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We present our data-driven supervisedmachine-learning (ML)model to predict heat load for buildings in a district heating system
(DHS). Even thoughML has been used as an approach to heat load prediction in literature, it is hard to select an approach that will
qualify as a solution for our case as existing solutions are quite problem speci�c. For that reason, we compared and evaluated three
ML algorithms within a framework on operational data from a DH system in order to generate the required prediction model.
�e algorithms examined are Support Vector Regression (SVR), Partial Least Square (PLS), and random forest (RF). We use the
data collected from buildings at several locations for a period of 29 weeks. Concerning the accuracy of predicting the heat load, we
evaluate the performance of the proposed algorithms using mean absolute error (MAE), mean absolute percentage error (MAPE),
and correlation coe	cient. In order to determine which algorithm had the best accuracy, we conducted performance comparison
among these ML algorithms.�e comparison of the algorithms indicates that, for DH heat load prediction, SVRmethod presented
in this paper is the most e	cient one out of the three also compared to other methods found in the literature.

1. Introduction

As stated in the report of European Commission strategy for
energy, the continuous growing of energy demandworldwide
has made energy security a major concern for EU citizens.
�is demand is expected to increase by 27% by 2030, with
important changes to energy supply and trade [1]. Being the
largest energy and CO2 emitter in the EU, the building sector
is responsible for 40–50% of energy consumption in Europe
and about 30–40% worldwide [2]. �e North European
countries have proved themselves as forerunners in the
development and application of clean and sustainable energy
solutions. �eir excellent performance on adopting such
solutions enables them to achieve ambitious national climate
objectives and requirements and to serve as key players in the
entire European energy system [3].

District heating (DH) system is an optimal way of supply-
ing heat to various sectors of the society such as industrial,
public, or private buildings. DH network o�ers functional,
economic, and ecological advantages and is also instrumental
in reducing the global and local CO2 emissions. It o�ers an

enormous adaptability to combine di�erent types of energy
sources e	ciently [4]. Considering the recent technological
trends of progressing to smart energy infrastructures, the
development of the fourth generation of district heating
implies meeting the objective of more energy-e	cient build-
ings. Moreover, this also envisions DH networks to be as
an integrated part of the operation of smart energy systems,
that is, integrated smart electricity, gas, and thermal grids [5].
�e application of new and innovative technology in district
heating is therefore considered essential to improve energy
e	ciency [6].

�ederegulation of the electricitymarket and the increas-
ing share of energy-e	cient buildings have put district heat-
ing in a more vulnerable position with regard to challenges
in terms of cost e�ectiveness, supply security, and energy
sustainability within the local heat market. With this back-
ground, it is therefore important for district heating sector to
maintain an e	cient and competitive district heating system
which is able to meet the various requirements which char-
acterize the heat market. In a �exible district heating system
with multiple energy sources and production technologies,
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the need for accurate load forecasting has become more and
more important. �is is especially important in a district
heating system with simultaneous production of heat, steam,
and electricity.

In this paper, with the application of three di�erent ML
algorithms to predict heat consumption, we investigate the
performance of SupportVector Regression (SVR),Partial Least
Squares (PLS), and random forest (RF) approach to develop
heat load forecasting models by making a comparative study.
Our focus is on low error, high accuracy, and validating our
approach with real data. We also compare the error analysis
of each algorithm with existing techniques (models) and also
�nd the most e	cient one out of the three.

�e rest of the paper is organized as follows: Section 2 out-
lines the related work, where we provide an overview ofmany
approaches to load prediction that are found in the literature.
In Section 3, we provide some background information about
DH concepts.�is is followed by a presentation of the system
framework and related predictionmodels, given in Section 4.
Further, in Section 5, we present and discuss the evaluation
and results. Finally, Section 6 concludes the paper.

2. Related Work

�e state of the art in the area of energy (heating, cooling, and
electric energy) demand estimation in buildings is classi�ed
as forward (classical) and data-driven (inverse) approaches
[7]. While the forward modelling approach generally uses
equations with physical parameters that describe the building
as input, the inverse modelling approach uses machine-
learning techniques. Here, the model takes the monitored
building energy consumption data as inputs, which are
expressed in terms of one or more driving variables and a
set of empirical parameters and are widely applied for various
measurements and other aspects of building performance [8].
�e main advantage of data-driven models is that they can
also operate online, making the process very easily updatable
based on new data. Considering the fact thatMLmodels o�er
powerful tools for discovery of patterns from large volumes
of data and their ability to capture nonlinear behavior of the
heat demand, they represent a suitable technique to predict
the energy demand at the consumer side.

Numerous ML models and methods have been applied
for heat load prediction during the last decade. A good
overview of some recent references is given by Mestekemper
[6, 9]. �e former also built his own prediction models
using dynamic factor models. A simple model proposed by
Dotzauer [10] uses the ambient temperature and a weekly
pattern for prediction of the heat demand in DH. �e
author makes the social component equal to a constant
value for all days of the week. �ere is another interesting
model, which address the utilization of a grey box that
combines physical knowledge with mathematical modelling
[11]. Some approaches to predict the heat load discussed in the
literature include arti�cial neural networks (ANN) [12–15].
In [12], a backpropagation three-layered ANN is used for the
prediction of the heat demand of di�erent building samples.
�e inputs of the network for training and testing are building

transparency ratio (%), orientation angles (degrees), and
insulation thickness (cm) and the output is building heating
energy needs (Wh). When ANN’s outputs of this study
are compared with numerical results, average 94.8–98.5%
accuracy is achieved. �e authors have shown that ANN is a
powerful tool for prediction of building energy needs. In [13],
the authors discuss the way self-organizingmaps (SOMs) and
multilayer perceptrons (MLP) can be used to develop a two-
stage algorithm for autonomous construction of prediction
models. �e problem of heat demand prediction in a district
heating company is used as a case study where SOM is used as
ameans of grouping similar customer pro�les in the �rst stage
and MLP is used for predicting heat demand in the second
stage. However, the authors do not provide any information
related to the error rates obtained during the predictions.

In [14], recurrent neural networks (RNNs) are used for
heat load prediction in district heating and cooling systems.
�e authors compare their prediction results from RNNwith
the prediction results obtained from a three-layered feed
forward neural network (TLNN). �e mean squared error
between the TLNN and the stationary actual heat load is

reported to be 21.052 whereas it is 11.822 between the RNN
and the actual heat load data. In the nonstationary case, RNN
still provides lowermean squared error.�euse of RNNs rises
the expectation to capture the trend of heat load since it uses
heat load data for several days as the input.

In [15], time, historical consumption data, and ambient
temperatures were used as input parameters to forecast
heat consumption for one week in the future. �e authors
compared the performances of three black-box modelling
techniques SVR, PLS, and ANN for the prediction of heat
consumption in the Suseo DH network and analyzed the
accuracy of each method by comparing forecasting errors.
�e authors report that in one-day-ahead overall average
error of PLS is 3.87% while that of ANN and SVR is 6.54%
and 4.95%, respectively.�emaximum error of SVR is 9.82%,
which is lower than that of PLS (16.47%) and ANN (13.20%).
In terms of the overall error, the authors indicate that PLS
exhibits better forecasting performance than ANN or SVR.

In [16], a multiple regression (MR) model is used for
heat load forecasting. �e reported MAE is 9.30. �e model
described in [17] uses an online machine-learning approach
named Fast Incremental Model Trees with Dri� Detection
(FIMT-DD) for heat load prediction and hence allows the
�exibility of updating the model when the distribution of
target variable changes. �e results of the study indicate that
MAE and MAPE for FIMT-DD (using Bagging) have lower
values in comparison to Adaptive Model Rules (AMRules)
and Instance Based Learner on Streams (IBLStreams).

Authors in [18] compare the performance of four super-
vised ML algorithms (MLR, FFN, SVR, and Regression
Tree (RT)) by studying the e�ect of internal and external
factors. �e external factors include outdoor temperature,
solar radiation, wind speed, and wind direction.�e internal
factors are related to the district heating system and include
supply and return water pressure, supply and return water
temperature, the di�erence of supply and return temperature,
and circular �ow.�eir study shows that SVR showed the best
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Table 1: ML models for heat demand prediction in the literature.

Applied algorithms [12] [13] [14] [15] [16] [17] [32] [33] [34] [35] [36] Our work

ANN/FNN/SOM/RNN + + + + − − + − − + − −
MLR/MR/PLS − − − + + − + − − − − +

SVM/SVR − − − + − − + + − − + +

BN − − − − − − − − + − − −
DT/RF/RT − − − − − + + − − − − +

Ensembles − − − − − + − − − − − +

accuracy on heat load prediction for 1- to 24-hour horizons.
However, the prediction accuracy decreases with the rise in
horizon from 1 to 18 hours.

Wu et al. [19] discuss and implement SVR as a pre-
dictive model to the building’s historical energy use. �eir
predictive model proved to approximate current energy use
with some seasonal and customer-speci�c variations in the
approximations. Another work [20] discusses the importance
of prediction of load in a smart energy grid network. �e
authors propose a BN to predict the total consumer water
heat consumption in households. Shamshirband et al. [21]
construct an adaptive neurofuzzy inference system (ANFIS),
which is a special case of the ANN family, to predict heat load
for individual consumers in a DH system. �eir result indi-
cates that more improvements of the model are required for
prediction horizons greater than 1 hour. Protić et al. [22] study
the relevance of short-termheat load prediction for operation
control inDHnetwork.Here, authors apply SVR for heat load
prediction for only one substation for time horizon of every 15
minutes. To improve the predictive model, authors also add a
dummy variable to de�ne the state of DH operation.

In literature, the research towards developing load fore-
casting models is also discussed from di�erent perspectives
and used in di�erent energy related applications, such as
head load in district heating, wind turbine reaction torque
prediction [23], and wind power forecasting [24, 25].

In [23], SVR is employed for wind turbine torque pre-
diction. �e results show that an improvement in accuracy
can be achieved and conclude that SVR can be considered
as a suitable alternative for prediction. It can be also seen
that the proposed SVR prediction models produce higher
accuracy compared toANNandANFIS (adaptive neurofuzzy
inference system). �e work discussed in [24] considers the
penetrations of renewable energies in electrical power sys-
tems by increasing the level of uncertainty. In such situations,
traditional methods for forecasting of load demand cannot
properly handle these uncertainties. Hence, they implement a
neural network method for constructing prediction intervals
by using a lowupper bound estimation (LUBE) approach.�e
authors conduct a comparative analysis and show that this
method can increase the prediction intervals quality for load
and wind power generation predictions.

Bhaskar and Singh [25] perform a statistical based
wind power prediction using numerical weather prediction
(NWP). In order to validate the e�ectiveness of the proposed
method, the authors compared it with benchmark models,
such as persistence (PER) and new-reference (NR), and show

that the proposed model outperforms these benchmark
models.

Additionally, due to innovations in the future sustainable
and smart energy systems and recent technological trends
with IoT (Internet of �ings), many research works [5, 26]
consider DH systems as being an integral part in Smart Grid,
within the smart city concept. Moreover, such a DH system
model will require high computation time and resources
for knowledge representation, knowledge inference, and
operational optimization problems.�us, in response to this,
researchers are continuously focusing on the development
and use of fast and e	cient algorithms for real-time process-
ing of energy and behavior related data.

As a summary, previous research on heat load prediction
points to various training algorithms: ANN including RNN,
FFN (Feedforward Neural Network)/MLP, and SOM; MR
including MLR and PLS; SVM including SVR; Bayesian
networks (BN); decision trees (DT); ensemble methods [27];
FIMT-DD; AMRules; and IBLStreams.

In spite of the interest and the considerable e�orts given
by the research community so far, there is no consensus
among researchers on neither selecting the most suitable
training model for heat load prediction nor selecting an
appropriate set of input parameters for training the model
with [16] in order to achieve high level of prediction accuracy.
�is is due to the fact that superiority of one model over
another in heat load prediction cannot be asserted in general
because performance of each model rather depends on the
structure of the prediction problem and the type of data
available.�e comparison in [15] pointed to the superior per-
formance of SVR already; however, as our problem structure
and inputs are di�erent from theirs, we chose to do a compar-
ison of several up-to-date models to �nd the most promising
approach for our case. Table 1 lists models from the literature.
�e “plus” sign indicates that a particular algorithm has been
applied, while “minus” means the opposite. Based on the
table, we concluded that SVR, PLS, and RF provide us with
a unique combination of models to compare with each other.
Simplicity and e	ciency of each model in our combination
are preferred such that rapid and simple assessment of energy
demand with high accuracy can be obtained.

3. District Heating Systems

District heating is a well-proven technology for heat supply
from di�erent energy sources through heat generation and
distribution to heat consumers. DH systems are valuable
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Figure 1: District heating block diagram.

infrastructure assets, which enable e�ective resource utiliza-
tion by incorporating the use of various energy sources. One
of the main advantages of DH system is that it facilitates
the use of combined heat and power (CHP) generation and
thereby makes the overall system e	cient.

District heating can play a crucial role in reaching some
of the energy and environmental objectives by reducing CO2
emissions and improve overall energy e	ciency. In a district
heating system, heat is distributed through a network of hot-
water pipes from heat-supplying plants to end users.�e heat
is mostly used for space heating and domestic hot water.
A simpli�ed schematic picture of DH system is shown in
Figure 1.

�e main components of district heating system are
heat generation units, distribution network, and customer
substations. �e heat generation unit may use heat-only
boilers or CHP plants or a combination of these two for heat
generation. Various types of energy sources, like biomass,
municipal solid waste, and industrial waste heat, can be used
for heat production. �e heat is then distributed to di�erent
customers through a network of pipeline. In the customer
substations, the heat energy from the network is transferred
to the end users internal heating system.

�e heat-supplying units are designed to meet the heat
demand.�e heat output to the network depends on themass
�ow of the hot water and the temperature di�erence between
the supply and the return line. �e supply temperature of the
hot water is controlled directly from the plant’s control room
based on the outdoor temperature and it follows mostly a
given operation temperature curve. �e return temperature,
on the other hand, depends mainly on the customer’s heat
usage and also other network speci�c constraints. �e level
of the supply temperature di�ers from country to coun-
try. For instance, in Sweden, the temperature level varies
between 70 and 120∘C depending on season and weather
[28].

�e heat load in district heating systems is the sum of all
heat loads that are connected to the network and distribution
and other losses in the network.

With increased concerns about the environment, climate
change, and energy economy, DH is an obvious choice to be
used. Nowadays, district heating systems are equipped with
advanced and cutting-edge technology systems and sensors
that monitor and control production units from a control
room remotely. From a smart city perspective, one of the
future challenges that now remains is to integrate district
heating with the electricity sector as well as the transport
sector. Heat load forecasting models with high accuracy are

Data preparation 
(aggregation and preprocessing)

Machine learning algorithms

(SVR, PLS, and RF)

Collection of operational data

Heat load forecast curves

Figure 2: Work�ow scenario of the proposed heat load approach.

important to keep up with the rapid development in this
direction.

4. System Design and Application

As mentioned earlier, in this study, we perform short time
prediction for heat consumption and evaluate the three
ML methods. For the development of the heat load system
presented in our previous work [6], in this section, we present
and describe our heat load prediction approach in detail, as
shown in Figure 2, which includes collection of operational
data, data preparation, and the examined ML algorithms.

In this work, there are two main tasks, which are relevant
in the system implementation: (a) data aggregation and
preprocessing and (b) ML application, where the heal load
prediction is approached with the supervisedML algorithms.

4.1. Operational Data Collection. �e data we have used in
this study is provided by Eidsiva Bioenergi ASwhich operates
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Table 2: Typical data samples for one day from the Eidsiva dataset.

Time (h) FT (∘C) RT (∘C) Flow (m3/h) HL (MW)

1 100.9 60.4 316.5 14.6

2 99.4 57.5 279.1 13.4

3 99.6 58.3 228.3 13.2

4 100.3 59.8 261.9 15.1

5 100.5 59.6 276.9 14.9

6 100.1 58.9 270.5 12.8
...

...
...

...
...

...
...

...
...

...
20 98.7 59.7 353 14.8

21 101.4 58.9 330.9 16.1

22 101.1 59.1 250.8 14.2

23 100.8 59.8 260.2 15.4

24 101.9 59.3 247.9 14.1

one of Europe’s most modern waste incineration plants
located in the city of Hamar, Norway. �e plant produces
district heating, process steam, and electricity. �ese data
are collected by regular measurements that are part of the
control system in a DH plant. �e measurements consist of
24measurements per each day, that is, every hour.�e dataset
contains values of the parameters: time of day (tD), forward
temperature (FT), return temperature (RT), �ow rate (FR),
and heat load (HL). �e data are collected in the period
between October 1st 2014 and April 30th 2015. In Table 2, we
present a portion of typical data samples for one day.

4.2. Data Preparation. In this module, activities related to
preparing the data to be compatible with the ML module
are performed. �e module includes data aggregation and
preprocessing. During the process of data aggregation, we
combine the sources of this data with the weather data
(outdoor temperature), which is collected at the same interval
with previous parameters. Consequently, we obtain from
the aggregation process these output parameters: outdoor
temperature (OT), heat load (HL), forward temperature
(FT), time of day (tD), and the di�erence between forward
temperature (FT) and return temperature (RT), namely, DT.

4.3. Machine-Learning Predictive Modelling. Machine learn-
ing (ML) is a very broad subject; it goes from very abstract
theory to extreme practice. It turns out that even amongst
machine-learning practitioners there is no very well accepted
de�nition of what is machine learning. As a sub�eld of
arti�cial intelligence, with its objective on building models
that learn from data, machine learning has made tremendous
improvements and applications in the last decade.

In general, ML can be clearly de�ned as a set of methods
that can automatically detect and extract knowledge patterns
in empirical data, such as sensor data or databases, and then
use the discovered knowledge patterns to predict future data
or execute other types of decision-making under uncertainty.
ML is divided into three principal groups: supervised learn-
ing (predictive learning approach), unsupervised learning

(descriptive learning approach), and reinforcement learning
[29]. In supervised learning, the algorithm is given data in
which the “correct answer” for each example is told and the
main property of the supervised learning is that the main
criteria of the target function � = �(�) are unknown. At
the very high level, the two steps of supervised learning
are as follows: (i) train a machine-learning model using
labeled data that consist of� data pairs (�1, �1), . . . , (��, ��),
called instances, and (ii) make predictions on new data for
which the label is unknown. Each instance is described by
an input vector �� which incorporates a set of attributes � =
{�1, �2, . . . , ��} and a label �� of the target attribute that
represents the wanted output. To summarize these two steps,
the predictive model is learning from past examples made up
of inputs and outputs and then applying what is learned to
future inputs, in order to predict future outputs. Since we are
making predictions on unseen data, which is data that is not
used to train the model, it is o�en said that the primary goal
of supervised learning is to buildmodels that generalizes; that
is, the built machine-learning model accurately predicts the
future rather than the past. �erefore, the goal is to train a
model that can a�erwards predict the label of new instances
and to �gure out the target function.

Based on the type of output variable ��, supervised
learning tasks are further divided into two types, as clas-
si�cation and regression problems. In problems where the
output variable �� is categorical or nominal (or belongs to a
�nite set), the ML tasks are known as classi�cation problems
or pattern recognition, whereas in regression problems the
output variable is a real valued scalar or takes continuous
values.

4.3.1. Support Vector Regression (SVR). Support vector
machines (SVM), as a set of supervised learning algorithms
based on a statistical learning theory, are one of the most
successful and widely appliedmachine-learningmethods, for
both solving regression and pattern recognition problems.
Since the formulation of SVMs is based on structural risk
minimization and not on empirical risk minimization, this
algorithm shows better performance than the traditional
ones. Support Vector Regression (SVR) is a method of
SVM, speci�cally for regressions. In SVR, the objective
function (e.g., the error function that may need to be
minimized) is convex, meaning that the global optimum
is always reached and satis�ed. �is is sharply in contrast
to arti�cial neural networks (ANNs), where, for instance,
the classical backpropagation learning algorithm is prone to
convergence to “bad” local minima [30, 31], which makes
them harder to analyze theoretically. In practice, SVR have
greatly outperformed ANNs in a wide range of applications
[31].

In SVR, the input� ismapped �rst into an�-dimensional
feature space by using nonlinear mapping. As a subsequent
step, we construct a linear model in that feature space.
Mathematically, the linear model �(�, �) is given by

� (�, �) =
�
∑
�=1
��
� (�) + �, (1)
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where 
�(�), � = 1, . . . , �, represents the set of nonlinear
transformations, while � is the bias term, andmost of the time
is assumed to be zero; hence, we omit this term.

�e model obtained by SVR depends exclusively on a
subset of the training data; at the same time, SVR tries to

reducemodel complexity byminimizing ‖�‖2. Consequently,
the objective of SVR is to minimize the following function
[32]:

min
1
2 ‖�‖

2 + �
�
∑
�=1
(�� + �∗� )

such that �� − � (��, �) ≤ � + �∗�
� (��, �) − �� ≤ � + ��
��, �∗� ≥ 0, � = 1, . . . , �.

(2)

In these equations, � is a new type of (insensitive) loss
function or a threshold, which denotes the desired error
range for all points. �e nonnegative variables �� and �∗� are
called slack variables; they measure the deviation of training
samples outside �, that is, guaranteeing that a solution exists
for all �. �e parameter � > 0 is a penalty term used to
determine the tradeo� between data �tting and �atness, and
� are the regression weights. In most cases, the optimization
problem can be easily solved if transformed into a dual
problem. By utilizing Lagrange multipliers, the dualization
method is applied as follows:

� = 12 ‖�‖
2 + �

�
∑
�=1
(�� + �∗� )

−
�
∑
�=1
�∗� (� + �

∗
� − �� + � (��, �))

−
�
∑
�=1
�� (� + �� + �� − � (��, �))

−
�
∑
�=1
(���� + �∗� �

∗
� ) ,

(3)

where � is the Lagrangian and ��, �∗� , ��, �∗� ≥ 0, are called the
Lagrange multipliers.

Considering the saddle point condition, it follows that the
partial derivatives of� in relation to variables (�, �, ��, �∗� ) will
disappear for optimality. By proceeding with similar steps,
we end up with the dual optimization problem. Finally, the
solution of the dual problem is given by

� (�) =
�SV
∑
�=1
(�� − �∗� )� (�� − �) , (4)

where 0 ≤ �∗� ≤ �, 0 ≤ �� ≤ �, �SV is the number of space
vectors, and � is the kernel function, which for given two
vectors in input space will return, to a higher dimensional

feature space, the dot product of their images. �e kernel is
given by

�(�, ��) =
�
∑
�=1

� (�) 
� (��) . (5)

In order to map the input data to a higher dimensional space
and to handle nonlinearities between input vectors and their
respective class, we use as a kernel the Gaussian radial basis
function (RBF), which has � as its kernel parameter. Once the
kernel is selected, we used grid search to identify the best pair
of the regularization parameters� and �, that is, the pair with
the best cross-validation accuracy.

4.3.2. Partial Least Squares (PLS). �e Partial Least Squares
(PLS) technique is a learningmethod based onmultiple linear
regression model that takes into account the latent structure
in both datasets.�e dataset consists of explanatory variables
�� and dependent variables ��. �e model is linear, as can be
seen in (6), that, for each sample �, the value ��� is

��� =
	
∑
�=0
����� + ���. (6)

�e PLS model is similar to a model from a linear
regression; however, the way of calculating �� is di�erent.
�e principle of PLS regression is that the data tables or
matrices� and � are decomposed into latent structure in an
iterative process. �e latent structure corresponding to the
most variation of � is extracted and explained by a latent
structure of� that explains it the best.

�e Partial Least Squares (PLS) technique is a learning
method based on multivariate regression model, which can
be used for correlating the information in one data matrix
� to the information in another matrix �. More speci�cally,
PLS is used to �nd the fundamental relations between two
matrices (� and �), which are projected onto several key
factors, such as � and  , and linear regression is performed
for the relation between these factors. Factor represents the
most variations for � whereas factor � denotes the variations
for �, but it is not necessarily explaining the most variation
in�.

�e �rst results of PLS are the model equations show-
ing the � coe	cients that give the relationship between
variables � and �. �ese model equations are as follows:

� = �� + �,

� = �ℎ��ℎ + �ℎ = �!
∗
ℎ �
�
ℎ + �ℎ

= �!ℎ (#�ℎ!ℎ)
−1 ��ℎ + �ℎ,

(7)

where� is thematrix of dependent variables, � is thematrix
of explanatory variables, �ℎ, �ℎ, !∗ℎ , !ℎ, and #ℎ are the
matrices generated by the PLS algorithm, and �ℎ is the matrix
of residuals. Matrix � of the regression coe	cients of� on�,
with ℎ components generated by the PLS algorithm, is given
by

� = !ℎ (#�ℎ!ℎ)
−1 ��ℎ. (8)
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Figure 3: Random forest algorithm process �ow.

�e advantage of PLS is that this algorithm allows taking
into account the data structure in both � and � matrices. It
also provides great visual results that help the interpretation
of data. Finally, yet importantly, PLS can model several
response variables at the same time taking into account their
structure.

4.3.3. Random Forest (RF). Random forest algorithm, pro-
posed by Breiman [33], is an ensemble-learning algorithm
consisting of three predictors where the trees are formulated
based on various random features. It develops lots of decision
trees based on random selection of data and random selection
of variables, providing the class of dependent variable based
on many trees.

�is method is based on the combination of a large
collection of decorrelated decision trees (i.e., Classi�cation
and Regression Trees (CART) [34]). Since all the trees are
based on random selection of data as well as variables, these
are random trees and many such random trees lead to a
random forest. �e name forest means that we use many
decision trees to make a better classi�cation of the dependent
variable. �e CART technique divides the learning sample
using an algorithm known as binary recursive partitioning.
�is splitting or partitioning starts from the most important
variable to the less important ones and it is applied to each of
the new branches of the tree [35].

In order to increase the algorithm accuracy and reduce
the generalization error of the ensemble trees, another

technique called Bagging is incorporated. �e estimation for
the generalization error is performed with the Out-Of-Bag
(OOB) method. Bagging is used on the training dataset to
generate a lot of copies of it, where each one corresponds to a
decision tree.

With the RF algorithm, each tree is grown as follows [36]:

(a) If the number of cases (observations) in the training
set is�, sample� cases at random, but with replace-
ment, from the original data, this sample will be the
training set for the growing tree.

(b) If there are & input variables, a number � ≪ &
is speci�ed such that, at each node, � variables are
selected at random out of the& and the best split on
these� is used to split the node. �is value� is held
constant during the forest growing.

(c) Each tree is grown to the largest extent possible.

�e process �ow in the random forest models is shown in
Figure 3.

�e error rate of RF primarily depends on the correlation
degree between any two trees and the prediction accuracy of
an individual tree. �e principal advantages of this method
are the ease of parallelization, robustness, and indi�erence to
noise and outliers in most of the dataset. Due to its unbiased
nature of execution, this method avoids over�tting.
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Table 3: Performance results for one week.

Algorithm
Training Testing

MAE (%) MAPE (%) Correlation coe	cient MAE (%) MAPE (%) Correlation coe	cient

SVR 64.91 3.11 0.90 70.32 3.43 0.91

PLS 265.24 12.73 0.81 238.68 10.42 0.79

RF 173.82 19.77 0.83 159.32 18.61 0.84

Heat output (MW)

Heat load measurements (Oct 1–Apr 30)

−5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Outdoor temp (∘C)

Figure 4: Hourly heat load pattern in relation to outdoor tempera-
ture in the DH network.

5. Performance Evaluation and Results

�e proposed approach is implemented in MATLAB R2014a
[37] and executed in a PC with Intel� Core i7 processor with
2.7GHz speed and 8GB of RAM. In this work, as training
dataset, we select the datameasured during the �rst 28 weeks,
which consist of 4872 instances. As for prediction period, we
choose the 29th week as test data, that is, 148 instances. In
order to evaluate the performance of the proposed algorithms
in terms of accuracy of the results, we use the mean absolute
average (MAE), the mean average percentage error (MAPE),
and the correlation coe	cient, which measures the correla-
tion between the actual and predicted heat load values. MAE
and MAPE are de�ned as follows:

MAE = ∑
�
�=1
----/� − ��

----
� ,

MAPE =
∑��=1

-----(/� − �
�
� ) //�

-----
� ,

(9)

where /� is the actual value, �� is the predicted value, and � is
the number of samples in the training set.

We apply a 10-fold cross-validation for obtaining the valid
evaluation metrics. Figure 4 presents the heat load in the
network with respect to the outdoor temperature.We see that
the higher values of the heat load occur during the days with
lower outdoor temperature values, which in fact re�ects the
increased consumption of heat.

Figure 5(a) shows results of actual heat load and heat
load prediction for one week, based on SVR algorithm. In
Figure 5(b), results of heat prediction production for one
week based on PLS are shown with data on actual heal load,

whereas results of heat load forecasting for one week based
on RF are shown in Figure 5(c).

As can be seen from Figure 5, the predicted HL with
SVR is closer to the actual energy consumption, with an
MAPE value of about 3.43% and a correlation coe	cient of
0.91. Correlation has been consistent throughout training and
testing. On the other hand, graphs presented in Figures 5(b)
and 5(c) for PLS and RF, respectively, are less accurate with
higher errors. �e performance of the PLS is signi�cantly
lower compared to SVR. Concerning RF, as the trees started
to become progressively uncorrelated, the error rate also
declined signi�cantly. �e best performance of the SVR over
the other two methods is attributed to the e	cient modelling
of feature space and to the fact that SVR is less prone
to over�tting, and that does not require any procedure to
determine the explicit form as in ordinary regression analysis.

Table 3 outlines the results of the investigated ML algo-
rithms for heat consumption prediction for both training
phase (where we developed the models using supervised
learning schemes) and testing phase (to generalize newly
unseen data). From Table 3, it is evident that SVR shows
the best prediction performance in terms of average errors
and correlation coe	cient, con�rming the superiority of SVR
over the other machine-learning methods. �erefore, based
on the assumption that the number and type of the operating
facilities should be determined, SVRcanbe e�ectively applied
in the management of a DHS. �e mean absolute percentage
error value of 3.43% obtained in our approachwith the SVR is
lower than or equal to the mean absolute percentage error of
state-of-the-art approaches for heat load prediction in DHS.
Moreover, SVR is also better than PLS and RF in terms of
mean average errors and correlation coe	cient. Nevertheless,
sometimes it is impossible to perform direct comparison
with other works due to di�erent system implementation and
input data and di�erent structure of the experimental setup.

5.1. Comparison with State-of-the-Art Methods. Some prior
research work is carried out to predict and analyze the head
demand in DH. However, due to di�erent system design
and input data and di�erent architecture implementation or
structure of the experimental setup, sometimes it is di	cult to
perform direct comparison. Our approach uses operational
data from DHS to model the heat demand, and since the
SVR exhibited the best prediction performance, we use this
method to perform the comparison. In our case, we obtained
smaller MAPE compared to [17], where the experimental
results showed MAPE of 4.77% which is lower than or at
least equal to the mean percentage error of state-of-the-art
regression approaches that have been proposed for heat load
forecasting in DH systems. Furthermore, reported results
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Figure 5: Hourly heat load prediction based on SVR, PLS, and RF for one week.

from our study are also superior compared to the results
presented in [15, 32]. More speci�cally, the SVR method we
apply shows better results in terms of MAPE and correlation
coe	cient compared to [32], where MAPE in this paper
is 5.54% and the correlation coe	cient is 0.87. As far as
the comparison with work [15] is concerned, in terms of
MAPE, our SVR method exhibits better hourly prediction
performance, where theMAPE for one week is 5.63%. On the
other hand, the PLSmethod performs better than in our case,
having the MAPE value of about 8.99%.

6. Conclusion

District heating (DH) sector can play an indispensable role
in the current and future sustainable energy system of the
North European countries, where the share of DH in the total

European heat market is signi�cantly high. �e innovations
and emergence of new technology and the increasing focus
on smart buildings impose energy systems to face a chal-
lenge in adapting to customers’ more �exible and individual
solutions. Consequently, one needs to know more about
what drives customers’ requirements, choices, and priorities.
�erefore, the creation and application of innovative IT
ecosystems in DH are considered essential to improve energy
e	ciency.

Heat load prediction in the past decade has attracted a
lot of interest to the researchers, since it can assist in energy
e	ciency of the DHS, which also leads to cost reduction for
heat suppliers and to many environmental bene�ts.

In this paper, three ML algorithms for heat load predic-
tion in a DH network are developed and presented.�e algo-
rithms are SVR, PLS, andRF.�eheat load predictionmodels
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were developed using data from 29 weeks. �e predicted
hourly results were compared with actual heat load data.
Performances of these three di�erent ML algorithms were
studied, compared, and analyzed. SVR algorithm proved to
be the most e	cient one, producing the best performance in
terms of average errors and correlation coe	cient. Moreover,
the prediction results were also compared against existing
SVR and PLS methods in literature, showing that the SVR
presented in this paper produces better accuracy.

In conclusion, the comparison results validate the notion
that the developed SVRmethod is appropriate for application
in heat load prediction or it can serve as a promising
alternative for existing models.

As for the future work, apart from outdoor temperature,
we intend to incorporate other meteorological parameters
in�uencing the heat load, such as wind speed and humidity.
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