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Abstract

Various engineering systems such as naval and aerial vehicles, offshore structures, and me-
chanical components of motorized systems, are exposed to fatigue failures due to stochastic
loadings. Methods for early failure prediction are essential for engineering, military, and civil
applications. In addition to the prediction of time to failure (TtF), uncertainty quantification
(UQ) is of major importance for real-time decision-making purposes. Usually, time domain
or frequency domain methods are used for fatigue prediction, such as rainflow counting and
Miner’s rule or Dirlik’s method. However, those methods suffer from over-simplistic mod-
eling and inaccurate failure predictions under stochastic loadings. During the last years,
several data-driven models were suggested for offline fatigue failure. However, most of them
are not capable of both accurate real-time fatigue prediction and UQ. In the current work,
a probabilistic data-driven model is introduced. A hybrid architecture of a fully-connected
artificial neural network (FC-ANN) and Gaussian process regression (GPR) is proposed to
ensure enhanced predictive abilities and simultaneous UQ of the predicted TtF. The real-time
prediction and UQ performances of the suggested model are validated using both synthetic
and experimental data. This novel hybrid method is fully data-driven and extends the fore-
casting capabilities of existing time-domain and machine learning-based methods for fatigue
prediction. It paves the way towards the development of a preventive system that provides
real-time safety and operational instructions and insights for structural health monitoring
(SHM) purposes, allowing prevention of environmental damage, and loss of human lives.

Keywords: Real-time fatigue prognosis, data-driven methods, machine learning, artificial
neural networks, Gaussian process regression, Bayesian inference, uncertainty quantification.

1. Introduction

Fatigue failure refers to the malfunctioning of a mechanical component due to the weak-
ening of its material under oscillatory loading below the ultimate tensile strength of the com-
ponent. Fatigue is considered as one of the main reasons for mechanical failures in machine
components, aerospace systems, and offshore structures [1]. The failure results in localized
and progressive damage and in crack growth. Fatigue damage is cumulative over time, and
even though it can be assessed by non-destructive tests [2], it still can take place at unex-
pected timing, leading to hazardous consequences. Notable examples include the capsizing
of Alexander L. Kielland semi-submersible drilling rig in March 1980 [3, 4], and the crash of
the El-Al Flight 1862 in October 1992 [5] causing the death of dozens of workers, passengers,
and crew members. Hence, reliable estimation of the current state of the cumulative dam-
age and prediction of the time to failure (TtF) are essential for SHM and failure prognosis
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purposes [6, 7].
Fatigue damage under an oscillatory loading is usually estimated by either time-domain

or frequency-domain approaches. The most widely-used time-domain approach is based on
the rainflow counting method for decomposing the stochastic signal to its underlying ampli-
tudes and corresponding number of cycles, followed by applying the linear cumulative Miner’s
rule, also known as the Palmgren-Miner linear damage hypothesis [8, 9] for estimating the
resulting cumulative damage, as shown in Eq. (1). Frequency domain methods, such as
those introduced by Dirlik [10] and Petrucci and Zuccarello [11], use probability density func-
tions with parameters that are tuned with respect to the rainflow counting and the Miner’s
rule [12, 13, 14]. Due to multiple observatory studies, rainflow counting and Miner’s rule
are considered more reliable and accurate in comparison to the frequency domain methods.
However, Miner’s rule is considered as an over-simplistic failure criterion that overlooks fail-
ure mechanisms at the material level [13]. Moreover, its accuracy deteriorates drastically as
the component is exposed to broader-banded stochastic excitations, leading to substantial
disagreements between theoretical and experimental results reported in the literature [15].

D(t) =

Nk∑
i=1

ni(t)

Nf,i

, Nf,i =

(
Sa,i
Aᾱ

) 1
b

, ᾱ = 1− xm
σuts

(1)

Here D(t) is the estimated cumulative damage fraction. According to Miner’s rule, failure
occurs when D(τ) = 1, where τ is the estimated failure time (FT). Variable Nk is the number
of amplitudes considered in the rainflow counting method. Variable Sa,i is the stress amplitude
that leads to failure after Nf,i loading cycles, and ni(t) is the number of loading cycles of
amplitude Sa,i counted by time t. Parameters A, b and σuts are the fatigue strength, fatigue
exponent and ultimate tensile stress of the component material, respectively. Variable xm is
the mean stress of the loading signal.

Fatigue life is defined as the number of stress cycles that a specimen sustains before
failure. In the current work, we focus on TtF prediction rather than fatigue life as required
for SHM purposes and real-time decision making in engineering systems. One of the main
challenges in the prediction of fatigue failures is the uncertainty in the material parameters
at the microscopic level that leads to an inherent noise and uncertainty in the data and
inconsistencies in the resulting failure times (FTs). Hence, due to the uncertainty associated
with the material and mechanical properties of the component, systematic experimental noise,
and statistical properties of the stochastic loading, the TtF should be treated as a probabilities
quantity, which is characterized by a nominal predicted value and a corresponding level of
uncertainty. Uncertainty quantification (UQ) becomes critical when it comes to real-time
decision-making in systems for which sudden changes in the operating regime might lead to
hazardous consequences. For example, a suggestion for emergency landing of a fighter jet due
to a predicted failure in absence of a near airport. In this case, the certainty level is crucial
for choosing between continuation or cessation of the mission.

In the absence of closed-form expressions that link the system’s mechanical parameters and
signal properties with the TtF, and due to the abundance and stochastic nature of experimen-
tal and numerical data, data-driven methods are good candidate models for fatigue prognosis.
Machine learning (ML) methods are a set of numerical models that fit a function to a given
dataset by tuning a large set of model parameters in a process called learning or training.
During the last decade, learning algorithms have gained popularity due to their versatility,
the substantial availability of rich datasets, and high-end computational resources. Those
models outperformed conservative methods in various tasks, such as image classification and
speech recognition, due to their well-known interpolation and generalization capabilities. ML
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algorithms were proven to have a good ability to capture underlying patterns and correlations
in measured data even when the underlying physical rules governing the system’s behavior are
obscure or unknown. Examples include quantitative analysis of ceramic’s fracture surfaces
using convolutional neural networks [16] and identification of underlying equations of motion
of dynamical systems from measured data [17, 18]. Therefore, applying machine learning
approaches for fatigue prognosis while utilizing the availability of high-end computational
abilities and rich datasets obtained from experiments [19], numerical simulations [20, 21],
or analytical analysis, is a promising strategy for cumulative damage estimation. However,
limited amount of studies focused on ML-based real-time fatigue prediction under stochastic
loading [22, 23, 24, 25, 26, 27]. Most of the suggested methods utilized rather simple ML-
based predictive models which are applicable only in an offline fashion, i.e. in a retrospective
reading of the full loading signals, and thus are not applicable for real-time purposes. Some
of them are applicable only for zero-mean stochastic loadings. Moreover, those models aim
to predict the fatigue life of the component or the cumulative fatigue damage and do not
provide a quantitative measure of the level of uncertainty associates with the predicted value.

The main goal of the current work, is to develop a fully data-driven method for real-time
fatigue failure prediction and UQ under non-zero-mean stochastic loading of unknown under-
lying power spectral density (PSD). In particular, we introduce a hybrid learning model that
combines both a fully-connected artificial neural network (FC-ANN) and Gaussian process
regression (GPR) [28, 29, 30, 31, 32] for enhanced FT prediction and built-in UQ capabilities.
FC-ANNs have a well-known ability to identify latent relations between a set of inputs and a
quantity of interest, in this case, system and forcing properties and the predicted TtF. The
main advantage of employing GPR is the simultaneous estimation of the output value and
the associated error/uncertainty. By using GPR, the formulated hybrid model can generate
a probability density function (PDF) over the range FTs that embodies both the predicted
TtF and the corresponding uncertainty associated with various sources. We also purpose a
Bayesian inference-based scheme that utilizes real-time measured data for constantly updat-
ing the posterior knowledge of the predictive model. Based on the resulting posterior PDF,
both the predicted FT and a confidence interval (CI) are obtained. The size of the CI is
controlled by desired confidence level (CL), that can be modified on user demand and in
accordance to the sensitivity of the system. This novel approach is, therefore, suitable for
real-time decision-making in uncertain conditions. Moreover, it is applicable for data obtained
from various sources, such as experiments, numerical simulations, and approximate analytical
methods. Finally, we evaluate the performances of the proposed method for real-time fatigue
prognosis for both synthetic and experimental unseen measured stochastic signals.

This paper is structured as follows. In Section 2 we discuss the input features for the
learning model. In Section 3 we introduce the hybrid probabilistic predictive model. In the
same section, we give an overview of fully-connected artificial neural networks and Gaussian
process regression and describe the contribution of each of those modules to the overall per-
formances of the hybrid model. The proposed methodology is demonstrated in Section 4
where it is applied on an unseen stochastic augmented data in real-time. In Section 5 we
validate the hybrid model on experimental data obtained from mechanical systems that ex-
perienced fatigue failure under stochastic loadings. Finally, Section 6 provides a summary and
brief discussion of the results obtained, possible engineering applications, and future research
directions.

2. Input features for the learning model

Before a learning model can be designed or applied, the most informative input variables
have to be chosen in advance. Those variables, also called features, have to represent the
relevant physical properties of the mechanical component and statistical properties of the
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stochastic signal. The set of all features that correspond to a given mechanical component
in the dataset and that was measured in a given time t is called the temporal features vector
u(t) and serves as the input vector of the predictive model. The measured signal can be
any physical measure from which the stress at the critical section of the forced component
can be inferred, such as displacement, acceleration, or stress at the fatigue-prone location or
in its vicinity. As mentioned in the previous section, any data from various sources can be
used to train the model and test its performances, such as data obtained from experimental,
numerical, and/or approximate analytical models, as long as data of the same type is used
both for training the model and evaluating its results. Generally, if the component of interest
is subjected to stochastic excitations of various characteristics during its lifetime, it is recom-
mended to include signals that were generated from a set of relevant PSDs to enhance the
generalization ability of the learning model. Otherwise, a single PSD can be considered to
avoid the necessity of a large dataset and extensive computation time. In the current work,
without loss of generality, we use stress signal at the critical section of the mechanical compo-
nent for reasons of convenience and explainability of the results. The features are generated
from a uniform probability distribution over the parameter ranges shown in Table 1. The
stochastic signals are then generated using Eq. (2)-(3), where the amplitudes of the Fourier
series are generated randomly from Gaussian-like PSD. The resulting stochastic signals are
assumed to be ergodic and statistically stationary. Both the normalization term in the de-
nominator and scaling factor ks in Eq. (2) are used to prevent ultra low-cycle fatigue due to
stresses that exceed the ultimate tensile stress of the material σuts. The scaling parameter is
generated from a uniform distribution over the range shown in Table 1.

x(t) = xm + (ksσuts − |xm|)χ(t)

χ(t) =

∑Nf

i=1

√
2G(fi)∆f cos (2πfit+ φi)

max
(∑Nf

i=1

√
2G(fi)∆f cos (2πfit+ φi)

) (2)

Here χ(t) is a normalized stochastic signal which is bounded between ±1 and generated
from an underlying PSD G(f). Variables xm is the mean of signal x(t) and ks is a scaling
factor. Variables fi and φi are the constructing frequencies and phases of stochastic signal χ(t).
All variables in Eq. (2) are randomly generated from a uniform distribution over the ranges
shown in Table 1. Thus, x(t) can be treated as a realizations of a random variable, x(t) ∼
X(t, ζ).

G(f) =
1√

2πσG
exp

(
−(f − µG)2

2σ2
G

)
(3)

As one can see in (2), the PSD G(f) does not include a magnitude factor. This is because
the intensity of the stochastic signal x(t) which is usually dictated by the magnitude of the
PSD, is now fully-defined by the scaling factor ks. The range of scaling factor ks was chosen
to ensure that the generated signal will not exceed 85% of the ultimate tensile stress of the
material σuts, and lead to low-cycle fatigue (LCF) [33] or ultra low-cycle fatigue (ULCF) [34].
The features vector includes the material coefficient that characterizes the material resistance
to fatigue, i.e. the fatigue strength A, fatigue exponent b, and ultimate tensile strength
σuts [13]. Next, it is well-known that the mean of the measured signal has a significant effect
on the TtF. Since the mean of the signal is assumed to be unknown we estimate it with time
using Eq. (4):
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x̄(t) ≡ E [x(t)] =
1

t

∫ t

0

x(t′)dt′ (4)

Here E denotes expectation. The spectral information in the measured stochastic signal x(t)
is embodied in its underlying power spectral density (PSD) Eq. (5) describes the variation of
power content of a signal versus frequency.

G(f |t) = E
[
|X(f |t)|2

]
, X(f |t) =

∫ t

0

x(t)e2πftdt (5)

Here X(f |t) is the Fourier transform of signal x(t) for a given measurement time t. Since
we assume that the PSD of the signal is unknown a-priori, it is estimated in real-time using
Welch’s method, which computes the periodograms for overlapping segments of the given
signal and averages over the results, allowing more accurate PSD estimation with time G(f |t)
for longer measurement durations [35]. The spectral information in the PSD can be reduced
to a handful of representative quantities, called spectral moments, Eq. (6).

mi(t) =

∫ ∞
0

f iG(f |t)df, i = 0, 1, 2, 4 (6)

The four moments shown in Eq. (6), embody most of the spectral information in the PSD
and especially the bandwidth of the stochastic loading, as one can learn from the expression of
the irregularity factor γ̄ of a PSD expresses as Eq. (7). For broad-banded and narrow-banded
loadings, it tends to zero and one, respectively. Any higher odd or even moments will not be
adding new information regarding the frequency content of the signal. Since the PSD G(f |t)
is evaluated with time in a fixed rate of fs, the spectral moments are time-dependent as well
mi(t).

γ̄(t) =
m2(t)√

m0(t)m4(t)
(7)

The bandwidth of a stochastic signal has a direct effect on the distribution of the signal
local extrema around the mean value of the signal. Since fatigue failure is dictated by the
amplitudes of the loading cycles, this distribution has a significant effect on the cumulative
damage and TtF. This distribution is given by the following expression:

ρ(ξ) ≡ P (|M | ≤ ξ) =

∫ ξ

−ξ
f(ξ̄)dξ̄ (8)

Here f and P are PDF and probability, respectively. Random variable M is drawn from
a set M of all local extrema in the signal x(t)− x̄(t).

random variable M is a drawn from the set of all local extremaM of signal x(t)− x̄(t), i.e.
M ∼M. Variable ξ is an arbitrary amplitude value and f(ξ) is the PDF over probable ξ val-
ues. Function ρ(ξ) describes the probability that a local maximum M is bounded between ±ξ.
Assuming ergodic and statistically stationary stochastic signal, for broad-banded and narrow-
banded PSDs, the PDF f(ξ) correspond to the Rayleigh distribution and the multi-modal
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Gaussian distribution, respectively. Comparison between theoretical and numerical results
are shown in Fig. 1.

fNB(ξ) =
ξ

σ̃2

(
exp

(
−ξ2

2σ̃2

)
H(ξ)− exp

(
−ξ2

2σ̃2

)
H(−ξ)

)
fBB(ξ) =

1√
8πσ̃

(
exp

(
−(ξ − µ̃)2

2σ̃2

)
+ exp

(
−(ξ + µ̃)2

2σ̃2

))
µ̃ = E [Q{x(t)− x̄}] , σ̃ =

√
E [(Q{x(t)− x̄} − µ̃)2]

(9)

Here H(ξ) is the Heaviside step function, and Q is an operator that maps a continuous
signal to a set of its local maxima. Parameters µ̃ and σ̃ are the mean and standard deviation
of the distribution of the local maxima.

a) b)

Figure 1: Comparison between histogram and theoretical PDFs of amplitudes/local maxima distribution of
stochastic signal around its mean, i.e. x(t)− x̄, x(t) ∼ X(t, ζ); a) narrow-banded signal obtained for Gaussian-
like PSD in Eq. (2) for µG = 500Hz, σG = 20Hz, b) uniform PSD. Both signals consist of Nf = 20 frequencies
in the range f ∼ U [0, 1000]Hz.

For the case of narrow-based PSD, the following relation between mean and STD holds
σ̃
√

2/πµ̃. Then, according to Eq. (8)-(9) we get the corresponding PDFs ρ(ξ):

ρNB(ξ) = 1− exp

(
−ξ2

2σ̃2

)
ρBB(ξ) = Φ

(
ξ + µ̃

σ̃

)
+ Φ

(
ξ − µ̃
σ̃

)
− 1

(10)

Here Φ(a) = 1
2

[
1 + erf(a/

√
2)
]

is the cumulative distribution function of the standard
normal distribution. The inverse relations of Eq. (10) describe the ρ percentile amplitude,
i.e. the amplitude ξ that is larger than ρ-percent of all cycle amplitudes/local maxima of
the shifted signal x(t) − x̄. This relation can be obtained explicitly only for the narrow-
banded case: ξNB(ρ) = σ̃

√
ln[(1− ρ)−2]. For the broad-banded case, this relation is obtained

numerically ξBB(ρ).
The value of ρ is tuned by preliminary analysis to optimize the performances of the

predictive on a subset of the dataset, as shown in Appendix A. For a given value of ρ, the
percentile amplitude ξ can be estimated using Eq. (10) and Fig. 2, or estimated directly from
the measured signal in real-time, using Eq. (11) which is a discrete form of Eq. (8). The
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Figure 2: The ρ-percentile loading amplitude ξ vs. percentage ρ for both narrow-banded PSD (red) and
broad-banded PSD (blue).

inverse relation ξ(t|ρ) is obtained numerically.

ρ(ξ) =
|M ∩ [−ξ, ξ]|
|M| (11)

Finally, we obtain a vector that contains indicative information about the properties of the
mechanical components and statistical properties of the stochastic signal:

u(t|ρ) = {A, b, σuts, x̄(t), ξ(t|ρ),m0(t),m1(t),m2(t),m4(t)} (12)

The last six features are evaluated in real time using averaging Eq. (4), (6), (11). While
the four moments mi(t) are very distinctive for signals from multiple underlying PSDs, they
become redundant when the signals in the dataset belong to a single underlying PSD. In this
case, the most indicative features are the mean amplitude x̄(t) and the amplitudes distribution
around the mean, i.e. the percentile amplitude ξ(t|ρ). The former cannot be assessed from the
PSD, and the latter is a nonlinear combination of the spectral moments of the underlying PSD.
Therefore, and in order to reduce the required size of the dataset and enhance computational
efficiency and accuracy, we can take the following reduced input vector with five features
instead of nine:

u(t|ρ) = {A, b, σuts, x̄(t), ξ(t|ρ)} (13)

This case is realistic and typical for mechanical systems that experience one excitation
regime that is associated with fatigue failure, for example, components of a machine that is
powered by a synchronous electric motor. For simplicity and explainability, in the current
work, we will focus on the case of a single PSD and therefore use the reduced features vector.
In the current work, preliminary investigation shows a strong correlation between the TtF
and the characteristic amplitude that corresponds to the 90th percentile, i.e. ξ(ρ = 0.9) ≡ ξ90.
For convenience, it will be denoted as ξ. We generate a dataset that consists of N = 1500
statistically stationary and ergodic stochastic signals. All signals were generated from a
Gaussian-like PSD using Eq. (2)-(3) for µG = 150Hz, σG = 500Hz, and Nf = 20 random
frequencies and phases generated from a single uniform distribution over the ranges shown
in Table 1. Thus, the reduced feature vector is considered. The three material/mechanical
coefficient and the actual mean of the signal xm were randomly generated from a uniform
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Material/loading parameter Range

Fatigue Strength Coefficient, A, MPa 1200− 1500
Fatigue Strength Exponent, b −0.2−−0.15
Ultimate Tensile Strength, σuts, MPa 500− 1000
True signal mean, xm, MPa 0− 250
Scaling factor, ks 0.05− 0.85
Constructing frequencies, fi, Hz 0− 1000
Constructing phases, φi 0− 2π

Table 1: The ranges of material and loading parameters used for generating the dataset.

distribution over the ranges shown in Table 1. The 90th-percentile amplitude ξ and mean
amplitude x̄ are evaluated from the resulting signal using Eq. (4), (11). The FT is calculated
using the rainflow cycle counting method and Miner’s rule in Eq. (1). To simulate a systematic
random error, a zero-mean Gaussian noise is added to every feature in the input vector u(t).
The magnitude of the additive noise is chosen as 2.5% of the feature range.

3. Hybrid probabilistic predictive model

In this section, we introduce a probabilistic model for prediction and UQ of fatigue FTs.
This hybrid model combines a FC-ANN and a GPR for both enhanced prediction accuracy
and simultaneous UQ. The dataset is divided into three subsets: training-set, cross-validation
(CV) set, and a test-set, with a ratio of 60 : 20 : 20, respectively. The first is used for tuning
the FC-ANN model parameters θ, the second is used for testing the FC-ANN prediction
performances, and to train the GPR, and the third for evaluating the real-time prediction
and UQ performance of the hybrid predictive model.

3.1. Fully-connected artificial neural network

Various learning algorithms have demonstrated good regression and generalization capa-
bilities on datasets of a variety of types. Those mathematical models differ from each other
in their architecture, principles of operation, and types of data for which they are applicable.
One of the most widely-used and versatile learning models is the fully-connected artificial
neural network. The FC-ANN consists of multiple interconnected variables called neurons
which are organized in layers, from which stems its name. In virtue of the universal approxi-
mation theorem, any continuous (and not necessarily smooth) function can be approximated
using a sufficiently complex or deep FC-ANN, where its complexity or depth is determined
by the number of neurons and layers of the network. The input vector is fed into the first
layer of the network, called the input layer. Then it propagates forward through the network
until the output is obtained in the last layer, called the output layer. The size, i.e. number of
neurons, in the input and output layer have to match the size of the input and output vectors,
respectively. Each layer can consist of a different number of neurons, where each neuron is
connected to all neurons in the adjacent layers. Each connection is characterized by a value
called weight. The value of a given neuron is a weighted sum of the values of the neuron in
the previous layer multiplied by their corresponding weights plus an added coefficient called
bias. The resulting value is fed into a nonlinear function, called activation function, that
gives the network its ability to approximate nonlinear latent functions. In regression prob-
lems, the main goal of a learning model is to approximate a latent unknown function f given
training-set Dtr = {ui(t), τGT,i}, i = 1, ..., Ntr:

NN (u(t)|θNN (Dtr)) ≈ f(u(t)) (14)
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Where u(t) is the input vector, NN is the approximation obtained by the learning model,
and θNN is the vector of model parameters, i.e. the set of all weights and biases, which are
optimized during the learning/training process. During this process, the model parameters
are changed to minimize a loss function which is defined a-priori as a distance metric between
the ground-truth (GT) and predicted outputs of the model. Model parameters are iteratively
modified using the Backpropagation algorithm [36]. After the training process is complete,
output prediction is obtained by applying the resulting regression function on a new input
vector NN (u(t)|θNN ).

As mentioned in the previous section, in the current work we aim not only to find a
predicted FT but also a CI concerning a desired CL α. The limiting cases in which the CL
equals to zero and unity correspond to absolute uncertainty and absence of CI, and perfect
certainty with infinitely wide CI, respectively. We use the output of the trained FC-ANN
obtained according to Eq. (15) as a reference for the second module of the suggested hybrid
model that will be described in the next section. The reference prediction is obtained by the
following expression:

η(u(t)|Dtr) = NN (u(t)|θ̂NN (Dtr)) (15)

Here, θ̂NN is the vector of model parameters obtained after the training process, and Dtr is
the sets of feature vectors and GT FTs from the train-set. The vector of model parameters
θNN is tuned with respect to the following loss function:

L(θNN |Dtr) = E[(τGT −NN (u(t)|θNN ))2] + λ||θNN ||22
θ̂NN (Dtr) = arg min

θNN

L(Dtr) (16)

Here λ is the regularization coefficient. The regularization term in the loss function is
added to avoid over-fitting. The architecture of the FC-ANN is designed iteratively when
the complexity of the network is gradually increased until sufficient accuracy is achieved.
The main goal of this stage is to find the “simplest” network that yields good predictions
to avoid over-fitting and time-consuming training process. Thus, we obtained a three-layers
FC-ANN, with five neurons in the input layer (the size of the reduced input vector u(t)),
twelve neurons in the hidden layer, and a single neuron in the output layer. Training is
performed using Back-propagation, and mini-batch optimization with the Adam method [37]
with an adaptive learning rate with an initial learning rate αl = 0.0001. The model weights
are initialized using the Xavier method [38]. To avoid over-fitting, the loss of the model is
evaluated on both the train set and a distinct validation set. The training process is completed
when the training error had converged or when the maximum number of 500 epochs is reached.
The prediction performances of the network are evaluated on the CV-set and compared to
the GT results in Fig. 3.

Here, each prediction is described using a single point in the plane. As one can see, the
overall performance of the network is described by the distribution of the resulting points
around the line of perfect prediction τGT = η. The prediction points are tightly distributed
around the line of perfect prediction, indicating that the network successfully captures the
underlying relation between the FT and the features, yielding a good surrogate predictive
model. However, as expected, the distribution around the line is not negligible and stems
from multiple sources of stochasticity and uncertainty in measurement methodology, values
of system parameters, etc. Hence, a probabilistic module than can quantify uncertainty
associated with the FC-ANN FT predictions is essential for our model.
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a) b)

Figure 3: a) Scheme of fully-connected artificial neural network (FC-ANN) with a single hidden layer that
learn the mapping between input feature vector u(t) and the corresponding predicted FT with respect to its

model parameters: η = NN (ui|θ̂NN (Dtr)). The predicted FT η, together with the GT FT τpred, serves as
a representation of the input vector u(t) in a reduced-order embedding space; b) representation of the input
vector u(t) in a reduced-order embedding space which shows a comparison between GT and predicted results
obtained by the trained FC-ANN η (red dots), and line of perfect prediction (blue line).

The variance of the results obtained for each value of η embodies the level of uncertainty
associated with the ANN prediction. Moreover, the variance of the distribution of the results
varies with η. Hence, we treat the prediction points as representations of the features vector
in a reduced-order embedding space η − τGT . We aim to fit a multivariate PDF above the
embedding space that maps each prediction η(u(t)) to a PDF that simultaneously embodies
the most likely FT value and corresponding prediction uncertainty. The level of uncertainty
will be dictated by the amount of similar data in the training-set, i.e. near points in the
embedding space. For highly exploited regions of η the certainty level is high, and we expect
to get lower variances, and vice versa. In the next section, we introduce a GPR-based approach
for UQ of the predictive results obtained by the FC-ANN for a real-time measured features
vector u(t).

3.2. Gaussian process regression

Gaussian process regressions (GPRs) [28] are non-parametric kernel-based probabilistic
models that take as input training dataset DCV = {ηi, τi}, i = 1, . . . , NCV of NCV pairs of
input variables ηi and noisy scalar value τi, and constructs a surrogate model that generalizes
well for unseen data using a multivariate PDF. The PDF is used for simultaneous prediction
of the output value and the corresponding uncertainty. The noise in the output variable τi
models uncertainty due to various factors such as a systematic error in measuring the system
properties and stochastic measured signal. We define a latent function g(τ) that maps ANN
predictions η to the corresponding GT TFs τpred, i.e g(η) : η 7→ τGT Here, we assume that
the latent function g(η) is inaccessible, and can be evaluated only using noisy observations τ .
Moreover, we assume that the noise is additive zero-mean, and normally distributed.

τ = g(η) + ε, ε ∼ N (0, σ2
n) (17)

Here, σ2
n is the variance of the noise. A Gaussian process (GP) is a collection of random

variables, any finite number of which have a joint Gaussian distribution. The main idea
behind GPR is to utilize a GP to represent the latent function g(η). This is done in a Bayesian
framework, in which the GP serves prior over function-space which in turn is conditioned on
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the measured data to yield a posterior distribution. The latter enables us to make an inference
on the values of the latent function g(τ) that correspond to unseen input variables η using a
finite set of training data DCV.

g(η) ∼ GP(µ0(η),Σ0(η, η
′)) (18)

A GP is completely specified by its mean function and covariance function, µ0(η) and
Σ0(η, η

′), respectively.

µ0(η) = E[g(η)], Σ0(η, η
′) = E[g(η − µ0(η))g(η′ − µ0(η

′))] (19)

Here E denotes expectation. The mean functions µ0(η) of the prior GP embodied a prior
knowledge about the latent function g(τ). Usually, it is unknown and therefore set to zero.
The properties of the GP are governed by the covariance function or kernel, which is sym-
metric and positive semi-definite by definition. The covariance function Σ0(η, η

′) quantifies
the covariance between any pair of points in the dataset with respect to a given covariance
function, also called kernel. The most commonly used is the squared exponential kernel, also
known as the Radial Basis Function (RBF) kernel, or Gaussian kernel.

Σ0(η, η
′) = σ2

l exp

(
−(η − η′)2

2l2

)
(20)

Here parameter l is a characteristic length scale that repents the covariance between a
data point to its neighbors and thus is dictating the smoothness of the candidate functions
generated by the GP. For example, large values of l, enforce large off-diagonal values in the co-
variance matrix, which corresponds to smooth candidate function, and vice versa. In general,
extrapolation using GPR is reliable only approximately l units away from the training data.
Parameter σl determines the variance of the candidate functions away from the mean µ0(η).
The set of parameters θGPR = {σn, l, σl}, also called hyper-parameters, are are determined to
best fit the data by optimizing over log-likelihood loss function according to the maximum
a-posteriori (MAP) principle:

LMAP(θGPR) = log(τ |θGPR) =
1

2
τ T (Kτ ,τ )−1τ − 1

2
logKτ ,τ −

1

2
NCV log 2π (21)

Here, K is the symmetric covariance matrix whose ijth entry is the covariance between
the ith variable in the group denoted by the first subscript and the jth variable in the group
denoted by the second subscript, calculated using covariance function Σ0 and corresponding
hyper-parameters. Vector τ is a vector of the training observations, and Kτ ,τ ≡ Kg,g + σnI.
The vector of optimal hyper-parameters θ̂GPR is obtained by optimization the log-likelihood
loss function over the hyper parameter space ΘGPR:

θ̂GPR = arg min
θGPR∈ΘGPR

LMAP(θGPR) (22)

Differentiating Eq. (22) with respect to the hyper-parameters yields:
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∂LMAP

∂θGPR,i
=

1

2
Tr

((
K−1τ ,ττ

(
K−1τ ,ττ

)T −K−1τ ,τ

) ∂Kτ ,τ

∂θGPR,i

)
(23)

The computational complexity of this calculation is dictated by the matrix inverse, which
is O(N3

CV). After the optimal hyper-parameters θ̂GPR over the training-data are obtained,
the GPR is fully-determined and inference can be easily made by computing the posterior
PDF obtained after conditioning on the training-data DGPR = {η, τGT}.

τ ∗|DGPR,η
∗ ∼ N (µ(η∗|DGPR),Σ(η∗|DGPR)) (24)

Here, τ is the estimated observations vector that corresponds to the vector of test inputs
η, for which we want to estimate the latent function g(η). µ(η∗|DGPR) and Σ(η∗|DGPR)) are
the mean and covariance function of the posterior GP, obtained after conditioning the prior
of the training data DGPR.

µ(η∗|DGPR) ≡ E [τ ∗|DGPR,η
∗] = K(τ ∗, τ )

(
K(τ , τ ) + σ2

nI
)−1

τGT

Σ(η∗|DGPR) = K(η∗,η∗)–K(η∗,η)
(
K(η,η) + σ2

nI
)−1

K(η,η∗)
(25)

One of the main advantages of GPs, is that conditioning the resulting multivariate-PDF
on a given input variable yields a Gaussian posterior univariate PDF on the output variable.
Hence, the posterior GP is now used to generate a Gaussian PDF over the space of FTs for
a given input value η that corresponds to an input features vector u(t), as shown in Eq. (26)

τ(u(t)|θ) ∼ fpr(τ |u(t),θ) = N
(
µ
(
η(u(t)|θ̂NN )|θ̂GPR

)
,Σ
(
η(u(t)|θ̂NN )|θ̂GPR

))
(26)

Here, µ and Σ are the mean and variance of the resulting Gaussian PDF fpr, respec-

tively. The standard deviation of the PDF is defined as follows: σ(η) =
√

Σ(η). Pa-
rameters vector θ includes the parameters of both modules of the hybrid model, i.e. θ =
{θ̂NN (Dtr), θ̂GPR(DCV)}. The PDF fpr(τ |u(t),θ) is calculated in real-time for each measured
features vector u(t).

The last information to be fused into the PDF over FTs is the measurement instance t, by
eliminating the probability for failure before this instance by introducing a posterior PDF for
which fpost(τ < t) = 0. This will allow enhanced confidence for relevant FTs and shrinking
the CI associated with the failure prediction. Thus, we introduce the following Heaviside
likelihood function and calculate the posterior PDF over the FTs using the Bayes rule:

L(τ |t) = H(τ − t)

fpost(τ |u(t),θ, t) =
fpr(τ |u(t),θ)L(τ |t)∫∞

−∞ fpr(τ
′|u(t),θ)L(τ ′|t)dτ ′

(27)

Now, FT prediction and the estimation of the corresponding CI are intuitive. According
to the maximum a-posteriori probability (MAP) principle, the predicted FT is estimated as
the mode of the resulting posterior distribution. The boundaries of the CI, denoted by τ−, τ+,
correspond to cumulative distribution of α with respect to the posterior PDF as shown in
Eq. (28), and by that enforce the desired CL.
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Figure 4: True failure times τGT vs. the predictions made by the pre-trained FC-ANN (red dots), the mean
function of the posterior GP µ(η(u(t))), CI corresponding to CL of α = 95% and two standard deviations
σ(η) =

√
Σ(η(u(t)) with respect to the mean (shaded blue), and the CI boundaries (solid black).

τpred = arg max
τ

fpost(τ |u(t),θ, t)∫ τ+

τ−
fpost(τ)dτ = α

(28)

The variance of the posterior PDF is a measure of the uncertainty associated with the pre-
diction obtained. More specifically, since the posterior PDF is Gaussian or nearly-Gaussian,
the boundaries of the CI can now be obtained analytically for a desired CL α as follows:

τ−, τ+(α|u(t),θ, t) =

{
τpred ± γ(α)σ , t ∈ (0, τpred − γ(α)σ]

t, τpred + ν(α)σ , else

γ(α|u(t),θ) =
√

2erf−1
(α

2
(1 + κ)

)
ν(α|u(t),θ, t) =

√
2erf−1 (α(1 + κ)− κ)

σ =
√

Σ(η(u(t))), κ = erf

(
τpred − t√

2σ

)
(29)

As one can see in Eq. (29), the penetration of the measurement time into the CI of the
prior PDF, leads to asymmetricity in the CI with respect to the mode of the posterior PDF.
Moreover, as the measurement time advances and more knowledge is accumulated regarding
the probable FT (more precisely when the fatigue failure does not occur), the CI shrinks as
the level of uncertainty decreases. This effect is demonstrated in Fig. 5 for a simplified case
of constant predicted FT τpred.

As one can see in Fig. 5, due to constant fusion between the prior PDF and measured
observations, the prediction certainty level increases with time as the size of the CI decreases.
Generally, the predicted FT can oscillate erratically due to the stochastic nature of the signal
and its estimated statistical features in the features vector u(t). In this case, the size of the
CI oscillates as well and is dramatically influences by the exploitation levels of the resulting
FC-ANN prediction η, i.e. high standard deviation are obtained in unexploited regions of
η, and vice versa. However, as the measurement time approaches the predicted FT τpred,
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Figure 5: Illustration of the CI vs. time for a constant predicted FT τpred = 150 (solid black) for CL
α = 90% and prior standard deviation of σ = 20. Top: the CI vs. time (shaded blue), upper and lower CI
boundaries (solid blue and red, respectively), the instance in which the measurement time equals to the lower
CI boundary, i.e. t = τpred − γ(α)σ (dashed black). Bottom: CI size vs. time (solid black).

the Bayesian inference regarding the FT (Eq. (27)) promises an extensive increase in the
degree of certainty of the resulting prediction. In summary, the suggested hybrid model maps
between a real-time measured features vector to a PDF that is used for both FT prediction
and UQ with respect to a given CL α and in a measurement frequency fs of request. In the
next section, the real-time performances of the hybrid model are demonstrated for an unseen
stochastic signal.

Figure 6: Schematic description of the hybrid predictive model, including data flow and interactions between
the different modules.

4. Real-time fatigue prediction and uncertainty quantification

After both modules were trained on the train-set (FC-ANN) and cross-validation-set
(GPR), the prediction and UQ performances of the hybrid predictive model can be demon-
strated on an unseen stochastic signal taken from the test set. To simulate a real-time frame-
work, the signal is sampled at a constant rate of fs = 1Hz. In each sampling, the measured
signal x(t) is used to accumulate the temporal features vector u(t) according to Eq. (4), (11).
We assume that the material fatigue properties are known with finite accuracy. The measured
stochastic signals x(t) ∼ X(t, ζ) can be chosen as any physical observable that is strongly
correlated with the stress in the critical section on the mechanical component which is the
most prone to fatigue failure. For simplicity and explainability, in the current illustration,
all signals are considered as stress signals measured directly from the critical section. All
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signals in the dataset are generated from the same PSD. Thus, the modified features vec-
tor is used. Otherwise, the moments of the PSD should have been calculated using Welch’s
method and included in the extended features vector. Then, the pre-trained FC-ANN is used
for generating a prior prediction of the FT η according to Eq. (15). The GPR is used for
calculating the posterior PDF fpost(τ) according to Eq. (17)-(28). Finally, the predicted FT
and CI boundaries are calculated using the posterior for a desire CL α. The results are shown
in Fig. 7 for four representative time instances. As one can see, approximately after half of
the signal was measured, the GT FT falls within the CI. As measurement time approaches
the GT FT, the CI becomes narrower - indicating a higher level of certainty achieved during
the learning process due to constant evolution of the posterior PDF.

Figure 7: Demonstration of real-time FT prediction, in four consecutive instances corresponding to t =
[25%, 50%, 95%, 100%] τGT , respectively. The measured loading signal (solid blue), GT FT τGT (dashed blue),
posterior PDF of FTs (solid red), and CI corresponding to CL of α = 95% (purple shade). The predicted FT
τpred and the confidence boundaries τ−, τ+ correspond to the mode of the posterior PDF and boundaries of
the CI, respectively.

5. Experimental validation

The hybrid predictive model is validated using experimental data obtained by the Society
of Automotive Engineers (SAE) [19]. This data was collected is to serve as a benchmark for
fatigue prediction methods for ground vehicles. The examples in the dataset include keyhole-
shaped steel specimens made of US Steel’s Man-Ten alloys and Bethlehem’s RQC-100. The
properties of both materials are shown in Table 2. The specimens are of identical geometry
and are hot-rolled in parallel to the direction of crack growth (perpendicular to the applied
load).

5.1. Finite element analysis for stress concentration factor estimation

Due to the existence of the notch, stress concentration effects become significant and
magnify the lead to substantial magnification of the stresses in the vicinity of the notch. This
effect is considerd by stress concentration factor Kt which is defined as the relation between
the maximal actual stress measured near the notch σmax and the nominal stress σnom, as

15



a) b)

Figure 8: Notched keyhole experimental specimen; a) isometric view, b) top view drawing, all dimensions are
in inches.

Property Man-Ten RQC-100

Modulus of Elasticity, E, GPa 203 203
Yield Strength, σy, MPa 327 586
Ultimate Tensile Strength, σuts, MPa 565 820
Fatigue Strength Coefficient, A, MPa 917 1160
Fatigue Strength Exponent, b -0.095 -0.075

Table 2: Fatigue properties of the experimental specimens, [19].

shown in Eq. (30):

Kt =
σmax
σnom

(30)

There is a substantial variance among estimation of the stress concentration factor in key-
hole specimens reported in the literature, that range between 2.62 to 3.52 [39, 40]. Moreover,
most of those studies use outdated methods for evaluating factor Kt. Hence, we conduct a
dedicated 3D finite element analysis (FEA) for evaluating the resulting stress concentration
factor of the specimen. The FEA was performed using the commercial package SolidWorks
Simulation 2020. As the keyhole specimen is symmetric in the longitudinal direction the anal-
ysis was performed for half of the specimen only with symmetry boundary condition applied
accordingly. Equal radial loads were applied on each of the top halves of the grip holes to
emulate the load pattern of the clevis pins. Loads of 2, 965N were distributed sinusoidally
in the circumferential direction. Moreover, zero in-plane translation restraints were applied
on the faces of the grip holes. The mesh of the finite element model was generated using
parabolic tetrahedral elements with a global element length of 2.00mm, as shown in Fig.
9. A refined mesh was generated in the vicinity of the notch with a length of 0.1mm and a
maximum aspect ratio of 1.2. This resulted in a total of 433, 235 nodes and 295, 675 elements.
The circumferential stress distribution σtheta in the notch vicinity is presented in Fig. 10.

As one can see in Fig. 10, the maximum circumferential stress is obtained at the mid-plane
and equals 312.6MPa. The nominal stress is calculated using Eq. (31).

σnom =
Pe
As

+
Mez

I
(31)
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a) b)

Figure 9: Mesh of the 3D finite element model, a) half of the model about the plane of symmetry, b) Zoom-in
in the vicinity of the specimen’s notch.

Figure 10: Stress distribution on the 3D FE model and the resulting stress concentration near the notch.

Where Pe and Me are external force and moment applied on the specimen, respectively.
Parameters A and I are the area and second moment of area of the critical section, respec-
tively. Variable z is the coordinate along the axis of symmetry. According to Eq. 31, for pure
tension load of Pex = 8.895kN, resulting nominal stress of 100.2MPa is obtained. Employing
the relations shown in Eq. (31)-(30), the resulting stress concentration factor obtained is
Kt = 3.12. This value will be used for further calculation of the equivalent stresses according
to Eq. (30), i.e. σmax = Ktσnom.

5.2. Validation of the hybrid predictive model using experimental data

For all notched specimen tests, loads were applied to the specimen through a close tol-
erance monoball fixture which allowed both tensile and compressive loading. The loading
signals are given as series of peaks and valleys, disregarding the frequency content of the sig-
nals (nominally between 1− 30Hz). For scaling purposes, all signals are normalized to fit the
range of ±1. The dataset includes three types of loading signals which differ in their statistical
properties: a) A load history obtained from the bending moment on a vehicle suspension com-
ponent, driven over an accelerated durability course, b) a vibration obtained on a mounting
bracket being excited by vehicle operation over a rough road, c) A load history with a drastic
change of a mean load obtained from transmission torque measured on a tractor engaged in
front-end loader work. In each loading regime, the actual loading signals are obtained by a
linear scaling of the normalized signals with respect to three load levels: 15.6kN, 35.6kN, and
71.2kN. The three variable amplitude histories are linearly scales to three levels with three
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replications of each level and material to produce a variety of FTs. For each experiment,
three characteristic instances were recorded: crack initiation, crack propagation, and total
life until failure which is the sum of the first two. The SAE dataset includes 57 samples in
total. In the current analysis, we consider the time histories that correspond to the second
loading type, i.e. 20 samples in total (Fig. 11).

a) b)

c)

Figure 11: Normalized time histories of distinct vehicle component during driving in rough road taken from
SAE dataset; a) bending moment on a vehicle suspension component, b)displacement of bracket mounting,
c) transmission torque measured on a tractor engaged in front-end loader work.

To simulate real-time sensing, the peaks and valleys sequence is interpolated using cu-
bic spline interpolation in the frequency of 10fmax where fmax = 35Hz. As mentioned in
previous sections, training of hybrid predictive model, approximately N = 1500 samples are
required. Hence, additional 1480 stochastic loading signals are augmented and generated
from the underlying PSD associated with the second loading type. The latter is obtained
using Welch’s method for PSD estimation from a time-history, as explained in Section 2.
Signals are generated according to Eq. (2) and Nf = 20 components and frequency range of
f ∈ (0, 35]Hz. All signals are multiplied by the stress concentration factor Kt to yield the
equivalent stress in the vicinity of the notch of the keyhole specimen. FTs of the augmented
stochastic loading signals are estimated using rainflow counting and Miner’s rule. Both the
augmented and the authentic dataset are being split into training, CV, and test sets with a
ratio of 70 : 15 : 15, respectively. The first and the second sets are combined and shuffled
and are uses to train the FC-ANN and GPR modules. The third set is used to evaluate the
performances of the trained hybrid model on the augmented and authentic data separately.
To evaluate the model’s real-time prediction performances, we introduce a success criterion
that simultaneously describes prediction accuracy, earliness, and stability. A Prediction is
considered as accurate if GT FT falls within the CI of the posterior PDF at β percent of the
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Dataset Accuracy
Inaccurate predictions

Conservative pred. Non-conservative pred.

Total1 test-set 88.2%(1323) 62.71%(111) 37.29%(66)

Authentic test-set 83.3%(5) 100%(1) −

Table 3: Summary of the results obtained by the hybrid probabilistic predictive model in the SAE experimental
dataset [19] on the total dataset (both authentic and augmented data) and on the authentic data for β = 60%
and r = 75%. The performances of the model are describes by prediction accuracy and classification of the
model inaccuracies to conservative prediction and underestimations. The former corresponds to τGT > τ+,
and the latter to τGT < τ−.

time until failure for r percent of the time.

τGT ∈ [τ−, τ+](α,u(t ∈ [r, 1]βτGT ,θ, t = βτGT ) (32)

Here, β and r are user-defined parameters that control the level of early prognosis and pre-
diction stability, respectively. In the current work, we take the early prediction and stability
parameters as β = 60% and r = 75%, respectively. The CL is chosen as α = 95% The results
are shown in Table 3. As one can see, the hybrid model captured approximately 89% of FTs.
In the other cases, it tends to produce a conservative estimation, i.e. τ+ < τGT , rather than
an underestimation, i.e. τ− > τGT . However, this is not a built-in feature of the suggested
model, but a statistical property that derives from the PSD of the signal, and the occur-
rence frequency of extreme amplitudes that cause drastic changes in the measured statistical
featured of the signal. The results improved significantly when favoring accuracy over early
prediction, i.e. as the early prediction parameter β is closer to unity, and allowing the features
vector to “stabilize” on its steady-state values. The inaccurate predictions obtained on the
authentic dataset cannot be considered representative due to the small number of samples in
this dataset (six). Better performances can be obtained by optimizing the architecture of the
FC-ANN modules and increasing the size of the dataset to 5000 samples and above.

As one can see in Table 3, the FT predictions obtained by the hybrid model are promising
and in good agreement with the experimental data for a variety of material parameters,
loading intensities, and FTs. For 88.2% of examples in the total dataset, the FTs were
captured withing the CI in time duration of (1 − β)τpred before failure occurrence and with
prediction stability of r. Similar results were obtained for the authentic experimental dataset.
When the model obtained inaccurate predictions, most of them were conservative (62.71%),
i.e. the GT FT was larger the upper boundary of the CI, τ+ < τGT . Compensation on less
early predictions, i.e. larger values of β, allows the estimated statistical properties of the
signal x̄ and ξ(ρ) to reach steady-state and to base the posterior PDF on richer data. Thus,
the model predictions improve for larger values of parameter β.

In contradiction to most of the existing methods, this method allows real-time failure
prediction thanks to a real-time features estimation methodology. The usage of confidence
interval with an adaptive size, i.e. confidence level, allows obtaining upper and lower bound-
aries for the predicted FT, which in turn, serves a major role in real-time decision making in
terms of safe operation, maintenance, and structural health monitoring. Future research will
deal with data-driven probabilistic fatigue prediction for non-stationary stochastic signals.
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6. Concluding remarks

A hybrid data-driven method for real-time prediction and uncertainty quantification (UQ)
of fatigue failure under stochastic loading was formulated. The developed approach com-
bines two powerful learning models, fully-connected artificial neural networks (FC-ANNs)
and Gaussian Process Regression (GPR), to answer an essential engineering need of real-time
prediction of time intervals that are prone to fatigue failures with a given certainty level
(CL). The proven ability of the FC-ANN to represent high-dimensional data in a reduced-
order embedding space is utilized by the GPR for enhanced prediction and simultaneous UQ.
After the prior training process of both predictive modules, the predictions are obtained at
an extensive speed, making the methodology suitable for real-time purposes. Moreover, a full
methodology was suggested for real-time evaluations of the input features calculated based
on the measured signal, both for the case in which the signals are generated from a single
PSD or multiple PSDs. The suggested method is applicable for stochastic signals of various
physical properties, such as stress and strain, that are correlated to the stress in the critical
section of the studied mechanical component. The proven prediction and generalization abil-
ities of the FC-ANN to represent the data in a latent embedding space are used by the GPR
for simultaneous prediction and uncertain quantification. Moreover, a full methodology was
suggested for real-time evaluations of the input features calculated based on the measured
signal, both for the case in which the signals are generated from a single PSD or multi-
ple PSDs. The method is applicable for measured data obtained by experiments, numerical
analysis, time-domain, or frequency-domain methods. We have demonstrated the real-time
performances of the model for an unseen signal, and a posterior updating rate of fs = 1Hz.
The FT was accurately predicted in a safety interval of 50% of the signal duration. The
suggested hybrid method paves the way towards the development of predictive systems to be
used for generating safety and operational instructions in real-time for failure prevention in
mechanical systems under stochastic loadings, structural health monitoring (SHM) purposes,
and protection from irreversible damage to the environment and human lives.
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