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ABSTRACT In this study, a model-free adaptive predictive control (MFAPC) method is proposed for a class

of unknown nonlinear non-affine multiple-input and multiple-output (MIMO) systems based on a novel

dynamic linearization technique and a new time-varying Pseudo–Jacobian matrix (PJM) parameter. The

advantages of the proposed method are that it does not need the model information in the control system

design, and it can avoid a short-sighted control decision and shows better control performance by integrating

the idea of predictive control. The applicability and effectiveness of the proposed control scheme have been

verified through rigorous mathematical analysis and extensive simulations.

INDEX TERMS Model-free adaptive predictive control (MFAPC), multiple-input and multiple-output

(MIMO) nonlinear system, model-free adaptive control (MFAC), data-driven control (DDC).

I. INTRODUCTION

With the modern computer science developing rapidly, there

have been great changes in large-scale industrial processes.

The production equipment and technology we used today are

becoming increasingly complicated. Due to the complexity

of equipment and system, it is quite difficult to obtain a

precise mathematical model in practice. Therefore, model-

based control methods are difficult to be applied. At the same

time, a great deal of useful data is generated and stored in the

industrial process.When the precise mathematical models are

not available, the use of the offline or online process data for

control system design becomes very meaningful. Therefore,

the study of the data-driven control (DDC) theory are of

significance in industrial fields [1].

Up to present, there are a few of data-driven control

(DDC) methods, for example, the reference [2] combines

off-policy learning with experience replay, and proposes

The associate editor coordinating the review of this manuscript and
approving it for publication was Sun Junwei.

reinforcement learning-based adaptive optimal exponen-

tial tracking control for continuous-time linear systems

with unknown dynamics. The reference [3] presents an

intelligent PID algorithm, which uses on-line numerical

differentiator based fast estimation and recognition

technology to design controller, avoiding complicated and

time-consuming parameter tuning. The references [4]–[6]

propose a series of control methods based on virtual ref-

erence feedback tuning (VRFT), which is a method of

identifying controller parameters using a set of off-line

I/O data of controlled objects. There also exist other data-

driven control methods, including proportion integral dif-

ferential control (PID) [7], [8], iterative learning control

(ILC) [9], [10], frequency domain robust control [11], iter-

ative feedback tuning (IFT) [12], [13], model-free sliding

mode control [14], lazy learning (LL) [15], model-free

adaptive control (MFAC) [16] and so on. These control

methods bypass the steps of modeling and design con-

trollers directly through offline or online input and output

data.
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Among the DDC methods mentioned above, the

MFAC method was originally presented in 1994 [16].

The MFAC method merely utilize the online input-output

(I/O) data to design controller. The main idea of this method

is that using the novel concept of pseudo partial derivative

(PPD), to build an equivalent dynamic linearization data

model at each operation point of the closed-loop system of the

nonlinear system. Then, the system’s PPD is online estimated

by using system I/O data, and the controller is designed using

the equivalent dynamic linearization data model according to

some weighted one-step-ahead cost functions. This method

does not need precise model and identification process, so it

has the advantages of simple controller structure, simple con-

troller parameter on-line tuning algorithm, small calculation

burden, convenient implementation and strong robustness.

The MFAC method has been successfully applied to many

actual systems, for example, the polymerization reaction pro-

cess [17], the quadrotor aircraft [18], the twin rotor aerody-

namic systems [19], the autonomous parking systems [20],

the wide-area power system stabilizer [21], the multivariable

industrial processes [22], the robot control [23], the traffic

control [24], the launch vehicle [25] and so on.

Until now, the MFAPC for the unknown single input and

single output (SISO) nonlinear non-affine plant had been

well developed and a few applications were also reported.

The literature [26] proposed a compact format dynamic lin-

earization (CFDL) data model based MFAPC method and

applied it to the phase splits control strategy of urban traffic

networks. The literature [27] proposed a MFAPC method

based on lazy learning and applied it to the control of three-

tank water level. For the syngas industry, the literature [28]

proposed a partial-format dynamic linearization data model

basedMFAPCmethod by using the local learning and applied

it to the oxygen concentration control problem. To the best

knowledge of the authors, the corresponding results of the

MFAPC for the unknown multiple-input and multiple-output

(MIMO) nonlinear non-affine plant have not been founded

yet.

In this paper, the MFAPC method for a class of unknown

MIMO nonlinear non-affine plant discrete-time systems is

proposed. The feature of the MFAPC is that the controller

is designed only depending on the system I/O data, and the

system model information is not required. With the addition

of predictive control ideas, this algorithm can make better

control performance comparing to the control scheme with-

out the prediction consideration.

Themain contributions are as follows. Firstly, the unknown

MIMO system is transformed into input-output data model

by using dynamic linearizationmethod. The Pseudo-Jacobian

matrix (PJM) in the input-output data model is estimated

and predicted on-line to realize the predictive control for

the unknown weak decoupling MIMO system. Secondly,

a novel stability analysis method based on contraction map-

ping is used to prove the tracking error convergence and the

BIBO stability. The other one is that, due to the utilization

of the prediction of future input and output information, the

proposed MFAPC method can make a better control perfor-

mance with good robustness which has been demonstrated by

simulations.

The differences between this work and existing works

are as follows. Compared with the MFAPC algorithm for

SISO nonlinear systems [26]–[28], it is designed for MIMO

nonlinear systems. The coupling between input and output

variables of MIMO system can be compensated due to the

on-line estimation of the Φ(k) using the algorithm (19),

and the auto decoupling in some extent can be realized

for the unknown MIMO nonlinear system. It is noted that

the stability analysis of this work is a contraction mapping

based method, rather than the Lyapunov stability theory

based, which is a novel in our adaptive control community.

Compared with the MFAC algorithm of MIMO nonlinear

system [31], this algorithm considers the future input and

output information in the control performance index, and

adds the prediction algorithm of pseudo-Jacobian matrix,

thereby ensuring a good control performance and enhancing

the robustness to unknown disturbance.

The rest of the paper is arranged as follows. In section 2,

the MFAPC control scheme is designed based on a novel

compact-form dynamic linearization technique for a class

of discrete-time MIMO nonlinear systems. In section 3, the

bounded-input and bounded-output (BIBO) stability of the

CFDL-MFAPC schemes are analyzed. In section 4, through

a series of simulation studies, the effectiveness, correctness

and applicability of the MFAPC scheme are verified, and

conclusions are obtained in section 5.

II. CONTROL SYSTEM DESIGN

The investigated MIMO nonlinear system is described as

y(k+1) = f (y(k), · · · , y(k−ny),u(k), · · · ,u(k−nu)), (1)

where f (· · · ) = (f1(· · · ), · · · , fm(· · · ))
T ∈

∏

nu+ny+2

Rm 7→

Rm denotes an unknown function. u(k) ∈ Rm is the control

input at time k and y(k) ∈ Rm the system output; ny and nu
are unknown constants.

A. COMPACT FORM DYNAMICAL LINEARIZATION

The two assumptions are given for the MIMO system (1) as

follows.

Assumption 1 ( [31]): The partial derivative of f i(· · · ),

i = 1, 2, · · · ,m, is continuous for the input u(k).

Assumption 2 ([31]): The MIMO system (1) satisfies the

generalized Lipschitz condition, i.e., for ∀k1 6= k2, k1 ≥

0, k2 ≥ 0, u(k1) 6= u(k2), it has ‖y(k1 + 1) − y(k2 + 1)‖ ≤

b‖u(k1) − u(k2)‖, where b > 0.

Remark 1: In the practice viewpoint, assumptions 1 and 2

are both reasonable. Assumption 1 describes the typical con-

dition for common nonlinear systems. Assumption 2 means

that if the rate of change of control input is bounded, the vari-

ation rate of the system output is also finite, which can

also be considered from an energy point of view that the

finite input energy to a given physical plant can not lead
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to the output energy of the given physical plant going to

infinity. For the more theoretical explanations and the rea-

sonality of assumption 2, they can be found in following

literatures [31], [32].

Under the assumptions of 1 and 2, the following theorem 1

is presented.

Theorem 1: Considering the system (1) satisfying

assumptions 1 and 2, if ‖1u(k)‖ 6= 0 for all k , then a

time-varying matrix Φ(k) termed Pseudo-Jacobian matrix

(PJM) exists, s.t., the system (1) can be described as the

compact form dynamic linearization (CFDL) data model as

follows.

1y(k + 1) = Φ(k)1u(k), (2)

with bounded Φ(k) for any k , where

Φ(k) =











φ11(k) φ12(k) · · · φ1m(k)

φ21(k) φ22(k) · · · φ2m(k)
...

...
. . .

...

φm1(k) φm2(k) · · · φmm(k)











∈ Rm×m,

is the unknown bounded PJM of system (1).

Proof 1: See reference [31].

Another assumption needs to be made in order to make a

rigorous analysis for the closed-loop system stability.

Assumption 3 ([31]): The PJM Φ(k) satisfies the diag-

onally dominant condition, that is,
∣

∣φij(k)
∣

∣ < b1, b2 ≤

|φii(k)| ≤ αb2, α ≥ 1, i = 1, 2 · · · ,m, j = 1, 2, · · · ,m,

i 6= j, and the signs of all elements in Φ(k) are fixed,

where b1, b2 are two positive constants, and satisfy b2 > b1
(2α + 1)(m− 1).

Remark 2: Assumption 3 is a description about the cou-

pling relationship between input and output in closed-loop

data. For a class of unknownMIMOnon-linear systems under

this weak coupling condition with the unavailability of the

plant model and only the system I/O data, the coupling among

the variables of the system is described via this diagonal

dominant matrix Φ(k), which can reflect data relationship

between control input and system output. Strictly speaking,

assumption 3 cannot be checked in practice. The reason

is that the MFAPC is a data-driven control method, which

means that the plant model cannot be obtained, and only the

I/O data till the current time instant k is available for

the MFAPC control systems design. No any future data of

the open-loop or the closed-loop of the controlled plant can

be used for the check. Of course, if the future I/O data after

the time k of the controlled system is assumed to be sufficient,

complete and available, then this condition could be checked.

In fact, this condition is not very restrictive. It includes the

LTI systems, and the nonlinear systems whose models are

assumed to have continuously bounded partial derivatives

with respect to its variables. Further, lots of practical plants

can satisfy this assumption, and already validated by the

practical applications, such as, [6], [19], [31].

Next, the MFAPC controller is designed based on the

CFDL data model.

B. CONTROLLER DESIGN

On the basis of the above CFDL data model, a one-step

prediction equation can be obtained as follows.

y(k + 1) = y(k) + Φ(k)1u(k). (3)

According to (3), we can give the N -step-ahead prediction

equations.



















































































y(k + 1) = y(k) + Φ(k)1u(k),

y(k + 2) = y(k + 1) + Φ(k + 1)1u(k + 1)

= y(k) + Φ(k)1u(k)+Φ(k+ 1)1u(k + 1),
...

y(k + N ) = y(k + N − 1)+Φ(k + N − 1)1u(k + N−1)

= y(k + N − 2)+Φ(k + N − 2)1u(k + N − 2)

+Φ(k + N − 1)1u(k + N − 1)
...

= y(k) + Φ(k)1u(k)

+ · · · + Φ(k + N − 1)1u(k + N − 1).

(4)

Let YNm(k+1), as shown at the top of the next page, where

YNm(k+1) denotes the N -step-ahead prediction vector of the

output, 1UNm(k) denotes an increment vector of the system

input, Im×m is an identity matrix of m×m, 0 is a zero matrix

of m× m, and Nu is the system input horizon.

So, the equation (4) can be rewritten in a compact form,

YNm(k+1) = E(k)y(k) + A(k)1UNm(k). (5)

If 1u(k + j − 1) = 0, j > Nu, then prediction equation (5)

becomes

YNm(k+1) = E(k)y(k) + A1(k)1UNum(k), (6)

where,

A1(k)

=





















Φ(k) 0 · · · 0

Φ(k) Φ(k + 1) · · · 0

...
...

. . .
...

Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1)
...

...
. . .

...

Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1)





















∈RNm×Num,

Φ(k)

=











φ11(k) φ12(k) · · · φ1m(k)

φ21(k) φ22(k) · · · φ2m(k)
...

...
. . .

...

φm1(k) φm2(k) · · · φmm(k)











∈ Rm×m,

1UNum(k)

=
[

1uT (k), 1uT (k+1), · · · , 1uT (k+Nu−1)
]T

.

As shown above, we obtained the N -step forward predic-

tion data model. Next, considering the tracking error and
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YNm(k + 1) =
[

yT (k + 1), yT (k + 2), · · · , yT (k + N )
]T

,

1UNm(k) =
[

1uT (k), 1uT (k + 1), · · · , 1uT (k + N − 1)
]T

,

E(k) = [Im×m, Im×m, · · · , Im×m]
T ,

A(k) =

























Φ(k) 0 0 · · · 0 0

Φ(k) Φ(k + 1) 0 · · · 0 0

...
...

. . .
. . .

. . .
...

Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1) 0 0

...
...

. . .
...

. . .
...

Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1) · · · Φ(k + N − 1)

























Nm×Nm

control input variation, the criterion function for control input

is constructed as follows.

J =

N
∑

i=1

∥

∥y∗(k + i) − y(k + i)
∥

∥

2
+ λ

Nu−1
∑

j=0

‖1u(k + j)‖2,

(7)

where the weighting factor λ is positive constant, and y∗(k+i)

is the desired system output at time k + i, i = 1, 2, · · · ,N .

Let Y∗
Nm(k + 1) =

[

y∗T (k + 1), · · · , y∗T (k + N )
]T
, then

the cost function (7) is rewritten as:

J=
[

Y∗
Nm(k+1)−YNm(k+1)

]T [

Y∗
Nm(k+1)−YNm(k+1)

]

+ λ1UT
Num

(k)1UNum(k). (8)

Substituting (6) into (8), the control law can be obtained

through the optimality condition ∂J
∂UNum(k)

= 0.

1UNum(k)

=
[

AT1 (k)A1(k)+λI
]−1

AT1 (k)
[

Y∗
Nm(k + 1)−E(k)y(k)

]

.

(9)

The above algorithm includes the calculation of matrix

inverse. The calculation of matrix inverse is time-consuming

if the dimension of system I/O data is very large. Therefore,

(9) can be simplified as follows.

1UNum(k) =
AT1 (k)

[

Y∗
Nm(k+1) − E(k)y(k)

]

λ + ‖A1(k)‖
2

. (10)

Thus, based on the receding horizon principle, the control

input of system at time k is obtained as follows.

u(k) = u(k − 1) + gT1UNum(k), (11)

where g = [Im×m,0m×m, · · · ,0m×m]
T ∈ Rm×Num,

0m×m =







0 · · · 0
...

. . .
...

0 · · · 0







m×m

.

Remark 3: The dynamical linearization technique is

applied to achieve the virtual dynamic linearization model

at each optional point. Moreover, the PJM in this virtual

dynamic linearization model contains all system information,

including the model uncertainties. Besides, there also exist

other references for addressing system uncertainties, such

as references [29] and [30]. The main difference between

them is that the modeling uncertainties are addressed directly

by uncertainty description using the known model or by a

implicitly estimation with PJM using the I/O data.

C. PJM ESTIMATION AND PREDICTION

Since A1(k) in equation (9) contains the unknown time-

varying PJM parameter Φ(k), Φ(k + 1), · · · , Φ(k +Nu + 1).

In following, we will discuss the PJM estimation and predic-

tion algorithms in order to implement the controller (10) (11)

in practice.

1) PJM ESTIMATION ALGORITHM

Firstly, we design the estimation algorithm of Pseudo-

Jacobianmatrix. Themodified projection algorithm is used to

estimateΦ(k) which is based on the optimization of following

criterion function.

J (Φ(k)) = ‖1y(k) − Φ(k)1u(k − 1)‖2

+ µ

∥

∥

∥
Φ(k) − Φ̂(k − 1)

∥

∥

∥

2
, (12)

where µ > 0 is a weighting parameter.

Minimizing cost function (12) yields the following projec-

tion algorithm,

Φ̂(k)=Φ̂(k−1)+
[

1y(k)−Φ̂(k−1)1u(k−1)
]

1uT (k−1)

·
[

1u(k−1)1uT (k−1) + µI
]−1

. (13)

Since the complex matrix inversion computation is

involved in (13), which will leads to many difficulties when it

is used in practice. Thus we will modify the PJM estimation

algorithm (13) into a simplified version as follows.

Φ̂(k) = Φ̂(k − 1)

+
η

[

1y(k) − Φ̂(k − 1)1u(k − 1)
]

1uT (k − 1)

µ + ‖1u(k − 1)‖2

(14)
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where η ∈ [0, 2], µ is a positive parameter, and

Φ̂(k) =











φ̂11(k) φ̂12(k) · · · φ̂1m(k)

φ̂21(k) φ̂22(k) · · · φ̂2m(k)
...

...
. . .

...

φ̂m1(k) φ̂m2(k) · · · φ̂mm(k)











∈ Rm×m

is the estimation of unknown PJM Φ(k). Moreover, in order

to improve the tracking capacity of the algorithm (14)

for time-varying parameters, according to assumption 3,

the reset mechanism of the above algorithm is set as

below:

φ̂ii(k) = φ̂ii(1), if

∣

∣

∣
φ̂ii(k)

∣

∣

∣
< b2 or

∣

∣

∣
φ̂ii(k)

∣

∣

∣
> ab2 or

sign(φ̂ii(k)) 6= sign(φ̂ii(1)), i = 1, · · · ,m.

φ̂ij(k) = φ̂ij(1), if

∣

∣

∣
φ̂ij(k)

∣

∣

∣
> b1 or

sign(φ̂ij(k)) 6= sign(φ̂ij(1))i, j = 1, · · · ,m, i 6= j.

2) PJM PREDICTION ALGORITHM

Since Φ(k + 1), · · · , Φ(k + Nu − 1) cannot be directly

calculated from the I/O data till sample time k , Φ(k + 1),

· · · , Φ(k+Nu−1) need to be predicted according to the past

estimated values Φ(1) · · · , Φ(k).

Assume that the estimated valuesΦ(1) · · · ,Φ(k) have been

calculated by equation (14) at time k . By use of these esti-

mated values, and an autoregressive (AR) prediction model

as follows:

Φ̂(k + 1)

= θ1(k)Φ̂(k)+θ2(k)Φ̂(k−1)+· · ·+θnp (k)Φ̂(k − np+1),

(15)

where np is the fixed model order, which is usually set

to 2∼7 as recommended by Reference [33], the predicted

PJM can be obtained.

Therefore, the prediction equation becomes

Φ̂(k + j) = θ1(k)Φ̂(k + j− 1) + θ2(k)Φ̂(k + j− 2)

+ · · · + θnp (k)Φ̂(k + j− np). (16)

where θ i(k) ∈ Rm×m, i = 1, 2, · · · , np.

Let

θ (k) =
[

θ1(k), · · · , θnp (k)
]T

,

ϕ̂(k − 1) =
[

Φ̂
T
(k − 1), · · · , Φ̂

T
(k − np)

]T

,

Φ̂(k) = θT (k)ϕ̂(k − 1).

For the parameter determination of the θ(k), we will use

the following optimization to get the parameter updating

law.

J (θ (k))=
∥

∥

∥
Φ̂
T
(k)−ϕ̂

T (k−1)θ(k)

∥

∥

∥

2

+ δ

∥

∥

∥
θ (k)−θ̂ (k−1)

∥

∥

∥

2
.

(17)

Minimizing the function (17), we have the following pro-

jection algorithm,

θ (k) = θ (k − 1)

+
ϕ̂(k − 1)

δ +
∥

∥ϕ̂(k − 1)
∥

∥

2

[

Φ̂
T
(k)−ϕ̂

T (k−1)θ (k − 1)
]

,

(18)

where δ ∈ [0, 1] is a positive constant.

III. CONTROL SYSTEM DESIGN AND STABILITY

ANALYSIS

A. CONTROL SCHEME

By integrating controller algorithm (10)-(11), PJM estimation

algorithm (14) and PJM prediction algorithm (16) and (18),

the MFAPC scheme is designed as below.

Φ̂(k)= Φ̂(k− 1)

+
η

[

1y(k)−Φ̂(k−1)1u(k−1)
]

1uT (k−1)

µ+‖1u(k−1)‖2
,

(19)

φ̂ii(k) = φ̂ii(1), if

∣

∣

∣
φ̂ii(k)

∣

∣

∣
< b2 or

∣

∣

∣
φ̂ii(k)

∣

∣

∣
> ab2 or

sign(φ̂ii(k)) 6= sign(φ̂ii(1)), i = 1, · · · ,m.

(20)

φ̂ij(k) = φ̂ij(1), if

∣

∣

∣
φ̂ij(k)

∣

∣

∣
> b1 or

sign(φ̂ij(k)) 6= sign(φ̂ij(1)),

i, j = 1, · · · ,m; i 6= j. (21)

θ (k) = θ (k − 1) +
ϕ̂(k − 1)

δ +
∥

∥ϕ̂(k − 1)
∥

∥

2

×
[

Φ̂
T
(k) − ϕ̂

T (k − 1)θ (k − 1)
]

, (22)

θ (k) = θ (1), if ‖θ (k)‖ ≥ M , (23)

Φ̂(k+j)= θ1(k)Φ̂(k + j− 1) + θ2(k)Φ̂(k+j−2) + · · ·

+ θnp(k)Φ̂(k + j− np),

j = 1, 2, · · · ,Nu − 1, (24)

φ̂ii(k+j) = φ̂ii(1), if

∣

∣

∣
φ̂ii(k+j)

∣

∣

∣
<b2 or

∣

∣

∣
φ̂ii(k+j)

∣

∣

∣
>ab2

or sign(φ̂ii(k + j)) 6= sign(φ̂ii(1)),

i = 1, · · · ,m, (25)

φ̂ij(k + j)= φ̂ij(1), if

∣

∣

∣
φ̂ij(k+j)

∣

∣

∣
>b1 or

sign(φ̂ij(k + j)) 6= sign(φ̂ij(1))i,

j = 1, · · · ,m; i 6= j, (26)

1UNum(k) =
Â
T

1 (k)
[

Y∗
Nm(k+1) − E(k)y(k)

]

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
, (27)

u(k) = u(k − 1) + gT1UNum(k), (28)
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FIGURE 1. The diagram of MFAPC.

where g = [Im×m,0m×m, · · · ,0m×m]
T ,

Â1(k)=























Φ̂(k) 0 · · · 0

Φ̂(k) Φ̂(k + 1) · · · 0

...
...

. . .
...

Φ̂(k) Φ̂(k + 1) · · · Φ̂(k + Nu − 1)
...

...
. . .

...

Φ̂(k) Φ̂(k + 1) · · · Φ̂(k + Nu − 1)























∈RNm×Num,

Φ̂(k)=















φ̂11(k) φ̂12(k) · · · φ̂1m(k)

φ̂21(k) φ̂22(k) · · · φ̂2m(k)
...

...
. . .

...

φ̂m1(k) φ̂m2(k) · · · φ̂mm(k)















∈Rm×m.

The Fig. 1 is the flow chart of MFAPC algorithm.

Remark 4: The prediction step size N is a key parameter

in the MFAPC algorithm, and its size can be adjusted. In gen-

eral, the prediction step size should be large enough to include

the dynamic characteristics of the system.

B. STABILITY ANALYSIS

Lemma 1: [34]: Let A = (αij) ∈ Cn×n. For each

1 ≤ i ≤ n, denote the Gerschgorin disk as Di =
{

z

∣

∣

∣
|z− αii| ≤

∑n
j=1,j 6=i

∣

∣αij
∣

∣

}

, z ∈ Cn×n, and the Ger-

schgorin domain is denotes a union of all Gerschgorin disks,

i.e., DA =
n
∪
i=1

Di. Each eigenvalue of A lie in DA.

Theorem 2: For a regulation problem y∗(k + 1) = y∗ =

const , if the system (1) satisfies assumptions 1-3, and the

corresponding control scheme (19)-(28) is applied, then a

constant λmin > 0 must exist, s.t., for ∀λ > λmin, it has

1) The tracking error sequence is convergent, that is,

lim
k→∞

‖y(k + 1) − y∗‖v = 0, where‖·‖v is the consistent

norm.

2) The system inputs and outputs are bounded, i.e., the

sequences {y(k)} and {u(k)} are bounded.

Proof: Appendix A.

Remark 5: From the proof, we can see that the persistently

exciting condition is not required when the proposed control

scheme is used for the adaptive control of an unknown non-

linear MIMO system.

Remark 6: From the proof of theorem 2we can see that the

closed-loop stability and convergence of the regulation prob-

lem of an unknown nonlinear system can be guaranteed. It is

noteworthy that the proposed algorithm is a pure data-driven

control method, in which the controller design process does

not contain any model information. When the desired signal

y∗ is a time-varying signal, the proof of error convergence and

stability can also be addressed by the following method.

A new controlled plant can be constructed,

c(k + 1) = y(k + 1) − y∗(k + 1) (29)

where y∗(k+1) is a time-varying desired signal, and y(k+1)

is the output of controlled plant (1).

The controlled plant (29) is a nonlinear discrete system as

well. Therefore, the tracking issue of the controlled plant y to

time-varying desired signal y∗ can be transformed into the

regulator problem of the controlled plant (29) to the time-

invariant desired signal. In a sequel, we can claim that the

tracking problem of the MIMO nonlinear system is also be

proven.

IV. SIMULATIONS

In order to verify the correctness and the effectiveness of the

proposed MFAPC scheme, extensive simulations are made in

this section. Part A presents a series of numerical simulations,

and part B is the simulations based on actual two degree of

freedom manipulator system.

It is noteworthy that the system model in following simu-

lations is merely used to generate the system I/O data, not to

design the controller.

A. NUMERICAL SIMULATION

The system studied in example 1 is a numerical MIMO

discrete system [31], and three other DDC algorithms

are compared with MFAPC algorithm, including prototype

MFAC [31], intelligent PID [3] and VRFT [4].

The MFAC control scheme is:

u(k) = u(k − 1) +
ρΦT (k)(y∗(k + 1) − y(k))

λ + ‖Φ(k)‖2
, (30)

where Φ(k) is estimated using (19)-(21).

For intelligent PID, the control structure is set to:










u1 = −
F1

α1
+
ẏ∗1
α1

+ kp1 · e1+ki1 ·

∫

e1 ,

u2 = −
F2

α2
+
ẏ∗2
α2

+ kp2 · e2+ki2 ·

∫

e2 .

(31)

where, [Fi]e = [ẏi]e − u, [•]e is the estimate of a given

quantity. the tracking error ei = yi − y∗i , i = 1, 2

For VRFT, the controller scheme is set as the PID

controller:


















1u1(k) = kp1 · 1e1(k) + ki1 · e1(k)

+kd1(1e1(k) − 1e1(k − 1)) ,

1u2(k) = kp2 · 1e2(k) + ki2 · e2(k)

+kd2(1e2(k) − 1e2(k − 1)) .

(32)
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TABLE 1. The parameter setting of algorithms.

where, the reference model is Mi(z) = αi/(1 − αiz
−1),

i = 1, 2. the weight function is Wi(z) = 1, i = 1, 2.

According to the optimization method in [4], kp, ki and kd are

optimized respectively, the values are shown in the table 1.

Example 1: [31]:

The MIMO discrete nonlinear system can be described as:










































































x11(k + 1) =
x211(k)

1 + x211(k)
+ 0.3x12(k),

x12(k + 1) =
x211(k)

1 + x212(k) + x221(k) + x222(k)
+ a(k)u1(k),

x21(k + 1) =
x221(k)

1 + x221(k)
+ 0.2x22(k),

x22(k + 1) =
x221(k)

1 + x211(k) + x212(k) + x222(k)
+ b(k)u2(k),

y1(k + 1) = x11(k + 1),

y2(k + 1) = x21(k + 1),

(33)

where

a(k) = 1 + 0.1 sin(2πk/1500);

b(k) = 1 + 0.1 cos(2πk/1500). (34)

The initial condition of the system is

u1(i) = u2(i) = 0.5, i = 1, 2, 3, 4.

x11(j) = x21(j) = 0.5, x12(j) = x22(j) = 0, j = 1, 2, 3, 4.

In this subsection, the tracking ability ofMFAPC algorithm

and other three DDC algorithms to the same desired output is

compared, and two kinds of desired signals, constant signal

and time-varying signal, are simulated respectively.

1) CONSTANT DESIRED SIGNAL

In this case, the desired signal y∗ is set as follows:


















y∗1(k) = 1.25,

y∗2(k) =











1.2, 0 < k ≤ 300,

2.1, 300 < k ≤ 700

1.1, 700 < k ≤ 1000

(35)

The parameter setting of the four algorithms are shown

in Table 1.

FIGURE 2. Tracking performance of y1 with a constant desired signal.

FIGURE 3. Tracking performance of y2 with a constant desired signal.

The simulation results of this case are shown in Figure 2-5,

and the overshoot index is shown in Table 2-3.

The simulation results illustrate that the four algorithms

have good control performance. However, it can be observed

from Figure 2-3 and table 2-3 that VRFT algorithm and

MFAC algorithm have obvious overshoot. The MFAPC algo-

rithm and i-PID algorithm have low overshoot. Furthermore,

compared with the i-PID algorithm, the convergence speed

of MFAPC algorithm is faster. In addition, when the desired

signal changes abruptly, MFAPC algorithm can predict the

change of the desired signal and track the signal ahead of

time. Therefore, the tracking performance of MFAPC algo-

rithm is better than the other three algorithms.

From the Figure 4-5 and the table of overshoot index, it can

be concluded that the overshoot value is related to the change

rate of the control input. The control input curves of MFAPC

algorithm and i-PID algorithm are relatively smooth, so they

have the characteristics of low overshoot.

In addition, as shown in Figure 2, when the control input u2
changes abruptly, as can be seen in step 300 and step 700,

the tracking signal y1 of the MFAPC algorithm has less

influence and the output curve is smoother. The reason is that
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FIGURE 4. Control input u1 with a constant desired signal.

FIGURE 5. Control input u2 with a constant desired signal.

TABLE 2. The overshoot of y1.

TABLE 3. The overshoot of y2.

the intelligent PID algorithm and the VRFT algorithm need

to design the controllers separately for each output, which

leads to improper addressing of system coupling problems,

while the MFAPC algorithm can realize the decoupling of the

MIMO system by estimating the PJM.

It should be pointed out that the parameters of VRFT

algorithm are offline and not adaptive, so the parameter tun-

ing is time consuming and difficult. In contrast, the MFAC

and MFAPC algorithms estimate parameters based on online

I/O data, and the parameter tuning is simpler and more

TABLE 4. The running time.

convenient. In addition, compared with MFAC algorithm,

MFAPC algorithm makes full use of future input and output

information and has better control performance.

Remark 7: Considering the computational complexity and

computing time of MFAPC algorithm, we calculate the run-

ning time of four algorithms respectively, as shown in Table 4.

Since the parameters of MFAPC algorithm are updated

online, involving the estimation and prediction of PJM,

the calculation time of MFAPC algorithm is longer than

that of other three algorithms. This is a disadvantage of the

MFAPC algorithm.

The above time contains 1000 sampling times of the algo-

rithm, so it can be obtained that the MFAPC algorithm runs

for one cycle with a time of 0.3601 ms.

Therefore, the MFAPC algorithm has the advantage of low

computational complexity, because it only involves the oper-

ation of addition, subtraction, multiplication and division.

Specifically, if the control period required by the controlled

object is greater than the calculation time of the algorithm,

which is 0.3601 ms, the algorithm can run on embedded

controllers, such as 8-bit controllers, high-performance con-

troller, etc. The choice of the controller depends on the accu-

racy requirement of the controlled object. For low-speed sys-

tems, such aswater tank control and other process control sys-

tems, with low sampling time and control accuracy require-

ments, controllers with low-configuration can be applied,

such as 8-bit controllers. For high-speed systems, such as

motor control systems, high-performance controllers should

be used.

2) TIME-VARYING DESIRED SIGNAL

In this case, the desired signal becomes a time-varying signal,
{

y∗1(k)=0.5+0.25 cos(0.25πk/100)+0.25 sin(0.5πk/100),

y∗2(k)=0.5+0.25 sin(0.25πk/100)+0.25 cos(0.5πk/100).

(36)

The parameter setting of the four algorithms are shown

in Table 5.

The simulations are presented in Figure 6-9, and the perfor-

mance indicators are shown in Table 6-7 with the root mean

square of error and the total sum of squares of control inputs

included, described as follows.

The root mean square of error:

eRMS =

√

√

√

√(

N
∑

k=1

e(k)2)/N .

The total sum of squares of control inputs:

1uTSS =

N
∑

k=1

1u(k)2.
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TABLE 5. the parameter setting of algorithms.

FIGURE 6. Tracking performance of y1 with a time-varying desired signal.

FIGURE 7. Tracking performance of y2 with a time-varying desired signal.

TABLE 6. Numerical indicators of y1.

The tracking performance results are shown in Figure 6-7

and Table 6-7, which show that the four algorithms above

are effective, and all algorithms have good tracking effect

FIGURE 8. Control input u1 with a time-varying desired signal.

FIGURE 9. Control input u2 with a time-varying desired signal.

TABLE 7. Numerical indicators of y2.

after 100 steps. For MIMO nonlinear time-varying system,

the performance of MFAPC algorithm is superior to other

three algorithms.

The figures 6-7 show clearly that the VRFT and MFAC

algorithms have obvious oscillations at the beginning of

tracking, while i-PID algorithm and MFAPC algorithm has

no overshoot, but convergence speed of i-PID algorithm is

slower than MFAPC algorithm. Compared with the other

three algorithms, MFAPC algorithm has faster convergence

speed, and the tracking performance has non-overshoot and a

smoother transient process. Therefore, theMFAPC algorithm

has better tracking performance. Moreover, containing future

output information, the MFAPC algorithm makes good con-

trol decisions in a period of time.
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Considering the numerical index, the 1uTSS reflects the

change rate of the control input in a certain extent. The

smaller the value of 1uTSS , the smoother the control input

curve. In addition, 1uTSS also reflects to some extent the

energy consumed by the application of the algorithm in prac-

tice. The smaller the 1uTSS , the less energy is consumed

by applying the control algorithm. As can be seen from

Table 6-7, the i-PID algorithm has the lowest 1uTSS value,

which corresponds to the low overshoot of i-PID algorithm.

However, the convergence speed of the algorithm is relatively

slow. The 1uTSS values of the MFAC algorithm and the

VRFT algorithm are relatively large. Therefore, it can be

said that the MFAPC algorithm combines the advantages of

good convergence speed and low control input rate. eRMS
reflects the overall tracking effect of the control algorithm

in a certain extent. The smaller the eRMS value, the better the

overall tracking effect of the algorithm. As can be seen from

Table 6-7, the tracking effect of MFAPC algorithm is signif-

icantly better than the other three algorithms.

B. ACTUAL SYSTEM SIMULATION

Simulation example 2 is based on a two-degree-of-freedom

manipulator system [36]. The applicability of this method in

practical nonlinear systems is proved.

Example 2: [36]: The discrete nonlinear system model

of the two degree of freedom manipulator is expressed as

follows.






















y1(k + 1) = y1(k) + Ts ∗
[

a24x4
2(k) + a22x2

2(k)

+a224x2(k)x4(k) + b21u1(k) + b22u2(k)] ,

y2(k + 1) = y2(k) + Ts ∗
[

a42x2
2(k) + a44x4

2(k)

+a424x2(k)x4(k) + b41u1(k) + b42u2(k)] .

(37)

where






































































































H11 = m1lc1 + I1 + m2[l
2
1 + l2c2 + 2l1lc2 cos θ2] + I2,

H22 = m2l
2
c2 + I2,

H12 = m2l1lc2 cos θ2 + m2l
2
c2 + I2,

h = m2lc2 sin θ2,

a22 =
H12h

H11H22 − H2
12

, a24 =
H22h

H11H22 − H2
12

,

a42 =
−H11h

H11H22 − H2
12

, a44 =
−H12h

H11H22 − H2
12

,

a224 =
2H22h

H11H22 − H2
12

, a424 =
−2H12h

H11H22 − H2
12

,

b21 =
H22h

H11H22 − H2
12

, b22 =
−H12

H11H22 − H2
12

,

b41 =
−H12

H11H22 − H2
12

, b42 =
H11

H11H22 − H2
12

.

(38)

In this simulation experiment, according to the physi-

cal structure of the two-degree-of-freedom manipulator, the

parameters are set as follows.
{

l1 = l2 = 0.5, lc1 = lc2 = 0.25,

I1 = I2 = 0.1, m1 = m2 = 1,
(39)

FIGURE 10. Tracking performance of y1 using MFAPC algorithm.

where l1, l2 represents the length of arms 1, 2 of the manip-

ulator, respectively. lc1, lc2 represents the distance from the

center of mass 1 and 2 to the start of the arms 1, 2, respec-

tively. I1, I2 are the moment of inertia of the manipulator

arms around the center of mass. m1, m2 are the mass of the

arms 1, 2, respectively. The joint angles of the manipulator

are denoted as θ1, θ2, respectively.

The desired output angular velocity is set to

{

y∗1(k) = π · cos(πkTs + π/3),

y∗2(k) = −π · sin(πkTs + π/3).
(40)

The system initial condition is

y1(i) = 3.14, y2(i) = 0.1, i = 1, 2, 3, 4.

u1(j) = u2(j) = 0.1, j = 1, 2, 3, 4.

The initial values of system parameters are set as below,

η = 1, ρ = 1, µ = 1.5, λ = 4.5,

Φc(1) = Φc(2) = Φc(3) =

[

1 0

0 1

]T

.

This simulation uses MFAPC control algorithm to control

the two-degree-of-freedommanipulator, and the results prove

the applicability of this algorithm in the actual system as

presented in Figure 10-13.

The simulation proves that the proposed algorithm has

an excellent control effect on the two degree of free-

dom manipulator system. From Figure 10 and Figure 11,

it appears that MFAPC algorithm achieves a good track-

ing effect for the system output of each degree of

freedom. The motion trajectory of the manipulator is

highly consistent with the desired trajectory as presented

in Figure 12. The tracking error in Figure 13 is main-

tained below 0.015, which illustrates the effectiveness of the

MFAPC algorithm in actual systems. In addition, this simula-

tion also proves thatMFAPC algorithm has strong decoupling

ability for MIMO nonlinear systems.
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FIGURE 11. Tracking performance of y2 using MFAPC algorithm.

FIGURE 12. The actual tracking trajectory of the two-degree-of-freedom
manipulator.

FIGURE 13. Tracking errors of the two-degree-of-freedom manipulator.

V. CONCLUSION

In this work, a novel model-free adaptive predictive con-

trol method for a MIMO nonlinear system is proposed.

This algorithm is based on the equivalent dynamic lineariza-

tion model and the Pseudo-Jacobian matrix. The character-

istic of this algorithm is that it merely needs the system

I/O data for the design of the controller. Moreover, due to

the addition of the idea of predictive control, the future input

and output information are introduced, so that this algorithm

has excellent tracking performance and strong robustness.

Meanwhile, this algorithm can also realize the elimination

of coupling of MIMO nonlinear system. Through a series

of simulations, the effectiveness of the algorithm is verified.

At the same time, through a series of reasonable assumptions,

the convergence and stability of the algorithm are proved by

strict mathematical analysis.

APPENDIX A

PROOF OF THEOREM 2

The proof of this part is divided into two steps. One is the

proof of the boundedness of PJM estimation, followed by the

proof of the convergence of the tracking error and the BIBO

stability of the MFAPC system.

Step 1: We will prove the boundedness of Φ̂(k) and the

PJM predictions Φ̂(k + 1), · · · , Φ̂(k + Nu − 1).

Let Φ̂(k) = [φ̂
T

1 (k), · · · , φ̂
T

m(k)]
T , φ̂i(k) = [φ̂i1(k),

· · · , φ̂im(k)], i = 1, 2, · · · ,m. The PJM Φ̂(k) estimation

algorithm (18) can be rewritten as:

φ̂i(k) = φ̂i(k − 1)

+
η(1yi(k) − φ̂i(k − 1)1u(k − 1))1uT (k − 1)

µ + ‖1u(k − 1)‖2
,

(41)

where 1yi(k) = φi(k − 1)1u(k − 1), i = 1, 2, · · ·m.

Defining the estimation error φ̃i(k) = φ̂i(k) − φi(k).

Subtracting φi(k) from both sides of equation (41):

φ̃i(k) = φ̃i(k − 1)[I −
η1u(k − 1)1uT (k − 1)

µ + ‖1u(k − 1)‖2
]

+ φi(k − 1) − φi(k). (42)

According to theorem 1, ‖Φ(k)‖ is bounded. Suppose there

is a constant b̄, such that ‖Φ(k)‖ ≤ b̄.

Therefore,
∥

∥φi(k − 1) − φi(k)
∥

∥ ≤ 2b̄.

Taking the norm on both sides of (42) leads to:

∥

∥

∥
φ̃i(k)

∥

∥

∥
≤

∥

∥

∥

∥

φ̃i(k−1)[I−
η1u(k−1)1uT (k−1)

µ + ‖1u(k−1)‖2
]

∥

∥

∥

∥

+
∥

∥φi(k−1)−φi(k)
∥

∥

≤

∥

∥

∥

∥

φ̃i(k−1)[I−
η1u(k−1)1uT (k−1)

µ+‖1u(k−1)‖2
]

∥

∥

∥

∥

+2b̄.

(43)

Extract the first item on the right of (43) and square it:
∥

∥

∥

∥

φ̃i(k − 1)[I −
η1u(k − 1)1uT (k − 1)

µ + ‖1u(k − 1)‖2
]

∥

∥

∥

∥

2

=
∥

∥

∥
φ̃i(k − 1)

∥

∥

∥

2
+

[

−2 +
η ‖1u(k − 1)‖2

µ + ‖1u(k − 1)‖2

]

×
η

∥

∥

∥
φ̃i(k − 1)1u(k − 1)

∥

∥

∥

2

µ + ‖1u(k − 1)‖2
. (44)
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Since 0 < η ≤ 2 and µ > 0, the following inequalities can

be obtained:

−2 +
η ‖1u(k − 1)‖2

µ + ‖1u(k − 1)‖2
< 0, (45)

According to (44) and (45), a constant d1 must exist, which

satisfies 0 < d1 < 1, such that the inequality holds as

below:
∥

∥

∥

∥

φ̃i(k−1)[I−
η1u(k−1)1uT (k−1)

µ+‖1u(k−1)‖2
]

∥

∥

∥

∥

≤ d1

∥

∥

∥
φ̃i(k−1)

∥

∥

∥
.

(46)

Then, substituting (46) into (43) yields:
∥

∥

∥
φ̃i(k)

∥

∥

∥
≤ d1

∥

∥

∥
φ̃i(k−1)

∥

∥

∥
+2b̄ ≤ d21

∥

∥

∥
φ̃i(k−2)

∥

∥

∥
+2d1b̄+2b̄

≤ · · · ≤ dk−11

∥

∥

∥
φ̃i(1)

∥

∥

∥
+

2b̄

1−d1
. (47)

The inequality (47) demonstrate that φ̃i(k) is bounded. As

φi(k) is bounded according to theorem 1, so φ̂i(k) is bounded,

Φ̂(k) is bounded too. The boundedness of the PJMpredictions

values Φ̂(k + 1), · · · , Φ̂(k + Nu − 1) is the direct result of

algorithms (21)-(25).

Step 2:The convergence of the tracking error and the BIBO

stability will be demonstrated respectively.

Firstly, define the tracking error as e(k+1) = y∗−y(k+1).

Substituting (3) into the tracking error equation and

using (26)-(27), we have

e(k + 1) = y∗ − y(k + 1) = y∗ − y(k) − Φ(k)1u(k)

= y∗ − y(k) − Φ(k)

×







gT Â
T

1 (k)
[

Y∗
Nm(k+1) − E(k)y(k)

]

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2







=






I − Φ(k)

(

gT Â
T

1 (k)E(k)
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2






e(k). (48)

Taking the absolute value on the two sides of (48) yields:

‖e(k + 1)‖ ≤

∥

∥

∥

∥

∥

∥

∥

I − Φ(k)

(

gT Â
T

1 (k)E(k)
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

× ‖e(k)‖ .

Â
T

1 (k)E(k) =













N · Φ̂
T
(k)

(N−1) · Φ̂
T
(k+1)

...

(N−Nu+1) · Φ̂
T
(k+Nu−1)













Num×m

,

(49)

thus,

gT Â
T

1 (k)E(k) = N · Φ̂
T
(k),

Then, (49) can be rewritten as:

‖e(k + 1)‖ ≤

∥

∥

∥

∥

∥

∥

∥

I −
Φ(k) · N · Φ̂

T
(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

× ‖e(k)‖ .

From lemma 1, we assumption z is the eigenvalue of the

matrix: I − Φ(k)·N ·Φ̂
T
(k)

λ+
∥

∥

∥
Â1(k)

∥

∥

∥

2 . so, we have

Di =



















z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z−

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ·
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣



















, (50)

Using triangle inequality, (50) can be rewritten as (51).

Dj = {z ||z| ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ·
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣



















. (51)

From resetting algorithms (19) and (20), we have

b2 ≤
∣

∣

∣
φ̂ii(k)

∣

∣

∣
≤ αb2, and

∣

∣

∣
φ̂ij(k)

∣

∣

∣
≤ b1, i =

1, 2, · · ·m,j =1, 2, · · ·m, i 6= j, assumption 3 gives that

b2 ≤ |φii(k)| ≤ αb2,
∣

∣φij(k)
∣

∣ ≤ b1, i =

1, 2, · · ·m, j =1, 2, · · ·m, i 6= j.

Thus, the following two inequalities hold:

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

≤ 1 −
N · |φii(k)|

∣

∣

∣
φ̂ii(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

≤ 1 −
N · b22

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
. (52)

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣
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≤ N

m
∑

l=1,l 6=i

m
∑

j=1

∣

∣φij(k)
∣

∣

∣

∣

∣
φ̂lj(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

= N

m
∑

l=1,l 6=i

|φii(k)|
∣

∣

∣
φ̂li(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
+ N

m
∑

l=1,l 6=i

|φil(k)|
∣

∣

∣
φ̂ll(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

+N

m
∑

l=1,l 6=i

m
∑

j=1,j 6=i,l

∣

∣φij(k)
∣

∣

∣

∣

∣
φ̂lj(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

≤
N (m− 1) · αb2 · b1

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
+
N (m− 1) · b1 · αb2

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

+
N (m− 1)(m− 2) · b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

= N
2(m− 1) · αb2 · b1 + (m− 1)(m− 2) · b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
(53)

From assumption 1, we have b2 > b1(2α + 1)(m− 1).

Summing (52) and (53) yields, we can get (54).

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
+

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ·
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1 − N ·
b22 − 2(m− 1) · αb2 · b1 + (m− 1)(m− 2) · b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

≤ 1 − N ·
b2(b2 − 2(m− 1) · αb1) + (m− 1)(m− 1) · b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

= 1 − N ·
b2b1(m− 1) + (m− 1)2b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

≤ 1 − N ·
2α(m− 1)2b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
(54)

By resetting algorithm and assumption, φij(k)φ̂ij(k) >

0, i = 1, 2, · · · ,m; j = 1, 2, · · · ,m. Thus, there exists a

constant λmin > 0, such that the inequality (55) holds for any

λ > λmin:

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

= N ·

m
∑

j=1

∣

∣φij(k)
∣

∣

∣

∣

∣
φ̂ij(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

=
N · |φii(k)|

∣

∣

∣
φ̂ii(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
+ N ·

m
∑

j=1,j 6=i

∣

∣φij(k)
∣

∣

∣

∣

∣
φ̂ij(k)

∣

∣

∣

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

≤
N · (α2b22 + (m− 1)b21)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
<
N · (α2b22 + (m− 1)b21)

λmin +
∥

∥

∥
Â1(k)

∥

∥

∥

2
< 1.

(55)

Therefore, the following inequality can be obtained.

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
> 0 (56)

Thus, according to inequality (54) and (56), the following

inequality holds for any λ > λmin:
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ·
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
+

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ·
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 1 − N ·
2α(m− 1)2b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
.

(57)

So, there exists inequality as below,

0 < M1 ≤
N · 2α(m− 1)2b21

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
<

N · b22

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

<
N ·

(

α2b22 + (m− 1)b21
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

<
N ·

(

α2b22 + (m− 1)b21
)

λmin +
∥

∥

∥
Â1(k)

∥

∥

∥

2
< 1. (58)

Then,
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −

N ·
m
∑

j=1

φij(k)φ̂ij(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

m
∑

l=1,l 6=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ·
m
∑

j=1

φij(k)φ̂lj(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 1 −M1 < 1. (59)

According to the Gerschgorin disk and inequality (59), one

obtains:

s






I − Φ(k)

(

gT Â
T

1 (k)E(k)
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2






< 1 −M1 < 1.
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where s [A] denotes the spectral radius of matrix A, that

is, s(A) = max
i∈{1,2,··· ,m}

|zi|, and zi, i = 1, 2, · · · ,m is the

eigenvalue of A.

Using the conclusion on spectral radius in Reference [37],

there must exist a constant ε1 > 0 which can be made

arbitrarily small such that:
∥

∥

∥

∥

∥

∥

∥

I − Φ(k)

(

gT Â
T

1 (k)E(k)
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

v

< s






I − Φ(k)

(

gT Â
T

1 (k)E(k)
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2






+ ε1

≤ 1 −M1 + ε1 < 1. (60)

where ‖A‖v describes the consistent norm of matrix A.

Taking norms on each side of (60) yields, and defining

d2 = 1 −M1 + ε1.

‖e(k + 1)‖v ≤

∥

∥

∥

∥

∥

∥

∥

I − Φ(k)

(

gT Â
T

1 (k)E(k)
)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

v

× ‖e(k)‖v

≤ d2 ‖e(k)‖v ≤ · · · ≤ dk2 ‖e(1)‖v . (61)

Conclusion (1) of theorem 2 can be proved directly through

(61).

Because of the boundedness of y∗ and e(k), y(k) is also

bounded.

1u(k) = gT1UNum(k)

=
gT Â

T

1 (k)
[

Y∗
Nm(k+1) − E(k)y(k)

]

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

=
gT Â

T

1 (k)E(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
e(k) =

N · Φ̂
T
(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2
e(k). (62)

Since Φ̂(k) is bounded, Â1(k) is bounded as well, a positive

constantM2 exists so that (63) holds:
∥

∥

∥

∥

∥

∥

∥

N · Φ̂
T
(k)

λ +
∥

∥

∥
Â1(k)

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

< M2. (63)

Therefore, the inequalities can be obtains as:

‖1u(k)‖ ≤ M2 ‖e(k)‖ .

So, we have the following inequality that is:

‖u(k)‖v ≤ ‖1u(k)‖v + ‖1u(k − 1)‖v

+ · · · + ‖1u(1)‖v + ‖u(0)‖v

= M2(‖e(k)‖v + ‖e(k − 1)‖v

+ · · · + ‖e(1)‖v) + ‖u(0)‖v

< M2
‖e(1)‖v

1 − d2
+ ‖u(0)‖v . (64)

Thus, conclusion (2) of theorem 2 is obtained.
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