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Summary 21 
Identification of gene expression state of a cancer patient from routine pathology imaging and 22 

characterization of its phenotypic effects have significant clinical and therapeutic implications. 23 

However, prediction of expression of individual genes from whole slide images (WSIs) is 24 

challenging due to co-dependent or correlated expression of multiple genes. Here, we use a purely 25 

data-driven approach to first identify groups of genes with co-dependent expression and then 26 

predict their status from (WSIs) using a bespoke graph neural network. These gene groups allow 27 

us to capture the gene expression state of a patient with a small number of binary variables that are 28 

biologically meaningful and carry histopathological insights for clinically and therapeutic use 29 

cases. Prediction of gene expression state based on these gene groups allows associating 30 

histological phenotypes (cellular composition, mitotic counts, grading, etc.) with underlying gene 31 

expression patterns and opens avenues for gaining significant biological insights from routine 32 

pathology imaging directly. 33 

1 Introduction 34 

Cancer is a clonal disease in which genetic alterations directly or indirectly alter gene expression, 35 

biological pathways, and proteins activity leading to phenotypic changes in the spatial organization 36 

of the tumor microenvironment (TME) [1]. Consequently, associating histological and molecular 37 

patterns is crucial for understanding disease mechanism and clinical decision-making [2]. Like 38 

other cancers, breast tumors also exhibit heterogeneity at both morphological and molecular levels 39 

and are divided into several histological and molecular subtypes. During histopathology 40 

examination, a tumor section stained with Hematoxylin and Eosin (H&E) is visually examined for 41 

features such as mitotic counts, nuclear pleomorphism, epithelial tubule formation, necrosis and 42 

tumor-infiltrating lymphocytes, etc., to develop a spatially-informed histological profile of the 43 

disease. Similarly, gene expression analysis based on molecular tests such as PAM50 [3], [4], 44 

Oncotype-Dx [5] and Mammaprint [6] can also be used for patient subtyping. Gene expression 45 

profiling based on such limited gene assays or from Bulk RNA-Seq [7] and single-cell RNA-46 

sequencing (scRNA-seq) [8], [9] plays a key role in understanding the genetic basis of cancer and 47 

discovery of novel therapeutic targets. However, such technologies are unable to capture spatial 48 

heterogeneity in the expression profile of genes across a tumor section. Spatial profiling of a tumor 49 

transcriptome is typically achieved using Spatially resolved Transcriptomics (SpTx) technologies 50 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.14.536756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536756
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 | P a g e  
 

[10].  However, such technologies are generally costly and offer low resolution in terms of spatial 51 

details or genes [11], [12]. Consequently, there is a need for cross-linking gene expression and 52 

spatial histological imaging profiles to gain a more in-depth understanding of latent factors 53 

associated with the disease.  54 

In an attempt to achieve this goal, recent advancements in deep learning for computational 55 

pathology have demonstrated that prediction of expression profiles of genes is possible from whole 56 

slide images (WSIs) of H&E stained tissue sections [13]–[15]. For example, Schmauch et al. 57 

proposed a deep learning method called HE2RNA for predicting gene expression profiles from 58 

WSIs. Similarly, Wang et al. proposed a deep learning method for predicting the expression profile 59 

of 17,695 genes from WSIs [16]. For each of the 17,695 genes, the authors have tiled the WSIs 60 

into patches and then trained and optimized an Inception V3 for predicting tile-level and WSI-61 

level expression. Most recently, an attention-based called tRNAsformer has been proposed for 62 

predicting the expression level of the individual gene from WSIs in kidney cancer [17].  63 

The vast majority of image-based RNA-Seq expression prediction methods focus on associating 64 

tissue morphology with the expression level of individual genes [15]–[17]. This is typically done 65 

by designing a machine learning pipeline in which the input is a WSI, and the output is the 66 

expression level of a single gene. However, due to the nature of the biological mechanisms 67 

underlying gene expression, genes usually show co-dependent or correlated expression. 68 

Consequently, it is, in general, not possible to associate the predicted expression of a single gene 69 

from the input WSI to that gene alone. Furthermore, an observed phenotypic effect cannot solely 70 

be pinpointed to the known function of a single gene as, typically, it will be a collective effect 71 

exhibited by the expression of functionally interrelated genes and a single gene may be associated 72 

with multiple functions [18]. Therefore, instead of predicting the phenotypic effect of a single gene 73 

from WSIs, it is more meaningful to predict the expression of groups of genes that act 74 

concomitantly and exhibit coherent patterns of expression across samples.  75 

In contrast to existing research in this domain that focuses on prediction of expression level of 76 

individual genes from WSIs, in this work we first characterize the gene expression state of a patient 77 

in terms of a small number of binary latent factors or gene groups that are discovered in a purely 78 

data-driven manner. These can be viewed as overlapping groups of related genes whose expression 79 

shows significant inter-dependence across samples. The motivation behind such gene grouping is 80 
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that, though co-expression is not causation, co-expressed genes show coordinated responses across 81 

a significant subgroup of patients hinting that these genes may be part of an underlying biological 82 

pathway, protein complexes or disease subtype [19]. We have shown that the discovered gene 83 

groups are clinically and pathologically relevant in terms of their association with survival, breast 84 

cancer receptor status, histopathological phenotypes, cancer driver genes mutations, biological 85 

pathways enrichment and underlying protein-protein interactions, and also therapeutic decision-86 

making. We then propose a bespoke multi-output graph neural network-based computational 87 

pathology pipeline to predict the expression state of a patient in terms of these latent factors from 88 

their WSIs. This enables identification of spatial histological patterns associated with individual 89 

latent factors as well as the overall gene expression profile of a patient. Finally, we have shown 90 

that image-based predicted gene group statuses can be used as a latent representation for the 91 

prediction of several other downstream clinical tasks such as patient subtyping, and also driver 92 

gene alteration status and pathway alteration status.  93 

2 Results 94 

2.1 Analytic workflow  95 

As shown in Fig 1, we performed gene expression analysis of the TCGA breast cancer (TCGA-96 

BRCA) cohort (n = 1084) to identify 200 groups of genes such that the expression of genes in the 97 

same group is maximally statistically co-dependent. This allows us to capture the inter-dependence 98 

between expression profiles of different genes and represent the gene expression state of a given 99 

patient in the form of 200 binary variables each corresponding to a single group. To underscore 100 

the clinical, therapeutic, and biological significance of each gene group, we computed the 101 

association of patient gene group status with survival, enrichment for biological pathways and 102 

cancer hallmark processes, and also protein-protein and drug-protein interactions.    103 

We then used our bespoke graph neural network-based pipeline that takes a WSI as input and 104 

predicts the binary status of 200 gene groups simultaneously in an end-to-end manner. This allows 105 

us to model the complete gene expression profile of a patient and identify histological imaging 106 

patterns associated with each gene group. Furthermore, the proposed approach allows spatially 107 

resolved cross-linking of discovered gene groups with visual information contained in the WSI. 108 

The interactive visualization portal for the proposed approach (called Histology Gene Groups 109 
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Xplorer (HiGGsXplore)) is available at: 110 

(http://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore) 111 

2.2 Data-Driven discovery of Gene Groups based on co-dependent expression 112 

To capture multivariate nonlinear relationships in gene expression patterns across patient samples, 113 

we employed Correlation Explanation (CorEx) on RNA-Seq data of the TCGA-BRCA cohort. 114 

CorEx can be used to model the underlying dependency structure of a dataset by identifying groups 115 

of random variables that in the context of this application can intuitively be viewed as a 116 

manifestation of underlying covarying patterns of gene expression profiles of different genes 117 

across patients. The input to CorEx is a 1084 × 5676 matrix where each row is the normalized 118 

gene expression score of 5,676 genes with high expression variance or mutation frequency for 119 

each of the 1,084 patients. For this data, CorEx identified 200 gene groups that can explain the co-120 

dependence between gene expression patterns observed in the data without loss of information. 121 

This allows us to represent the gene expression state of each patient in terms of these 200 binary 122 

variables rather than the expression of all individual genes. As these gene expression groups are 123 

identified in a purely empirical manner from gene expression data, the expected impact of any 124 

human observation biases on the definition of these gene groups is minimal. Furthermore, a single 125 

gene can be associated with multiple gene groups which is desirable from a biological point of 126 

view as gene products often perform multiple roles within a cell and can be part of multiple 127 

interaction networks [20].  128 

The gene composition of a selected number of gene groups is shown as word clouds in Fig 2A and 129 

SFig 1. For example, the binary status of Gene Group 0 (G0) is defined primarily based on the 130 

expression patterns of a set of genes (MLPH, GATA3, XBP1, FOXA1, TFF3, ESR1, etc.). The 131 

exhaustive list of genes grouped in all 200 gene groups is provided in supplementary data. Fig 2B 132 

illustrates the underlying co-dependent expression of genes grouped in a selected gene group along 133 

with their group status. The heatmaps clearly show that the expression level of genes in Gene 134 

Group 3 (G3) and Gene Group 25 (G25) are significantly co-dependent across patients. For 135 

instance, for patients with G3 = 1, the expression level of ITK, IL2, PDCD1 or PD1, ITGAL, 136 

PDCD1LG2 or PD-L2, and several other genes are high, whereas, for patients with G3 = 0, these 137 

genes show under-expression as evident from the figure. For G25, a consistent trend in gene 138 

expression can be seen between status = 0 and 1 patients. For example, for patients with G25 status 139 
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= 1, MYC, CHEK1, PSME4, YES1, NRAS, TP53, and several other genes show  high expression 140 

levels, whereas, IGFBP4, TCEAL3, RORC, RETSAT, and others show low expression. Conversely, 141 

for patients with G25 = 0, the expression patterns of these genes are reversed. 142 

This key result lends support to the motivation of this work, i.e., the expression level of multiple 143 

genes is significantly and consistently inter-dependent and the overall gene expression state of a 144 

patient can be characterized by a small number of latent factors. It also highlights the fact that it is 145 

not possible to disentangle the expression status of individual genes and consequently associate an 146 

observed phenotype, say in a WSI, with the status of a single gene. We next investigated the 147 

pathological significance of these gene groups and analyze their predictability from WSIs.  148 

2.3 Pathological Significance of Gene Groups 149 

Here we discuss the clinicopathological significance of gene groups to understand the implications 150 

of these latent factors for clinical decision-making before analyzing their predictability from 151 

imaging.  152 

2.3.1 Association of Gene Groups with Cancer Hallmarks and Biological Pathways 153 

Through Gene Set Enrichment Analysis (GSEA) we found genes from several gene groups 154 

associated with known cancer hallmark processes and biological pathways. In Fig 2C we show 155 

the enriched terms for cancer hallmark processes in selected gene groups. For example, genes in 156 

Gene Group 0, 10 and 25 show enrichment for Estrogen early and late response, KRAS and 157 

mTORC1 signalling, Unfolded Protein Response (UPR), p53 pathway and several other hallmark 158 

processes. Similarly, we found genes from Gene Group 3, 15 and 30 associated with Inflammatory 159 

response, Interferon Alpha and Gamma response, and several other cancer hallmark processes. 160 

Additionally, we found genes from several gene groups associated with several cancer hallmark 161 

processes (Epithelial-Mesenchymal Transition (EMT), Myc targets V1 and V2, Mitotic spindle, 162 

DNA repair, KRAS up and down signalling, etc.) as shown in SFig 2.  163 

Apart from cancer hallmark processes, several a number of gene groups has shown enrichment 164 

enriched for several biological processes (e.g. T-cell receptor signalling, MAPK cascade, negative 165 

regulation of programmed cell death, etc.,) KEGG pathways (e.g. PD-L1 expression and PD-1 166 

checkpoint pathway, JAK-STAT and PI3K-Akt signalling pathway, Th1, Th2 and Th17 cell 167 

differentiation, etc.,) and WikiPathways (e.g. DNA damage response, Inflammatory response, B 168 
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Cell receptor signalling, etc.,)  as can be seen in SFig 3, SFig 4 and SFig 5. For example, G3 and 169 

several other gene groups have shown enrichment for PD-L1 expression and PD-1 checkpoint 170 

pathway in cancer which can be a guiding signal for therapeutic decision-making [21]. 171 

2.3.2 Gene Groups capture clinically important protein-protein and protein-drug interactions 172 

We analyzed the protein-protein interaction (PPI) and protein-drug interaction (PDI) of genes in 173 

several gene groups with the end goal of identifying which groups involve proteins that can be 174 

targeted with known drugs so that the gene group status can be used as a potential indicator to 175 

guide therapeutic decision making. Fig 2D shows the PPI and PDI of a selected number of genes 176 

from G3 and G25. Regarding G3, interaction between IL2, IL2RB and IL2RG can be seen (left 177 

figure), which is expected as IL2 regulates immunity by teaming up with IL2RB and IL2RG  [22], 178 

[23]. Similarly, interaction of tacrolimus, an immunosuppressive and anti-inflammatory macrolide 179 

that targets the CD4+-cells can be seen with IL2. As these genes show high expression when G3 180 

= 1, therefore patients with G3 = 1 can be considered a candidate for tacrolimus therapy. In 181 

reference to G25 (see right figure), TRIM8 a member of the tripartite motif-containing (TRIM) 182 

binding with TP53 can be seen, which has been shown to play a role in regulating TP53/p53-183 

mediated pathway [24]. Similarly, interaction of YES1, a targetable oncogene can be seen with 184 

drugs such as dasatinib, ponatinib, nintedanib and imatinib. When G25 = 0, YES1 shows high 185 

expression, therefore patients with G25 = 0 could be considered as potential candidates for 186 

dasatinib therapy [25]. Apart from this, interaction of TP53 with several other proteins (CHEK1, 187 

MAPK3, PLAT, NINJ1, HDAC5, etc.) and drugs (tamoxifen, doxorubicin, paclitaxel, etc.)  can be 188 

observed.  189 

2.3.3 Patient stratification into high and low risk using gene groups status 190 

We found the binary status of several gene groups associated with overall survival (OS), disease-191 

specific survival (DSS), and progression-free survival (PFS) of patients. Fig 3A shows the Kaplan-192 

Meier (KM) survival curves (DSS, PFS and OS) illustrating patients' stratification based on their 193 

gene group status. The KM curves indicate that patients can be stratified into high and low risk 194 

groups based on their G25 and G195 status with statistical significance (log-rank test FDR-195 

corrected p-value > 0.05). Additionally, from the figure, patients with G3 = 1 have higher survival 196 

rates compared to those with G3 = 0 but the stratification is not statistically significant. Our 197 

analysis shows that the number of gene groups with statistically significant risk stratification 198 
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(multiple-hypothesis corrected log-rank p-value < 0.05) is 25, 3 and 2 for DSS, OS and PFS, 199 

respectively as shown in SFig 6.  200 

2.3.4 Association between Gene Groups and breast cancer receptor status 201 

We found the status of several gene groups associated with ER, PR and Her2 status as can be seen 202 

in Fig 3B. For example, from the figure strong positive association of G25 status with ER (Kendall-203 

tau correlation coefficient 𝜌 = 0.68 and  𝑝 < 0.01) and PR (𝜌 = 0.58 and  𝑝 < 0.01) status can 204 

be seen. This correlation was expected as G25 status is defined by IGFBP4 and other relevant 205 

genes whose overexpression has previously been found positively associated with ER and PR 206 

status [26]. Similarly, we found G35 and G118 status strongly positively associated with her2 207 

status as evident from the figure.  208 

2.3.5 Association with PAM50 molecular subtypes and immune subtypes 209 

We found the status of several gene groups associated with PAM50 molecular subtypes as can be 210 

seen in Fig 3B. For example, from the figure, strong positive and negative association of G25 211 

status can be seen with Luminal A and basal-like subtypes respectively. Since G25 status has also 212 

shown strong association with ER and PR status its correlation with Luminal A (ER-positive, PR-213 

positive and Her2 negative) and basal-like (triple negative) subtype is not surprising but highlights 214 

the versatility of gene group definitions.  215 

Apart from PAM50 subtypes, we found the status of  several gene groups associated with immune 216 

subtypes (C1, C2, C3 and C4) defined by Thorsson et al [27]  as shown in Fig 3B. For example, 217 

from the figure strong association of Gene Group 15 (G15) can be seen with C2 (𝜌 = 0.72, 𝑝 < 218 

0.01) and C1 (𝜌 = -0.48, 𝑝 < 0.01) and C3 (𝜌 = -0.31, 𝑝 < 0.01). This association is expected 219 

as majority of G15 genes (IFIT3, OAS3, IFI44L, etc.) are interferon-regulated genes (IRGs) that 220 

play a role in the innate immune response and antiviral defense [28]. These results highlight the 221 

fact gene group statuses can be utilized as markers for immune activity as well as existing 222 

molecular subtyping of breast cancer patients.   223 

2.3.6 Association with mutations in cancer genes 224 

We found the status of several gene groups associated with gene point mutation status (MUT) and 225 

copy number alteration status (CNA) as evident from Fig 3B. For example, from the figure, a 226 

strong negative correlation of G25 status with TP53 MUT status (𝜌 = -0.59, 𝑝 < 0.01) and MYC 227 
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CNA status (𝜌 = -0.26, 𝑝 < 0.01) can be seen. Similarly, the status of several other gene groups 228 

can be seen as positively or negatively associated with MUT status (e.g., CDH1, GATA3 and 229 

PIK3A) and CNA status (e.g., ERBB2, PK2, HEY1, FGFR and F2F2) of genes.  230 

2.3.7 Association of gene groups with pathologist-assigned histological phenotypes  231 

We found gene groups status associated with routine clinical features such as histological types 232 

(invasive lobular and ductal carcinoma), histological grade (mitotic count, nuclear pleomorphism 233 

and epithelial tubule formation) [30] and the spatial fraction of tumor regions with tumor-234 

infiltrating lymphocytes (TIL Regional Fraction) [31] as evident from Fig 3B. For example, from 235 

the figure, a positive correlation between G3 status and TIL Regional Fraction can be seen. 236 

Similarly, the status of G25 can be seen negatively associated with mitosis, necrosis, nuclear 237 

pleomorphism, inflammation and tumor grade, whereas positively associated with invasive lobular 238 

carcinoma. Association of G3 binary status with TIL Regional Fraction is expected as its status is 239 

defined by the expression level of several immune-related genes (e.g., IL2, CD27, CCL5, PD-1 240 

and PD-L2) [27], [32]. Similarly, G25 status negative association with mitotic count is not 241 

surprising as previous studies have found that over-expression of MYC (G25 = 1 when MYC is 242 

over-expressed) impairs mitotic spindle formation [33]. This analysis shows that gene group status 243 

can be associated with pathologist-assigned histological phenotypes.  244 

2.4 Prediction of Gene Groups from histological imaging 245 

To explore the association between phenotypic information contained in the WSI and the 246 

expression status of a set of genes in a certain gene group we have developed a novel deep learning 247 

based multi-task graph neural network pipeline (𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ ) that takes a WSI as input and 248 

predicts the status of 200 gene groups simultaneously. The workflow of the proposed approach is 249 

shown in Fig 1B. It builds on our previous work that can model a WSI as a graph to capture 250 

histological context but has been significantly expanded and improved [34]. 251 

2.4.1 Quantitative results of prediction of individual gene group statuses 252 

Our predictive analysis shows that the binary status of a significant number of gene groups can be 253 

predicted from histology images with high area under the receiver operating characteristic curve 254 

(AUROC). Fig 4A shows model performance in terms of mean AUROC. The binary status of 255 

many gene groups can be predicted with an AUROC of above 0.60. Additionally, the status of 256 
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around 29 gene groups is predicted with a high AUROC of above 0.80. For the top 20 best-257 

predicted gene groups we show the AUROC distribution across 1,000 bootstrap runs in Fig 4B. 258 

From the figure, G0, G100 and G25 status can be predicted with an AUC-ROC of above 0.87 with 259 

a narrow confidence interval.   260 

To analyze the degree to which the complete gene expression profile of a patient can be predicted 261 

from imaging alone, Fig 4C displays a histogram of patient-wise cosine similarity between 262 

histology image-based inferred gene expression state and true gene expression state. From the plot, 263 

the similarity score shows a moderate alignment between the true and predicted gene expression 264 

states of each patient (average cosine similarity across all patients of 0.27). Of particular interest 265 

are patients whose alignment score is either very high or very low. Some example WSI thumbnails 266 

of patients whose expression state is best or poorly predicted from histological imaging are shown 267 

in STable 1. These results point to the fact that although the status of certain groups can be 268 

predicted with high accuracy, it is not possible to fully characterize the overall gene expression 269 

state of most patients from histological imaging alone. This result is expected due to both technical 270 

and underlying biological reasons. For example, histological imaging and gene expression analysis 271 

are carried out on different tissue sections and the latter uses “bulk” tissue. Furthermore, not all 272 

gene expression changes will have a phenotypic effect that can be observed in a WSI which in turn 273 

allows predictive modelling as illustrated in SFig 7. This shows that both whole slide imaging and 274 

gene expression analysis carry complementary value in understanding disease mechanisms.   275 

2.4.2 Spatial Profiling and histological phenotypes of Gene Groups 276 

The proposed graph neural network can map WSI-level predictions of a gene group to spatially 277 

localized regions or nodes in the input image. This enables the profiling of local histological 278 

patterns linked to gene groups based on their node-level predictions. Fig 5 shows the spatial 279 

profiling of gene groups (G3 and G25 as examples) by visualizing node-level prediction scores 280 

from 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ . For both gene groups, an example WSI with its corresponding heatmap 281 

highlighting node level prediction score is shown against binary status 0 and 1. The heatmap 282 

highlights the spatially resolved contribution of different regions of the WSI towards the 283 

expression status of a certain gene group being 0 or 1. More specifically, regions highlighted in 284 

redder color are indicative of an association with status = 1, whereas regions highlighted in bluish 285 

color are indicative of an association with status = 0 of a particular gene group. It is interesting to 286 
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note that a given gene group exhibits significant variation in prediction score across different 287 

regions of the image, which can be linked to the spatial diversity of localized gene expression 288 

patterns throughout the tissue. The localized predictions for other gene groups can be viewed in 289 

the online portal (HiGGsXplore).  290 

Using node-level prediction score as a guide, we extracted some regions of interest (ROIs) 291 

associated with G3 and G25 status = 0 and 1 from their corresponding WSI as shown in Fig 5. 292 

ROIs representative of G3 = 1 have a relatively high proportion of inflammatory cells compared 293 

to G3 = 0 ROIs where tumor cells appear more pleomorphic. Additionally, for the patient with G3 294 

(status = 1), the invasive margin of the tumor, which has a higher density of inflammatory cells, is 295 

shown to be correlated with G3 status = 1. Given that G3 status is associated with TIL regional 296 

fraction (see Fig 3) and immune response related processes and pathways (see Fig 2C, SFig 2 and 297 

SFig 4), therefore tumor-infiltrating lymphocytes (TILs) is the likely histological phenotype 298 

associated with G3 (status = 1). This also explains the higher survival probability of G3 (status = 299 

1) patients as several studies have found TILs associated with good prognosis [35]. Regarding 300 

G25, tubule formation, and normal lobule can be seen in ROIs representative of G25 (status = 1), 301 

whereas, in ROIs indicative of G25 (status = 0) the obvious feature is necrosis, and more 302 

pleomorphic tumor cells. For the patient with G25 (status = 1), regions of the WSI with tubule 303 

formation are highlighted as evident from the ROI. However, for patient with G25 (status = 0) 304 

tissue regions with normal lobule received higher score since there was no tissue area with tubule 305 

formation. The highlighted spatially resolved histological patterns are concordant with their 306 

corresponding enriched cancer hallmark processes (Estrogen response, Immune response and p53 307 

signalling) and biological pathways (see Fig 2C, SFig 2 and SFig 4). 308 

This analysis shows that the proposed deep learning pipeline has identified relevant spatially 309 

resolved histological patterns associated with different gene groups (TILs in the case of G3 and 310 

tubule formation in the case of G25) in an automated manner as evident from the heatmaps. It is 311 

noteworthy, that in cases where no tubule formation is present in the WSI (see G25 = 0 ROIs), it 312 

has highlighted normal lobule which is quite remarkable.   313 

2.4.3 Mining differential histological patterns associated with each gene group 314 

To explore the association between visual patterns contained in WSIs and gene groups status we 315 

identified 25 exemplar patches for each status (0 and 1) of a certain gene group.  For these patches, 316 
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we also computed the cellular composition (counts of neoplastic, inflammatory, connective, and 317 

epithelial cells), overall cellularity and mitotic counts. Fig 6A shows 10 out of 25 representative 318 

patches for each of G3 and G25 status = 0 and status = 1. The main difference between G3 = 0 and 319 

1 patches, as seen in the figure, is the presence of lymphoid infiltrate and tumor cellularity. More 320 

specifically, G3 = 1 patches have more inflammatory cells and fewer neoplastic cells, whereas the 321 

opposite is true for G3 = 0 patches. This differential histological pattern across all patients is 322 

concordant with the spatially resolved visual pattern we see in G3 = 0 and 1 ROIs (see Fig 5) and 323 

can be used as a histological motif.  Additionally, G3 = 0 patches have relatively higher number 324 

of mitotic counts compared to G3 = 1. Regarding G25, the striking difference between G25 = 0 325 

and G25 = 1 patches is the presence of tubule formation (row 2 patch 2 and 3, row 2 image 2 and 326 

3) in the tumor area. As G25 status correlates positively with ER and PR status (see Fig 3B) and 327 

previous study has also found ER and PR positive cancers enriched in tubule formation [36], 328 

therefore, tubule formation could be the histological phenotype associated with G25 = 1. In 329 

contrast, G25 = 0 patches have more pleomorphic sheets of cells and areas of necrosis (row 1 330 

image 1 and 3, row 2 image 1 and 2). This pattern agrees with the histopathological phenotypes 331 

we observed in Fig 3B and Fig 5. Finally, G25 = 1 patches show higher mitotic and inflammatory 332 

cell counts compared to G25 = 0 patches. Though we are not using any histopathological 333 

annotations in training, the predictive model has identified relevant morphometric patterns in an 334 

automated manner. 335 

Apart from G25 and G3, we found patch-level inflammatory cell counts and mitotic counts 336 

statistically significantly associated (Wilcoxon test 𝑝 < 0.01) with the binary status of several 337 

other gene groups as shown in Fig 6B and Fig 6C.   338 

2.5 Image-based predicted gene group statuses provide latent space for down-339 

stream predictive modeling 340 

Gene expression groups allow us to capture the gene expression profile of a given patient in terms 341 

of 200 gene status variables and their prediction through a machine learning model allows us to 342 

map histological patterns to these gene groups. However, the predicted statuses of gene groups can 343 

also be used as a compressed latent space representation for predictive modelling of other 344 

histologically important clinical variables. Fig (7A-F) show the predictability of clinical variables 345 

based on the predicted gene group statuses as latent variables using a simple linear classifier. 346 
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PAM50 subtypes such as Basal, Luminal A, Luminal B and Her2 can be predicted from these 347 

latent variables with a mean AUROC of 0.90, 0.82, 0.78 and 0.75 respectively. Similarly, the latent 348 

representation can also predict the status of ER, PR and Her2 with a mean AUROC of 0.88, 0.79 349 

and 0.61 respectively. Apart from this, we found the latent variables predictive of several signalling 350 

pathways alteration status, immune subtype, and also genes MUT status and CNA status. For 351 

example, TP53 pathway alteration status can be predicted with a mean AUROC of 0.75 from these 352 

latent variables [37]. The latent variables can also predict MUT status (14 genes) and CNA status 353 

(12 genes) with an AUROC of above 0.60 as evident from Fig 7E and Fig 7F. For example, TP53 354 

point MUT status and ERRB2 CNA status can be predicted with an AUROC of 0.81 and 0.79 355 

respectively, which are higher that baseline results of  0.79 for TP53 MUT status  [38] and 0.62 356 

for ERBB2 MUT status [39]. Fig 7G shows some example heatmaps demonstrating spatial 357 

profiling of these clinical variables. From figures, ER and PR status have similar highlighted 358 

regions, while basal subtypes (ER, PR and Her2 negative) have opposite regions. The heatmaps 359 

also show the spatial profiling of Luminal B subtype, and TP53 MUT and pathway alteration 360 

status. This clearly illustrates the value of the proposed gene groups for downstream predictive 361 

modelling. 362 

2.6 Clinical and Therapeutic significance of best-predicted gene groups  363 

We found that gene groups predicted with high accuracy (AUROC ≥ 0.75) from imaging are 364 

significantly associated with disease specific survival (DSS), biological pathways and hallmark 365 

processes. All 25 gene groups associated with DSS are predicted with high accuracy from imaging. 366 

Besides this, some interesting biological pathways (see Fig 8) and cancer hallmark processes (see 367 

SFig 8) can also be inferred from images based predicted gene groups which can guide histology 368 

image-based therapeutic decisions by selecting drugs that target a certain biological pathway (e.g. 369 

PI3K-Akt) [40].    370 

3 Discussion 371 

We performed histological and molecular characterization of breast cancer patients using a purely 372 

data-driven approach. Highlighting the limitations of previous methods that predict the expression 373 

level of individual genes from histology image, we have shown that significant co-dependencies 374 

of different genes across samples (see Fig 2B) compromises the ability of deep learning models to 375 
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identify individual gene level genotype to phenotype mapping. To tackle this, we first grouped 376 

genes whose expression patterns are significantly dependent and covarying across samples and 377 

then proposed a multi-output graph-based deep learning pipeline (𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ ) that predicts 378 

both WSI-level and spatially resolved expression status of these gene groups in an end-to-end 379 

manner. Using the proposed computational pathology workflow, we demonstrated that the status 380 

of a significant number of gene groups can be predicted with high accuracy from imaging. This 381 

not only overcomes the limitations of existing image-based gene expression prediction models but 382 

provides opportunities to gain biological insights from imaging directly. Finally, we showed that 383 

histopathological patterns associated with several gene groups in terms of cellular composition, 384 

mitotic counts and exemplar patches can be identified using the proposed computational pathology 385 

pipeline.  386 

A potential advantage of the employed gene grouping approach is the interpretability of gene 387 

groups. The method allows a compact representation of a patient’s gene expression state (200 388 

binary latent variables) without losing interpretability, which is crucial in this context as it provides 389 

insight into biological processes and underlying protein-protein and also drug-protein interactions 390 

that can motivate new therapies. Through GSEA, we found genes from several gene groups 391 

associated with cancer hallmark processes (e.g. EMT, inflammatory response, estrogen early and 392 

late response, mTORC1 signalling, Myc targets, p53 signalling, KRAS up and down signaling ) 393 

and biological pathways (e.g. Inflammatory response, PD-L1 expression and PD-1 checkpoint, 394 

cancer immunotherapy by PD-blockade and EGF/EGFR signalling). Additionally, we have shown 395 

that genes in a certain gene group are enriched for protein-protein interaction that can be used for 396 

the identification of drugs that modulate the activity of a target protein of interest which will 397 

subsequently lead to precise diagnosis of patient tumor. 398 

Another important observation regarding gene grouping is that, though the gene groups are defined 399 

in a completely data-driven manner without any intelligent selection still they carry significant 400 

clinical meaning in terms of association with survival (OS, DSS and PFS), routine clinical 401 

biomarkers (ER, PR and Her2 status), driver genes mutation statues, and previously defined 402 

PAM50 and Immune subtypes. Apart from this, we found the binary status of several gene groups 403 

associated with histopathological annotations which enable direct genotypic to phenotype 404 

mapping.  Additionally, this genotype to phenotype link can further be validated using GSEA and 405 
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specialized IHC staining.  These results not only validate the clinicopathological significance of 406 

these gene groups but also provide a broader picture of an individual tumor by illuminating the 407 

interplay between patient gene expression state and several other clinical variables of interest.  408 

A striking feature of the proposed approach for mapping patient gene expression status with 409 

morphometric patterns contained in the WSIs is its reliability and explainability. Localized 410 

histological patterns identified by 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  can be explained in terms of enriched hallmark 411 

process, biological pathway and underlying protein-protein interaction, and also through 412 

specialized IHC staining and genome sequencing. For example, we found genes from G3 enriched 413 

for several immune-related biological processes and pathways including PD-L1 expression and 414 

PD-1 checkpoint pathway which in histology images we found associated with a high proportion 415 

of TIL. Thought the observation is interesting but still further validation is needed using IHC data. 416 

After validation, this will allow the selection of patients for immunotherapy based on routine 417 

histology images.  Regarding G25 we found tubule formation in majority of G25 = 1 representative 418 

patches, which was consistent with IHC ER and PR status and also the associated cancer hallmark 419 

process (Estrogen signalling). In contrast, G25 = 0 patches have more pleomorphic sheets of cells 420 

several with area of necrosis, which is again concordant with their association with pathologist-421 

assigned phenotypes (necrosis and nuclear pleomorphism), TP53 MUT status and p53 signalling 422 

pathway. This show that the proposed deep learning pipeline has identified relevant spatially 423 

resolved histological patterns associated with the status of gene groups in an automated manner.   424 

Image-based prediction of gene expression state will open doors of gaining biological insights 425 

from imaging directly and is expected to be advantageous in both cancer research and clinical 426 

setup. In cancer research, the proposed approach can be used for studying the interplay between 427 

gene expression and histopathological phenotypes. Additionally, it can also be used by 428 

pharmaceutical industries in their drug discovery pipeline when they study the response of lead 429 

compounds in early-phase trials.  In clinical setup, it will allow cost-effective precision diagnostic 430 

from imaging data alone. The proposed computational pathology pipeline not only predicts patient 431 

gene expression but also provides a detailed insight in terms of patient survival (OS, DFS and 432 

PFS), possible up or downregulated biological processes and their underlying protein-protein 433 

interaction, possibly mutated or copy-altered genes, and information about ER, PR and HER2 434 

status, PAM50 and immune subtypes. These types of analysis will provide a more detailed insight 435 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.14.536756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536756
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 | P a g e  
 

into an individual tumor in a cost-effective way.  It is important to highlight here, that though we 436 

managed to predict the expression status of several gene groups with high accuracy and we 437 

extensively validated the results, further extensive validation on a large multi-centric dataset is 438 

needed before entering into clinical practice.   439 
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Figure 1: Analytic workflow for patient gene expression state prediction from whole slide images (WSIs). 
A) Workflow of data-driven discovery of gene groups and their pathological significance is shown. We first 
identified 200 binary latent factor or gene groups from the gene expression data in a data-driven manner. A gene 
group can be viewed as overlapping group of genes that exhibit coherent patterns of expression across sample.  
Word clouds demonstrating the gene composition of different gene groups.  The color of the gene indicates whether 
its median expression across patients is high (red) or low (blue) when gene group status = 1. Afterward, we assessed 
the biological significance of the genes grouped in different gene groups through gene set enrichment analysis. B) 
The proposed 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  pipeline for prediction of gene groups status from WSIs. We first construct graph 
representation of a WSI and then feed it into a Graph Neural Network (GNN) for predicting WSI-level and spatially 
resolved expression status of these 200 gene groups. C) Identification of clinically relevant gene groups in term of 
association with survival and their associated histological motifs. Histology image-based inference of personalized 
medication by analyzing protein-protein and drug-protein interaction of gene groups.  
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Figure 2: Data Driven Discovery of Gene Groups, their biological and therapeutic significance. 
A) Word clouds demonstrating the gene composition of different gene groups. The color of the gene indicates whether its median 

expression across patients is high (red) or low (blue) when gene group status = 1. The font size of gene within a group is 
proportional to the amount of information that the gene status provides about a particular gene. 

B) Gene expression profile and group status of genes (one per row) for all patients (one per column) in Gene Group 3 (G3) and 
Gene Group 25 (G25) are shown. 

C) Enriched terms for hallmark processes in similar gene groups (note color in A) are shown, with font sizes proportional to the 
number of gene groups that show enrichment for a certain process.  

D) Protein-protein and protein-drug interaction of selected genes in G3 (left plot) and G25 (right plot) are shown. Nodes shown 
in circles represent proteins, while the rounded rectangle shapes represent drugs. The edges between nodes show different 
types of interaction and potential therapeutic targeting. 

G3 G25 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.14.536756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536756
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 | P a g e  
 

 463 

 464 

A 

    

B 

 
Figure 3: Clinical and pathlogical significane of gene groups binary status.  

A) Kaplan-Meier curve showing stratification of patient into high and low risk group based on G3 (left plot), G25 (middle 
plot) and Gene group 195 (G195) binary status. G25 and G195 status of a patient is associated with 10-year censored 
disease specific survival and progression free survival (log rank test FDR corrected p-value < 0.05). G3 status can stratify 
patient into high and low risk group but FDR corrected p-value is not significant. 

B) Association of gene groups with histological phenotypes, receptor status, genes point mutation status and copy number 
alteration status, and also immune and PAM50 molecular subtypes. Gene groups are shown along x-axis, and histological 
phenotypes and other clinical markers are shown along y-axis. Red and blue colors indicate the degree of association 
between gene groups status and a specific histopathological phenotype or clinical marker. Dark-red color shows strong 
positive correlation while strong negative correlation is shown using dark-blue color. (Abbreviations - CNV: Copy Number 
Variations, TIL: Tumor Infiltrating Lymphocytes)   

Time (Days) Time (Days) Time (Days) 

G25 G195 G3 
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Figure 4 Quantitative result. 
A) Histogram displaying the AUROC at which the binary status of gene groups are predicted from WSIs.  
B) Box plot showing AUROC distribution of top-10 best predicted gene groups across-1,000 bootstrap runs. 
C) Histogram of patient-wise cosine similarity between true and predicted gene expression state.     
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Figure 5: Spatial profiling of gene groups status. 
Spatial profiling of gene group 3 (G3) and 25 (G25) is displayed through example WSIs and heatmaps. The heatmaps use pseudo 
colors (bluish to red) to highlight the spatially resolved contribution of patches to the predicted expression state, with bluish and 
redder color indicating highly contributing status = 0 and status = 1 regions, respectively. From WSIs we extracted magnified 
version of highly contributing status = 0 and status = 1 regions (ROIs) outlined by red and blue color, respectively. The black 
circles highlight regions of WSIs from which ROIs were extracted. For an interactive visualization, please see: 
tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore 
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Figure 6: Histlogical patterns associated with gene groups. 
A) Representative patches of G25 and G3 status 1 and 0 are shown. The bar below the patches shows patch level cellular 

composition, mitotic counts and cellularity. 
B) Gene groups status (0 and 1) association with patch-level Inflammatory cell counts.  
C) Gene groups status (0 and 1) association with patch-level mitotic cell counts.  
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A: PAM50 subtypes B: Receptor status C: Pathways alteration status 

  

D: Immune Subtypes E: Copy number alteration status 

 
F: Point mutation status 

     
ER Status PR Status PAM50 (Basal) PAM50 (Luminal B) TP53 Pathway TP53 MUT Status 

 

G: Spatial profiling of clinical variables 

Figure 7: Implication of Image-based predicted gene group statuses for downstream predictive modeling. 
Prediction of (A) receptor status, (B) PAM50 molecular subtypes, (C) Immune subtypes, (D) pathways alteration status, (E) 
driver genes copy number alteration status and (F) point mutation status from image-based predicted gene groups status. 
Each box in the figure shows the AUROC distribution at which a clinical variable is predicted from image-based predicted 
gene group status across 1, 000 bootstrap runs. The scatter plot on top of box plot shows the AUROC values across different 
bootstrap runs while the numeric value above each box shows the mean AUROC value. G) Spatial profiling of some routine 
clinical variables is shown using example heatmaps. The heatmaps use pseudo colors (bluish to red) to highlight the spatially 
resolved contribution of patches to status = 0 and 1 of a certain clinical variable, with bluish color indicating highly 
contributing status = 0 regions and red color indicating highly contributing status = 1 regions. 

1Node Contribution: 0
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 480 

 481 

 
Figure 8: Clinical and Therapeutic significance of best predicted gene group. The scatter plot shows association of gene groups 
with biological pathways with gene group shown along x-axis (one per column) and corresponding enriched pathways on y-axis 
(one per row). The size of scatter shows the number of genes from a particular gene group that has shown statistically significant 
association (FDR adjusted p-value < 0.01) with a certain biological pathway. In the plot the p-value is represented by the color 
of scatter dots. The top bar plot shows the prediction accuracy (AUROC) at which the status of these gene groups is predicted 
from histology images. Gene groups that show statistically significant association with disease specific survival are annotated 
with a * next to the gene group name.  
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4 STAR Methods 482 

4.1 Dataset 483 

4.1.1 Acquisition and preprocessing of RNA-Seq data 484 

We collected RSEM (RNA-Seq by Expectation and Maximization) normalized RNA-Seq data of 485 

1084 TCGA breast cancer patients from cBioportal [41], [42]. The gene expression data was 486 

obtained using log2 normalized z-score values of the expression of 5,596 genes having high 487 

variance in expression across patient samples along with known oncogenes.  488 

4.1.1.1 Acquisition of whole slide images and survival data  489 

We collected 1,133 Whole Slide Images (WSIs) of Formalin-Fixed Paraffin-Embedded (FFPE) 490 

Hematoxylin and Eosin (H&E) stained tissue section of 1084 patients having breast cancer from 491 

the Cancer Genome Atlas (TCGA) [43], [44]. For patients with multiple slides, we selected the 492 

one with best visual quality. Additionally for robust analysis, we ignored WSIs with missing 493 

baseline resolution information. After slide filtering, we used 1,050 WSIs each belonging to an 494 

individual patient to avoid any overlap between training and testing over the same patient. For 495 

these patients, we used the survival data from the TCGA standardized clinical dataset called Pan-496 

Cancer Clinical Data Resource (TCGA-CDR)  [45] and other clinical data from cBioportal. For 497 

these patients we obtained annotation of 11 histopathologic features scored by pathologist from 498 

the data released by Thennavan et.al [30]. 499 

4.2 Data Driven Discovery of Gene Groups with CorEx 500 

To model associations between expression profile of different genes we used Total Correlation 501 

Explanation (CorEx) on the gene expression matrix 𝑀 of size 𝑚 × 𝑛 where 𝑚 and 𝑛 are the number 502 

of patient samples, and genes, respectively [46]. As the expression of different genes is 503 

significantly inter-dependent and correlated, CorEx allows us to represent the gene expression 504 

state of a patient in terms of a small number of binary variables or gene groups that can capture 505 

information contained in the expression of all genes of a given patient with minimal loss. For a 506 

detailed mathematical formulation underlying CorEx, the interested reader is referred to the CorEx 507 

paper [46]. Given 𝑀 ×  as input, the output of CorEx is a matrix 𝐺 ×  with each column of 508 

𝐺 corresponds to a binary latent factor 𝐺  (𝑘 = 1 … 𝑑 with 𝑑 ≪ 𝑛) so that the mutual information 509 

between the expression level of genes is minimized after conditioning on 𝐺 , … , 𝐺 . In other 510 
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words, the latent factors identified by CorEx can “explain away” the association between 511 

expression of various genes. Akin to “loadings” in principal component analysis (PCA), the 512 

definition of each binary latent factor 𝐺  is based on mutual information between the expression 513 

score of a certain gene and the binary status of 𝐺  across patient samples. This allows us to model 514 

each of the latent factors as a ranked (by mutual information) collection or group of genes. 515 

However, unlike PCA (or other linear or kernelized dimensionality reduction techniques based on 516 

covariance), CorEx can capture non-linear statistical relationships and dependencies between input 517 

variables (genes) directly due to its use of mutual information (see comparative analysis in [46]). 518 

Furthermore, CorEx produces binary latent factors which can be easier to interpret as the status of 519 

a certain gene group for a given patient will either be 0 or 1. We run the algorithm for 100 iterations 520 

on the z-score expression of TCGA-BRCA patients for discovering 200 binary latent factors. The 521 

number of latent factors were decided based on the TC distribution shown in SFig 9. The 522 

distribution demonstrates that the overall TC (sum of TCs of all latent factor) plateaus and 523 

approaches zero after selecting 200 latent factors. Therefore, we selected 200 latent factors. The 524 

binary statuses of these 200 latent variables define the expression state of a patient, where the 525 

binary value of each latent variable is defined by the group of genes whose gene expression 526 

patterns are substantially co-dependent across samples as shown in Fig 2B. 527 

4.2.1 Analysis of Biological and Therapeutic Significance of gene groups 528 

Hallmark processes and KEGG pathways enrichment for genes in different gene groups were 529 

obtained using Enrichr [47]. In line with previous work [20], we selected a maximum of top 400 530 

genes from each gene group whose mutual information is greater than 0.002. We passed the gene 531 

set to Enrichr which returns the enriched terms across a selected library (in our case KEGG 532 

pathway and MSigDB hallmarks) coupled with their statistical significance (FDR-adjusted p-value 533 

using Benjamini-Hochberg methods). We used a cutoff value of 𝑝 < 0.01 on the adjusted p-value 534 

for statistical significance of an enriched term across the selected library. The protein-protein and 535 

drug-protein interactions are analyzed using STITCH [48].   536 

4.3 WSI Analysis Pipeline with 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  537 

4.3.1 Preprocessing of whole slide images 538 

We segment the tissue regions of WSIs using a tissue segmentation model and ignore regions with 539 

tissue artefacts (pen-marking, tissue folding, etc.). Each WSI is then tiled into patches of size 540 
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512 × 512 pixels at a spatial resolution of 0.50 microns-per-pixel (MPP). Patches capturing less 541 

than 40% of informative tissue area (pixels with intensity higher than 200) are discarded, and the 542 

remaining patches (both tumor and non-tumor) are used.  543 

4.3.2 WSI-graph Construction 544 

A graph = (𝑉, 𝐸) is defined by a vertex set 𝑉, and an edge set 𝐸. The set 𝑉 = {𝒗𝒊|𝑖 = 1, … 𝑁} 545 

defines nodes in a graph (in our case is the set of patches in a WSI) while connectivity between 546 

nodes is defined by the edges 𝐸. Each node 𝒗𝒊 = (𝒈𝒊, 𝒉𝒊) captures the spatial location (𝒈𝒊), and 547 

feature representation (𝒉𝒊) of a patch in the WSI. We obtain the feature representation 𝒉𝒊 ∈ 𝓡𝟏𝟎𝟐𝟒  548 

of a patch 𝑥  by extracting latent representation from ShuffleNet  [49] pretrained on ImageNet 549 

[50]. The edge set 𝐸 is obtained by connecting nodes to the neighboring nodes (distance less than 550 

4000 pixels) using Delaunay triangulation.  If two nodes 𝑣  and  𝑣  are connected, then there will 551 

be an edge 𝑒 ∈ 𝐸.  552 

4.4 Gene expression state prediction using Graph Neural Network 553 

We pass the graph representation of a WSI through a Graph Neural Network (GNN) for predicting 554 

the node-level and WSI-level expression status of all gene groups simultaneously. In this work, 555 

we have developed a custom multi-output GNN that predicts the patch-level and WSI-level 556 

expression statuses of different gene groups in an end-to-end manner. Node level representation is 557 

passed through EdgeConv layers 𝐿 = {1,2,3}. Each EdgeConv layer [51] updates the 558 

representation of each node in the graph by aggregating the information from their neighboring 559 

node and generates embedding for successive layers. For a node in layer 𝑙 at index 𝑚 the output 560 

embedding of EdgeConv layer can mathematically be written as follows:   561 

𝒉 =  ℋ  𝒉  ∥  𝒉 − 𝒉  

∈ ℵ( )

 562 

In the above equation 𝒉 = 𝒉 , ℵ(𝑚) represents the neighboring nodes of 𝑚, and ℋ  denote a 563 

neural network. EdgeConv operation is trying to combine information of a node 𝒉   and 564 

neighboring nodes ℵ(𝑚).  Since we are using three EdgeConv layers, each node is expected to 565 

capture information from the neighboring nodes that are less than 5-hops apart in the WSI-graph.  566 
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For spatial profiling for gene expression groups, the feature representation 𝒉  of a node 𝒗 =567 

𝒈𝒋, 𝒉𝒋 ∈ 𝑉  is passed as input to a multilayer perceptron 𝑓 (𝒗 )  =  𝑓(𝒉 ) for generating node 568 

level prediction score which is then aggregated across all layers for getting patch level prediction 569 

score for all gene groups.   570 

𝑓(𝒗 ) =  𝑓 (𝒉 ) 571 

The WSI-level score for the expression status of all gene groups is obtained by pooling and 572 

aggregating node-level prediction scores as follows: 573 

𝐹(𝐺) = 𝑓(𝒗 )
∀ ∈

 574 

The trainable parameters of the EdgeConv layers and node-level classifiers are learned in an end-575 

end manner using backpropagation. In a training batch of size 𝑁, the model predicted score for 576 

𝑘 = {1 …  𝐾} binary latent factors are compared with their ground truth value using pairwise 577 

ranking loss [34], mathematically formulated as follows:  578 

ℒ = 𝑚𝑎𝑥 0,1 − 𝑓 (𝑋 ) − 𝑓 (𝑋 )

( , )∈

 579 

Here 𝑃 = (𝑎, 𝑏)|𝑦 > 𝑦 , 𝑎, 𝑏 = 1 … . 𝑁   is the set of all pair of patients (a, b) where the 580 

expression status of patient 𝑎 is greater than patient 𝑏 for latent factor 𝑘. Minimization of the loss 581 

function ℒ(∵) will enforce the model to rank status = 1 patients higher than status = 0 for all latent 582 

factors.   583 

4.5 Training and evaluation of 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  584 

We trained and evaluated the performance of 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  using 5-fold cross-validation, in which 585 

the dataset is subsampled into five 80/20 non-overlapping splits. The model is trained on 80% of 586 

the data and 20% data is held out for testing.  From the training data we randomly select 10% of 587 

the data for parameter tuning and optimization. We train 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  on the training set for 300 588 

epochs using the Adam optimizer with an initial learning rate and weight decay of 0.001 and 589 

0.0001, respectively. In each epoch, the training set is sampled into mini-batches of size 8, and the 590 
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learnable parameters of 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ   are updated using adaptive momentum based optimizer.  591 

To avoid overfitting, we stop the model training early, if performance over the validation set does 592 

not improve for 20 consecutive epochs. During training, we maintain a queue of size 10 for 593 

tracking the best models based on their performance over the validation set. More specifically, we 594 

insert the model into the queue if the validation loss at epoch 𝑛 is less that the loss at epoch 𝑛 − 1. 595 

For test set inference, we ensemble the prediction score of all the models in the queue by averaging 596 

the prediction score and using that as the final prediction. For quantitative performance assessment, 597 

we report area under the receiver operating characteristic curve (AUROC) over the test set.  598 

4.6 Spatial Profiling of Gene Groups and visualization 599 

For a given WSI, the spatially resolved contribution of different tissue regions toward the 600 

expression status of a certain gene groups can visualized. We developed an online portal 601 

(http://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore) which can assist user in 602 

spatially resolved cross-linking of genotype-phenotype mapping in terms of these gene groups. 603 

More specifically, the portal uses WSI couped with node level prediction of different gene group 604 

and then show the node level prediction in the form of an interactive heatmap. Additionally, the 605 

tool can also show different histological features when the user hover over a node in the graph.   606 

4.7 Identification of Histological motifs 607 

To uncover cellular and morphometric patterns associated with the expression status (0, or 1) of a 608 

particular gene group we divided patients into two groups (status = 0 and status = 1). For each 609 

group, we select 50 patients whose expression statuses are accurately predicted from their WSIs. 610 

From each of these WSIs, for patients with status = 1, we extract the highest scoring (based on 611 

node-level score) 1% patches, while for status = 0, we extract the lowest scoring patches and then 612 

cluster the patches within each group for getting representative patterns. Within each group (status 613 

= 0, and 1) we cluster the patches using 25-medoid clustering. After clustering, we get 25 visual 614 

patterns (histological motifs) representative of expression status  = 0 and status =1 of a certain 615 

gene group.   616 

4.8 Cellular composition estimations  617 
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We estimated the counts of neoplastic, inflammatory, connective, and normal epithelial cells 618 

present in a patch using our in-house cellular composition predictor ALBRT. ALBRT takes a patch 619 

of size 256 × 256 at a spatial resolution of 0.25 MPP and predicts the counts of the 620 

aforementioned types of cells present in it. We extracted patches of size 256 × 256 at 0.25 MPP 621 

using (x, y) of coordinates of 512 × 512 at 0.50 MPP. For each 512 × 512 patch, we obtained the 622 

cellular composition estimates by aggregating ALBRT-predicted cellular estimates of around 16 623 

256 × 256 patches. The cellularity was computed by summing the counts of neoplastic, 624 

inflammatory, connective and epithelial cells present in a  512 × 512 patch.  625 

4.9 Estimation of mitotic counts 626 

Mitosis detection has been done using the state-of-the-art “mitosis detection: fast and slow” 627 

(MDFS) method [52]. MDFS is a two-stage method where mitotic candidates are first detected 628 

using a fully convolutional neural network and then refined by a deeper CNN classifier. Several 629 

techniques have been incorporated during the training of the MDFS to make it robust against 630 

domain shift problems seen in histology images and generalize better to unseen images. After 631 

detecting mitotic figures, we estimate the patch-level mitotic counts by counting all the detected 632 

mitoses in the patch. 633 

4.10 Training and evaluation of Downstream predictors 634 

We train separate multi-output perceptron for predicting the receptor status, PAM50 molecular 635 

subtypes, Immune subtypes, pathways alteration status, genes point mutation status and copy 636 

number alteration status using 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ∞ predicted gene groups status as features. The 637 

classifier for each downstream task is trained and evaluated using same loss function and training 638 

and validation protocol employed for 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ  training and evaluation. After cross-639 

validation, we get the downstream classifier prediction score for a particular clinical variable of 640 

interest for all patients. For performance we subsample 67% of the patients 1,000 times with 641 

replacement, and compute the AUROC between ground truth and model predicted score.   642 

Data and code availability 643 
Whole slides images (WSIs) and corresponding genomic data and clinical data of all TCGA 644 

patients used in the study can be downloaded from NIH Genomic Data Common Portal at this link: 645 
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https://portal.gdc.cancer.gov/ . All genomic and histological analysis was performed in python. 646 

The deep learning model 𝑆𝑙𝑖𝑑𝑒𝐺𝑟𝑎𝑝ℎ   was developed using PyTorch Geometric library. Code 647 

and documentation of all python script used in the study can be found at: 648 

https://github.com/engrodawood/HiGGsXplore.  649 
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 818 

SFig 1:  Word clouds demonstrating the gene composition of different gene groups.  The color of the gene indicates whether its 
median expression across patients is high (red) or low (blue) when gene group status = 1. The font size of gene within a group 
is proportional to the amount of information that the gene status provides about a  particular gene.  
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 819 

 
SFig 2: Enrichment of gene groups for cancer Hallmark processes is illustrated as 2D scatter plot with the gene group displayed 
along x-axis and the corresponding enriched biological pathways on y-axis. The size of the dot represents the number of genes 
from a specific gene group that has shown enrichment for a particular hallmark process while its color represents the statistical 
significance of association in terms of FDR-corrected p-value. 
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SFig 3: Enrichment of gene groups for GO (Gene ontology) biological processes is shown as 2D scatter plot with the gene 
groups displayed along x-axis and the corresponding enriched biological processes on y-axis. The size of scatter dot represents 
the number of genes from a specific gene group that has shown enrichment for a particular biological process while its color 
represents the statistical significance of the association in terms of FDR-corrected p-value. 
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SFig 4: Enrichment of gene groups for KEGG Pathways is presented as 2D scatter plot with the gene group displayed along x-
axis and the corresponding enriched biological pathways on y-axis. The size of the dot represents the number of genes from a 
specific gene group that has shown enrichment for a particular biological pathway while its color represents the statistical 
significance of association in terms of FDR-corrected p-value. 
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SFig 5: Enrichment of gene groups for cancer WikiPathways is illustrated as 2D scatter plot with the gene group displayed 
along x-axis and the corresponding enriched pathways on y-axis. The size of the dot represents the number of genes from a 
specific gene group that has shown enrichment for a particular pathway while its color represents the statistical significance of 
association in terms of FDR-corrected p-value. 
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SFig 6: Kaplan-Meier (KM) survival curves of progression-free survival (FPI), overall survival (OS), and disease-specific 
survival (DSS) of patients stratified based on gene group statuses. A) KM survival curve of PFI of patients based on G72 and 
G195 status showing that patients can be stratified into high and low risk groups based on G72 and G195 statuses with a 
significant p-value (log-rank test FDR-corrected p-value < 0.05 as shown in KM survival curve. B) KM overall survival curve 
of gene groups G194 and G163 are shown. Overall, we found that the binary status of 3 gene groups (G72, G194 and G163) can 
stratify patients into high and low risk groups with a significant p-value (log-rank test FDR-corrected p-value < 0.05).  C) KM-
curve of 2 (out of 25) gene groups that shows statistically significant association (log-rank test FDR-corrected p-value < 0.05) 
with disease-specific survival are shown. Other gene groups that show statistically significant association with DSS are (G72, 
G163, G194, G80, G123, G82, G10, G76, G165, G156, G120, G53, G142, G25, G144, G61, G113, G150, G151, G175 and 
G189.   
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Best Predicted  Worst Predicted 

Thumbnail 𝑆  Thumbnails 𝑆  

 

0.61 

 

0.00054 

 

0.58 

 

-0.0087 

 

0.56 

 

-0.0098 

 

0.55 

 

-0.0082 

STable 1: Thumbnails of patient WSIs whose gene expression states are best or poorly predicted from histology images using 
cosine similarity (𝑆 ) between ground truth and predicted gene expression states as performance metric.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.14.536756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536756
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 | P a g e  
 

 827 

 
A: Gene groups predicted with high accuracy (AUROC ≥ 0.80).  

 
B: Gene groups predicted with poor accuracy (AUROC ≤ 0.60).  

SFig 7: Association of binary statuses of best and worst predicted gene groups with pathologist-assigned histological 
phenotypes.  The plot uses two color bands one for AUROC and one for Kendall’s Tau correlation. The AUROC is illustrated 
using the jet colormap representing the prediction accuracy of gene group binary status from imaging, while Kendall’s Tau 
correlation between gene group binary status and various histological phenotypes is shown using the seismic colormap. We also 
annotated the AUROC colormap with the numeric value representing the mean AUROC value across test folds.    
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SFig 8: Association of best-predicted gene groups (AUROC ≥ 0.75) with cancer Hallmark processes and disease-specific 
survival. An example 2D scatter plot showing gene groups (one per column) with hallmark processes (one per row).  The size of 
the scatter dot shows the number of genes in a gene group that has shown statistically significant association (FDR adjusted p-
value < 0.01) with a certain biological pathway. In the plot, the p-value is represented by the color of the scatter dots. The top bar 
plot shows the prediction accuracy (AUROC) at which the binary statuses of these gene groups are predicted from histology 
images. Furthermore, gene groups that show statistically significant association with disease-specific survival are annotated with 
a * next to the gene group name.   
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SFig 9: Plot showing the proportion of total correlation explained by each latent factor.   
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