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ABSTRACT

Speech enhancement is a core problem in audio signal pro-
cessing with commercial applications in devices as diverse
as mobile phones, conference call systems, smart assistants,
and hearing aids. An essential component in the design of
speech enhancement algorithms is acoustic source localiza-
tion. Speaker localization is also directly applicable to many
other audio related tasks, e.g., automated camera steering,
teleconferencing systems, and robot audition.

From a signal processing perspective, speaker localization
is the task of mapping multichannel speech signals to 3-D
source coordinates. To obtain viable solutions for this map-
ping, an accurate description of the source wave propagation
captured by the respective acoustic channel is required. In
fact, the acoustic channels can be considered as the spa-
tial fingerprints characterizing the positions of each of the
sources in a reverberant enclosure. These fingerprints repre-
sent complex reflection patterns stemming from the surfaces
and objects characterizing the enclosure. Hence, they are

Bracha Laufer-Goldshtein, Ronen Talmon and Sharon Gannot (2020), “Data-Driven
Multi-Microphone Speaker Localization on Manifolds”, Foundations and Trends R© in
Signal Processing: Vol. 14, No. 1–2, pp 1–161. DOI: 10.1561/2000000098.
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usually modelled by a very large number of coefficients,
resulting in an intricate high-dimensional representation.

We claim that in static acoustic environments, despite the
high dimensional representation, the difference between
acoustic channels can be attributed mainly to changes in
the source position. Thus, the true intrinsic dimensionality
of the variations of the acoustic channels are significantly
smaller than the number of variables commonly used to
represent them; that is, the acoustic channels pertain to a
low-dimensional manifold that can be inferred from data
using nonlinear dimensionality reduction techniques. A com-
prehensive experimental study carried out in a real-life acous-
tic environment demonstrates the validity of the proposed
manifold-based paradigm.

Motivated by this result, several high-performance localiza-
tion and tracking methods were developed by harnessing
novel mathematical tools for learning over manifolds, includ-
ing diffusion maps, semi-supervised learning, optimization
in reproducing kernel Hilbert spaces and Gaussian process
inference. We present two localization algorithms that were
designed for a single microphone array of two microphones.
These algorithms were extended to several distributed ar-
rays by merging the information of the different manifolds
associated with each array. Tracking a moving source was
also addressed by a data-driven propagation model relating
movements on the abstract manifold to the actual source
displacements. This data-driven propagation model was
combined with a classical localization approach, in a hybrid
algorithm that ties together the two worlds of classical and
data-driven localization, while gaining the benefits of both.
We show that the proposed algorithms outperform state-of-
the-art localization methods, and obtain high accuracy in
challenging noisy and reverberant environments.

Full text available at: http://dx.doi.org/10.1561/2000000098



1

Background

Acoustic source localization is an essential component in various audio
applications, such as automated camera steering and teleconferencing
systems [65], speaker separation [101], robot audition [53, 62, 114, 121,
157] and drone audition [160]. For example, smart speakers require
localization capabilities in order to determine the speakers in the scene
and their role. Based on the location information, they can construct a
direct-path steering vector to enhance the desired speaker. They may
also carry out location specific tasks, such as switching the lights on
and off, steering a camera, etc.

Driven by its wide applicability, the localization problem has at-
tracted significant research attention, resulting in the development of
a large variety of localization methods during the last few decades.
Nevertheless, the main challenge still facing the research community
is to achieve robust localization in adverse conditions, namely, in the
presence of background noise and reverberations, which are the main
factors in the performance degradation of localization algorithms.

In recent years, the main paradigm in localization research was
based on physical models that rely on certain assumptions regarding the
propagation model and the statistics of the source signal and the noise.

3
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4 Background

However, for real-world scenarios, characterized by complex reflection
patterns, intricate descriptive models are required, which are difficult to
estimate. Recently, the interest in applying learning-based localization
approaches has been growing. Typically, these approaches assume that
a training set of prerecorded measurements is given in advance. Based
on this training data, they attempt to learn the characteristics of
the acoustic environment directly from the data rather than using a
predefined physical model.

1.1 Room Acoustics

Acoustic source localization is the task of recovering the coordinates
of an acoustic source based on the signals measured in an array of
microphones. Estimating only the direction of the source with respect
to the array is referred to as the direction of arrival (DOA) estimation.
In free-field (anechoic) environment and assuming far-field conditions,
the signal measured by a microphone is a delayed version of the sound
wave emitted by the source. For a uniform linear array (ULA), the time
difference of arrival (TDOA) with respect to a reference microphone is
geometrically related to the source DOA.

In an enclosure, the source sound propagates along multiple acoustic
paths including the direct-path propagation as well as the reflections
from the surfaces defining the enclosure, e.g., walls, floor, ceiling and
objects, what is known as reverberation. As a result, the signal measured
in the microphone can be expressed as the convolution between the
source signal and the acoustic impulse response (AIR) relating the
source and the microphone. Typical AIR consists of hundreds of taps
that can be divided into three major parts: the direct path, the early
reflections and the late reflections. While the early reflections correspond
to the first few reflections and are sparsely distributed over time, the
late reflections are highly dense and form an exponentially decreasing
tail. An illustration of a typical AIR is given in Figure 1.1. An example
of an AIR recorded at the Bar-Ilan University (BIU) acoustic lab with
reverberation time of 610 ms and drawn from the database in [58] is
given in Figure 1.2.

Full text available at: http://dx.doi.org/10.1561/2000000098
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Figure 1.1: Illustration of a typical room impulse response in a reverberant
environment.
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Figure 1.2: Example of room impulse response recorded at the BIU acoustic lab
with reverberation time of 610 ms.

The reflections can be modeled using the image source model (ISM)
by an infinite series of image sources located in mirrored rooms expand-
ing in all three dimensions [4, 119]. However, the late reflections part
does not have a distinct directionality since it consists of a superposition
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6 Background

Direct Path

Reflective Paths

Figure 1.3: Illustration of a typical acoustic environment.

of thousands of reflections, and therefore can be statistically modeled
using the law of large numbers as a zero-mean Gaussian noise signal with
a decaying amplitude [120]. When the reverberation time is high, the
late reflections can be modeled as a diffuse, homogeneous and isotropic
field, which power is equal in all directions [29, 54].

The presence of reverberation complicates the localization task since
the sound comes from many directions at the same time. In many
real-life scenarios, noise sources, such as those stemming from electronic
devices, air-conditioning systems and traffic, are usually present and
affect the quality of the measured microphone signals and the ability
of localizing the desired source. An illustration of a typical noisy and
reverberant acoustic environment is given in Figure 1.3.

One important application of speaker localization is in the domain
of beamformer design. Beamformers are spatial filters applied to mul-
tichannel measurements and are widely used in speech enhancement
applications, namely to obtain noise reduction, dereverberation or sepa-
ration of several mixed sources. Beamforming is obtained by multiplying
the measured microphone signals by a weight function and then sum-
ming them together (usually per frequency bin). The weights of the
beamformer are designed to utilize the spatial diversity of the different
sound components and the noise, namely, that they come from different
directions. A common spatial filter is the delay-and-sum (DS) beam-
former, whose weights compensate the delay differences between the

Full text available at: http://dx.doi.org/10.1561/2000000098



1.2. Classical Localization and Tracking 7

microphones, and hence require the knowledge or the estimation of
the TDOAs associated with the desired source. This way, the output
of the beamformer is focused on the desired source while minimizing
noise and reverberation arriving from other directions. DOA estimates
are also utilized for more sophisticated beamforming and separation
schemes [104, 155].

Conventional beamformers that are built on the basis of the direct
sound only treat the reflections as interference, and hence neglect a major
part of the sound energy. They also ignore the correlation between the
direct sound and its reflections, which may result in a distorted output.
In [48, 102] it was shown that utilizing the entire acoustic propagation
path, may significantly improve the performance of speech enhancement
algorithms. Since the dimension of the full propagation path is very
high, it may result in higher spatial resolution and better separation
capabilities, even with a small number of microphones. For example,
it can be used to extract sources with the same line-of-sight, which is
impossible for beamformers that are based solely on the DOA [58]. This
observation motivates the use of the full acoustic propagation path also
for the localization task, as adopted by the methods presented in this
monograph.

1.2 Classical Localization and Tracking

Classical localization methods usually focus on the direct path only, and
ignore or mitigate the reflective part. Traditional localization methods
can be broadly divided into three main categories: methods based on
the maximization of the steered response power (SRP) of a beamformer
output, high-resolution spectral estimation techniques, and dual-stage
approaches that rely on a TDOA estimation. In the first category, the
position is estimated directly from the measured signals after they have
been filtered and summed together. Commonly, the maximum likelihood
(ML) criterion is applied, which in the case of a single source leads to
searching the maxima of the output power of a beamformer steered to
different locations [171]. The second category consists of high resolution
methods, such as the multiple signal classification (MUSIC) [137] and
estimation of signal parameters via rotational invariance (ESPRIT) [126]

Full text available at: http://dx.doi.org/10.1561/2000000098



8 Background

algorithms, which are based on the spectral analysis of the correlation
matrix of the measured signals. Subspace methods can also be applied
using spherical harmonics [1, 110, 154]. In the third category, a dual stage
approach is applied. In the first stage, the TDOAs of different pairs of
microphones are estimated and collected. The different TDOA readings
correspond to single-sided hyperbolic hyperplanes (in 3D) representing
possible positions. In the second stage, the geometric intersection of
these hyperplanes is recovered, which yields the estimated position [17,
65, 135]. In these dual-step approaches, the quality of the localization is
strongly dependent on the quality of the TDOA estimation in the first
stage.

The classical method for TDOA estimation is the generalized cross-
correlation (GCC) algorithm introduced by Knapp and Carter in their
landmark paper [73]. Many improvements on the GCC method for
reverberant environments were proposed, e.g., in [16, 42, 127, 136, 145].
Among these methods for TDOA estimation in reverberant conditions,
there are subspace methods based on adaptive eigenvalue decomposi-
tion [11] and generalized eigenvalue decomposition [38]. Of special impor-
tance is the steered response power phase transformation (SRP-PHAT)
algorithm proposed in [34]. This method is related to both the first
and third categories, since it combines in a single step the features of a
steered beamformer with those of the phase transform weighting of the
GCC algorithm.

Localization capabilities can be enhanced using model-based meth-
ods, assuming certain structures of either the speech signal or the
acoustic channels. In the study of [36], an autoregressive (AR) mod-
eling for the speech components was used, and in [66, 67] the sources
were modeled as sums of harmonically related sinusoids, which describe
many musical instruments and voiced speech. A model for the early
reflections of the acoustic channels, based on which the early reflections
were iteratively estimated, was presented in [68].

In tracking scenarios, the source is moving in the enclosure in
a continuous trajectory, implying that source positions in successive
time steps are related. Bayesian inference approaches, which model the
varying source position as a stochastic process, are widely used. These
methods commonly rely on estimated TDOAs, leading to nonlinear

Full text available at: http://dx.doi.org/10.1561/2000000098



1.2. Classical Localization and Tracking 9

and non-Gaussian models, which can be solved, using, for example, the
unscented Kalman filter, the extended Kalman filter (EKF) [47], and
particle filters [97, 158, 162].

In real environments, the presence of noise or reverberations fre-
quently yields unreliable observations with spurious peaks, which may
lead to severe performance degradation. Several attempts to mitigate
the harmful effect of noise and reverberations were made. In [175], an
extended particle filter (EPF) solution was proposed, where an EKF
is used to derive an optimal importance function for a particle filter.
A multiple-hypothesis model accounting for the multipath nature of
the sound propagation in reverberant enclosures was presented in [158],
and a combination of this model with an EPF was presented in [92].
In [6, 43], a tracker was proposed based on a probability hypothesis den-
sity (PHD) filter, which is a first moment approximation of the target
probability density. Robust tracking methods that use special array con-
stellations were also proposed, such as spherical microphone arrays [77]
and distributed networks [174, 176]. In [156], a robust tracker based on a
distributed unscented Kalman filter was proposed, in which an interact-
ing multiple model [15] is used for accommodating the different possible
motion dynamics of the speaker, yielding a smoothed trajectory of the
speaker’s movement in noisy and reverberant environments. Distributed
acoustic tracking that incorporates the coherent-to-diffuse ratio as a
measure of DOA reliability was proposed in [44]. An additional approach
for enhancing the localization robustness is to fuse several observation
modalities, as demonstrated in audio-visual tracking methods [51, 149,
177, 178].

Localization and tracking of multiple speakers have also been widely
investigated. Many approaches rely on the W-disjoint property of the
speech signal in the short-time Fourier transform (STFT) domain [172],
namely, that each time-frequency (TF) bin is dominated by a single
speaker. In [99], an SRP estimate of the source position is obtained for
each TF bin, and the different estimates are clustered to the different
speakers using a mixture of Gaussians (MoG) model. In [100], an MoG
model was proposed, in which the centroids of the different Gaussians
in the mixture are associated with a grid of candidate source positions.
Using Expectation-Maximization (EM) iterations, the TF bins are

Full text available at: http://dx.doi.org/10.1561/2000000098



10 Background

clustered to the different Gaussians, and the locations of the sources
are estimated by selecting the Gaussians with the largest number of
TF bins associations. The algorithm was extended to multiple-speaker
tracking using two recursive EM variants in [139]. A further extension
to distributed networks was proposed in [40]. Several improvements in
noisy and reverberant conditions were presented in [41, 94, 163, 164].

We conclude that in the adverse conditions of noise and reverbera-
tion the capabilities of most of the classical localization and tracking
approaches are limited. The main problem is that the reverberant nature
of real-world acoustic scenarios leads to intricate acoustic channels with
complex reflection patterns. Only approximated models, relying on some
predefined statistical or physical assumptions, exist, which are unable to
describe the acoustic channels comprehensively. In the presence of noise
and reverberation, inaccurate modeling and model estimation errors
frequently result in a degraded localization and tracking performance.

1.3 Data-Driven Localization and Tracking

Learning-based approaches have been proposed for both microphone
array and binaural localization. In the binaural hearing context, Dele-
forge and Horaud proposed a probabilistic piecewise affine regression
model that infers the localization-to-interaural data mapping and its
inverse [31]. They extended this approach to the case of multiple sources
using the variational EM framework [32, 33]. In [106], another approach
was presented based on a Gaussian Mixture Model (GMM), which was
used to learn the azimuth-dependent distribution of the binaural feature
space. In [167], a binaural localization method was proposed in which
the mutual information between each of the spatial cues and the cor-
responding source location is assessed. A method for DOA estimation
of multiple sources using an EM clustering approach was presented
in [169]. A method for localizing a source positioned behind an obstacle
blocking the direct propagation path was presented in [72]. The algo-
rithm uses co-sparse data analysis based on the physical model of the
wave propagation. The model was extended in [14] to the case where
the physical properties of the enclosure are not known in advance.

Full text available at: http://dx.doi.org/10.1561/2000000098



1.3. Data-Driven Localization and Tracking 11

Recently, an increasing effort has been made to adopt deep neu-
ral networks (DNN) models for supervised localization using various
network architectures and different type of input features [30, 95, 96,
170]. In the study in [168], GCC-based feature vectors were extracted
and used for training a multilayer perceptron neural network, whose
output is the source DOA. The eigenvectors of the spatial correlation
matrix served as input features in [147] for a hierarchical network that
integrates sub-band information for single-speaker localization. An ex-
tension to multi-speaker localization was presented in [146], and an
adaptation mechanism that resolves the problem of mismatch in train-
ing and test characteristics was derived in [148]. In [23], a convolution
neural network (CNN) based classification method for broadband DOA
estimation was proposed, where the phase component of the short-time
Fourier transform coefficients of the received microphone signals was
directly fed into the CNN. The assumption of disjoint speaker activities
was utilized in [24] to train a CNN using synthesized noise signals for
multi-speaker localization. A likelihood-based encoding of the network
output, which naturally allows the detection of an arbitrary number
of sources, was presented in [60]. In [2], a convolution and recurrent
neural network (CRNN) was proposed for estimating the DOA of mul-
tiple sources. No explicit feature extraction step is performed, as the
magnitudes and phases of the spectrograms of all the channels are
used directly as input to the network. For the same task, a simpler
CRNN architecture that utilizes acoustic intensity features as inputs
was proposed in [118].

Speaker localization can be utilized in multichannel ASR systems
that commonly has a two-stage processing step of speech enhancement,
including localization, beamforming and postfiltering, and acoustic
modeling. In a recent line of works [93, 128–133] it was proposed to
apply the multichannel enhancement jointly with acoustic modeling in a
deep neural network framework. In [128] it was proposed to use the raw
waveforms, rather than the log-mel features, for a single-channel speech
recognition task. In the proposed architecture, the first layer is a time-
convolutional layer, which can be thought of as a filterbank followed by
a nonlinearity, and the output of this layer is passed to a Convolutional,
Long Short-Term Memory Deep Neural Network (CLDNN) that learns
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the acoustic model. This method was extended to a multichannel setting
in [129], showing that the proposed architecture learns to apply spatial
filtering and outperforms delay-and-sum beamformer constructed with
the true TDOAs. Additional improvements for this model were presented
in [93, 130–133].

Most of the DNN-based localization approaches are formulated as
a classification problem designed to produce a quantized estimate at
a predefined grid of fixed locations. However, when addressed as a
continuous regression problem, localization accuracy can be improved.
An additional major problem of DNN-based localization methods is
that they require a large amount of training data, the acquisition of
which is frequently very difficult and time-consuming. In addition, these
methods are highly prone to overfitting, and there is no guarantee they
can generalize well to different acoustic scenarios beyond that used
during training.

1.4 Manifold-Based Localization and Tracking

In this monograph we present a novel family of localization and tracking
methods. As opposed to classical localization methods that usually
ignore the richness of the acoustic propagation path, the methods
presented here represent a new paradigm, in which the full intricate
reflection patterns are utilized. This way we show that the intricate
acoustic reflection patterns define a fingerprint, uniquely characterizing
the source location in the enclosure. To deal with the complexity of the
acoustic propagation we harness the power of manifold learning, which
explores structures in high-dimensional data and extract simplified
informative representations that capture its controlling parameters.
We will show that the collection of acoustic fingerprints pertain to a
low-dimensional acoustic manifold. This is due to the fact that the
intrinsic degrees of freedom (DoF) in acoustic responses are limited
to a small number of variables (e.g., room dimensions, source and
microphone positions, and refection coefficients). In a fixed environment
and microphone constellation, the acoustic fingerprints intrinsically
differ only by the source position. Based on this new paradigm we
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present data-driven algorithms and inference methodologies for source
localization and tracking.

The first attempt to address the localization problem using the man-
ifold paradigm was by developing a data-driven and semi-supervised
source localization algorithms based on two-microphone measurements.
The aim is to accurately recover the inverse mapping between the acous-
tic fingerprints and their corresponding locations. The first algorithm
is based on an interpolation of training positions with weights that
are determined based on the diffusion distance between samples. The
second algorithm is based on the concept of manifold regularization in a
reproducing kernel Hilbert space (RKHS), which extends the standard
supervised estimation framework by adding an extra regularization term,
imposing a smoothness constraint on possible solutions with respect to
a manifold learned in a data-driven manner.

The mapping between the acoustic channel and the source loca-
tion can be estimated using a Bayesian inference framework, which
is analogous to the manifold regularization approach. In the Bayesian
formulation, the mapping is modeled as a Gaussian process with a
manifold-based prior, which relies on the geometric structure of the
manifold. The Bayesian approach and the regularized optimization
problem defined in an RKHS both give rise to the same estimators,
provided that the same kernel function is used as the covariance function
of the Gaussian process and as the reproducing kernel of the RKHS,
respectively.

The Bayesian framework facilitates the extension of the single node
(microphone pair) setup to an ad hoc network of several microphone
pairs. Each node represents a different viewpoint that may be associated
with a specific manifold. The information from the different manifolds
is merged by defining a multiple manifold Gaussian process, which is
obtained by averaging the individual Gaussian processes defined for
each node. The resulting algorithm increases the spatial separation and
improves the ability to accurately localize the source, outperforming
state-of-the-art localization methods in challenging noise and reverbera-
tion conditions.

The Bayesian approach also enabled the extension of the static
localization method to a dynamic scenario with a moving source. A new
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data-driven propagation model of the source movement is derived using
a Bayesian formulation. The statistical properties of the acoustic fin-
gerprints on the manifold induce a natural propagation model of the
source movement that can replace the widely employed random walk
or Langevin models. The commonly-used state-space representation of
tracking problems, mainly employed by Kalman filtering methods, served
as a convenient platform to unify classical and data-driven methods.
Two data-modalities with different properties, extracted from the same
microphone measurements, were combined under a unified (extended)
Kalman filter. The time-difference of arrival (TDOA) readings of the
classical regime and the acoustic fingerprints of the data-driven regime
are unified in a hybrid algorithm that alternates between the estimates
produced by both. The resulting hybrid algorithm demonstrates accu-
rate tracking in adverse acoustic conditions and outperforms competing
methods based on only one data modality, namely a TDOA-based or a
learning-based approach.

Compared to most existing data-driven localization methods, the
presented methods are semi-supervised, i.e., they can be implemented
using a flexible amount of training data with only a small set of measure-
ments with calibrated source positions. These methods also extend to
distributed array constellations, dynamic scenarios of moving speakers
and can be combined with classical localization approaches in a hybrid
manner.

1.5 Outline of Monograph

The remainder of the monograph is organized as follows. Some mathe-
matical background on manifold learning methods is given in Section 2.
The localization problem is formulated in Section 3, presenting the
measured microphone signals, the features extracted from the measure-
ments and the available training information. Section 4 introduces the
paradigm of the acoustic manifold and provides supporting simulation
results. Based on this paradigm, two manifold-based localization meth-
ods using a single node of two microphones are presented in Section 5,
based on the diffusion distance as well as optimization with manifold
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Figure 1.4: Diagram summarizing our latest publications in the field and the
relevant sections where they are discussed.

regularization in an RKHS. A Bayesian formulation of the RKHS op-
timization is discussed in Section 6. Based on this formulation, an
extension to multiple-node localization and tracking are presented in
Sections 7 and 8, respectively. A diagram summarizing our latest publi-
cations in the field and the relevant sections where they are discussed are
illustrated in Figure 1.4. A nomenclature listing the different symbols
used in this monograph and their meanings is given in Table 1.1.
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Table 1.1: Nomenclature.

Indexes

m Node (microphone pair) index, m = {1, . . . , M}
o Microphone index in each node, o = {1, 2}
i Sample index
t Continuous/discrete time index, or time-steps of a

Markov process
k Frequency index

Sizes

nL No. of labelled training samples
nU No. of unlabelled training samples
nD No. of training samples, nD = nL + nU

nT No. of test samples
nA Total no. of samples in both training and test sets,

nA = nD + nT

D Dimension of relative transfer functions (RTFs) in the
original space

d Dimension of embedded space, d ≪ D

Topological spaces

Mm The manifold associated with RTFs of the mth node
Hk Reproducing kernel Hilbert space (RKHS)

Functions

κ(·, ·) Standard kernel function measuring similarity between
samples

κ̃(·, ·) Manifold-based kernel function
f(·) A function mapping between an RTF and one

coordinate of source position
Φd,t(·) Diffusion maps of RTFs into an embedding of

dimension d and time scale t

Scalars

V m
o (k, p) Acoustic transfer function (ATF) relating the source at

position p and the (m, o)th microphone
Hm(k, p) RTF associated with the source at position p and the

mt node, Hm(k, p) = V m
2

(k, p)/V m
1

(k, p)
λl The lth singular-value of transition matrix/graph

Laplacian

Continued.
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Table 1.1: Continued.

Vectors

hm
i A RTF vector of the mth node and ith sample,

hm
i ∈ R

D

hi A concatenation of the RTF vectors of all M nodes,
hi =

[

[h1

i ]T , . . . , [hM
i ]T

]T

pi Source position of the ith sample in Cartesian or polar
coordinate system

ϕl The lth right singular-vector of transition matrix/graph
Laplacian

Matrices

W Affinity matrix between samples, Wij = κ(hi, hj)
S Degree matrix, Sii =

∑n

j=1
Wij

P Transition matrix, P = S−1W

M Graph Laplacian, M = S − W

K Reproducing kernel matrix, Kij = κ(hi, hj)
Σ Covariance matrix of samples of a Gaussian process,

Σij = κ(hi, hj)
Σ̃ Manifold-based covariance matrix of samples of a

Gaussian process, Σ̃ij = κ̃(hi, hj)
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