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Physically based (process) models based on mathematical descriptions of water motion are

widely used in river basin management. During the last decade the so-called data-driven models

are becoming more and more common. These models rely upon the methods of computational

intelligence and machine learning, and thus assume the presence of a considerable amount of

data describing the modelled system’s physics (i.e. hydraulic and/or hydrologic phenomena).

This paper is a preface to the special issue on Data Driven Modelling and Evolutionary

Optimization for River Basin Management, and presents a brief overview of the most popular

techniques and some of the experiences of the authors in data-driven modelling relevant to river

basin management. It also identifies the current trends and common pitfalls, provides some

examples of successful applications and mentions the research challenges.
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INTRODUCTION

Modern river basin management is impossible without

adequate hydraulic and hydrologic models – used in

different tasks from scenario analysis to real-time forecast-

ing (Falconer et al. 2005). Numerous papers have been

published on using a physically based approach for

modelling behaviour of river basins, as well as the ways to

classify them. Traditionally the river basin (watershed) was

treated as a lumped, time-invariant, linear, deterministic

system, resulting in the unit hydrograph theory (Sherman

1932), upon which the Nash linear cascade of reservoirs

model (Nash 1957) and the parallel cascade of reservoirs of

Diskin (1964) were built. Other models within this category

are attributed to Dooge (1959), Diskin & Boneh (1975),

Eagleson et al. (1966) and others. Later models have

expanded the lumped linear deterministic approach to a

distributed linear cell approach in which the entire river

basin is partitioned into a tree-like structure built of cells,

with each cell being a sub-watershed (Diskin et al. 1984).

Nowadays the models based on partial differential

equations incorporate sophisticated solvers and are encap-

sulated into modelling environments with advanced inter-

faces and visualisation tools (Abbott 1991; Falconer et al.

2005). They vary in complexity and orientation at different

tasks from general river basin planning like RIBASIM

(2006) to models able to simulate the entire land phase of

the hydrologic cycle like MIKE SHE (2006).

During the last 10–15 years, the advances in ICT

brought the new tools enhancing data acquisition, data

analysis and visualisation; such advances are often associ-

ated with Hydroinformatics. A Geographical Information

System (GIS) connected to remote sensing tools stepped

in for watershed management, providing numerous tools

to support modelling. A GIS-based hydrological model

couples the descriptions of hydrological features on a

spatial scale with the predictive power of models. Several

examples of these can be mentioned: SWAT – a river basin

scale model developed to quantify the impact of land

management practices in large, complex watersheds
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(SWAT 2006); BASINS – a multipurpose environmental

analysis system for performing watershed and water-

quality-based studies, and AVGWLF – a spatial distributed

watershed model based on GWLF (Haith & Shoemaker

1987) for simulating runoff, sediment and nutrient loadings

from a watershed, given variable-size source areas. The

relatively inexpensive satellite technology of today permits

using various types of remote sensing data, and associated

data analysis and pattern recognition techniques, for water

resources management. Hydraulic and hydrologic models

are being more and more complemented by the data-driven

models which are the subject of this paper. Such integrated

systems, coupled with GIS and animation tools, being

incorporated into social and managerial environments, are

often referred to as Hydroinformatics systems, and form

powerful data management and modelling instrumentation

for water managers and decision-makers.

In order to make a step towards the understanding of

data-driven models, it is useful to provide a classification

of models for river basin management. The following types

of models can be distinguished:

(1) a physically based (process) model based on the descrip-

tion of the behaviour, typically based on the first-order

principles from physics, of a phenomenon or system (also

called knowledge-driven or simulation models). In river

hydraulics, theseare the 1Dor 2Dhydrodynamic models,

and in hydrology the lumped conceptual models or

distributed physically based models;

(2) an empirical, or data-driven (DD) model involving

mathematical equations assessed not from the physical

process in the river basin but from analysis of

concurrent input and output time series. Typical

examples here are the rating curves, unit hydrograph

method and various statistical models (linear regression,

multi-linear, ARIMA) and methods of machine learning

discussed later.

Data-driven modelling (DDM) is based on the analysis

of the data characterising the system under study. A model

can then be defined on the basis of connections between

the system state variables (input, internal and output

variables) with only a limited number of assumptions

about the “physical” behaviour of the system. The con-

temporary methods can go much further than the ones used

in conventional empirical modelling in hydraulic engineer-

ing and hydrology. They allow for solving numerical

prediction problems, reconstructing highly nonlinear func-

tions, performing classification, grouping of data and

building rule-based systems.

It should be noted that there is still a certain

scepticism about DDM among many hydrologists and

water resources specialists. They view the induction of

models from datasets as a computational exercise, because

in their opinion the derivation is not related to physical

principles and mathematical reasoning (See et al. 2007).

Another issue is the necessity of using sophisticated data-

driven models: are they actually needed when traditional

statistical models (typically linear regression or ARIMA-

class models) are, in many cases, accurate enough? Some

of the concerns of this nature are presented, for example,

by Gaume & Gosset (2003) and Han et al. (2007). In their

excellent recent paper, Abrahart & See (2007) address

some of these problems and demonstrate that the existing

nonlinear hydrological relationships, which are so import-

ant when building flow forecasting models for river basin

management, are effectively captured by a neural network,

the most widely used DDM method. This discussion about

what model is the best may continue for a while, but in

our view it is important to stress that there are always

situations when one model type cannot be applied or

suffers from inadequacies and can be well complemented

or replaced by another one.

DDM is a common topic of research in the framework

of Hydroinformatics (Abbott 1991), and, subsequently, is an

important topic at the International Conferences on

Hydroinformatics, European Geosciences Union (sub-divi-

sion on Hydroinformatics), and at other conferences

related to water management. During the last decade the

number of researchers active in this area has considerably

increased, so did the number of publications, and naturally

they have the tendency of clustering in the form of volumes

or special issues of the journals. An example is this special

issue of the Journal of Hydroinformatics. Other examples

include the edited volume to be published by Springer

(Abrahart et al. 2008), recent special issues of the Hydro-

logical Sciences Journal (2007), Hydrology and Earth

System Sciences (Abrahart et al. 2007b) and the Neural

Networks Journal (Cherkassky et al. 2006) where some of
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the challenges of DDM that are very relevant for the

purpose of this paper are discussed.

This paper presents a general overview and some of the

experiences of the authors in data-driven modelling relevant

to river basin management as a preface to this special issue

on Data Driven Modelling and Evolutionary Optimization

for River Basin Management. It also identifies the current

trends and common pitfalls, mentions challenges and

provides some examples of successful applications.

ESSENCE OF DATA-DRIVEN MODELLING

Definitions

There are a number of (overlapping) areas contributing to

DDM: data mining, knowledge discovery in databases,

computational intelligence, machine learning, intelligent

data analysis, soft computing and pattern recognition.

Computational intelligence (CI) incorporates three large

areas: neural networks, fuzzy systems and evolutionary

computing. Soft computing (SC) is the area that emerged

from fuzzy logic, but currently also incorporates many

techniques of CI. Machine learning (ML) is an area of

computer science that was for a long time considered a sub-

area of artificial intelligence (AI) that concentrates on the

theoretical foundations of learning from data. Data mining

(DM) and knowledge discovery in databases (KDD) used

ML methods and are focused typically at very large

databases and are associated with applications in banking,

financial services and customer resources management.

Data-driven modelling can thus be considered as an

approach to modelling that focuses on using the CI

(particularly ML) methods in building models that would

complement or replace the “knowledge-driven” models

describing physical behaviour. DDM uses the methods

developed in the fields mentioned above, and the role of a

modeller is to tune them to a particular application area.

“Modelling” in the name stresses the fact that this activity is

close in its objectives to traditional approaches to modelling,

and follows the traditionally accepted modelling steps, and

that it does not comprise the analysis or mining of data only.

Examples of the most common methods used in data-driven

modelling of river basin systems are: statistical methods,

artificial neural networks and fuzzy rule-based systems.

It is important to note that a component of CI,

evolutionary and genetic algorithms (GA), is primarily

oriented towards optimisation that can be used in model

calibration and model structure optimisation (Savic 2005;

Ostfeld & Preis 2005), or in traditional water resources

optimization problems like (multi-objective) reservoir

optimisation (Kim et al. 2006: in this study a popular

multi-objective genetic algorithm (NSGA-II) was used).

The main part of data-driven modelling is, in fact,

learning which incorporates the so-far unknown mappings

(or dependencies) between a system’s inputs and its outputs

from the available data (Mitchell 1997, Figure 1). By data we

understand the known samples that are combinations of

inputs and corresponding outputs. As such, a dependence

(viz. mapping or “model”) is discovered (induced), which

can be used to operation predict (or effectively deduce) the

future system’s outputs from the known input values.

By data we usually understand a set K of examples (or

instances) representedby theduple kx k,ykl,wherek ¼ 1, … ,K,

vector xk ¼ {x1, … ,xn}k, vector yk ¼ {y1, … ,ym}k, n ¼ number

of inputs andm ¼ number of outputs. The process of building

a function (or “mapping”, or “model”) y ¼ f (x) is called

training. Very often only one output is considered, so m ¼ 1.

In the context of river basin modelling the inputs and

outputs are typically real numbers (xk, yk [ Rn), so the

main learning problem solved is numerical prediction

(regression). Sometimes the problems of clustering and

classification are solved as well (see, for example, Hall &

Minns 1999; Hannah et al. 2000; Harris et al. 2000).

The process of building a data-driven model follows

general principles adopted in modelling: study the problem

– collect data – select model structure – build the model – test

the model and (possibly) iterate. In DDM, not only the model

parameters, but also the model structure, is often subject to

Figure 1 | Learning in data-driven modelling.
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optimisation. Generally, following the so-called Occam’s

razor principle (Mitchell 1997), parsimonious models are

valued (as simple as possible, but no simpler). An example of

such a parsimonious model could be a linear regression model

vs a nonlinear one, or a neural network with a small number of

hidden nodes. Such models can be built by the deliberate use

of the so-called regularisation when the objective function

representing the overall model performance includes not only

the model error term but also a term that increases in value

with the increase of model complexity represented, e.g. by the

number terms in the equation or the number of hidden nodes

in a neural network.

It is worth mentioning that DDM is sometimes used

to build models of models (replicating, for example,

physically based models such as 1D hydrodynamic

models) rather than models of natural systems; such

models are often referred to as surrogate, emulation or

meta-models (see, e.g., Solomatine & Torres 1996; Khu

et al. 2004).

Use of data: methodological issues and trivial pitfalls

There are a couple of methodological issues related to the

use of data for building a DDM. They may be considered

trivial by experts in machine learning but are not always

appreciated by hydraulic engineers or hydrologists building

or using such models.

After the model is trained but before it is put into

operation, it has to be tested (or verified) by some form of

error measurement (e.g. root mean squared error) on the

test dataset. To test the model during training yet another

data set is needed – the cross-validation set. As a model

gradually improves as a result of the training process, the

error on the training data will be decreasing, but the cross-

validation error will first be decreasing, but then will start to

increase (effect of overfitting), so training should be stopped

when the error on the cross-validation dataset starts to

increase. If these principles are respected, then there is a

hope that the model will generalise well, that is its

prediction error on unseen data will be small.

Note that in an important class of machine learning

models – support vector machines – a different approach is

taken: it is to build the model that would have the best

generalisation ability possible without relying explicitly on

the cross-validation set (Vapnik 1998).

In connection to the issues covered above, there are two

common pitfalls, especially characteristic of DDM appli-

cations where time series are involved, that are worth

mentioning herein.

(1) The first pitfall relates to the construction of the

three mentioned datasets on the basis of available data.

The three sets should be statistically similar, i.e. should

have similar distributions or, at least, similar ranges, mean

and variance. This can be achieved by careful selection of

examples for each dataset to ensure such statistical

similarity, by random sampling data from the whole

dataset, or employing an optimisation procedure resulting

in sets with predefined properties (Bowden et al. 2002). A

popular approach leading to approximate statistical

similarity of training and cross-validation sets is to use

the ten-fold validation method when a model is built ten

times, trained each time on 9/10th of the whole set of

available data and validated on 1/10th (number of runs is

not necessarily ten). An extreme version of this method is

the “leave-one-out” method when K models are build

using K-1 examples and not using one (every time

different). The resulting model is either one of the models

trained, or an ensemble of all the models built, possibly

with the weighted outputs. Note that for generation of the

statistically similar training data sets for building a series of

similar but different models, one should typically rely on

the well-developed statistical resampling methods like the

bootstrap originated by B. Tibshirani in the 1970s (see

Efron&Tibshirani 1993) where (in its basic form)Kdata is

randomly selected from K original data.The problem is

that, if one of these procedures is followed, the data will

not always be contiguous, so that, for example, it would

not be possible to visualise a hydrograph when the model

is fed with the test set. There is nothing wrong with such a

model if the “time structure” of all the datasets is

preserved. Such models, however, are reluctantly

accepted by practitioners since they are so different from

the traditional physically based models that always

generate contiguous time series. A solution in such a

situation is to group the data into hydrological events

(i.e. contiguous blocks of data) and to try to ensure the

presence of similar events in all the three datasets.
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(2) Another pitfall can be encountered when a modeller

tries to optimise the model structure (e.g. number of hidden

nodes in an ANN) by using the test set. This is, of course,

methodologically incorrect since the role of the test set is

to judge the final model performance in operation. Our

experience is, however, that this principle is not always

respected even by experienced modellers; we could refer to

one of the recent international competitions of data-driven

models of water systems where both training and test sets

weregiven to thecontestants (with thebest intentionsof the

organisers), but indeed inevitably pushing some of them to

use the test set to optimize the performance of their model.

A question is, of course, what to do if the dataset is not

large enough to allow for building all three sets of substantial

size. Often the modellers choose not to build a cross-

validation set at all, with the hope that the model trained on

the training set would perform well on the test set as well.

Another option is to perform ten-fold cross-validation.

Data preparation and choice of input variables

In any modelling exercise an important issue is data

preparation and the choice of such variables that would be

able to represent the modelled system in a best possible way.

An excellent reference to the first issue is the book by

Pyle (1999). We cannot provide here the details but one

thing has to be stressed: researchers excited by the power of

the new modelling techniques often are not spending

enough effort on proper data preparation.

An interesting study of the influence of different data

transformation methods (linear, logarithmic and seasonal

transformations, histogram equalization and a transform-

ation to normality) was undertaken by Bowden et al. (2003).

They found that the model using the linear transformation

resulted in the lowest RMSE and more complex transform-

ations did not improve the model (note, however, that the

study is based only on one case study to forecast salinity in a

river in Australia 14 days in advance). Our own experience

shows that it is sometimes useful to apply the smoothing

filters to the hydrological time series.

Choice of variables is an important subject and some

studies suffer from the lack of relevant analysis. Apart from

the expert judgement and visual inspection, there are formal

methods that help in making this choice more justified, and

the reader can be directed to the paper by Bowden et al.

(2005) for an overview of these. Our own experience

with using the Average Mutual Information (Solomatine

& Dulal 2003) show that this simple and reliable method

can help in selection of relevant input variables.

It is our hope that the adequate data preparation and

the rational and formalized choice of variables will become

a standard part of any modelling study.

POPULAR METHODS AND TYPICAL APPLICATIONS

Most engineering or water management problems are for-

mulated as prediction of real-valued variables; this is a

regression problem (not to confuse with linear regression, a

particularcaseof regression).Machine learningaimsatfinding

a function that would best approximate some data and this

prompts for the use of the corresponding methods already

available like linear regression, polynomial functions like

splines or orthogonal polynomial functions. Most of the

data-driven models use combinations of many simple

functions. In essence, training aims at optimising the number

of these functions and the values of their parameters (given the

functions’ class).

Multilayer perceptron (MLP) is a typical example of an

artificial neural network (ANN) (Haykin 1999). It consists of

several layers of mutually interconnected nodes (neurons),

each of which receives several inputs, calculates the weighted

sum of them and then passes the result to a non-linear

“squashing” function. In this way the inputs to a MLP model

are subjected to a multi-parameter nonlinear transformation

so that the resulting model is able to approximate complex

input–output relationships. Training of MLP is, in fact, solving

the problem of minimising the model error (typically, mean

squared error) by determining the optimal set of weights.

As the principle of backpropagation for training of

MLPs was found and perfected in the 1970–80s (Werbos

1994), this type of ANN has become the most popular

machine learning tool. Various types of ANNs are widely

used for prediction and classification.

Note that backpropagation is a principle that made it

possible to use gradient-based methods for MLP training,

and that permits the usage of various optimization

algorithms – from the simplistic versions of steepest descent
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schemes to much more effective methods like conjugate

gradient or Broydon–Fletcher–Goldfarb–Shanno (BFGS)

methods (Press et al. 2007). In this respect we believe it is

not fully correct to name MLP a “backpropagation

network” since it can be trained using various methods,

for example, direct search methods like GA. The use of

these less efficient (much slower) algorithms is justified

when gradient-based backpropagation training prematurely

converges to the local optimum.

MLP ANNs are known to have several dozens of

successful applications in river basin management and

related problems, for example:

† Modelling rainfall–runoff processes: Hsu et al. (1995);

Minns & Hall (1996); Dawson & Wilby (1998); Dibike

et al. (1999); Abrahart & See (2000); Govindaraju &

Ramachandra Rao (2001); Hu et al. (2007); Abrahart et al.

(2007a);

† Building an ANN-based intelligent controller for real-

time control of water levels in the channels of polders

(Lobbrecht & Solomatine 1999);

† Modelling river stage-discharge relationships (Sudheer

& Jain 2003; Bhattacharya & Solomatine 2005);

† Building a surrogate (emulation, meta-) model for:

– replicating the behaviour of hydrodynamic and

hydrological models of a river basin where ANNs

are used in model-based optimal control of a reservoir

(Solomatine & Torres 1996);

– building an assisting surrogate model in calibration of

a rainfall–runoff model (Khu et al. 2004);

– emulating by an MLP network and replacing

the hydrologic simulation component of multi-objective

decision support model for watershed management

(Muleta&Nicklow 2004). In this study an alternative to

the backpropagation training was used – a direct search

method (evolutionary algorithm) that reportedly

allowed for avoiding local minima during training.

Most theoretical problems related to MLP have been

solved and it should be seen as a quite reliable, well-

understood method.

Radial basis functions (RBF) could be seen as a sensible

alternative to the use of complex polynomials. The idea is to

approximate some function y ¼ f(x) by a superposition of J

functions F(x,s), where s is a parameter characterising the

span,or “width”,of the function in the input space.FunctionsF

are typically “bell-shaped” (e.g. a Gaussian function) so that

they are defined in the proximity to some “representative”

locations (centres) wj in n-dimensional input space and their

values are close to zero far from these centres. The aim of

learning here is in finding the positions of centres wj and the

parameters of the functions f(x). This can be accomplished by

building a radial-basis function neural network; its training

allows identifying these unknown parameters. The centres wj

of the RBFs can be chosen using a clustering algorithm,

the parameters of the Gaussian can be found based on the

spread (variance) of data in each cluster, and it can be shown

that the weights can be found by solving a system of linear

equations. This is done for a certain number of RBFs, with

theexhaustiveoptimisationrunacross thenumberofRBFs ina

certain range. Conceptually, RBF networks are close to

the modular models considered below. RBF networks were

widely used for problems similar to those where MLP

networks were used. The following examples could be

mentioned:

† Sudheer& Jain (2003)used RBF ANNs for modelling river

stage-discharge relationships and showed that, in the

considered case study, RBF ANNs were superior to MLPs;

† Moradkhani et al. (2004) used RBF ANNs for predicting

hourly streamflow hydrographs for the daily flow for a

river in the USA as a case study, and demonstrated their

accuracy if compared to other numerical prediction

models. In this study RBF was combined with the

self-organising feature maps used to identify the clusters

of data;

† Nor et al. (2007) used RBF ANNs for the same purpose;

however, just for the hourly flow and considering only

storm events in the two catchments in Malaysia as case

studies.

Genetic programming (GP) and evolutionary

regression. GP is a symbolic regression method in which

the specific model structure is not chosen a priori, but is a

result of the search process. Various elementary mathemat-

ical functions, constants and arithmetic operations are

combined in one function and the algorithm tries to build

a model recombining these building blocks in one formula.

The function structure is represented as a tree and since

the resulting function is highly nonlinear and often
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non-differentiable, it is optimised by a randomised search

method – usually a GA. An overview of GP applications in

hydrology can be found in Babovic & Keijzer (2005).

One of the criticisms towardsGP relates to the fact that the

formulaegenerated on the basis of the combinationofmultiple

elementary functions are often extremely complex and carry

no physical insight. To address this issue, an augmented

version of GP – a dimensionally aware GP – has been

proposed (Keijzer & Babovic 2002). It constraints the search

and ensures that the output has the expected physical

dimension by allowing only the formulae with variables with

particular dimensions (being the combination of length, time,

mass, etc.). This leads to the formula(e) with the dimensional

semantics and increases the chance of them having some

physical meaning. The usefulness of this approach was

demonstrated in the experiments of generating a formula for

the Chezy coefficient using the data generated by a numerical

model of river flow through flexible vegetation in wetlands

(Babovic & Keijzer 2000).

Laucelli et al. (2007) present an application of GP to the

problem of forecasting the groundwater heads in an aquifer

in Italy; in this study the authors also employed averaging of

several models built on the data subsets generated by

bootstrap.

In evolutionary regression (Giustolisi & Savic 2006), a

method similar to GP, the elementary functions are chosen

from a limited set and the structure of the overall function is

fixed. Typically, a polynomial regression equation is used

and the coefficients are found by GA. This method

overcomes some shortcomings of GP, such as the compu-

tational requirements, the number of parameters to tune

and the complexity of the resulting symbolic models. It was

used, for example, for modelling groundwater level (Gius-

tolisi et al. 2007a) and river temperature (Giustolisi et al.

2007b) and the high accuracy and transparency of the

resulting models were reported.

Fuzzy rule-based systems (FRBS). Fuzzy logic was

introduced by Lotfi Zadeh (1965) and since then it has found

multiple successful applications, mainly in control theory

(e.g. Kosko 1997). Fuzzy rule-based systems can be built by

interviewing human experts, or by processing historical data

and thus formingadata-drivenmodel.These rulesare“patches”

of local models overlapped throughout the parameter space,

using a sort of interpolation at a lower level to represent

patterns in complex nonlinear relationships. The basics of the

data-driven approach and its use in a number of water-related

applications can be found in Bárdossy & Duckstein (1995).

Typically the following rules are considered:

IF x1 isA1;r AND…AND xn isAn;r THEN y isB

where {x1, … ,xn} ¼ x ¼ input vector; Aim ¼ fuzzy set; r

¼ index of the rule, r ¼ 1,…R. Fuzzy sets Air (defined as

membership functions with values ranging from 0 to 1) are

used to partition the input space into overlapping regions

(for each input these are intervals). The structure of B in the

consequent could be either a fuzzy set (then such a model is

called a Mamdani model), or a function y ¼ f(x), often

linear (and then the model is referred to as a Takagi–

Sugeno–Kang (TSK) model). The model output is calcu-

lated as a weighted combination of the R rules’ responses.

Output of the Mamdani model is fuzzy (a membership

function of irregular shape), so the crisp output has to be

calculated by the so-called defuzzification operator. Note

that in the TSK model, each of the r rules can be interpreted

as local models valid for certain regions in the input space

defined by the antecedent and overlapping fuzzy sets Air.

Resemblance to the RBF ANN is obvious.

FRBS were effectively used for drought assessment (Pesti

et al. 1996); prediction of precipitation events (Abebe et al.

2000a); control of water levels in polder areas (Lobbrecht &

Solomatine 1999); modelling rainfall-discharge dynamics (Ver-

nieuwe et al. 2005). One of the limitations of FRBS is that the

demand for data grows exponentially with an increase in the

number of input variables. It is worth mentioning an important

area where the principles and methods of fuzzy logic were also

successfully used, which is analysis of model uncertainty. The

uncertainty of inputs and parameters is described in fuzzy terms

(fuzzynumbers) rather thanprobabilisticones, and it ispossible

to generate the membership function (fuzzy number) char-

acterising the output. This approach was applied, for example,

in groundwater modelling (Abebe et al. 2000b) and rainfall–

runoff modelling (Maskey et al. 2004).

Support vector machines (SVM). This machine learning

method is based on the extension of the idea of identifying a

hyperplane that separates two classes in classification. It is

closely linked to the statistical learning theory initiated by

V.Vapnik in the1970sat the InstituteofControlSciencesof the
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Russian Academy of Science (Vapnik 1998). Originally

developed for classification, it was extended to solving predic-

tion problems, and in this capacity was used in hydrology-

related tasks (note that currently some researchers attribute

SVMtothegroupof theso-calledkernelmachines).Dibikeetal.

(2001) and Liong & Sivapragasam (2002) reported using SVMs

forfloodmanagementand inpredictionof riverwaterflowsand

stages. Bray & Han (2004) addressed the issue of tuning

SVMs for rainfall–runoff modelling. In all cases SVM-based

predictors have shown good results in many cases superseding

other DDM methods in accuracy (not always, however).

Chaos theory and nonlinear dynamics appear to be

useful for time series forecasting when a time series carries

enough information about the behaviour of the system

(Abarbanel 1996). Let a time series {x1, x2, … , xt, … , xn } be

given (e.g. a sequence of water levels). The state of the system at

time t can be represented by a vector yt inm-dimensional state

space xt, xt2t, … , xt2(m 2 1)t, where t is the delay time. The

whole time series can then be represented by a sequence of

such vectors {yt}: {ym, ymþ1, … , yn }. If the original time series

exhibits the so-called chaotic properties (manifested by its

equivalent trajectory in the phase space following a quasi-

periodic pattern), then the methods of chaos theory can be

used to predict the future values of y, and hence of x. For this,

the so-called local model predicting the future value of yhas to

be built in phase space; this is an instance-based learning

model, or a regression model (linear or nonlinear) built on the

basis of the points representing the “moves in the phase space”

of the neighbours of the current y. The predictive capacity of

chaos theory, based on an idea that the system behaves in the

future in a similar manner as in the (distant) past, supersedes

thatof the linearmodels likeARIMA.Inpracticalapplications,

the delay time t and the dimensionm need to be appropriately

chosen (or determined by optimisation, for example minimis-

ing the model forecast errorbyGA) inorder to fully capture the

dynamic structure of the time series. Multivariate models

embody time series representing several variables; they

capture the interdependences of these variables and can be

interpreted as the input–output data-driven models.

The chaos theory-based approach was used by Babovic

et al. (2000) for predicting water levels at the Venice lagoon.

Solomatine et al. (2000) and Velickov et al. (2003) used

chaos theory to predict the surge water level in the Rijn river

estuary and the two-hourly prediction error was at least on

par with the accuracy of hydrodynamic models. Phoon et al.

(2002) employed nonlinear dynamics for forecasting hydro-

logic time series. Note that the chaos-based methods do not

have universal applicability: they can be successfully

applied only when time series (or their combination) have

certain properties, for example are periodic, or indeed

exhibit properties of chaotic behaviour (or close to it) and

when time series are of adequate (considerable) length.

Note also a certain link between the chaos theory that uses

local models and the principles of instance-based learning

(considered below).

One of the research challenges relates to a quite a

practical issue: the development of more reliable adaptive

routines for determining the number of neighbours used in

the local models.

Instance-based learning (IBL). In IBL (Mitchell 1997)

no model is built: classification or numeric prediction is

made directly by combining instances from the training data

set that are close (typically in the Euclidean sense) to the

new vector xq of inputs (query point). In fact, IBL methods

construct a local approximation to the modelled function

that applies well in the immediate neighbourhood of the

new query instance encountered. Thus it describes a very

complex target function as a collection of less complex local

approximations, and often demonstrates competitive per-

formance when compared, for example, to ANNs.

A typical representative of IBL is the k-nearest neigh-

bour (k-NN) method. For nominal output, the predicted

class will just be the most common value among k training

examples nearest to the query point xq. For real valued

output, the estimate is the mean value of the k-nearest-

neighbouring examples, possibly weighted according to their

distance to xq. Further extensions are known as locally

weighted regression (LWR) when the regression model is

built on k nearest instances: the training instances are

assigned weights according to their distance to xq and the

regression equations are generated on the weighted data.

Karlsson & Yakowitz (1987) introduced this method in

the context of water issues, focusing, however, only on

(single-variate) time series forecasts. Galeati (1990) demon-

strated the applicability of the k-NN method (with the

vectors composed of the lagged rainfall and flow values) for

daily discharge forecasting and favourably compared it to

the statistical ARX model. Shamseldin & O’Connor (1996)

10 D. P. Solomatine and A. Ostfeld | Data-driven modelling Journal of Hydroinformatics | 10.1 | 2008



used the k-NN method for adjusting the parameters of

the linear perturbation model for river flow forecasting.

Toth et al. (2000) compared the k-NN approach to other

time series prediction methods in a problem of short-term

rainfall forecasting. Ostfeld & Salomons (2005) developed a

hybrid genetic–instance-based learning algorithm through

linking a GA with a k-NN scheme for calibrating the 2D

surface quantity and water quality model CE-QUAL-W2.

Solomatine et al. (2007) explored a number of IBL methods

and tested their applicability in short-term hydrologic

forecasting.

To conclude the coverage of the popular data-driven

methods it can be mentioned that most of them are developed

in the computational intelligence community. The main

challenges for the researchers in hydroinformatics are in

testing various combinations of these methods for particular

water-related problems, in combining them with the optim-

isation techniques, in developing the robust modelling

procedures able to work with the noisy data, and in developing

methods providing the model uncertainty estimates.

SOME OF THE MODERN TRENDS

Data-driven modelling has passed the initial stage in which

researchers, excited by the power of new machine learning

techniques, rushed to search for all possible data available

to feed (often indiscriminately) into a model with the hope

of constructing a good predictor. The power of basic data-

driven modelling techniques has been already proven and

the research community is now working towards develop-

ment of the optimal model architectures and avenues for

making data-driven models more robust, understandable

and really useful for managers.

As regards the new modelling architectures, we will

address herein an issue of the so-called modular models,

being combinations of “local” models, with which we

obtained lately some experience.

The usefulness of a model should be measured not only by

its methodological correctnessandaccuracy, but mainlyby the

degree to which a model would be able to help a water

manager or a decision-maker. In river basin management

physically based models are widely applied and typically are

found to be useful tools, so one of the challenges here is in the

inclusion of DDM into existing decision-making frameworks,

while taking into consideration both the system’s physics and

the data availability.

Another aspect of usefulness is the adequate reflection

of reality which is uncertain, and in this respect developing

the methods of dealing with the data and model uncertainty

is currently an important issue. We will briefly address this

issue as well.

Combination of “local” specialized models

Physical processes in rivers and river basins are multi-

stationary, are composed of a number of sub-processes

(e.g. related to various hydrologic conditions or river flow

regimes), and their accurate modelling by the building of one

single (“global”) model is sometimes not possible. For river

basins usually several physically based models are built, each

responsible for modelling various aspects of the basin:

hydraulic, hydrology, groundwater, etc. Typically, only one

comprehensive model is developed for each of these areas. For

example, a hydrologic model should be able to represent all

complexity of hydrologic processes in the basin. If the

processes are described with a sufficient level of detail, and

properly encapsulated in the model, such amodel may become

an accurate representation of reality and is often adequate.

Sometimes, however, such a global model is not capable

of describing all the sub-processes adequately and is not

equally accurate for all hydrological conditions. In this case

an option is to try to identify such sub-processes and to

build separate models for each of them. Another approach

is to build several similar models for the same process and

to combine them in an “ensemble”; an example of such an

approach is reported by Xiong et al. (2001), where a Takagi–

Sugeno fuzzy model is used to combine conceptual rain-

fall–runoff models, and of course by many researchers using

ensembles of meteorological and hydrological models.

In the case of using data-driven models, the situation is

similar. A single DDM, e.g. ANN, often is not accurate for all

possible situations.Thecollecteddata (trainingset)can besplit

intoanumberof subsets andseparatemodelswill be trainedon

these subsets (regions). These models are called local, or

expert, models and the overall model a modular model (MM),

or a committee machine (Haykin 1999). The way models are
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built and combined can be subjected to optimisation, resulting

in an overall model with the highest performance.

In the process of building, training and using a MM, two

decisions have to be made: (A) which module should receive

which training pattern (splitting problem) and (B) how the

outputs of the modules should be combined to form the

output of the final output of the system (combining problem)

(Figure 2). Accordingly, two decision units have to be built, or

one unit performing both functions. Such a unit is called an

integrating unit or a gating network (a reference to a neural

network often used for this purpose). It should be delivered to

the user of the final model, along with the trained modules.

Functioning of the units A and B could be different during

training and operation. Classification of modular models

(different from the one of Haykin (1999)) now follows.

Soft splitting of the training set. The group of the

statistically driven approaches with “soft” splits of input

space are represented by mixtures of experts ( Jordan &

Jacobs 1995), bagging (bootstrap aggregating; Breiman 1996)

and boosting (Freund & Schapire 1997). Here we will briefly

introduce boosting only.

Boosting (its advanced version,AdaBoost, is described by

Freund&Schapire (1997)) can be seen as a method of building

a series of modular models using soft splits. In the first iteration

the basis model is trained (this will be the first module) on the

whole dataset. The probability for each data vector to be

selected for the next iteration is adjusted: it is increased if

prediction for this data vector was poor. Using this distribution

thenewdatasetof the samesize is sampled fromtheoriginal set

and the new model is built. This process is repeated n times,

thus resulting in n modules, each trained on different

(intersecting) subsets. The combining unit B uses the weighted

sum of the modules, where the weight is dependent on the

accuracy of the module on the sample used. During training,

unit A arranges the recalculationof thedistributionandproper

resampling, and during operation it simply distributes each

new input vector to all modules. Boosting was originally

developed for binary classification problems and was

later extended to solve multiclass classification problems

(AdaBoost.M2) and regression problems (AdaBoost.R). An

improved version of boosting for regression isAdaBoost.RTby

Shrestha & Solomatine (2006a). They demonstrated its

advantages in comparison to other boosting algorithms and

other learning methods on several benchmarking problems

and two problems of river flow forecasting.

Hard splitting of the training set. A number of methods

do not combine the outputs of different models but explicitly

use only one of them, the most appropriate one (a particular

case when the weights of other expert models are zero). Such

methods use “hard” splits of input space into regions. Each

individual local model is trained individually on the subsets of

instances contained in these regions, and finally the output of

only one specialized model is taken into consideration. This

can be done manually by experts on the basis of domain

knowledge. Another way is to use information theory and to

perform splitting progressively; examples are decision trees

(Quinlan 1986), regression trees (Breiman et al. 1984) or M5

model trees (Quinlan 1992).

Several examples of such an approach can be mentioned.

See&Openshaw (2000) built different neural networks based

on different types of hydrological events. Hsu et al. (2002)

presented a method of reproducing the catchment response

throughmultiple local linear regression modelswhichare built

for specific flow conditions relating to the clusters identified by

a Kohonennetwork.Solomatine&Xue (2004)used M5model

trees and neural networks in a flood-forecasting problem,

combining the models valid for particular hydrologic con-

ditions only (see the next subsection).Wangetal. (2006)useda

combination of ANNs for forecasting flow: different networks

were trained on the data subsets determined by applying either

a threshold discharge value or clustering in the space of inputs

(lagged discharges only but no rainfall data, however). Jain &

Srinivasulu (2006) applied a mixture of neural networks and

conceptual techniques to model the different segments of a

decomposed flow hydrograph. Corzo & Solomatine (2007)

used several methods of baseflow separation, built differentFigure 2 | Combining specialised local models.
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models for base and excess flow and combined these models,

ensuring optimal overall model performance.

Regression treesandM5model trees. This classofmodels

is not yet popular in river management, but the known

applications to water issues show their high performance

(Witten & Frank 2000). These machine-learning techniques

use the following idea: split the parameter space into areas

(subspaces) and build in each of them a separate regression

model of zero or first order (Figure 3). In M5 trees models in

leaves are linear. The data set T is either associated with a leaf

(where a regression model is built) or with a node (where some

test is chosen that splitsT into subsets corresponding to the test

outcomes). The same process is applied recursively to the

subsets. In the case of numeric inputs the Boolean tests ai at a

node used to split the data set have the form “xi , C” where i

and C are chosen to minimise the standard deviation in the

subsets resulting from the split. Mn are local specialised

models built for subsets filtered down to a given tree leaf. The

resulting model can be seen as a committee of linear models

being specialized on the certain subsets of the training set

belonging to particular regions of the input space.

Combination of linear models was used in dynamic

hydrology already in the 1970s (e.g. multi-linear models by

Becker & Kundzewicz (1987)). The M5 model tree approach

advances it further by introducing algorithms based on

information theory that makes it possible to automatically

split the multi-dimensional parameter space and to generate

a range of models according to the overall quality criterion.

MTs may serve as an alternative to nonlinear models like

ANNs and are often almost as accurate as ANNs, but have

some important advantages: training of MTs is much faster

than ANNs, and it always converges, and the results can be

easily understood by decision-makers. Moreover, it is easy to

generate a range of MTs varying in complexity and accuracy.

An early (if not the first) application of M5 model trees in

river flow forecasting was reported by Kompare et al. (1997).

Solomatine&Dulal (2003)used theM5model tree in rainfall–

runoffmodellingof a river sub-basin in Italy.Stravs etal. (2006)

used M5 trees in modelling the precipitation interception in

the context of the Dragonja river basin case study.

It is worth mentioning that the models (modules) on

Figure 2 may not be necessarily data-driven ones but rather

have various natures, and may include expert judgements. If

an overall model uses various types of models, it can be called

a hybrid model. This is an important emerging research trend

and a challenge in modelling of water-related assets.

Inclusion of a human expert and domain knowledge

One of the important challenges in data-driven modelling is

incorporation of domain knowledge into the modelling

process. A typical machine-learning algorithm minimises the

training (cross-validation) error, seeing it as the ultimate

indicator of the algorithm’s performance, so it is purely data-

driven. Domain experts, however, may have other consider-

ations in judging the quality of the model, and want to have

certain input into building a model. A human expert always

participates in the process of model building, but his/her role

could be very different. During the development of a DDM

direct inclusion of an expert may increase the model accuracy

and trust in the modelling results. An expert can contribute to

building a DDM by bringing in the knowledge about the

system under question (like is done in the dimensionally aware

GP considered above), determining the model structure (as in

the M5flex algorithm by Solomatine & Siek (2004)), in

performing advanced analysis to select the most relevant

variables (Solomatine&Dulal 2003; Bowden et al. 2005), andFigure 3 | Building a tree-like modular model (M5 model tree).
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in deciding what data should be used and how it should be

structured (as is done by most modellers).

We will address here a particular problem of including an

expert and using the domain knowledge in the process of

building modular models (Figure 2). In this context, the role

for a human expert could be, for example, in making decisions

(A) and (B) (or approving these made by an algorithm) and, of

course, in the choice of models used in each unit.

Inclusion of a human expert. It is possible to mention a

number of studies where an attempt is made to include a

human expert in the process of building a modular model. In

solving a flow forecasting problem, Solomatine&Xue (2004)

introduced a human expert to determine the hydrological

conditions for which separate DDMs were built. Solomatine

& Siek (2004), Solomatine & Siek (2006) presented an

M5flex algorithm, allowing an expert to choose the splitting

rules in building M5 trees, directing thus the process of

building a DDM, and demonstrated its accuracy in hydro-

logic modelling. Jain & Srinivasulu (2006) and Corzo &

Solomatine (2007) also applied decomposition of the flow

hydrograph by a threshold value and then built the separate

ANNs for low and high flow regimes. All these studies

demonstrated the higher accuracy of the resulting modular

models if compared to the models built to represent all

possible regimes of the modelled system.

The study by Solomatine & Xue (2004) will be used as an

illustration of such an approach. In it, the flow predictions in

the Huai river basin (China) were made on the basis of

previous flows and precipitation, and a committee hybrid

model was built. The problem was to predict flowQtþ1 one day

ahead. The following notations are used: flows on the previous

and the current day as Qt21 and Qt, respectively; precipitation

on the previous day as Pt21; moving average (2 days) of the

precipitation two days before as Pmov2t22; moving average

(3 days) precipitation four days before as Pmov3t24.

As a first step the domain experts were asked to identify

several hydrological conditions (rules), used to split the

input space into regions. Some of the rules follow:

(1) Qt21 $ 1000 m3/s (high flows)

(2) Qt21 , 1000 m3/s AND Qt $ 200 m3/s (medium flows)

(3) Pt21 . 50 AND Pmov2t22 , 5 AND Pmov3t24 , 5

(flood condition due to the short but intensive rainfall

after a period of dry weather).

For each of these conditions separate local models were

built (M5 model trees and ANNs). The presented approach

demonstrated that combination of several “local” models

improves the accuracy of prediction.

Inclusion of domain knowledge in algorithmic form. A

human expert can be seen, of course, as a supplier of domain

knowledge. However, recently there is an increased interest

in exploring the possibilities of encapsulating the domain

knowledge in algorithmic form and thus making it part of a

data-driven model, thus allowing for performing optimis-

ation of the latter. One such approach is being developed by

Corzo & Solomatine (2007) and is used to improve the

accuracy of a predictive rainfall–runoff model. In it, separate

ANN models for baseflow and excess flow are built. For

baseflow separation two methods are used: constant slope

method and a recurrent filter. These methods, representing

the hydrological knowledge about this phenomenon, are

algorithmically implemented and run on the training dataset;

then surrogate classifiers are trained to replicate them (since

their straightforward implementation needs future data and it

is not available during operation). The resulting modular

model undergoes an exhaustive optimisation to ensure

optimal accuracy. Application of this approach to two

catchments demonstrates its value, especially for longer

forecasting horizons.

DATA-DRIVEN MODELS OF UNCERTAINTY

Modelling uncertainty was always an issue associated with

river basin management, but recently the interest in this

problem and, accordingly, the number of publications has

dramatically increased. One of the reasons is probably purely

technical: computer power and advances in networked

computer clusters nowadays allow for running Monte Carlo-

based analysis of parametric uncertainty of quite complex

models. However, there is, of course, a deeper reason: general

recognitionof the inadequacy of “point predictions”generated

by most water models to the requirements of real-life water

management. An important trend of the last several years is

complementing the modelling studies of river basins with the

sensitivity and uncertainty analysis (Montanari&Brath 2004).

Recently we have made a step towards building the data-

driven models of uncertainty.
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Error prediction models. Consider a model simulating

or predicting certain water-related variables (referred to as a

primary model). This model’s outputs are compared to the

recorded data and the errors are calculated. Another model,

a data-driven model, is trained on the recorded errors of the

primary model and can be used to correct errors of the

primary model. In the context of river modelling, this

primary model would be typically a physically based model,

but can be a data-driven model as well.

Such an approach was employed in a number of studies.

Shamseldin & O’Connor (2001) used ANNs to update runoff

forecasts: the simulated flows from a model and the current

and previously observed flows were used as input, and the

corresponding observed flow as the target output. Updates of

daily flow forecasts for a lead-time of up to four days were

made, and the ANN models gave more accurate improve-

ments than autoregressive models.Lekkas et al. (2001) showed

that error prediction improves real-time flow forecasting,

especially when the forecasting model is poor. Babovic et al.

(2001) used ANN to predict errors of 2D hydrodynamic

models. Abebe& Price (2004) used ANN to correct the errors

ofa routingmodelof theRiverWye in theUK.Solomatineetal.

(2007) built an ANN-based rainfall–runoff model whose

outputs were corrected by an instance-based learning model.

Uncertainty prediction models. Data-driven (machine-

learning) methods may be helpful not only in modelling

natural processes, but also in building models of the error

probability distributions for physically based models. Recently

Shrestha & Solomatine (2006b) presented an approach

termed UNcertainty Estimation based on local model Errors

(UNEEC). It is based on an idea to build local data-driven

models predicting the properties of the error distribution, and

uses clustering and fuzzy logic. This is a distribution-free, non-

parametric method to model the propagation of integral

uncertainty through the models and it was tested in forecasting

river flows in a flood context.

One of the interesting research directions in building

the models of uncertainty is finding the ways of combining

the fuzzy and probabilistic descriptors of uncertainty in a

data-driven model, and building robust predictors of model

uncertainty originating from various sources.

TWO EXAMPLES

We are presenting two examples that illustrate several

machine-learning methods used in solving river-basin-

related problems. They also demonstrate how data-driven

models are built in terms of choosing appropriate inputs,

data processing and model optimisation.

DDM for forecasting river flows

Solomatine et al. (2007) used decision trees and k-NN in

classification of river flow levels according to their severity in a

river flood forecasting problem in Nepal. In this problem a

medium-sized foothill-fed river in the Bagmati basin was

considered,havingan area of about 3700 km2.Timeseriesdata

of rainfall at three stations within the basin with daily sampling

over eight years (1988–1995) were collected. Daily flows were

recorded at one station so this precluded modelling the

routing. Weight factors were calculated using the Thiessen

polygon. The daily evapotranspiration was computed using

the modified Penman method recommended by FAO.

Generally a rainfall–runoff data-driven model predicting

flow T days ahead was sought in the form presented in Table 1.

First, dependence analysis of input and output

variables was accomplished by visual inspection. Then the

Table 1 | Forecasting data-driven hydrologic model (Bagmati catchment)

Available data Measured rainfalls Rt, flows Qt, T 1,… , E

Inputs (L and M are to identified as a result of model optimization) Lagged rainfalls Rt2t, t ¼ 0, … , L

Forecasting model (forecast horizon T ) Lagged flows Qt2c, c ¼ 0, … , M

(F is typically multiple linear regression model, ANN, SVM, or M5 model tree) QtþT ¼ f (Rt, Rt21, … , Rt2L, Qt, … , Qt2M)
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interdependences between variables and the lags t were

established using correlation and average mutual infor-

mation (AMI) analyses (Solomatine & Dulal 2003; Bowden

et al. 2005). By visual inspection of several precipitation

events the maximum value of peak-to-peak time lags of

rainfall and runoff was found to be close to one day. The

cross-correlation analysis of the rainfall and runoff gave a

maximum correlation of 0.78 for one day lag, so this lag was

accepted as the average lag time of rainfall. This value of this

lag was also consistent with AMI analysis. The autocorrela-

tion function of runoff drops rapidly within three time steps

(days). As a result, the model predicting flow one day ahead

on the basis of five variables was set to be of the form

Qtþ1 ¼ fðREt22;REt21;REt;Qt21;QtÞ ð1Þ

An important problem is splitting the data into training

and testing datasets. The ways to do it and the possible

problems have been mentioned previously. In this study we

used two approaches – a method based on randomization

to create statistically similar training, cross-validation and

testsets, and a method based on hydrological analysis of

data to generate three contiguous datasets, trying to ensure

at the same time at least some statistical resemblance of

these sets. In the latter one eight years of data sets (2919

records) were split as follows: the first 919 records were

used as testing data set and the remaining records as

training and cross-validation data. Each instance was

represented by a vector in five-dimensional space (since

there are five inputs) accompanied by the associated value

of its output variable.

In the study of Solomatine et al. (2007) several methods

of instance-based learning were applied (including local

weighted regression), along with ANN, M5 model tree

models and a lumped conceptual model. The results show

high accuracy of all data-driven methods, especially the

weighted local regression. Corzo & Solomatine (2007) also

applied a modular ANN model to the same case study, and

have shown that building two separate models related to

baseflow and excess flow, with the global optimisation of

the resulting model structure, increases the prediction

accuracy, if compared to a single model. The mentioned

papers provide more details of the experiments conducted

and the visualisation of the results.

GA-based optimization of M5 model trees for predicting

river basin output flow and contaminant transport

This example application is based on Preis et al. (2006) and

Ostfeld & Preis (2005) for the flow and the contaminant

predictions at Lake Kinneret (the Sea of Galilee) watershed,

located in northern Israel. The Lake Kinneret watershed is

about 2730 km2 (2070 in Israel, with the rest in Lebanon), is

inhabited by about 200 000 people, organised into 25

municipalities, and three cities (in the Israeli part). The

watershedoutlet is LakeKinneret,which is themost important

surface water resource in Israel, providing approximately 35%

of its annual drinking water demand.

Factors such as the rapid increase in Israel’s population

over the last decade along with an increase in its standard of

living, the Israeli peace agreement with Jordan and the

increasingly frequent droughts in the region are consistently

intensifying the demand for freshwater, and hence the need

to remove larger volumes of water from the lake. These

factors further increase the likelihood of water quality

decline; thus preserving the lake from further pollution is a

foremost concern.

The developed data-driven model is aimed at predicting

flow and contaminant transports within the watershed,

Figure 4 | Schematics of the hybrid model tree – genetic algorithm scheme.
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Figure 5 | Measured and simulated flow (normalised), test data, 1997–1998.

Figure 6 | Measured and simulated total nitrogen (normalised), test data, 1997–1998.

Figure 7 | Measured and simulated total phosphorus (normalised) test data, 1997–1998.
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down to its outlet – Lake Kinneret. The model, entitled

KWAT (Kinneret Watershed Analysis Tool), follows a

hybrid set-up combining GA and model trees (MT)

(Figure 4). The objective of the Flow section of the model

is to tune the values of a vector of coefficients a that

multiply the average rainfall time series intensity I(t) (the

input) imposed on a watershed so as to calibrate its outlet

flows Q(t). The Water quality section of the model then

uses these optimal flows Q(t) and the effective optimal

rainfall intensities I
*

eðtÞ to adjust the values of a vector of

coefficients b so as to calibrate the watershed outlet

concentrations C(t).

In the Flow section the following variables are used:

t ¼ time; DT ¼ lag in time (e.g. the concentration time of

the watershed); a ¼ vector of coefficients (the GA decision

variables); I(t) ¼ time series of the average rainfall intensity

imposed on the watershed (e.g. using the average rainfall

Theisen method); ET(t) ¼ evapotranspiration time series;

Ie(t) ¼ time series of the effective rainfall; Q(t) ¼ flow time

series at the watershed outlet; and Fitness ¼ the fitness of

the model tree (MT) outcome analysis estimated through a

least square type equation.

In the Water quality section the variables used are:

I
*

eðtÞ ¼ the optimal effective rainfall intensity time series

(i.e. the outcome of the quantity model); Cin(t) ¼ the

input concentration time series imposed on the watershed;

b ¼ vector of coefficients (the GA decision variables);

Ce(t) ¼ an “effective” resultant concentration time series;

and C(t) ¼ concentration time series at the watershed outlet.

To reduce the computational complexity and to increase

the model robustness, the dimension of the a and b coefficient

vectors are set to be much less than the dimension of t. This is

accomplished by dividing the time series of the rainfall

intensity I(t) to a set of category domains of no more than six

(i.e. the rainfall intensity is divided into six categories, with a

and b values assigned to each).

Figures 5–7 show results for the flow and water

quality models as applied to a sub-watershed of Lake

Kinneret (Meshushim watershed – 140 km2, Ostfeld &

Preis (2005)). Figure 5 shows the results for the flow model

test data set for 1997–1998. Figures 6 and 7 describe the

results for the water quality model test data set for 1997–

1998 for predicting total nitrogen and total phosphorus,

respectively.

It can be seen from Figures 5–7 that the predictions

received by the developed flow and water quality models

were, in general, in good agreement with the measurements.

However, the models were less successful in predicting high

flows and water quality concentrations. This is an inherent

limitation of a data-driven technique whose accuracy is

primarily dependent on the quality of the dataset used for

training. The larger a dataset, the greater is the chance to

have better predictions. It is anticipated that increasing the

number of training instances for the proposed model will

also improve its prediction accuracy.

CONCLUSIONS

Data-driven modelling and computational intelligence

methods have proven their applicability to various problems

related to river basin management: modelling, short-term

forecasting, classification of hydrology-related data, and

even automated generation of flood inundation maps based

on aerial photos (not discussed in this paper due to lack of

space, see, e.g., Velickov et al. (2000)), etc. A particular

problem will benefit from data-driven modelling if: (1) there

is a considerable amount of data available; (2) there are no

considerable changes to the system during the period

covered by the model; (3) it is difficult to build adequate

knowledge-driven simulation models due to the lack of

understanding and/or to the ability to satisfactorily con-

struct a mathematical model of the underlying processes. Of

course, data-driven models can also be useful when there is

a necessity to validate the simulation results of physically

based models with other types of models.

It canbesaid that it ispractically impossible to recommend

one particular type of data-driven model for a given problem.

Since water-related applications are often characterised by the

data being noisy and of poor quality, it is advisable to apply

various types of techniques and to compare and/or combine

the results. For example, M5 model trees, combining local and

global properties, could very well complement ANNs, and be

more easily accepted by decision-makers due to their reliance

on simple linear models.

We have considered and demonstrated some of the new

trends in data-driven modelling and mentioned a number of

research challenges. It is worth mentioning one challenge of

18 D. P. Solomatine and A. Ostfeld | Data-driven modelling Journal of Hydroinformatics | 10.1 | 2008



a general nature: development of hybrid models by

combining the models of different types and following

different modelling paradigms, including the combination of

data-driven physically based models, and finding effective

ways of including of a human expert in the modelling cycle.
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