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Abstract

Due to cluster instability, not in the cluster monitoring system. This paper focuses on the missing data imputation processing

for the cluster monitoring application and proposes a new hybrid multiple imputation framework. This new imputation

approach is different from the conventional multiple imputation technologies in the fact that it attempts to impute the missing

data for an arbitrary missing pattern with a model-based and data-driven combination architecture. Essentially, the deep

neural network, as the data model, extracts deep features from the data and deep features are further calculated then by a

regression or data-driven strategies and used to create the estimation of missing data with the arbitrary missing pattern. This

paper gives evidence that if we can train a deep neural network to construct the deep features of the data, imputation based

on deep features is better than that directly on the original data. In the experiments, we compare the proposed method with

other conventional multiple imputation approaches for varying missing data patterns, missing ratios, and different datasets

including real cluster data. The result illustrates that when data encounters larger missing ratio and various missing patterns,

the proposed algorithm has the ability to achieve more accurate and stable imputation performance.

Keywords Missing data · Cluster monitoring · Deep belief networks · Multiple imputation

1 Introduction

Clusters not only making an accurate decision but also

monitoring with partial missing cluster data is the practical

problem. Systems are becoming increasingly complex due

to the large number of services and resources. The cluster

monitoring system is what we use in a systematic way to

process or analyze cluster data at a remote location under

normal circumstances. It is quite necessary for the cluster

system to address many threats that may arise in systems by
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providing a statistic overall summary, especially a detailed

view of computing resources.

Collecting, analyzing and drawing inference from cluster

data are three primary procedures in a cluster monitoring

system [1]. This cluster can be a sensor cluster or computer

cluster. Unfortunately, for any number of reasons such as

single point of failure or network unreliable, it is rarely

possible to reliably collect the intended data for all nodes in

a cluster environment. It means that data values intended by

monitoring design to be observed are in fact missing. The

ubiquity missing data not only means low performance for

monitoring decision but also many traditional data analysis

applications that depend on good access to accurate data

cannot be immediately used in the system [2, 3]. The ability

to manipulate missing data has become a fundamental

requirement for classification, regression, and time series

prediction problems [4]. Therefore, processing missing data

among the original data in order to get an unbiased analysis

result becomes a primary problem in the cluster monitoring

research area.

A simple approach to deal with missing data is to

delete them, and it is called list-wise deletion method [5].

The disadvantage of the method is that it may result in

a significant loss of statistical information and precision
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under a complex multivariate analysis [2]. On the other

hand, to relieve the impact of missing data is to use missing

data imputation technique. The main idea of those methods

for dealing with missing data is using an approach to fill

them in and maintain the original distribution of the data

as approximate as possible, so that standard methods that

have been developed to analyze complete data sets can be

applied [6]. Many imputation methods have been proposed

in statistics, mathematics and other various disciplines. In

general, they can be classified into two classes:

1) Single Imputation (SI): Single imputation approaches,

such as mean/mode substitution, dummy variable

method, and single regression, aim to fill a single

value for missing observation. One of its intrinsic

disadvantages is that it reduces variability, resulting in

biased estimates or the uncertainty associated with the

model used for imputation.

2) Multiple Imputation (MI): Instead of imputing a single

value for each missing data, multiple imputation creates

many completed candidate datasets about the missing

data case, and then combines these candidate datasets

into one estimate for the missing data [7]. Multiple

imputation does not attempt to give an accurate

estimate for the missing data, but rather to represent a

random sample of the missing data which constructs

the valid statistical inferences that properly reflect the

uncertainty due to missing data [3]. Hence, it retains the

advantages of single imputation while allowing the data

analysts to obtain valid assessments of uncertainty.

In the last decades, a large number of multiple imputation

methods have been proposed and some of them will be

discussed in the Section 2. In general, in a data imputation

procedure, some experience and knowledge about the

missing pattern of the original data is required so that we

can choose an available imputation method according to the

type of the missing data pattern. However, in real-world

data analysis applications that face massive volume of data,

at the same time many missing data patterns may exist. In

addition, as the volume of data rapidly growing, the effects

of these traditional methods reduce.

In this paper, we focus on resolving the partial data

missing problem in data preprocessing part of a cluster mon-

itoring system, with arbitrary missing data patterns. The

deep neural network shows the capability for modelling

complex structures and dependencies in the data. Imputa-

tion of the missing data on features extracted from data

by deep neural network may be better than the traditional

methods which directly analyze on original data. This adan-

tage motivates us to combine the deep neural networks into

multiple imputation framework. Firstly, we investigate a

model-based multiple imputation algorithm for monotone

missing data pattern by using deep neural networks to gen-

erate multiple estimations of the missing data. We show

that the deep neural network has the ability to accurately

model missing data. In addition, we extend the ability of

this method to deal with the various missing data pattern by

constructing a new data-driven imputation model to build

filling candidates that will be fused with a top k nearest

neighbors’ weighted matrix and output the final fill values

of that missing data. Finally, we construct a hybrid MI sys-

tem (HMI) with the proposed two methods for overcoming

missing data imputation problem with huge data volume,

large missing ratio and arbitrary missing data pattern. Our

experimental results prove that if we can train a deep neural

network to construct the deep features of data, imputation

based on deep features is better than that directly on original

data. We construct a new Hadoop cluster monitoring system

by applying HMI to recover the missing node data before

they are input into the traditional decision module. This new

system has shown the ability to handle partial data missing

problems and restore the node data.

The rest of this paper is organized as follows. Section 2

presents the related work on missing data imputation.

Section 3 illustrates the background of multiple imputation

and deep learning, followed by the proposed method

in Section 4. Section 5 provides the experiments and

discussions, and finally, Section 6 concludes the paper and

introduces future work.

2 Related work

One of the classic missing data processing methods in the

monitoring system is the missing data imputation. As an

example, Zhang and Liu [8] applied least squares support

vector machines (LS-SVMs) to predict missing traffic flow

in an intelligent transportation monitoring systems. Suh

et al. [9] proposed to use imputation technology into remote

congestive heart failure monitoring system for predicting

the missing sensor data.

The missing data imputation technology recovers incom-

plete data by generating an estimation of missing data to

create a ”completed” data set, which will be further fed

into the following learning and analysis applications. In last

few decades, a number of methods were developed for the

imputation of missing data. Some of them were reviewed by

Allison and Paul [10].

According to the number of imputed values, imputation

methods can be divided into two categories: single imputation

and multiple imputation, as described above. Also, consid-

ering the model constructing approaches used for imput-

ing data, these technologies mostly can be classified into

statistical-based and model-based.
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Hot deck is a widely used statistical-based method.

Srebotnjak et al. [11] demonstrated that the hot-deck

imputation method can get better inform decision makers on

the types and extents of water quality problems in the context of

limited globally comparable water quality monitoring data.

Turrado C.C et al. presented the missing data imputation

method based on multivariate adaptive regression splines for

handling missing data in electrical data loggers and showed

that the proposed method outperformed the multivariate

imputation by chained equations [12].

Imputation methods based on model strategy learn the

predictive models from the available information in the data

sets, and these models are then used to estimate absent

values. Approaches such as multi-layer perception (MLP),

k-nearest neighbors (KNN), self-organi-zing maps (SOM)

and decision tree (DT) construction algorithms were com-

monly used for learning models [5, 13, 14]. Recently, the

deep neural networks were also applied for modeling miss-

ing data. Duan et al. [15] proposed an approach based on

deep learning networks to impute the missing traffic data. The

deep learning network approach discovers the correlations

contained in the data structure by a layer-wise pre-training

and improves the imputation accuracy by conducting a fine-

tuning afterwards. Che et al. [16] proposed to capture the

long-term temporal dependencies of time series observa-

tions as well as utilizes the missing patterns for improving

the prediction results by incorporating masking and time

interval into a deep model architecture. The difference with

our model is that above methods predict the missing data

directly by a deep neural network.

Recently, many researchers have done a lot of studies in

missing data imputation. Thirukumaran and Sumathi [17]

utilized well-known classifiers, such as LSVM, RIPPER,

C4.5, SVMR, SVMP and KNN to improve the imputation

accuracy, and finally found that the mean method by step

digression imputation method is better among all other

methods. A fuzzy-neighborhood density-based clustering

technique was used in literature [18] to group the similar

patterns and find the best donors for each incomplete target

pattern in the imputation system. Azim S and Aggarwal

[19] implemented a 2-stage hybrid model for filling in the

missing values, which used fuzzy c means and multi layer

perceptron.

In 2017, based on the random forest algorithm(RF), Tang

and Ishwaran [7] revealed RF imputation to be generally

more robust performance with increasing correlation.

Nikfalazar et al. [2] and Soni and Sharma [20] both

made some improvement on the imputation data with

fuzzy clustering. In addition, Myneni et al. [21] presented

a framework for correlated cluster-based imputation to

improve the quality of data for data mining applications.

Another work in literature [22] handled the missing data

by using dynamic bayesian network and support vector

regression algorithm is used for predicting the filling values.

In 2018, Chen [23] proposed a missing values imputation

method by combining sample self-representation strategy

and underlying local structure of data in a uniformed

framework. The evidence chain approach [24] was also

applied to mine all relevant evidence of missing values and

build the further estimation of missing values. Moreover,

Zhao et al. [25] developed a novel local similarity

imputation method that estimates missing data based

on fast clustering and top k-nearest neighbors, and in

order to improve the imputation accuracy, a two-layer

stacked autoencoder combined with distinctive imputation

is applied to locate the principal features of a dataset for

clustering. Tsai et al. [26] introduced a class center based

missing value imputation approach to produce effective

imputation results more efficiently based on measuring

the class center of each class and then the distances

between it and the other observed data are used to define

a threshold for the later imputation. In addition, literature

[4] presented a new approach based on an extension of the

incremental neuro-fuzzy gaussian mixture network, using

an approximated incremental version of the expectation

maximization algorithm, to carry out the imputation process

of the missing data during the execution of the recalling

operation in the network layer.

The difference with our model is that above methods

predict the missing data directly and individually by a

neural network, cluster or regression model. In our task,

the deep neural networks are used to extract the deep

features and imputation data estimation is implemented

on the deep features by both regression and data-driven

strategies. Hence, the performance of these methods should

be lower than our hybrid method, described in Section 4.

3 Preliminaries

3.1 Multiple imputation

The Multiple Imputation framework consists of a two-step

processes, as described in literature [27]:

– Firstly estimating M ”complete” data sets candidates.

– The M data candidates are pooled into one estimation

for the missing data.

Figure 1 depicts the common Multiple Imputation

architecture. This architecture is also used in our proposed

methods.

Many types of missing data patterns and analysis models

can be handled within this framework, making it presently,

the best option for dealing with most missing data problems.
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Fig. 1 The brief architecture and mechanism of the Multiple

Imputation(MI)

Facing different types of missing data patterns, we should

choose various analysis models within the first step of MI.

For the monotone missing data pattern, the missing

variables can be ordered in such a way that once a case has

a missing data on one observation it is then subsequently

missing on everything else [6], such as in Fig. 2a.

Imputation tasks are relatively easier if the missing

pattern is monotone either a parametric regression method

that assumes multivariate normality or a nonparametric

method that uses propensity scores is appropriate to apply

in monotone missing condition [5].

However, the missing data do not satisfy the requirement

of monotone missing pattern in most real cases, and usually

appear a kind of arbitrary missing data pattern. An arbitrary

missing data pattern is that the missing data of variables is a

random distribution in one observation [6], shown in Fig. 2b.

Analyzing this data with arbitrary missing pattern is

more difficult, ultimately special procedures are required.

A Markov Chain Monte Carlo [28] method, which creates

multiple imputations by using simulations from a Bayesian

prediction distribution for normal data. It is often used to

solve arbitrary missing data pattern.

3.2 Deep belief networks

Deep learning, mentioned in [29] neatly, is a part of machine

learning which has been used in various aspects.

Bengio, Courville and Vincent [30] reviewed the works

in the area of unsupervised feature learning and deep

learning, covering advances in probabilistic models, auto-

encoders, manifold learning, and deep networks.

The Deep Belief Networks(DBNs) was mentioned first

by Geoffrey Hinton [32] in 2006. It with many hidden

layers is appeared capable of modelling complex structures

and dependencies in the data. Hence the DBNs has been

widely applied in the feature extracting stage recently. By

training the weights between neurons, the whole neural

network generates training data with maximum probability.

In 2011, Hinton and Alex Krizhevsky [33] used DBNs to

obtain semantic codes which mean a high-level expression

of image features for image retrieval. And in 2015,

Mehdi Hajinoroozi et al. [34] explored the cognitive states

prediction based on DBNs for effective features extraction.

Besides, Zhikui Chen et al. [35] proposed a data imputation

method which makes DBNs remove the noise brought

by incomplete data and extract high quality features. In

our imputation methods, we implement the missing data

imputation with model-based technology. We will apply

Deep Belief Networks within the first step of MI for

extracting the representative features and then creating M

”complete” data sets. In this section, we first give a brief

theoretical background of Deep Belief Networks.

The DBNs was built by using multi Restricted Boltzmann

Machines (RBMs). A typical net structure of DBNs is

shown in Fig. 3, A DBNs consists of multiple layers

of neurons, divided into dominant neurons and recessive

neurons. Dominant neurons are used to receive input, and

recessive neurons are used to extract features, so recessive

neurons are also called feature detectors. The connection

Fig. 2 The monotone missing

data pattern (a) and arbitrary

missing data pattern (b). The

shaded cells are missing data
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between the top two layers is undirected and constitutes an

associative memory. Only the upper and lower directional

connections are connected between the lower layers. The

bottom layer (i.e. visiable layer) represents the data vector,

and each neuron represents one dimension of the data

vector. As mentioned earlier, the composition of the DBNs

is a layered structure, and the process of training the DBNs

is carried out layer by layer. In each layer, the data vector is

used to infer the hidden layer, and this hidden layer is used

as the data vector of the next layer.

First, regardless of the two layers that constitute the

associative memory at the top, a DBNs connection is guided

by the top-down generated weights. An RBM is just like

a building block, and it’s easy to connect weights for

learning. In the beginning, RBM pre-trains the weights

of the generated model through an unsupervised layer-by-

layer greedy method. This method is called a contrastive

divergence in Geoffrey Hinton’s paper, and the author

proved its validity. During the training phase, a vector is

generated at the visible layer, passing the value to the hidden

layer. In turn, the input to the visible layer is randomly

selected to attempt to reconstruct the original input signal.

Finally, these new dominant neurons will forward the

reconstructive recessive neurons to obtain a hidden layer. In

the training process, the vector value of the visible layer is

firstly mapped to the hidden layer, then the visible layer is

reconstructed by the hidden layer, and the new visible layer

is mapped to the hidden layer again, which gives a new

visible layer. This repeated step is the Gibbs sampling. The

correlation difference between the input vector of the visible

layer and the hidden layer is the main basis for the weight

update.

In DBNs, it uses RBMs as the base where the standard

type of RBM has binary-valued (Boolean/Bernoulli) hidden

and visible units such as Fig. 4, and consists of a matrix of

weights W = (wij ) associated with the connection between

hidden unit hj and visible unit vi , as well as bias weights

ai for visible units and bj for hidden units. For example, for

Fig. 4 The structure of RBM

an already trained RBM, the weight between each recessive

neuron and dominant neuron is represented by the matrix

W .

W =

⎡
⎢⎢⎢⎣

w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wN,1 wN,2 · · · wn,m

⎤
⎥⎥⎥⎦ (1)

Where wi,j represents the weight from the i − th dominant

neuron to the j − th recessive neuron, m represents the

number of dominant neurons, and n represents the number

of recessive neurons. When we assign a new data x =

{x1, x2, · · · , xm} to the visible layer, RBM will decide to

turn on or off recessive neurons according to weight W .

The specific operation is to firstly calculate the excitation

value of each recessive neuron:

hj = Wj ·x + bj (2)

Here we need to use the conditional independence

between the neurons mentioned earlier. Then, the excitation

values of each recessive neuron are normalized by the sigma

function to become the probability value of their open state:

P(hj = 1) = σ(hj ) =
1

1 + e−hj
(3)

Fig. 3 The structure of a 4-layer

DBNs. It is composed of a

visible layer and three hidden

layers
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So we calculate the probability that each recessive neuron

hj is turned on, and the probability of being in the off state

is complement:

P(hj = 0) = 1 − (hj = 1) (4)

So in the end whether the neuron is turned on or off,

we need to compare the probability of opening with a

random variable u ∼ U(0, 1) extracted from the uniform

distribution of 0-1.

hj =

{
1 P(hj = 1) ≥ u

0 P(hj = 1) < u
(5)

let (5) decide whether to turn on or off the corresponding

recessive neurons like that. The calculation in the hidden

layer is similarly as that in visible layer.

The model combines energy function and canonical

distribution to give individual activation probabilities as

P(hj |v, w) = f (

I∑

i=1

wijvi + bj ) (6)

P(vi |h, w) = f (

J∑

j=1

wijhj + ai) (7)

where the function f (·) is the activation function. It can

be a Sigmoid or Relu function. It is worth noting that the

neurons inside the visible layer and the hidden layer are not

interconnected, only the neurons between the layers have

symmetric connections. This approach has the advantage

that, given the values of all dominant neurons, the value

of each recessive neuron is irrelevant. Similarly, when a

hidden layer is given, the values of all the visible layers

are not related to each other. In the acutal training, the

corresponding parameter updating process can be shown as

△wij = △wij + [p(hj = 1|v(0))v
(0)
i −p(hj =1|v(k))v

(k)
j ]

△ai = △ai + [v
(0)
i − v

(k)
i ]

△bj = △bj + [p(hj = 1|v(0)) − p(hj = 1|v(k))] (8)

To train an RBM, it is actually to find a probability

distribution, so that the probability of generating training

samples is the largest, which is determined by the weight,

and the goal is to find the best weight, which can be derived

by using the maximum log likelihood function. Training

will use the famous Contrastive Divergence algorithm to

learn [31], and we will describe the process of weight

convergence to the optimal through the i − th epoch of the

process of weight update in algorithm 1.

Such trained RBM can accurately extract the features of the

visible layer, and can also restore the visible layer according

to the features represented by the hidden layer.

4Method

Based on the architecture of Multiple Imputation(MI), we

attempt to propose a hybrid MI system, as a complement of

model-based MI technologies with partial incomplete data.

This hybrid MI framework consists of two MI methods,

identically each method uses deep neural network within the

imputation procedure, however, the designed function of the

network models is not similar. These two methods cover the

monotone and arbitrary missing pattern respectively.

Assume that the missing data is not independent from

some other available variables (i.e., MAR condition) and

the first method, called ”Features Regression”, pre-trains M

deep neural networks and applies the output of these deep

neural networks to learn M regression machines by using M

complete data sample sets within the overall input data. In

the first step in MI, these M regression machines estimate

M candidates of the missing data and these candidates can

be further evaluated and pooled into an unbiased estimation

for that missing data. The same as traditional regression

MI methods, this method also can be effectively applied to

resolve monotone missing pattern, but neither can suit to

arbitrary missing pattern.

Further, we propose an imputation method to handle

missing data involved in the arbitrary missing pattern. ”Data

Driven Imputation”, a new MI architecture, is formed by

combining the model-based and data-driven strategies.

This method selects M reference sample sets, each

sample set includes N complete samples randomly sampled

from the input analysis data set. In each reference sample

set, these N reference samples are classified into C number

A novel hybrid multiple imputation framework 865



of clusters. Thus the number of samples in each cluster

is equal to N/C. Before the imputation process, M deep

networks are pre-trained with M reference sample sets and

M × N features are calculated by these M deep networks.

In imputation task, we extract M deep features for the

input data with partial missing values also by using these

pre-trained M deep networks.

The j−th, {j = 1, 2, ..., M} deep feature for the input

data is sorted to one of C clusters belong to j−th reference

sample set. Then k nearest data candidates from this cluster

are chosen by measuring the distance between the feature

and associative features of the reference samples. These

k nearest candidate estimations are further fused into one

estimation for j−th deep feature with a weight matrix.

Overall M estimations from M deep features consist the

M fill candidates for the missing data. Because these

imputation estimations are generated directly from k nearest

reference sample data, it means the imputation result values

are driven by the reference sample data. Therefore, we call

this is a data-driven strategy.

Choosing the samples based on the deep features level

makes this method more robust and accurate compared

with traditional data-driven methods that directly get the

evaluations on the original data or statistics information

of the original data. Any missing data conditions can be

imputed by this data-driven method and thereby it can be

used to deal with imputation tasks with arbitrary missing

pattern.

We combine the first and second methods to construct

the new hybrid MI system for providing higher accurate

and efficient missing data imputation with different missing

patterns. The detail of these methods will be described in

the following subsections.

4.1 Data preparing procedure

Before describing these methods, we should first give the

detail of the data used in our systems and the experiments

that follow. Assume K-sample analysis data sets X =

{x1, x2, x3, · · · , xK}, and each sample xi has m attributes

(ai
1, a

i
2, · · · , ai

m).

All the data set is separated into two subsets, Co and

Im, Co notes the complete dataset, where all attributes

can be observed in the set (no missing data), and Im is

the incomplete dataset, where partial missing data can be

found). The intersection of Co and Im is null.

The Co subset is used in three parts: pre-training the

DBNs, training regression machines and as the reference

dataset for the data-driven. During the experiments, the

DBNs is used as the feature extracting tool and pre-trained

before imputation process. In each training the dropout

strategy is applied, so some samples in Co subset are

partial replaced by zero value to let the DBNs can finish

fault-tolerant feature extraction when the input data suffers

from partial missing. The Im is used for all imputation

performance testing. When the pre-trained DBNs is used to

extract features of samples in Im, that missing value parts

will be replace by zero.

Both missing data patterns, monotone and arbitrary

missing data pattern, exist in the subset Im. As Fig. 2

shows, it is said to have a monotone missing pattern when

an attribute ai
j is missing for the individual i−th sample

that all subsequent attributes ai
j ′ , j ′ > j , are all missing

for the sample. Arbitrary missing data pattern is where

attributes missing for the individual i−th sample is random.

We further artificially segment the incomplete data set Im

into two subsets, according to the prior knowledge about

the dataset. Subset Mo ⊂ Im consists of missing data with

monotone missing pattern, and subset Ar ⊂ I represents

arbitrary missing data pattern.

4.2 The first MI method - features regression

Assume each missing attribute of a sample is not

independent of other available attributes (i.e., MAR),

a regression model handles a monotone missing data

pattern and makes an estimation for each missing attribute,

using the non-missing attributes as covariance. Traditional

regression models use original data in the calculation, even

though, regression with original data is more sensitive to

the increase of missing data ratios than using the features of

original data, due to obtaining a high-level abstract from the

original data and therefore is more robust to partial missing.

For this reason, the first method extracts the features of

original data as the input of regression method instead of

direct regression on the original data.

This feature extracting implementation by the DBNs

is described in the Section 3.2 and the DBNs extracts

deep features of the original data, consequently these

deep features are fed to the regression method to get the

estimations of missing data. In our following experiments

these features have showed more robustness to the increase

in missing data volume. Moreover, these features can

represent original data very well and the dimension of

features can be smaller than original attributes, thus helping

decrease the complexity of regression calculation.

Assume one of the samples in data set Mo miss two

attributes, noted am−1, am, and other m − 2 attributes can

be observed. For detail, we further define this sample as

xmissing = (a1, a2, · · · , am−2). The imputation method can

fill one missing attribute each time. For multiple-missing

attributes, overall missing attributes can be imputed one

by one. For the monotone pattern, we should first fill the

attribute am−1.

Assume d samples selected randomly from set Co

generate the instance set E = {xi |i = 1, 2, · · · , d}, xi =

J. Lin et al.866



(ai
1, a

i
2, · · · , ai

m). The training set T = {x̃i |i = 1, 2, · · · , d}

is constructed from the instance set E by deleting the

attributes ai
m−1, a

i
m for each sample in the set E. All deleted

values ai
m−1 compose the training goal sets Gtraining =

{g1, g2, · · · , gd},gi = (ai
m−1).

To ensure that subset Co and E have no significant

difference in statistical distribution, a T-test with Statistical

Product and Service Solutions (by SPSS) between the data

sets Co and E [36] are performed. If the result of T-test

passes a predefined significant factor, the above procedure

will repeat until the result is lower than the predefined

significant factor.

The DBNs just need to be trained with the unsupervised

learning procedure organized by one input layer and Ln(≥

1) hidden layers. The dropout strategy is adopted in training

procedure. Using algorithm 1 described in Section 3.2 with

x̃i as the input, the last hidden layer output of DBNs can

be defined as (9), where W = (w(1), w(2), · · · , w(Ln)) is

weight and b = (b(1), b(2), · · · , b(Ln)) is bias.

v(Ln) = f (Wx̃i + b) (9)

These trained matrices W , b are applied to extract feature set

Tf eature of training set T with (9). The Tf eature and training

goal sets Gtraining are together used to learn a regression

model formulated in (10).

Gtraining = W̃ × Tf eature + b̃ (10)

The W̃ and b̃ in Formula (10) can be trained by a regression

method.

When the incomplete record xmissing needs to be actually

filled, with the learned W , b, W̃ and b̃ through the (11) we

can predict one of the candidates for one missing variable at

each time.

O = W̃f (Wxmissing + b) + b̃ (11)

In our multiple imputation framework, we learn M DBNs

and M regression models on M training data sets which

is a random sample of total Co. All M regression models

generate M filling candidates (O1, O2, · · · , OM), and

finally these candidates are fused into an estimation Ō for

the missing data am−1.

The following Algorithm 2 illustrates the whole process

of the proposed method for calculating one missing variable.

Note that for multiple-missing variables condition in the

monotone missing pattern, the framework above creates

imputation values for the missing data consecutively. As a

two-missing variables example described in Section 4.2, the

missing variable am−1 is firstly estimated and then a new

incomplete record (a1, a2, · · · , ãm−1) joined the estimation

of variable am−1 is further used to fill the am. The same

as filling am−1, a new training set T́ is constructed on the

instance set E by deleting the attributes ai
m for each record

in set E. All deleted values ai
m compose the new training

goal set Ǵtraining . The Algorithm 2 is repeatedly used to

calculate the estimation of am.

The reason why the method is called Feature Regression

is that it uses the features from DBNs to construct a

regression model and it can solve data missing problem in

MAR mechanism with monotone missing pattern. But it

has drawback mentioned above that it may not be effective

for arbitrary missing data pattern. In the next section, we

discuss a further improvement of this method aiming to

offer an imputation to arbitrary missing data pattern.

4.3 The secondMImethod - data driven imputation

We furthermore extend the capability of the first method for

resolving arbitrary missing data pattern. The proposed new

model, called Data Driven Imputation (DDI), combines the

model-based and data-driven strategies.

In this model, DBNs are also used to extract high-

level features, different from the Feature Regression model,

these extracted features are sent into a proposed data-driven
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system for getting the candidates of missing data. The

DDI framework for generating imputation candidates for a

missing data is illustrated in Fig. 5.

We randomly sample instance set Ej {j = 1, ..., M}

from All Co. Assume we need to handle a sample with

two missing attributes a3, a5, which shows arbitrary missing

data pattern, such as in Fig. 2. A training set Tj = {x̃i |i =

1, 2, · · · , d} is constructed on an instance set Ej by deleting

the attributes ai
3, a

i
5 for each record in a set Ej . Using

M training data sets in this framework, we pre-generate

M DBNs models by algorithm 1 as same as Features

Regression method described above. Each training data set

is used to train a DBNs. The j−th (j = {1, 2, · · · , M})

DBNs model is defined as v
(Ln)
j .

All M DBNs models are pre-learned and then used

to extract features of the training set before imputation

process, generating M feature matrices. Each matrix Fj ,

j = {1, 2, · · · , M} can be defined as follows:

Fj =

⎛
⎜⎝

f eaturej,1

...

f eaturej,d

⎞
⎟⎠ (12)

i−th row in Fj is a feature vector of sample i in training

data set Tj , obtained by j−th DBNs model.

In (12), the Fj acts as a feature dictionary of training

samples. We conduct a K-Means [37] clustering on this

feature dictionary, and this phase divides these features

within Fj into C reference clusters and records each cluster

center of these reference clusters in a vector Centerj =

(centerj,1, . . . , centerj,c, . . . , centerj,C).

In imputation task, the system extracts the feature

f missing(j), j = {1, 2, · · · , M} for the incomplete data

xmissing with j−th, j = {1, 2, · · · , M} DBNs model.

Then the distance dis(centerj,c, f missing(j)) between

f missing(j) and every center of centerj,c is calculated by

a distance metric. Various types of distance metrics can

be applied to our system. In this paper, we choose the

Euclidean Distance to calculate the distance values.

The feature f missing(j) is classified to the c−th cluster

if the distance dis(centerj,c, f missing(j)) is minimum.

Assume the c−th cluster in Fj is further defined as

Fj,c =

⎛
⎜⎝

f eaturej,c,1

...

f eaturej,c,s

⎞
⎟⎠ (13)

where s is the size of samples in c−th cluster in the

feature dictionary Fj . For the f missing(j) we further apply

the Euclidean Distance to measure the distance between

f missing(j) and every feature in Fj,c, getting a distance

vector D = (disj,c,1, disj,c,2, · · · , disj,c,s).

In the general data-driven method, the nearest neighbor

in the equation of (13), feature dictionary Fj,c is usually

chosen as the complete substitution for incomplete xmissing .

However, it might be a disadvantage of the nearest neighbor

that does not cover uncertainty of missing variable, hence

it is not a good unbiased estimation for xmissing . To

overcome uncertainty of missing variable, we select the

smallest k (k ≤ s) distances (dis1, dis2, · · · , disk) from

distance vector D and find the nearest k observed attribute

samples (ρ1, ρ2, · · · , ρk) in training data set Tj , which

Fig. 5 The architecture of the Data Driven Imputation (DDI) for creating M candidates of the missing data
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correspond to the nearest k neighbors in feature dictionary

Fj,c respectively.

Equation (14) estimates the final imputation candidate

Oj for the input incomplete data:

Oj =

k∑

i=1

ψiρi (14)

where ρi is corresponding values of attributes in complete

data samples, and in our assumption ρi = (ai
3, a

i
5). The

weight ψi is calculated by (15).

ψi =
1

disi
/

k∑

i=1

1

disi
(15)

The imputation process for creating one imputation

candidate value Oj for the input incomplete data is

described in Algorithm 3 and illustrated in Fig. 5:

Repeating Step7 to Step10, we can generate M

imputation candidates O1, O2, · · · , OM for an incomplete

data xmissing . These M estimations can be pooled into one

final value by method proposed in [27]. In this paper, we use

the method of averaging.

4.4 Hybrid MI system

The first method illustrated above can effectively handle

monotone missing data pattern with low computation

complexity. In contrast, the second method has the ability

to impute arbitrary missing data pattern, but brings high

computation complexity, additionally, it is more robust

than the first method to the increase of missing ratio

based on the results of experiments. Considering respective

advantages of these two methods, we construct a hybrid

MI (HMI) system by integrating these two methods for

resolving different missing patterns with good performance.

Figure 6 shows the framework of hybrid MI system. The

Feature Regression and DDI share M DBNs models. Before

imputation procedure, all DBNs and regression models have

been pre-trained with complete datasets, and all feature

dictionaries have been obtained.

As illustrated in Fig. 6, (1) the system firstly divides the

input incomplete data into different missing patterns, and

analyzes the missing ratio in the monotone missing pattern.

(2) For the data involved monotone missing pattern, if the

missing ratio is lower than a threshold T h, the system will

choose the low computation complexity method (i.e. the

first method, Feature Regression) to implement the multiple

imputation procedure, otherwise it applies the DDI to fill

the missing data. The arbitrary missing pattern data set can

only be processed by the DDI method.

The threshold T h is a hyperparameter for the system

based on our experience, it should be set a value lower than

9%.

As shown in Fig. 6, (3) the MI framework can generate

M imputation candidates for an incomplete data. Overall M

candidates then will be used to calculate the final value.

4.5 Complexity Analysis

Before imputation calculation, all the DBNs models have

been pre-trained; all feature dictionaries have been prepared

and the center list of these reference clusters has been

calculated by K-Means method. The main computation

cost of HMI is in regression and data-driven processing,

therefore, the computation cost of HMI is similar to the

traditional regression and clustering methods.

In imputation step, only the time consumption of feature

extraction for the input data is considered. The time

consumption is related to the matrix dimension and the

network depth, which can be roughly expressed as O(α2 ∗

β2 ∗ Cin ∗ Cout ). The α represents the side length of each

feature map that convolution kernel outputs, which is related
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Fig. 6 Hybrid Multiple Imputation (HMI) architecture for dealing with arbitrary missing data pattern by an analysis of missing ratio and missing

pattern in input data. All DBNs models shared by two methods are pre-trained with complete datasets before imputation procedure. Imputation

procedure consists of 3 steps

to the matrix size Γ ,the convolution kernel size β, padding

p, and stride γ , expressed as follows:

α = (Γ − β + 2 ∗ p)/γ + 1 (16)

β is the side length of each convolution kernel, and Cin

is the number of channels per convolution kernel, that is,

the number of input channels, is also the number of output

channels of the previous layer, and Cout is the number

of convolution kernels that the convolution layer has, that

is, the number of output channels. In actual application,

the type of data missing will be judged first through a

simple conditional judgment, so the time complexity can

be approximated as O(1). If it is judged to use the Feature

Regression method, the complexity only need to add a

logistic regression time cost O(M ×O(Cregression)), where

M is the number of regression machines and O(Cregression)

is the complexity for the regression method. If it is judged

to use Data Driven Imputation method, in addition to the

time consumption of the feature extraction by M DBNs, the

data-driven time complexity can be approximated as O(M×

(O(Clocating) + O(Cchoosing))) ,where O(Clocating) means

the time cost for locating the cluster, M means the number

of DBNs and O(Cchoosing) means the computational

burden for choosing k nearest reference samples in the c −

th cluster. Therefore, the most important time consumption

in HMI method is the time cost on the feature extraction of

DBNs and candidate samples selected, which is feasible in

parallel implementation. The HMI method is able to process

efficiently the imputation task within a big incomplete data

set.

The spatial complexity of the model is mainly composed

of the space occupied by the DBNs model and the space

occupied by the reference data samples for calculating

imputation values. The spatial complexity of DBNs mainly

includes the total parameter quantity and the output feature

map of each layer. The total parameter quantity refers to

the total weight parameters of all layers, and the space

complexity can be approximated as O(
∑D

l=1 β2
l · cl−1 · cl)

, which is only related to the size of the convolution kernel

β , the number of channels c , and the number of layers D

, regardless of the size of input data.The spatial complexity

of the output feature map is relatively simple, that is, the

product sum of the space size α2 and the number of channels

c , which is approximately O(
∑D

l=1 α2 · cl) . Therefore,

the spatial complexity of DBNs can be approximated as

O(
∑D

l=1 β2
l · cl−1 · cl +

∑D
l=1 α2 · cl) . In addition, the space

complexity of the HMI method is related to the number of

clusters C and the number of reference samples per cluster

s , which can be approximated as O(M ×C × s ×d) ,where

d means the dimension of feature. For a cluster system with

thousands of GB memory resource that space complexity

can be ignorable.

4.6 Application in a Hadoop cluster monitoring
system

As we all know, Hadoop is a fantastic distributed platform,

which provides so powerful parallel and distributed

computation. It’s obvious from above that HMI can be

joined into the preprocessing module of any monitoring

systems to resolve the partial data missing problem,

therefore, for our purpose, we apply the HMI method to

construct a new Hadoop cluster monitoring system based on

the Ganalia framework [38].
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The proposed monitoring system gets statistical data

about the cluster resource information for further supporting

better job schedule planning and job behavior prediction.

As described in Fig. 7, the system architecture has been

designed as three levels: 1) cluster information collection

level, 2) data preprocessing level and 3) data analysis level.

The Ganglia collects data from each host. Different from

other Hadoop cluster monitoring system also constructed

with Ganglia, this new system adds the HMI method

into the preprocessing module before the data integrating

processing. The HMI extends the capability of the new

system to deal with the missing data. Finally, data analysis

module takes the integration data and some statistical

analysis methods are applied to get the decision.

5 Performance evaluation

In this section, we describe the experiments conducted to

evaluate the effectiveness and efficiency of the new Data

Driven Imputation(DDI) and hybrid MI(HMI) system for

dealing with partially missing data and large data volume.

In addition to our new methods, we also implement the

following eight existing techniques for comparison:

1. Regression method: the traditional regression model

described in [27].

2. MCMC method: the traditional MCMC method pro-

posed by Schafer [28].

3. Expectation Maximization Imputation (EMI): Expecta-

tion Maximization Imputation method is a popular tool

for statistical missing data imputation in various fields,

the algorithm has reasonable accuracy in missing data

imputation [39].

4. KNN method: KNN is the most common method

because it shows a stable performance regardless of

the size of the missing data with easy implementation.

Therefore, many researchers use this method as a

benchmark to compare imputation performance [17].

5. Random Forest regression method(RF): The random

forest algorithm(RF) used in [7] as a regression model

to estimate the missing data.

6. Iterative Fuzzy Clustering(IFC): Presented in [2], the

iterative fuzzy clustering approach is applied to obtain

the clusters, then the non-missing data in the cluster

with their membership degree and the centroids provide

information for estimating the missing values.

7. Sample Self-representation Strategy(SSR):This method

combines sample self-representation strategy and

underlying local structure of data in a uniformed frame-

work for estimating missing data [23].

8. Class Center based Missing Value Imputa-

tion(CCMVI): Proposed in [26], it produces imputation

results based on the distance between the class center

of each class and a threshold calculated by the other

observed data.

Besides observing various missing data patterns, miss-

ing ratios, different databases in performance comparison

between these imputation methods by Mean Absolute Per-

centage Error(MAPE), we also compare the effectiveness

and efficiency of our two MI methods (Feature Regression

and DDI)in the following experiments.

5.1 Database

All the experiments are conducted on three data sets: A real

Hadoop Cluster Monitoring Dataset, Cover Type Dataset

and TV News Channel Commercial Detection Dataset. The

Hadoop Cluster Monitoring data are collected by a Ganglia

system from a real Hadoop cluster. The cluster has 30 nodes

and each node is a X86 server with dual 3.7Ghz i3-6100

processors, 32GBRAM, 500GB disk and Gigabit Ethernet

networking. The whole monitoring data includes 103,418

Fig. 7 The structure of the

proposed Hadoop monitoring

system based on Ganalia and

using HMI to impute missing

data in preprocessing module
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Fig. 8 Performance of MAPE, as a function of missing ratios, obtained

by our two methods (Feature Regression, DDI), the Regression method

and RF method on three datasets, respectively

Fig. 9 Performance of MAPE for different missing ratios and datasets,

obtained by HMI, EMI, KNN, MCMC, DDI, IFC, SSR, CCMVI

methods respectively

J. Lin et al.872



records, 116 attributes which include data(percentage CPU,

memory used, I/O...) for each node in a Hadoop system.

The last two datasets called Cover Type Dataset were the

simulated data of the sensor clusters from the UCI Machine

Learning Repository, which records the cover type data

from four wilderness areas located in the Roosevelt National

Forest of northern Colorado. It includes 581,012 records,

54 attributes and 7 classes.There are 129,685 records in

the TV News Channel Commercial Detection Dataset, and

each record has 98 attributes and 2 classes (Commercials/

Non-Commercials).

We randomly select 600,000 records from Hadoop

Cluster Monitoring Dataset, 300,000 records from Cover

Type Database and 80,000 records from TV News Channel

Commercial Detection Database to construct three analysis

data sets.

Although each data attribute in these analysis datasets

has a different domain, we preprocess all the values in

these three datasets so that make them normalized to

[0, 1] for better learning computing. In real imputation

task, the system output can be conducted an anti-

normalization processing to recover the original domain. In

our experiments, we test these algorithms under the same

conditions and hence do not execute anti-normalization.

Cover Type Dataset and TV News Channel Commercial

Detection Dataset are artificially regenerated to six data

subsets such that have 1%, 3%, 6%, 9%, 12%, 15% missing

data ratios respectively. The missing mechanism is MAR,

missing patterns include monotone missing pattern and

arbitrary missing data pattern. For the Hadoop Cluster

Monitoring Dataset we artificially regenerate five arbitrary

missing test data subsets for missing data ratios=3%, 6%,

9%, 12%, 15%. Meanwhile, we artificially construct six

monotone missing testing data subsets with missing data

ratios=1%, 3%, 6%, 9%, 12%, 15% on this dataset.

5.2 Quantitativemeasures for evaluation

To evaluate the performance of the imputation algorithms,

well-known evaluation MAPE is used, formulated as

follows:

MAPE =

∑
| ei

Oi |

N
× 100% (17)

where ei = Ōi − Oi is the error for estimate value, Ōi

is the imputed value of the i−th missing data, O i is the

actual value of the i−th artificially created missing data,

and N is the number of artificially created missing data.

It’s important to note that we use the actual average of

i−th value to replace the zero of O i . The values of MAPE

can range from 0 to ∞, and a lower value indicates better

accuracy.

5.3 Results and discussions

The DBNs, in these experiments, have three hidden layers,

and the nodes for each layer are 40, 28, 14 respectively. All

the layers are randomly initialized before training. We chose

Sigmoid as the activation function. The learning rate is set

to 0.01, alpha is set to 1, and hyper parameters are set to 0.

In the following experiments the multiple imputation

M = 15 for all methods means randomly sample 15 training

data sets under total training data. Depending on the classes

of each dataset, we select the number of cluster C = 7,

10 and 2 for our systems under three different datasets

respectively. k = ⌊0.01 × s⌋ is used for the DDI method,

where the s is the size of samples in the chosen cluster.

5.3.1 Experiment onmonotonemissing pattern data

The first experiment investigates the performance of the two

proposed methods Feature Regression and DDI in dealing

with missing data imputation in monotone missing pattern.

We choose the traditional regression method and RF method

as the control group, based on the imputation ability of the

monotone missing pattern.

Figure 8 shows the MAPE values, as a function of

missing ratios, obtained by our two methods, the Regression

method and RF method on the three datasets, respectively.

Figure 8 indicates that all the systems can achieve good

performance in case of low missing ratio < 6%. After

averaging all three datasets, the accuracy of regression

and RF methods show a result which is slightly 1.0 ∼

1.2 higher than our methods, while missing ratio < 2%

and RF method gives better performance than all other

methods within missing ratio < 3%. The regression

strategy is contained in our Feature Regression method

for estimating the imputation candidates similar as the

traditional regression method. These better MAPE results

show that regression method has better prediction ability

than data-driven approach when it is applied to get the

estimation candidates for the missing data on a low missing

ratio condition. As observed in Fig. 8, with the increase of

missing ratio, a rise of the MAPE values are found for all

methods, but comparing with the traditional regression and

RF approach, our methods especially the DDI method show

more robustness. Our experiments show the same results as

literature [7] and prove that the RF regression method can

perform better than traditional regression model.

Our Feature Regression method shows lower MAPE

values than the traditional regression system and RF for

all test databases, when the missing ratio is greater than

9%, except 0.59% drop compared with RF method for

missing ratio at 9% in the Hadoop Cluster Monitoring

Dataset. Especially when missing ratio > 12%, our two

methods both outperform the traditional regression and
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Table 1 MAPE values obtained by the MCMC, EMI, KNN,IFC, SSR, CCMVI, DDI and HMI respectively, averaging overall results on arbitrary

missing pattern and three datasets

MisRatio DDI MCMC EMI KNN IFC SSR CCMVI HMI

3% 7.33% 8.95% 10.39% 8.03% 7.33% 7.23% 7.41% 6.65%

6% 7.95% 9.72% 11.33% 9.08% 7.86% 7.57% 8.05% 7.16%

9% 9.02% 11.02% 12.20% 9.99% 9.07% 8.58% 8.92% 8.27%

12% 10.31% 12.16% 13.26% 10.88% 10.61% 9.37% 10.67% 9.55%

15% 10.97% 12.89% 13.84% 11.45% 11.18% 11.04% 11.26% 10.21%

RF regression method on all datasets. The deep features

can give a better abstract for the data and improve the

regression effectiveness when the missing ratio rises. This

explains why our two models show the possibility to

outperform the traditional regression methods in these

experiments as the missing ratio increases. The larger the

attribute volume, the more effective using DBNs features in

imputation.Comparing the attribute number between each

database (Cover type=54, TV News Channel Commercial

Detection=98, Hadoop index = 116), the higher MAPE

improvement can be produced by our methods in the larger

attribute volume database, as showed in Fig. 8b and c.

From Fig. 8, we observe that the DDI method

outperforms the Feature Regression method when the

missing rate is greater than 9% because of poor ability of the

regression algorithm with the loss of reliable information

to build the prediction model while getting an accurate

statistical estimation. In contrast, the DDI method estimates

the missing variable by data-driven method, which reduces

the dependence of the system on missing data.

The results give us an experience T h value for our hybrid

MI system. The T h = 9% is set in our hybrid MI system in

the second experiment.

5.3.2 Experiment on arbitrary missing pattern data

Furthermore, we validate the performance of our system

(Data Driven Imputation (DDI) and hybrid MI(HMI))

in these datasets involved arbitrary missing pattern and

different missing ratios. We have compared the MAPE

values of our methods, MCMC, KNN, IFC, SSR and

CCMVI methods in these three analysis datasets, all with

arbitrary missing pattern. We do not use the RF method

in this experiments, because it is a kind of regression

model which can not work well in the arbitrary missing

pattern.

Figure 9 shows the MAPE values, as a function

of missing ratios, obtained by DDI, HMI, EMI, KNN,

MCMC, IFC, SSR and CCMVI methods on three datasets,

respectively. Although, the MAPE rises for the all methods

with the increase of the missing ratio, our DDI method

shows more robustness than MCMC, KNN and EMI. Broad

range missing attributes may reduce the effectiveness of

statistical distribution estimation, and this causes the poor

performance of MCMC. Unlike the MCMC method, DDI

method creates the imputation candidates in a data-driven

way on some data dictionaries, thus avoids the offer of the

statistical error caused by missing variables in imputation.

Our hybrid MI(HMI) system is a combination of Feature

Regression and DDI methods as described in Section 4.4.

The results of this experiment show that our new HMI

performs evidently better than the EMI, MCMC and KNN

methods and slightly better than IFC, SSR and CCMVI

methods, but SSR for the missing ratio 12% in Cover Type

Dataset. In some cases the SSR method generates similar

results as HMI, such as for missing ratio 6% − 12% in

Hadoop Cluster Monitoring Dataset. The HMI, IFC and

CCMVI methods construct the fill values for missing data

all by similar cluster-based and sample-based strategies.

However, different from the IFC and CCMVI methods both

calculated on the original data, the HMI method constructs

the cluster method above the deep features of data.

As mentioned above, the deep features also contribute

to the improved performance for the HMI method. The

better performance brought by the feature of data also can

be seen in SSR method. From Fig. 9, we can see that

SSR method is slight better than other methods in many

cases in these experiments. Self-representation framework

of data explains that the SSR method obtains more effective

estimation for the missing data. In contrast to the SSR model

which uses the graph regularized local self-representation

framework to represent structure features of data, our

method utilizes DBNs to extract the deep features of data.

The better results obtained by HMI show that the DBNs

has better ability for modeling complex structures and

dependencies in the data.

Table 1 shows each MAPE value obtained by the

MCMC, EMI, KNN, IFC, SSR, CCMVI, DDI and HMI

respectively, averaging all results on all missing patterns

in three datasets. As indicated in Table 1, our new method

HMI improve the adaptability and robustness for missing

data imputation while dealing with missing data which

involves large missing ratios and arbitrary missing pattern.

The performance of HMI is better than that of the DDI
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because HMI chooses the optimal system between Feature

Regression and DDI to impute missing data for different

missing patterns and missing ratios.

6 Conclusion and future work

Within the multiple imputation frameworks, we investigate

a Hadoop cluster monitoring system which is robust to

partial missing data, apart from this, two novel missing data

imputation methods: Feature Regression and Data Driven

Imputation have been presented in this paper firstly.

These methods are different from the conventional

algorithms in following two aspects:

1. Missing-data estimation procedures of two methods are

both dependent on the deep features rather than original

data. The benefit of working on deep features is that

these methods enhance the ability to represent the high-

level structure and dependence of the original data, so

that this way improves the robustness to a larger data

missing ratio.

2. The combination of the model-based and data-driven

imputation strategies reduces the dependence on the

accuracy in statistical estimation. As a result, it

consequently improves the performance to a larger

missing ratio.

Furthermore, we construct a hybrid MI system (HMI)

with the proposed methods which inherits the advantages

of both methods regardless of low or high missing

ratios, regardless of monotone missing patterns or arbitrary

missing patterns.

Experimental results show that proposed methods out-

perform the other methods with the most testing datasets

and missing ratios except the 1% drop compared with the

regression method in the monotone missing pattern and

missing ratio lower than 2%. By taking consideration of the

above point, compared with traditional multiple imputation

- Regression and MCMC, our methods improve the robust-

ness for larger missing ratios. Meanwhile, comparing the

HMI with other two commonly used imputation methods

- Expection Maximization Imputation and KNN, the pro-

posed HMI method outperforms other two systems in all

testing datasets and missing ratios. It gives the proof that

the HMI is a selectable technology to deal with partial miss-

ing data within a cluster monitoring application,at the same

time, briefly speaking, since DBNs is offline training, the

running time of HMI in application mainly includes DBNs

feature extraction time and linear regression or classifica-

tion selecting candidate time. The judgment time about the

missing rate and the missing type is almost negligible, so it

is more feasible in practical applications.

To improve this algorithm even further, it will be

beneficial to study the performance of imputation methods

with respect to difference missing mechanisms, i.e. Missing

Completely at Random. Moreover, our future work should

study a strategy to determine the number of cluster C and

the threshold T h, and compare various deep neural network

technologies to determine which is the best deep neural

network for application in cluster monitoring system.In

addition, the DBNs training process can be accelerated

with larger data sets, larger memory, more advanced GPU

devices and CUDA programming, and higher-frequency

CPU devices. In the future practical application, PCA

dimensionality reduction or Laplacian feature mapping can

be used to reduce the complexity of regression calculation

after feature extraction, so as to achieve better real-time

effect.
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