm(k) = tcm,Mt
T
cm,M − tcm,m(k)tcm,m(k)T (35)

where tcm,M = [tcm,1, . . . , tcm,M ].
Remark 4: Similar to linear PCA, the number of retained

NPCs m can be determined by using the cumulative percent

variance (CPV) method. In the case study, the selection of m is

to achieve the predetermined percentage variation of 98%.

The UCLs T 2
UCL,dm and QUCL,dm of T 2

dm and Qdm are obtained

by the KDE method, similarly to what was done in Section II.

Under the CVD-MKPCA based fault detection framework, all

five indices T 2
s , Qs, Qy, T

2
dm and Qdm, will be used to detect

incipient faults. The fault detection logic is that a fault is de-

tected when any one of T 2
s , Qs, Qy, T

2
dm, Qdm exceeds its cor-

responding UCL, T 2
UCL,s, QUCL,s, QUCL,y, T

2
UCL,dm, QUCL,dm,

respectively.
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Fig. 2. Procedure of the proposed CVD-MKPCA based fault detection.

In summary, the procedure of the proposed CVD-MKPCA

based incipient fault detection is described as follows. 1) In the

offline training stage, the CVD-MKPCA model is built from

the collected process data and the corresponding UCLs are

established through KDE. 2) In the online monitoring stage,

the real-time fault detection indices are computed with the

continuous collection of a moving window of samples of length

p+ f . The process is determined to be normal or faulty by

comparing real-time indices with their respective UCLs. The

detailed procedure of the proposed CVD-MKPCA method is

depicted in Fig. 2.

IV. CASE STUDY

In this section, a closed-loop CSTR process is used to verify

the performance of the proposed CVD-MKPCA based incipient

fault detection method. The studied CSTR process is particularly

designed by Pilario et al. for simulating incipient faults [26].

Fig. 3 plots the diagram of the closed-loop CSTR process. The

mechanism of the CSTR process is mainly described by the

following equations:

⎧

⎪

⎨

⎪

⎩

dC
dt = Q

V (Ci − C)− akC + v1

dT
dt = Q

V (Ti − T )− a
(∆Hr)kC

ρCp
− b UA

ρCpV
(T − Tc) + v2

dTc

dt = Qc

Vc
(Tci − Tc) + b UA

ρcCpeVc
(T − Tc) + v3

(36)

Fig. 3. Diagram of the closed-loop CSTR [26].

TABLE I
MODEL PARAMETERS OF THE CSTR PROCESS

TABLE II
DESCRIPTION OF THE INCIPIENT FAULTS IN THE CSTR PROCESS

where Ci is the concentration of the reactant. Ti and Tci are

the temperature of the reactant and inlet temperature of the

coolant, respectively. vi are process noise. k = k0exp
−E/RT

is an Arrhenius-type rate. Due to the existence of Arrhenius-

type rate k, it can be observed that there are linear and

nonlinear relationships in the closed-loop CSTR process as

shown in (36). The model parameters of the CSTR pro-

cess are given in Table I. Similar to [26], we select u =
[Ci Ti Tci] and y = [C T Tc Qc]. The CSTR simulation model

in Matlab Simulink used in this study can be downloaded

from https://www.mathworks.com/matlabcentral/fileexchange/

66189-feedback-controlled-cstr-process-for-fault-simulation.

For evaluating the fault detection performance, three typical

incipient faults are considered [28]. These incipient fault scenar-

ios are described in Table II. To simulate the saturation faults, a

and b are decayed from 1.00 at the normal operation to 0. It can be

used to simulate incipient faults such as catalyst decay and heat

transfer fouling. Another incipient fault is a sensor drift in T .

The sampling interval for all variables is 1 min. The offline

training dataset is collected during 20 h under normal operation

stimulated by randomly varying inputs u around their nominal

values every 1 h. Therefore, 1200 samples are generated for

training models. These samples are correlated and non-Gaussian

distributed owing to the dynamic and nonlinear behavior of the

closed-loop CSTR process. Each fault scenario also has 1200
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Fig. 4. FAR results versus [s, β] where s is the kernel width of RBF
and β is the mixing coefficient.

samples which are generated during 20 h of process operation.

The fault is injected after 200 min under each fault scenario.

A 99.9% control limit is used to determine the UCLs for all

methods.

For comparison, CVA T 2 and Q [13] (which are the same T 2
s

and Qs in CVD-MKPCA method), CVDA D [26], CVDA T 2
c

[27], KCDVAD, and MKCVDAD [28] are employed. Besides,

CVD-KPCA T 2
d is adopted for comparison. CVD-KPCA T 2

d is

derived through a single Gaussian RBF kernel.

A. CVD-MKPCA Training

We use two fault-free data sets as the training data to build the

CVD-MKPCA model and determine the related parameters. As

discussed in [26], the numbers of time lag p and f can be deter-

mined by using auto-correlation analysis.n is then selected as the

point where a knee appears by screening the plot of the singular

value curve. In this study, we adopt the same values of p, f, n

as in [26] for comparison, where p = f = 5, and n = 8. With

the sets s = 10i, β = 10−j(i, j = 1, 2, . . . , 5) and predefined

µ = 2, the FARs against choices of [s, β] are plotted in Fig. 4.

Through Fig. 4, the parameters s and β are chosen as s = 100

and β = 0.01. By calculating the CPV from the result of (31),m

is set as 40. For CVD-KPCA with a single Gaussian RBF kernel,

the kernel width is set as 4000, and the regularization coefficient

ζ is set to 0.0001 in (32) through cross-validation. For CVDA,

KCVDA, and MKCVDA, the parameters are determined with a

similar procedure described in [28].

B. CVD-MKPCA Monitoring

Fault 1 is a sensor drift. As shown in Fig. 5(a) and (b), it

can be found that the amplitudes of the change of C and T are

relatively small. Notwithstanding that the DDs of all indices are

long, the MDR of CVD-MKPCAT 2
dm is lower than other indices.

From Fig. 5(c)–(j), it can be observed that the detection time

by CVD-MKPCA T 2
dm is 440 min, while other indices require

more time to detect the occurrence of Fault 1 such as 480 min

for MKCVDA D, 580 min for KCVDA D and 445 min for

CVD-KPCA T 2
d . For Fault 2, it is a catalyst decay fault. In the

beginning, the variations of process variables such as C and

T are not obvious. After a few hours, the deviation of process

variables between under normal and abnormal conditions would

gradually become huge as shown in Fig. 6 (a) and (b). As shown

in Fig. 6(i), CVD-KPCA T 2
d changes around a constant after

700 min. However, Fault 2 is actually becoming more severe.

The reason is that there may exist an overfitting problem while

using a single RBF kernel in CVD-KPCA. On the contrary, this

issue is addressed by introducing the mixed kernel. As shown in

Fig. 6(j), it can be seen that CVD-MKPCA T 2
dm can follow the

variation trend of the severity of Fault 2. And the detection time

is 300 min for CVD-MKPCA T 2
dm. It is longer than the DD of

MKCVDA D (290 min). However, CVD-MKPCA T 2
dm obtains

shorter detection time than most of the indices in this case. For

Fault 3, the fouling parameter b would gradually become zero. It

can be found that the performance of CVD-MKPCAT 2
dm is better

than other indices. Especially, CVD-MKPCA T 2
dm can detect

Fault 3 much earlier than MKCVDAD where the detection time

is 285 min for CVD-MKPCAT 2
dm and 305 min for MKCVDAD.

As plotted in Fig. 7(a) and (b), there is a spike around 1000 min

in C and T . However, CVD-KPCA T 2
d can not detect this severe

change due to the overfitting problem as shown in Fig. 7(i).

Similar to Fault 2, CVD-MKPCA T 2
dm works well to capture the

trends of process variablesC and T due to the adoption of mixed

kernel , as shown in Fig. 7(j).

To evaluate the performance robustly, a Monte Carlo sim-

ulation of 15 realizations with different random seeds for the

process noises, measurement noises, and input disturbances for

each fault scenario. Three indices are utilized to quantify the fault

detection performance: 1) DD, the elapsed time since the fault

has been injected until it is detected—to confirm the occurrence

of incipient faults, the detection time is defined as the first time

after ten consecutive alarms were raised as in [28]; 2) FAR; and

3) MDR, the ratio of the undetected samples over all the faulty

samples. For a robust comparison, 15 test data sets are generated

for each fault scenario. In Table III, the medians of DD, FAR,

and MDR across 15 faulty data sets in each fault scenario are

listed. To make the comparison of DD time more clear, the unit

of DD is converted to hours.

As presented in Table III, it can be observed that the fault

detection indices relying on linear features have similar perfor-

mance except for CVA T 2
s and Qs. Although CVA Qs has the

same level of DDs and MDRs as CVDA D, CVDA T 2
c , its FARs

are higher. In general, for fault detection indices using linear

features, the monitoring index based on CVD can provide better

performance than other indices. It can also be found that the

performance using the fault detection indices based on nonlinear

features is superior over these indices based on linear features.

For example, the MDRs and DDs of KCVDA D, MKCVDA D,

and CVD-MKPCA T 2
dm are much lower and shorter than CVDA

D and CVDA T 2
c . The CSTR process used in this study includes

both linear and nonlinear relationships. Compared to CVDA and

MKCVDA, CVD-MKPCA can obtain a more accurate statistical

model using a serial model structure. The T 2 statistic of the

NPCs with dominant eigenvalues can capture the change of the

process status more accurately. CVD-MKPCA T 2
dm can derive

lower MDRs and shorter DDs for Fault 1 and Fault 3 scenarios,

and the same level of performance for Fault 2, compared to

KCVDA D and MKCVDA D. From the data in Table III, it

is also observed that CVD-MKPCA Qdm can provide better

DDs and MDRs for Fault 2 and Fault 3 scenarios. However, like

CVA Qs, the FARs of CVD-MKPCA Qdm are higher than other
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Fig. 5. Trends of sample at Fault 1 condition: (a) C and (b) T; monitoring charts: (c) CVA T 2
s (d) CVA Qs (e) CVDA D (f) CVDA T 2

c (g) KCVDA D

(h) MKCVDA D (i) CVD-KPCA T 2
d

(j) CVD-MKPCA T 2
dm

. Legend: Red Dash dot - UCL; Solid - statistical index at Fault 1 condition; Pink Dash dot -
start of fault.

Fig. 6. Trends of sample at Fault 2 condition: (a) C and (b) T; monitoring charts: (c) CVA T 2
s (d) CVA Qs (e) CVDA D (f) CVDA T 2

c (g) KCVDA D

(h) MKCVDA D (i) CVD-KPCA T 2
d

(j) CVD-MKPCA T 2
dm

. Legend: Red Dash dot - UCL; Solid - statistical index at Fault 2 condition; Pink Dash dot -
start of fault.

TABLE III
COMPARISON OF FAULT DETECTION PERFORMANCE FOR THE INCIPIENT FAULTS IN CSTR PROCESS†

†All results were medians from the results across 15 faulty data sets monitored in each fault scenario. aFirst row: DDs (DD, hours) consistently for ten consecutive sampling times;
bSecond row: (FAR, %); cThird row: (MDR,%).
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Fig. 7. Trends of sample at Fault 3 condition: (a) C and (b) T; monitoring charts: (c) CVA T 2
s (d) CVA Qs (e) CVDA D (f) CVDA T 2

c (g) KCVDA D

(h) MKCVDA D (i) CVD-KPCA T 2
d

(j) CVD-MKPCA T 2
dm

. Legend: Red Dash dot - UCL; Solid - statistical index at Fault 3 condition; Pink Dash dot -
start of fault.

indices. Although CVD-MKPCA Qdm can not provide reliable

results due to high FARs. The FARs of CVD-MKPCA T 2
dm

are much lower than CVD-MKPCA Qdm as listed in Table III.

Compared to CVD-MKPCA Qdm, CVD-MKPCA T 2
dm is more

reliable.

In the following discussion, the comparative results are ana-

lyzed between CVD-MKPCA T 2
dm and other indices based on

nonlinear features such as KCVDAD, MKCVDAD, and CVD-

KPCAT 2
d . Compared to other indices, the DD and MDR derived

by CVD-MKPCA T 2
dm are superior for Fault 1 and Fault 3 sce-

narios. And its FARs are zero for all faults. Despite MKCVDA

D and KCVDA D can provide slightly better performance for

Fault 2 scenario than CVD-MKPCA T 2
dm, CVD-MKPCA T 2

dm

can still outperform over other fault detection indices.

Based on the results listed in Table III, it is shown that

CVD-KPCA T 2
d and CVD-MKPCA T 2

dm can provide better

performance than KCVDA D and MKCVDA D for Fault 1

and Fault 3 scenarios. In summary, it can be concluded that the

combination of CVDA and MKPCA via a serial model structure

is more effective for incipient fault detection for nonlinear

dynamic processes, compared to CVDA and MKCVDA. As

shown in Fig. 6(i) and (j) and Fig. 7(i) and (j), it can be seen that

CVD-MKPCAT 2
dm is a more reliable index than CVD-KPCAT 2

d

for detecting incipient faults. Nonetheless, CVD-MKPCA T 2
dm

is the most powerful index for incipient fault detection among

the comparable indices in terms of combined FARs, DDs, and

MDRs.

The computational cost should also be a concern in real-time

fault detection, particularly while the kernel-based methods are

introduced. In order to compare the computational costs of the

proposed CVD-MKPCA method with other kernel-based meth-

ods such as KCVDA and MKCVDA, we list the elapsed time of

the establishment of online fault detection indices in Table IV.

The simulation environment is under Matlab 2019a with Intel

Core i7-8750H CPU @2.20 GHz and 32 GB RAM. As listed

TABLE IV
COMPARISON OF COMPUTATION TIME IN THE ONLINE MONITORING PHASE

in Table IV, the computation time of MKCVDA D is 0.0088 s.

Since only a single kernel is adopted in calculating KCVDA D,

the computation time is shorter than MKCVDA D as listed in

Table IV. On the other hand, the computation time of calculating

CVD-MKPCA T 2
dm is 0.0042 s. As analyzed in Section III, Only

one kernel matrix is needed to compute CVD-MKPCA T 2
dm in

the online monitoring stage. The computation time of calculating

CVD-MKPCA T 2
dm is shorter than MKCVDA D.

V. CONCLUSION

In this article, a novel data-driven incipient fault detection

method using CVDA and MKPCA in a serial model structure

was proposed. Except for the linear features extracted from

CVDA, nonlinear PCs were extracted from the CVD between

past-projected and future-projected canonical variables. The

proposed CVD-MKPCA takes both the advantages of CVDA

and MKPCA. Fault detection indices using Hotelling’s T 2 and

Q statistics were established based on the extracted linear and

nonlinear features for incipient fault detection. The UCLs were

determined using KDE. Simulation results have confirmed the

superior performance of the proposed method over the related

techniques. It can also be noticed that although CVD-MKPCA

T 2
dm can provide better performance than other indices, a further

study on the utilization of all the extracted features or statistics

is suggested. Additionally, this article mainly focused on fault

detection. Fault identification and diagnosis can be developed

using the proposed CVD-MKPCA statistical modeling frame-

work for incipient fault monitoring in the future.
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