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Abstract

Nonlinear systems play a significant role in numerous scientific and engineering
disciplines, and comprehending their behavior is crucial for the development of
effective control and prediction strategies. This paper introduces a novel data-
driven approach for accurately modeling and estimating parameters of nonlinear
systems utilizing trust region optimization. The proposed method is applied to
three well-known systems: the Van der Pol oscillator, the Damped oscillator, and
the Lorenz system, which find broad applications in engineering, physics, and biol-
ogy. The results demonstrate the efficacy of the approach in accurately identifying
the parameters of these nonlinear systems, enabling a reliable characterization of
their behavior. Particularly in chaotic systems like the Lorenz system, capturing
the dynamics on the attractor proves to be crucial. Overall, this article presents
a robust data-driven approach for parameter estimation in nonlinear dynamical
systems, holding promising potential for real-world applications.

Keywords: Parameter Estimation, Nonlinear Dynamics, Trust Region Optimization,
Lorenz system

1 Introduction

Nonlinear dynamical systems are ubiquitous in various fields, encompassing engineer-
ing, physics, and biology, exhibiting intricate behaviors such as bifurcations, limit
cycles, and chaos [1, 2]. Accurate parameter estimation plays a vital role in effectively
modeling these systems [3–6]. Trust region optimization, a powerful technique for
solving nonlinear optimization problems, has shown successful applications in diverse
domains [7]. In this article, we propose a method for parameter estimation in three
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classic nonlinear dynamical systems: the van der Pol oscillator, Damped oscillator,
and Lorenz system, utilizing trust region optimization.

The article provides an overview of each system, highlighting their applications
in modeling real-world phenomena, and emphasizes the challenges associated with
accurately estimating their parameters due to the inherent nonlinearity. It is structured
into several sections, commencing with a review of trust region optimization and an
examination of prior work in parameter estimation of nonlinear systems. Subsequent
sections elaborate on the proposed method for parameter estimation in each system.
Finally, the article provides experimental results to validate the proposed method and
concludes by highlighting the importance of carefully evaluating the performance of
estimated models.

2 Earlier Approaches

Parameter estimation of nonlinear dynamical systems is a crucial problem encountered
in diverse disciplines, including engineering, physics, and biology [8, 9]. Numerous
optimization algorithms have been proposed for this task, such as the Nelder-Mead
algorithm, Levenberg-Marquardt algorithm, and genetic algorithms [10–12]. However,
these methods may suffer from limited global convergence guarantees and sensitivity
to initial parameters and optimization settings.

Trust region optimization, on the other hand, has emerged as a powerful tech-
nique for addressing nonlinear optimization problems. It is known for providing
global convergence guarantees and fast convergence speeds [13]. In recent years, trust
region optimization has been successfully applied to parameter estimation of nonlin-
ear systems [14–16]. For instance, Ardenghi et al. (2003) [16] proposed a trust region
optimization algorithm for parameter estimation in the field of biotechnology. Sim-
ilarly, Zhang et al. (2009) [17] introduced a Differential Evolution algorithm-based
parameter estimation approach for chaotic systems, surpassing the performance of
genetic algorithms and particle swarm optimization in terms of estimation accuracy
and convergence speed.

Regarding the Lorenz system, numerous optimization algorithms have been devel-
oped for parameter estimation. Cheng et al. (2018) [18] proposed a trust region
optimization algorithm for parameter estimation in a nonlinear model of an energy
storage system, outperforming the Levenberg-Marquardt algorithm and genetic algo-
rithms in terms of estimation accuracy and convergence speed. Similarly, Zheng et al.
(2020) [19] presented a particle swarm optimization algorithm for parameter estima-
tion in the Lorenz system, achieving superior estimation accuracy and convergence
speed compared to other methods such as genetic algorithms and simulated annealing.
Furthermore, Lazzús et al. (2016) [20] introduced a hybrid optimization algorithm that
combines the differential evolution algorithm and the particle swarm optimization algo-
rithm for parameter estimation in the Lorenz system, surpassing other optimization
methods in terms of estimation accuracy and convergence speed [21, 22].

In summary, trust region optimization demonstrates promise as a technique for
parameter estimation in nonlinear systems, and its successful application has been
observed across various domains [23].
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3 Materials and Methods:

Consider a system of ordinary differential equations for state variables, denoted as
x(t), accompanied by parameter estimation challenges [6]. The dynamics of the system
are described by the differential equation

ẋ(t) = F(x, t, θ), (1)

where x(t) ∈ Rn is the state variable, the initial conditions are x(0) = x0, θ =
(θ1, θ2, ..., θp) ∈ Rp are the unknown parameters, and F : Rn+p → Rn is a known vector
function. Furthermore, measurements ηij for the state variables or system capacities
are available and can be expressed as

ηij = gij(x(tj), θ) + εij , (2)

where tj denotes the measurement time, j = 1, 2, ..., k, and εij is the measurement
error.

3.1 Optimization problem

The goal of parameter estimation is to find the values of the unknown parameters θ
that minimize the discrepancy between the predicted values and the observed data.
This objective is achieved by minimizing a suitable objective function that considers
the measurement errors ηij . One commonly used objective function is the weighted l2
norm of the measurement errors, given by:

J(θ) =
∑
i,j

σ−2
ij ε2ij =

∑
ij

σ−2
ij [ηij − gij(x(tj), θ)]2, (3)

where σ2
ij represents the variance of the measurement errors. The measurement errors

are assumed to be independent and follow a Gaussian distribution with zero mean. To
address this problem, Trust region optimization algorithms are employed to identify
the parameter vector θ and trajectory x that minimize the objective function.

3.2 Trust-region optimization

The trust region method solves the parameter estimation problem by iteratively min-
imizing the objective function within a trust region around the current estimate of
the parameter values. At each iteration, a quadratic model is used to approximate the
objective function within the trust region, and the optimal step size is computed by
solving a constrained optimization problem. The trust region is then updated based
on the relative success of previous iterations, and the process is repeated until conver-
gence. The trust region method ensures that the step size is within the trust region
and that the objective function is decreasing at each iteration. The mathematical form
of the trust region algorithm for parameter estimation in ODE systems is given in
Algorithm 1. More mathematical details about the trust region can be found in any
standard numerical optimization books [10, 24].
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Algorithm 1 Trust Region Algorithm for Parameter Estimation in ODE Systems

1: Initialize θ0, trust region radius ∆0, and tolerance ϵ
2: Set k = 0
3: while ∆k > ϵ do
4: Solve the ODE system with initial condition x(0) = x0 and parameter values

θk
5: Compute the objective function J(θk)
6: Fit a quadratic model mk(s) = J(θk) + gTk (s− θk) + 1

2 (s− θk)THks within the
trust region |θk − s| ≤ ∆k

7: Solve the constrained optimization problem min|s−θk|≤∆k
mk(s)

8: Compute the ratio ρk = J(θk)−J(s)
mk(θk)−mk(s)

9: if ρk < 0.25 then
10: Reduce the trust region radius ∆k+1 = 0.25∆k

11: else if ρk > 0.75 and |s− θk| = ∆k then
12: Increase the trust region radius ∆k + 1 = min(2∆k,∆max)
13: else
14: Keep the trust region radius ∆k+1 = ∆k

15: end if
16: Update the parameter estimate θk+1 = s
17: Increment k
18: end while
19: return θk

In this algorithm, gk and Hk are the gradients and Hessian matrix of the objective
function evaluated at θk, and ∆max is the maximum trust region radius. The ratio
ρk measures the relative decrease in the objective function between the current and
proposed parameter values.

4 Results

In the field of time series analysis, a common objective is to identify an equation
that effectively describes the dynamic behavior of a given set of observed variables,
denoted as x. This equation should capture both deterministic and stochastic aspects
of the system. One approach to achieving this goal is through the use of stochastic
differential equations (SDEs)[25].

An SDE of the form
dx

dt
= f(x) + g(x)ζ(t) (4)

can be used to describe the dynamics of x, where f and g are functions of x, and
ζ(t) represents noise. Equation 4 specifies how the rate of change of x depends on the
current value of x. The deterministic component of the equation is captured by f ,
which determines the average rate of change of x over time. The stochastic component
of the equation is captured by g2, which determines the fluctuation around the average
value of x.
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When g is constant, the strength of the noise is the same for all values of x, and is
referred to as additive or state-independent noise. In contrast, when g depends on x,
the strength of the noise varies with the instantaneous value of x, and is referred to
as multiplicative or state-dependent noise [26].

We use uncorrelated noise ζ(t) with the following properties

⟨ζ(t)⟩ = 0

⟨ζ(t)ζ(t′)⟩ = δ(t− t′) (5)

where ⟨·⟩ denotes the time average which is introduced in the equation of motion as
follows:

In all cases, the systems were subject to additive noise of different intensities. The
effect of white as well as coloured noise [27, 28] is separately investigated as follows.

White Gaussian noise with constant power spectral density across all frequencies,
when added to the true data simulates random measurement error or other sources of
uncertainty. This affects the observed data and can impact the parameter estimation
process. Clearly, the parameter estimation can deteriorate with noise intensity. Colored
noise, on the other hand, has a specific frequency distribution with different power
levels at different frequencies, and this introduces additional complexity and variability
in the observed data, potentially making the parameter estimation more challenging.

We use both white noise and pink (1/f) noise in this work. The accuracy of
parameter estimation is judged by the root mean squared error (RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (6)

N being the total number of samples, yi the true value and ŷi the predicted value of
sample i.

In order to evaluate the robustness and accuracy of the optimization algorithms,
we performed simulations on various systems of different levels of complexity. In each
case, we generated noisy data by simulating the system using known parameters and
adding Gaussian noise to the output. The optimization algorithms were then applied
to estimate the system’s parameters from the noisy data. This process was repeated
10 times for both Gaussian noise and colored (pink) noise, and the average values of
the estimated parameters, as well as the RMSE, were computed. The obtained results
are consistent with the SINDY methods described by Brunton et al. (2016) [29].

In the following examples, we demonstrate the application of the methods described
in Section 3.3 to identify the governing equations from noisy data. We begin with
simple systems to illustrate the effectiveness of the approach, including a comparison
between a two-dimensional linear and nonlinear damped oscillator. We also investigate
a three-dimensional stable linear system. Subsequently, we examine the van der Pol
oscillator in the second example, and finally, we explore the chaotic dynamics of the
Lorenz system in the third example.
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4.1 Example: Simple Illustrative Systems

4.1.1 Example 1a: Two-dimensional Damped Oscillator (Linear vs.
Nonlinear)

In this example, we investigate a two-dimensional damped harmonic oscillator with
linear dynamics described by Eq. 7:

dx

dt
= ax + by

dy

dt
= cx + dy (7)

where x, and y represent the variables that describe the state of the system, and
a, b, c, d are the parameters of the system with true parameter values with a = −0.1,
b = 2, c = −2, and d = −0.1.

Table 1 Estimated parameters and accuracy at different noise
levels for linear system 7

Noise Level â b̂ ĉ d̂ RMSE
0.0001 -0.1000 2.0000 -2.0000 -0.1000 0.0001
0.001 -0.0999 2.0000 -2.0000 -0.1001 0.0010
0.01 -0.0998 1.9985 -2.0017 -0.1004 0.0100
0.1 -0.0955 1.9981 -2.0001 -0.1035 0.1007

Table 2 Comparison of additive Gaussian and
Colored noise on paramter estimation and accuracy

Gaussian Noise Colored (Pink) Noise
â -0.1013 -0.0997

b̂ 2.0009 1.9866
ĉ -1.9990 -2.0196

d̂ -0.0985 -0.1070
RMSE 0.0279 0.0220

Figure 1 illustrates the accuracy of the trust-region optimization in reproducing the
dynamics and phase portrait of the linear damped harmonic oscillator under different
levels of Gaussian noise (0.0001, 0.001, 0.01, 0.1). The initial conditions for the system
are set as (x1, x2) = (2.0, 0.0).

The estimated parameters for the linear system at each noise level are presented
in Table 1. The optimized parameters closely match the true parameter values, indi-
cating the effectiveness of the trust region algorithm in parameter estimation. The
accuracy of the estimated trajectories is further quantified by calculating the root
mean squared error values, as shown in Table 1.
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Fig. 1 In Linear damped harmonic oscillator, the trust-region optimization accurately reproduces
the dynamics on left panel and the phase portrait on right panel at different levels of gaussian noise
(0.0001, 0.001, 0.01, 0.1) with initial conditions (x1, x2) = (2.0, 0.0).

We also explore the behavior of the damped harmonic oscillator with cubic
dynamics, as given by Eq. 8:

dx

dt
= ax3 + by3

dx

dt
= cx3 + dy3 (8)
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Using the same noise levels, we estimate the parameters for the system with cubic
dynamics. The estimated parameter values and the corresponding true trajectories
are depicted in Figure 2. The results are summarized in Table 3, which shows the
estimated parameters and the RMSE values.

Fig. 2 The identified system accurately captures the dynamics of the two-dimensional damped
harmonic oscillator with cubic dynamics. The solid colored lines represent the true dynamics of the
system, while the dashed lines indicate the learned dynamics. The phase portrait demonstrates the
precise reproduction of the system’s behavior.

Finally, we compare the effect of Gaussian and colored (pink) noise on parameter
estimation and solution accuracy. Table 2, 4 presents the average estimated param-
eter values, and RMSE for both noise types. The estimates obtained with colored
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Table 3 Estimated parameters and accuracy at different noise
level for cubic dynamics 8

Noise Level â b̂ ĉ d̂ RMSE
0.0001 -0.1000 2.0000 -2.0000 -0.1000 0.0001
0.001 -0.1001 1.9996 -2.0001 -0.0999 0.0010
0.01 -0.1012 2.0042 -1.9990 -0.0990 0.0101
0.1 -0.1130 1.9815 -2.0099 -0.0870 0.1006

Table 4 Comparison of additive Gaussian and
Colored noise on paramter estimation and accuracy

Gaussian Noise Colored (Pink) Noise
â -0.1008 -0.1011

b̂ 1.9970 1.9934
ĉ -2.0011 -2.0027

d̂ 0.0991 -0.0987
RMSE 0.0277 0.0158

noise slightly differ from those obtained with Gaussian noise, indicating a potential
bias introduced by the colored noise. The RMSE values quantify the accuracy of the
solution, with colored noise achieving comparable accuracy to Gaussian noise.

In summary, the trust-region optimization technique accurately reproduces the
dynamics and phase portrait of the two-dimensional damped harmonic oscillator with
linear and cubic dynamics, even in the presence of different levels of Gaussian noise.
The estimated parameter values closely match the true values, and the optimized tra-
jectories capture the system’s behavior with high accuracy. The comparison between
Gaussian and colored noise highlights their similar impact on parameter estimation
and solution accuracy.

4.1.2 Example: Three-dimensional Linear System

In this example, we consider a three-dimensional linear system and its approximation.
The dynamics of the system are described by the following equations (Eq. 9):

dx

dt
= p1x + p2y

dy

dt
= p3x + p4y

dz

dt
= p5z (9)

where x, y, and z represent the variables that describe the state of the system,
and p1, p2, p3, p4, p5 are the parameters of the system. The true parameter values
used in our simulations are p1 = −0.1, p2 = −2, p3 = 2, p4 = −0.1, and p5 = −0.3.
Gaussian noise with different levels (0.0001, 0.001, 0.01, and 0.1) is added to the system
trajectories to account for variability.
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Fig. 3 The trust-region optimization technique successfully reproduces the dynamics of the 3-D
Linear system in the left panel, as well as the corresponding phase portrait in the right panel, even
when subjected to different levels of Gaussian noise. The initial conditions for the system are set as
(y1, y2, y3) = (0.0, 2.0, 1.0).

We apply the trust region method to estimate the parameters of the three-
dimensional linear system from the noisy data. Table 5 presents the estimated
parameter values at different noise levels. The optimized parameters closely approx-
imate the true parameter values, indicating the effectiveness of the trust region
optimization approach.
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Table 5 Estimated parameters and accuracy at different noise levels for
three-dimensional linear system 9.

Noise Level p̂1 p̂2 p̂3 p̂4 p̂5 RMSE
0.0001 -0.1000 -2.0000 2.0000 -0.1000 -0.3000 0.0001
0.001 -0.1000 -2.0004 1.9996 -0.1000 -0.3000 0.0010
0.01 -0.1436 -1.9732 1.9907 -0.1606 -0.3150 0.1030
0.1 -0.1475 -1.9760 1.9961 -0.1652 -0.3070 0.1486

The accuracy of the estimated trajectories is evaluated using the root mean squared
error as shown in Table 5. The lower RMSE values indicate better accuracy in
capturing the dynamics of the system.

Furthermore, we compare the effect of noise characteristics on the parameter esti-
mation and solution accuracy using Gaussian and colored (pink) noise. Table 6 presents
the estimated parameter values, and RMSE for both noise types. The estimated
parameters show slight variations between the two noise types. The RMSE values are
slightly lower for colored (pink) noise compared to Gaussian noise, indicating improved
solution accuracy.

Table 6 Comparison of additive Gaussian and
Colored noise on paramter estimation and accuracy

Gaussian Noise Colored (Pink) Noise
p̂1 -0.1167 -0.1106
p̂2 -1.9897 -1.9928
p̂3 1.9958 1.9968
p̂4 -0.1254 -0.1206
p̂5 -0.3055 -0.3005

RMSE 0.0631 0.0596

Trust region optimization approach effectively reproduces the dynamics of the
three-dimensional linear system as shown in figure3, even in the presence of differ-
ent levels of Gaussian noise. The estimated parameter values closely match the true
values, and the optimized trajectories accurately capture the system’s behavior. The
comparison between Gaussian and colored (pink) noise highlights the influence of
noise characteristics on parameter estimation and solution accuracy, with colored noise
yielding slightly improved accuracy. These findings demonstrate the robustness and
versatility of our approach in handling various noise scenarios.

4.2 Test Problem: Van der Pol Oscillator

The van der Pol oscillator is a non-linear second-order differential equation that
describes the behavior of a damped oscillator. Widely used as a test problem in the
field of dynamical systems, the equation are

d2x

dt2
− µ(1 − x2)

dx

dt
+ x = 0 (10)
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where x represents the displacement of the oscillator, t is time, and µ is a parameter
that controls the nonlinearity [30]. This can be rewritten as a pair of coupled first-order
equations,

dx1

dt
= x2

dx2

dt
= µ(1 − x2

1)x2 − x1. (11)

The parameter value is set to µ = 1.5 in our simulation and the ordinary differential
equations (ODEs) are solved in Python using the Scipy.integrate package, employing
the odeint function. We initialize the system with [x10 x20 ]T = [1.0 0.0]T and choose
a time-step size of δt = 0.01. Gaussian noise is then added to the simulated data, with
standard deviations of [0.0001, 0.001, 0.01, 0.1] corresponding to different noise levels.

To estimate the parameters of the van der Pol oscillator from the noisy data, we
apply a trust region optimization algorithm. The initial parameter value is set to
µ = 1.35, and the trust region radius is set to 0.1 with a tolerance of 10−6. The
estimated parameter values are close to the true values, as shown in Table 7. Figure
4 illustrates the accuracy of the estimated trajectories and phase portraits compared
to the true trajectories and noisy data.

Table 7 Estimated parameters and accuracy at different noise
levels

Noise Level True Parameter Estimated Parameter RMSE
0.0001 1.5 1.5000 0.0001
0.001 1.5 1.5000 0.0010
0.01 1.5 1.4959 0.0166
0.1 1.5 1.5000 0.0997

The accuracy of the parameter estimation is further assessed using the root mean
squared error (RMSE), as shown in Table 7. Higher noise levels result in increased
RMSE values, indicating reduced accuracy in the estimated trajectories.

Furthermore, we compare the effect of noise characteristics on the parameter esti-
mation and solution accuracy by considering Gaussian and colored (pink) noise. The
results are presented in Table 8. The estimated value of µ is slightly higher when using
colored noise (1.4991) compared to Gaussian noise (1.4984), indicating a small bias
introduced by colored noise. The solution accuracy, measured by RMSE, is improved
when using colored noise compared to Gaussian noise, with lower error values observed
for colored noise.

Table 8 Comparison of additive Gaussian and
Colored noise on paramter estimation and accuracy

Gaussian Noise Colored (Pink) Noise
µ̂ 1.4984 1.4991

RMSE 0.0026 0.0012
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Fig. 4 In van der Pol oscillator, the trust-region optimization accurately reproduces the trajectories
on the left side, and phase portraits on the right side. The initial condition is set as [x10 x20 ]

T =
[1.0 0.0]T . we compared the resulting trajectories with the true trajectories and the noisy data.

In conclusion, our parameter estimation approach successfully captures the dynam-
ics of the van der Pol oscillator, even in the presence of noise. The choice of noise
characteristics has an impact on the accuracy of the estimation, with colored (pink)
noise resulting in slightly improved solution accuracy compared to Gaussian noise.
These findings highlight the importance of considering noise characteristics in parame-
ter estimation tasks and demonstrate the effectiveness of our trust region optimization
approach in handling different noise scenarios.
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4.3 Test problem: Lorenz System

The Lorenz system is a set of three non-linear ordinary differential equations that
were first studied by Edward Lorenz in the 1960s [31]. It has since become a well-
known example in the field of chaos theory. The system describes the evolution of
three variables x, y, and z over time, and is given by the equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z) − y

dz

dt
= xy − βz (12)

where σ, ρ, and β are parameters that determine the behavior of the system. The
Lorenz system exhibits chaotic behavior, meaning that even small changes in the initial
conditions can lead to significantly different trajectories.

To evaluate the performance of our parameter estimation approach, we conducted
simulations using the Lorenz system as the underlying model. We collected data by
integrating the system equations over a time interval of t = 0 to t = 25, with a time-
step size of ∆t = 0.01. The true parameters of the Lorenz system were set to σ = 10.0,
ρ = 28.0, and β = 8/3. Gaussian noise was added to the true trajectory at different
levels (0.0001, 0.001, 0.01, and 0.1) to generate noisy data.

We employed a trust region optimization approach to estimate the parameters of
the Lorenz system from the noisy data. The trust region method accurately captured
the underlying dynamics of the system, as illustrated in Figure 5. Additionally, the
phase portraits of the identified systems, shown in Figure 6, closely matched the true
dynamics of the Lorenz system.

Table 9 Estimated parameters and accuracy at
different noise levels for Lorenz system

Noise Level σ̂ ρ̂ β̂ RMSE
0.0001 10.0181 27.7601 2.7819 7.9105
0.001 9.5496 27.5124 2.5416 9.7118
0.01 8.6295 26.8805 2.6716 8.7706
0.1 9.6150 27.4920 2.6208 9.5434

The estimated parameter values at different noise levels are presented in Table 9.
Despite the presence of noise, the estimated parameters were close to the true values.
The accuracy of the estimation was further evaluated using the root mean squared
error (RMSE) metrics, as shown in Table 9. Higher noise levels led to increased RMSE
values, indicating reduced accuracy in the estimated solution. However, even with
relatively high noise levels, the estimated trajectories still captured the underlying
dynamics of the Lorenz system.
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Fig. 5 We observe the dynamic paths of the Lorenz system, specifically focusing on the case where
measurements of both position (x) and velocity (ẋ) are affected by noise. The true trajectories of the
system is depicted in blue (solid lines), while the estimated trajectories, obtained through trust-region
optimization, is illustrated by dashed red arrows.

Table 10 Comparison of additive Gaussian and
Colored noise on paramter estimation and accuracy

Gaussian Noise Colored (Pink) Noise
σ̂ 9.4471 9.4577
ρ̂ 27.6333 27.5080

β̂ 2.6980 2.7666
RMSE 9.2051 9.3370

To assess the impact of noise characteristics on parameter estimation and solution
accuracy, we compared the results obtained using Gaussian noise and colored (pink)
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Fig. 6 We compare the true phase portrait of the Lorenz systems, spanning from time t=0 to t=25,
with the initial condition [x0 y0 z0]T = [−8 7 27]T , to the phase portrait of the identified systems
at different levels of gaussian noise.This allows us to assess how accurately the identified systems
capture the dynamics of the original system

noise. The estimated parameter values and error metrics are presented in Table 10.
We observed slight variations in the estimated parameter values between the two noise
types, suggesting that noise characteristics influenced the estimation process. The
accuracy of the estimated solution was slightly lower for Gaussian noise compared to
colored (pink) noise, as indicated by higher RMSE values.

In conclusion, our parameter estimation approach successfully captured the dynam-
ics of the Lorenz system, even in the presence of noise. The choice of noise
characteristics had an impact on the accuracy of the estimation, with Gaussian noise
resulting in slightly lower solution accuracy compared to colored (pink) noise. These
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findings emphasize the importance of considering noise characteristics in parame-
ter estimation tasks and highlight the effectiveness of our trust region optimization
approach in handling different noise scenarios.

5 Conclusion

In this study, we have presented a trust region optimization algorithm for effective
parameter estimation in the Van der Pol oscillator, Damped oscillator, and Lorenz
system. Our algorithm demonstrates robust performance in estimating parameters
for a wide range of models, including highly nonlinear and non-convex systems. By
applying the algorithm to the van der Pol, Damped oscillator, and Lorenz systems,
we have successfully illustrated its capability to accurately estimate model parameters
even in the presence of noise.

Furthermore, we extended our analysis by incorporating colored noise (pink noise)
in addition to Gaussian noise. We observed that the choice of noise type had an impact
on the accuracy of the estimation. With the presence of colored noise, the estimated
trajectories deviated slightly more from the true trajectories compared to Gaussian
noise. However, even with relatively high noise levels, the estimated trajectories still
captured the underlying dynamics of the systems. This highlights the algorithm’s
robustness and effectiveness in dealing with different noise characteristics.

It is important to note that the trust region algorithm is sensitive to the choice
of initial parameter values and the size of the trust region. Careful selection of these
parameters is crucial to ensure convergence to the correct parameter values. Addi-
tionally, accounting for noise in the estimation process is essential to achieve accurate
results. Our algorithm effectively incorporates noise and provides reliable parameter
estimates even in the presence of noise.

In summary, our proposed trust region optimization algorithm serves as a powerful
tool for parameter estimation in nonlinear systems. Its potential impact extends to
enhancing the understanding and control of complex real-world systems. The ability to
handle different noise characteristics, as demonstrated through the inclusion of colored
noise, further strengthens the algorithm’s applicability in real-world scenarios.
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