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Abstract

Structural health monitoring (SHM) is an important research area, which interest is the 
damage identification process. Different information about the state of the structure 
can be obtained in the process, among them, detection, localization and classification 
of damages are mainly studied in order to avoid unnecessary maintenance procedures 
in civilian and military structures in several applications. To carry out SHM in prac-
tice, two different approaches are used, the first is based on modelling which requires to 
build a very detailed model of the structure, while the second is by means of data-driven 
approaches which use information collected from the structure under different struc-
tural states and perform an analysis by means of data analysis . For the latter, statisti-
cal analysis and pattern recognition have demonstrated its effectiveness in the damage 
identification process because real information is obtained from the structure through 
sensors installed permanently to the observed object  allowing a real-time monitoring. 
This chapter describes a damage detection and classification methodology, which makes 
use of a piezoelectric active system which works in several actuation phases and that is 
attached to the structure under evaluation,  principal component analysis, and machine 
learning algorithms working as a pattern recognition methodology. In the chapter, the 
description of the developed approach and the results when it is tested in one aluminum 
plate are also included.
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1. Introduction

Structural health monitoring (SHM) is a very interesting area, which main objective is the 
damage identification using permanently installed sensors to the structure. In general, one 
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of the aims is to monitor in real time a structure in order to know the current state starting 
from the damage detection, from this point of view, damage detection is extremely important: 
first, for safety, because it helps manage the downside risk resulting in a reduction cost by 
improving the visual inspection and maintenance processes [1, 2]. Currently, the new devel-
opments in several areas include the use of more complex structures. In many cases, the rela-

tion between the structure and the rest of the elements introduces interdependences which 
can be non-linear increasing the difficulty of the damage detection process. In these cases, a 
multicomponent and systemic approach can be incorporated to result in a safe and optimal 
maintenance model [3]. It is also important to note that there is infrastructure, which has been 
in use for several years, some examples can be found in historical buildings, bridges, aero-

nautical and aerospace structures, among others. This aging process brings new challenges 
[4] for SHM systems.

It is mandatory also to highlight the wide range of opportunities offered by the automation of 
the structural health monitoring process which can be used in conjunction with other automa-

tion systems such as an integrated transport system (ITS - Intelligent Transportation Systems), 
auto guided vehicles, among others. This symbiosis can offer benefits and give news perspec-

tives about the use of the structures by providing additional information that the SHM sys-

tems can leverage to increase reliability, robustness and efficiency, reducing the probability 
of error, and providing tools for a better decision-making [5]. Structural health systems have 
a wide application in countless civilian infrastructures such as bridges [24] and buildings [6]. 
Similarly, SHM systems have been also applied to monitor mechanical components such as 
fuselages helicopters [7], wind turbines installed on land [8, 9] and sea (offshore) [10], aero-

space equipment [11], aircraft [12], high-speed trains [13], aircraft turbines [14] and boats [15], 

in the same way SHM systems have been applied to marine renewable energy equipment [16]. 
It is noteworthy that the environmental conditions need to be considered to ensure a robust 
damage detection, in this sense, some works have been introduced to compensate the effects 
of the temperature changes [17, 18].

Regardless of the infrastructure design or the technology used in the development of the 
maintenance decision making, there are some factors to consider. Factors, such as informa-

tion about the physical infrastructure, administrative information, use, and many others 
such as reliability, maintainability, operability, bearing capacity, and policy-adopted main-

tenance [19], need to be considered. Added to this it must be remembered drift probability 
[20]. The theories and the definition about the best inspection process are really complex, 
for instance in the machines which are working all time it is necessary to develop mainte-

nance methodologies to avoid the failure or breakdown maintenance, in this sense, preven-

tive maintenance and reliability-centered maintenance, among others need to be included 
[21]. This chapter includes a description of a methodology for damage detection and clas-

sification and the experimental validation with data from an aluminum plate instrumented 
with piezoelectric transducers permanently attached to its surface. In this sense, the chapter 
is organized as follows: Chapter 2 presents general concepts about the methods and con-

cepts used in the methodology, Chapter 3 explains the methodology. Chapter 4 describes 
the experimental setup, after Chapter 5 presents the results, finally the conclusions are 
included.
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2. General concepts

The methodology described in this work uses some well-known methods for data driven, 
however in this section some of this concepts will be introduced.

2.1. Principal components analysis

One of the greatest difficulties in data analysis occurs when the amount of data is very large 
and there is no apparent relationship between all the information or if it is very difficult to 
find. As solution, principal component analysis (PCA) was born as a very useful tool to reduce 
and analyze a big quantity of information. The principal component analysis technique was 
described by Pearson in 1901, as a Mechanism of Multivariate analysis and was also used 
by Hotelling in 1933 [22]. This method allows to find the principal components, which are a 
reduced version of the original dataset and include relevant information that identifies the 
reason for the variation between them. To find these variables, the analysis includes the trans-

formation of the current coordinate space to a new space in order to re-express the original 
data trying to filter the noise and redundancies. These redundancies are measured by means 
of the correlation between the variables [23].

There are two mechanisms to implement the analysis of main components: first method is 
based on correlations and second is based on covariance. It is necessary to highlight that PCA 
is not invariant to scale, so the data under study must be normalized. Many methods can be 
used to do this as is shown in [23, 24]. In many applications, PCA is used as a tool to reduce the 
dimensionality of the data to be applied in a subsequent process to work with a reduced num-

ber of data. Currently, there are many useful toolboxes to apply PCA and analyze the reduced 
data provided by the technique [25], this is one of the reasons about PCA still being used. More 
information about PCA and the normalization process can be consulted in Refs. [24, 26–28].

2.2. Machine learning

Since Alan Turing showed interest in learning by machines, this area has remained at the fore-

front of the research by increasing his popularity and expanding its field of performance [29]. 
This has revolutionized the way in which complex problems has been tackled. In the relent-
less pursuit of best tools for data analysis, machine learning has been highlighted by finding 
a set of strategies for pattern recognition, which are able to find the relationship between data 
that at first glance have no correlation and are very difficult to define a deterministic math-

ematical model. Machine learning strategies and bio-inspired algorithms allow to avoid this 
difficulty through mechanisms designed to find the answer by themselves. In SHM or related 
areas, it is possible to find some applications about how machine learning has been used to 
detect problems, such as breaks, corrosion, cracks, impact damage, delamination, disunity, 
breaking fibers (some pertinent to metals and the others to composite materials [30]), in addi-

tion it has been used to provide information about the future behavior of a structure under 
extreme events such as earthquakes [31].

Depending on how the algorithms work, machine learning can be classified into two main 
approaches: unsupervised and supervised learning. First, the information is grouped and 
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interpreted only using the input data, however, the second, requires information about the 
output data to perform the learning task. Figure 1 shows this classification and includes infor-

mation about the works that each one of these learning can be used.

Since this work is aimed to classify damages, supervised learning is used. In practice, this task 
is performed through the classification learner toolbox of MATLAB®, and Table 1 includes 

the methods used in the development of this work.

Figure 1. Machine learning approaches according to the learning.

Decision trees Nearest neighbor classifiers Support vector machines Ensemble classifiers

Simple tree Fine KNN Linear SVM Boosted trees

Medium tree Cubic SVM Fine Gaussian SVM Bagged trees

Complex Tree Medium KNN Medium Gaussian SVM Subspace KNN

Coarse KNN Coarse Gaussian SVM Subspace discriminant

Cosine KNN Quadratic SVM RUSBoosted

Weighted KNN Cubic SVM Trees

Table 1. Methods included in the classification learner toolbox of MATLAB®.
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3. Damage classification methodology

The methodology used in this work is aimed to the damage detection and classification. To per-
form this task, it is necessary to highlight that pattern recognition point of view is used, in this 
sense, the methodology works first with the definition of a healthy pattern which is obtained 
from different states of the structure. In this work, data from healthy and different damages are 
used as inputs to the machines. This stage is defined as training and is developed as in Figure 2.

In general terms, the process includes a pre-processing step, where all the experiments are 
organized in a matrix per each actuation phase as in Figure 3, and normalization is applied 
before to create PCA models.

Figure 2. Training process.

Figure 3. Organization and normalization data.
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After training step, same experiments with unknown scenarios are applied to the structure, 
and these data are pre-processed and projected in the principal components and included in 
the trained machine to determine to which state it correspond. Figure 4 presents a description 

of the steps used on that process.

4. Experimental setup

Figure 5 shows a scheme of the SHM system, it is composed of one oscilloscope of four chan-

nels with an usb interface, one arbitrary generator, and a CPU as processing unit, additionally 
there is a switching device, which is implemented for automatizing the measurement as it is 
shown in Figure 5.

The inspection process can be summarized in the following steps:

• A burst signal is applied to one PZT and the rest of the transducers are used as sensors.

• A multiplexing system allows to change the actuator and collects the information from 
the rest of the sensors. This process is applied as many times as piezoelectric sensors are 
attached to the structure.

• A digitizer is finally used to capture the information collected by the sensors via an oscil-
loscope with usb interface.

The system collects the information in several files, in this case four since there are four trans-

ducers, and pre-processes, as was explained in the previous section. To validate the method-

ology, four structural states including the healthy state and three simulated damages were 
used as in Figure 6. These kinds of damages are used to produce changes in the wave propa-

gation [27] and to provide different scenarios for validating the methodology.

Figure 4. Test process.
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Figure 5. Experimental setup.

Figure 6. Structural states used in the damage classification validation.
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5. Experimental results

In order to validate the methodology with several machine learning methods, three experi-
ments were implemented. The objective is to determine the behavior of the different meth-
ods of machine learning described in Section 2 and its performance under different scenarios 
which are obtained by changes in the input data and the pre-processing step. In most of the 
cases, these kinds of changes are the responsible for producing false alarms in the damage 
identification process. In this way, the acquisition process was made by looking the effect of 
the attenuation with long cables (2.5 m) and short cables (0.5 m), the addition of Gaussian 
noise to the acquired signals and the use of a Golay filter in the pre-processing step. These 
experiments are explained below.

First experiment: acquisition performed with a short cable (0.5 m) from the digitizer to the 
sensors, and the acquired signals filtered with a Golay filter algorithm in this experiment after 
adding white Gaussian noise.

Second experiment: acquisition performed with long cable to sensors (2.5 m), and signals 
filtered with the Golay algorithm.

Third experiment: acquisition performed with a short cable (0.5 m) from the digitizer to the 
sensors, and the signal filter without a Golay filter algorithm.

As it was previously introduced, in the first group of experiments, the influence of added 
noise to the data will be explored in order to determine how it affects the results in the prin-
cipal components. For this, the Golay filter is applied to reduce the influence of aleatory sig-
nals and after the white Gaussian noise is added to the signals. Later, the methodology was 
applied to the signals with and without noise to determine the influence of the white noise in 
the detection process. An example of the signals used by the algorithms in the actuation phase 
2 can be seen in Figure 7, similar results are obtained with all the signals.

Figure 7. Signal received by sensors in the first experiment, without damage (a) with Golay filter applied without white 
Gaussian noise (b) with Golay filter applied with white Gaussian noise.
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Figure 8. First two principal components for experiment 1: (a) without added noise (b) with 25dB of white Gaussian 
noise.

Figure 9. The bad case confusion matrix for experiment 1.
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Figure 11. Signal received by sensors by experiment 2.

Figure 10. The good case confusion matrix for experiment 1.
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Figure 8a shows the first two principal components of the signal for the actuation phase 1, 
which are after used to train the machines, this train was made with methods included in the 
classification learner toolbox of MATLAB® shows in Table 1. This behavior is the same in all 
the actuation phases.

As seen in Figure 8a and 8b, the first the principal components are able to eliminate the noise 
and prove that they are a good tool for defining the elements to include in the machine this is 
the experiment one.

After searching the principal components, the machines are trained with these data. Although 
all the machine learning methods were explored, following worst and best results are shown 
for a better understanding. Figure 9 shows the confusion matrix with test Coarse KNN 
machine, and the result in all cases was very poor, with most machines having this behavior.

Figure 10 shows the confusion matrix with test Bagged Trees machine, the result in all cases 
was good, Fine KNN, Weighted KNN, Bagged Tree and subspace KNN, also the behavior was 
good, but only in some machines good response was obtained.

Figure 12. PCA components for experiment 2.
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Figure 13. The best confusion matrix for experiment 2.

Figure 14. The bad case confusion matrix for experiment 2.
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Figure 15. Signal received by sensors by experiment.

Figure 16. PCA components for experiment 3.

Data-Driven Methodologies for Structural Damage Detection Based on Machine Learning Applications
http://dx.doi.org/10.5772/65867

121



Figure 17. The worst case confusion matrix for processing with other training.

Figure 18. The bad case confusion matrix for processing with other training.
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In general, the response of these machine learning algorithms was good with or without 
added noise because PCA has shown great ability to reject the noise.

The second case was considered when the acquisition system is connected with long cables, 
and Golay filter for pre-processing is used, in this case the signals in some cases were bad 
digitalized because of the impedance of cable, the noise, the low voltage of the stimulus, and 
other experimental features. An example of the captured signals is shown in Figure 11.

Figure 12 shows the first two principal components obtained from the signal, which were 
used to train the machines.

As in the previous experiment, all the methods were explored and best and worst results are 
included in this work. Figure 13 shows the confusion matrix with Weighted KNN, and the 
behavior was similar to the first experiment. Similar results are obtained with adding Fine 
KNN, Weighted KNN, Bagged Tree, and subspace KNN.

Bad results were obtained with other methods for Coarse KNN. Figure 14 shows this behav-

ior, which is similar to the experiment 1.

Similar results were obtained with the third experiment; in this case, a short cable was used 
and unfiltered signals were used to calculate the scores. Figure 15 shows the acquired signal 
in the actuation phase 1.

Figure 16 shows the first two principal components of the signal, however in this experi-
ment these data were not used to train the machines, this means, principal components are 

projected into the machines trained in the first experiment to determine the influence of these 
changes in the results.

Figure 17 shows the response of the Coarse KNN machine, in this last case, the training is not 
success with this data series.

Figure 18 shows the response of the Fine KNN machine, similar results to the previous case 
are obtained, this means, a bad classification is provided by the machine.

6. Conclusions and future work

The piezoelectric transducers working as an active inspection system provide a good system 
to produce mechanical waves over materials under evaluation. In all the cases, the informa-

tion obtained from the healthy state and the different damage scenarios applied to the meth-

odology showed that algorithm is available to detect real and simulated damages in both 
structures in spite of shapes and differences in the element under inspection.

For all the experiments, the results showed that the behavior was very similar, only few 
machines architecture presented good results, these are: Fine KNN, Weighted KNN, Bagged 
Tree, and subspace KNN. Others types of machines did not work well for the experiments.

In all cases, it is necessary to train the machines with data pre-processed in the same way as 
in the definition of the healthy state, changes in the elements such as the cable length and the 

Data-Driven Methodologies for Structural Damage Detection Based on Machine Learning Applications
http://dx.doi.org/10.5772/65867

123



use of the Golay filter are enough to change the results in the PCA model obtained which do 
that the machines do not work correctly.

PCA is a robust mechanism to characterize data since it was demonstrated to eliminate the 
noise, however, more experiments need to be considered by including environmental and 
operational noise to determine the effectiveness of the algorithm.
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