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Data-driven multivariable controller design using Ellipsoidal Unfalsified

Control

Jeroen van Helvoort, Bram de Jager and Maarten Steinbuch

Abstract— Ellipsoidal Unfalsified Control is a data-driven,
plant-model-free control design method. In this work, this
framework is extended to cover full-block multivariable con-
trollers. A new controller structure and a sequential update
procedure are proposed. A simulation example shows the
effectiveness of the method.

I. INTRODUCTION

Unfalsified Control is an emerging, data-driven control

design method that uses merely measured input/output data

of the system to be controlled, without any plant model.

As a consequence, the approximations and assumptions

introduced in the plant modeling step are omitted. Additional

motives to support data-driven control design are, e.g., a

priori definition of controller complexity and adaptation to

specific disturbances.

In recent work, the control design method of Ellipsoidal

Unfalsified Control (EUC) is introduced [1], [2]. EUC

originates from the Unfalsified Control paradigm, as is

introduced in [3]. In this method, the ability of controllers

to meet a given performance criterium is evaluated

by employment of a fictitious reference signal. This

mathematical “trick” enables the evaluation of controllers

without the need to actually implement them. If this

ability is achieved for a specific controller, that controller

is “unfalsified” for the current measurement data. By

considering the intersection of the sets of unfalsified

controllers for all time instances, a recursive algorithm is

constructed.

In early works on Unfalsified Control, the control parameter

space was gridded, resulting in a finite, but often large,

set of candidate controllers. This restriction is lifted by

applying a quadratic performance requirement to a control

law, where the control parameters appear affine [4]. As

a result, the region of unfalsified control parameters is

continuous and can be described by an ellipsoid, resulting

in simple algebraic equations to describe the entire set.

In Ellipsoidal Unfalsified Control [1], the ellipsoidal

description of the region of unfalsified controllers is

combined with an l∞ performance requirement. This

combination enables the analytic update of the region of

unfalsified controllers with new measurement data. Real-

time online implementation of the control design method is

feasible, even on systems with a high sample rate.

All authors are with the department of Mechanical Engineering, Con-
trol Systems Technology group of the Technische Universiteit Eindhoven,
Eindhoven, The Netherlands. j.j.m.v.helvoort@tue.nl

In this paper, the extension of the EUC algorithm to

multi-input multi-output (MIMO) plants is considered. The

current algorithm is only suited for single-input single-output

(SISO) plants. A diagonal controller can be constructed by

applying the current EUC algorithm to several inputs and

outputs (decentralized control). However, the performance

with decentralized control may be poor because no attempt

is made to counteract the interactions [5]. To overcome this

shortcoming, an extension to the EUC framework is proposed

to cover general, full-block multivariable controllers.

Section II recalls the procedure for general Ellipsoidal

Unfalsified Control for SISO plants. In Section III the

algorithm for the control of MIMO plants is derived. Section

IV presents an example application and Section V contains

the conclusions.

II. ELLIPSOIDAL UNFALSIFIED CONTROL

In [1], the Ellipsoidal Unfalsified Control approach is

introduced. In this section, the data-driven, plant-model-free

controller design method is recalled. It is shown, how this

algorithm selects the region of controllers, for which the abil-

ity to meet the performance requirement is not falsified by

measurement data. Furthermore, the selection of a controller

from this region is handled. In the next section, the extension

to MIMO plants will be discussed.

A. Candidate Controllers

A “cloud” of candidate controllers is selected, the candi-

date controller set. When no measurement data is available

yet, no controllers have been falsified, and the candidate

controller set is, trivially, equal to the initial candidate

controller set. When measurement data is available, though,

candidate controllers might get falsified.

Definition 1: The True Unfalsified set is the set of con-

trollers, which are currently unfalsified by all available

measurement data.

In Ellipsoidal Unfalsified Control, the True Unfalsified set

is approximated by an ellipsoid. This ellipsoid is used as

a representation of the True Unfalsified set and is denoted

as the Unfalsified set. The Unfalsified set is used as the

candidate controller set.

The need for gridding of the candidate controller set is

overcome by describing the Unfalsified set with a continuous

region. The description of the Unfalsified set with an ellip-

soid allows for the evaluation of the entire set with simple

algebraic equations, see [4].
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The Unfalsified set at time tk−1 is described by

E(tk−1) = {θ|
(

θ−θc(tk−1)
)T

Σ−1(tk−1)
(

θ−θc(tk−1)
)

≤1}
(1)

with θ ∈ Rp the controller parameters, θc(tk) ∈ Rp the

center of the ellipsoid and Σ(tk) ∈ Rp×p the symmetric,

positive definite matrix that describes the shape of the

ellipsoid.

B. Fictitious Reference

For a given controller in the candidate controller pool, a

“fictitious reference” rfict can be constructed. The “fictitious

reference” is an abstract notion, but it can be thought of

as a controller parameter dependent reference that would

have resulted in exactly the measured input and output,

if that controller would have been in the loop during the

measurements.

Let the controller structure be chosen such, that rfict(θ, tk)
is affine in the controller parameters θ.

rfict(θ, tk) = w(u(tk), y(tk), q−1)T θ (2)

Here, q−1 is the discrete time backward shift operator
(

q−1x(tk)
def
= x(tk−1)

)

. Let θ̌(tk) denote the actually

implemented controller parameter set at time tk. For

θ = θ̌(tk), rfict(θ, tk) exactly results in the actual reference

r(tk), provided that w(·) is stably invertible for u(tk)
(Stably-Causally-Left-Invertible (SCLI), [6, Def. 9]). Of

course, the restriction that w(·) is SCLI limits the selection

of candidate controllers.

The control action u(tk) is computed from (2), with

θ = θ̌(tk) and given the reference r(tk) and measured input

and output data.

The concept of a fictitious reference enables the evaluation

of controllers even if they were not in the loop at the time of

the measurement, since the actual (measured) output y(tk)
can be compared with the desired output Gm(q−1)rfict(θ, tk)
for an arbitrary controller parameter set. Here, Gm(q−1) is

a reference model, which defines the desired closed loop

dynamics.

C. Unfalsification

Given a desired performance specification, and exploiting

the fictitious reference, a region can be constructed of

controller parameters which are unfalsified by current

measurement data.

Let the performance requirement be defined as a (time-

dependent) bound on the tracking error 0 < ∆(tk) < ∞
[1] plus a κ-weighted control effort, κ(tk) > 0. Then, the

region of controller parameters that is unfalsified by current

measurement data at time tk is given by

U(tk) = {θ | |efict(θ, tk)| + κ(tk)|u(tk)| ≤ ∆(tk)} (3)

= {θ | −∆̂(tk) ≤ efict(θ, tk) ≤ ∆̂(tk)} (4)

with

efict(θ, tk) = Gm(q−1)rfict(θ, tk) − y(tk) (5)

∆̂(tk) = ∆(tk) − κ(tk)|u(tk)| (6)

It should be noted that U(tk) is empty for ∆̂(tk) < 0. The

introduction of the κ-weighted control effort therefore limits

the control effort to |u(tk)| ≤ ∆(tk)/κ(tk).
Note that with (3) not only controllers are falsified that,

ultimately, do not meet the performance requirement,

but also those that are not able to do that starting from

the current controller states. This implies that switching

controller parameters θ does not need any accompanying

measures, like resetting the controller states, to guarantee a

suitable transient.

From the combination of (2) and (4) through (6), it is clear

that U(tk) defines two parallel half-spaces in the controller

parameter space:

U(tk) = {θ | −1 ≤ Gm(q−1)w(·)T

∆̂(tk)
θ − y(tk)

∆̂(tk)
≤ 1}

D. Update Unfalsified set

The region of controllers that is unfalsified by all

available measurement data (hence, including all past and

present measurement data) is given by the intersection of

the candidate controllers E(tk−1) from section II-A (the

Unfalsified Set) and the controllers U(tk) from section

II-C (the controllers that are unfalsified by the present

measurement data).

To maintain an ellipsoidal Unfalsified set, the intersection

E(tk−1) ∩ U(tk) is approximated by a minimum-volume

outer-bounding ellipsoid E(tk). Since U(tk) defines two

parallel half-spaces, this approximation can be computed

analytically, as is shown in [7]. To compute E(tk), define

the variables

yk =
y(tk)

∆̂(tk)
(7)

φk =
Gm(q−1)w(u(tk), y(tk), q−1)

∆̂(tk)
(8)

g = φT
k Σ(tk−1)φk (9)

a+ = max
(yk − φT

k θc(tk−1) − 1√
g

,−1
)

(10)

a− = max
(−yk + φT

k θc(tk−1) − 1√
g

,−1
)

(11)

If a+a− ≥ 1/p (Recall from (1) that p is the number

of controller parameters), E(tk−1) is the minimum-

volume outer-bounding ellipsoid of the intersection, hence,

E(tk) = E(tk−1). Consequently, Σ(tk) = Σ(tk−1) and

θc(tk) = θc(tk−1), with Σ(tk) and θc(tk) as in (1).

To guarantee a limited number of distinctive ellipsoids,

as is required for the stability analyses of [2], also for

1/p > a+a− ≥ ǫ/p, 0 < ǫ < 1 the current ellipsoidal

region is maintained.

WeA15.6

511

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 30,2010 at 06:26:32 EDT from IEEE Xplore.  Restrictions apply. 



For a+a− < ǫ/p and a+ 6= a−, E(tk) is defined by

[7]:

Σ(tk) = δ

(

Σ(tk−1) −
σ

g
Σ(tk−1)φkφT

k Σ(tk−1)

)

(12)

θc(tk) = θc(tk−1) +
σ(a+ − a−)

2
√

g
Σ(tk−1)φk (13)

with

δ =
p2

p2 − 1

(

1 − a2
+ + a2

−
− ρ/p

2

)

(14)

σ =
1

p + 1

[

p +
2

(a+ − a−)2

(

1 − a+a− − ρ

2

)

]

(15)

ρ =
√

4(1 − a2
+)(1 − a2

−
) + p2(a2

+ − a2
−

)2 (16)

If a+ = a−, (15) becomes unbounded. Therefore, for

a+a− < ǫ/p and a+ = a− = a, E(tk) is defined by

Σ(tk) =
p(1 − a2)

p − 1

(

Σ(tk−1)

− 1 − pa2

(1 − a2)g
Σ(tk−1)φkφT

k Σ(tk−1)

)

(17)

θc(tk) = θc(tk−1) (18)

E. Controller Selection

A controller that is unfalsified by the available

measurement data is to be inserted in the loop. Or in

other words, one controller inside E(tk−1) ∩ U(tk) is to be

implemented.

The selection of the controller that is to be implemented

can depend on several criteria or might even be chosen

randomly within E(tk−1) ∩ U(tk). Here, a deterministic

selection is presented.

Consider the controller selection algorithm

θ̌(tk) =











































θ̌(tk−1) if − 1 ≤ γ ≤ 1

α−1−γc

γ−γc

θ̌(tk−1)+
(

1 − α−1−γc

γ−γc

)

θc(tk) if γ < −1

α 1−γc

γ−γc

θ̌(tk−1)+
(

1 − α 1−γc

γ−γc

)

θc(tk) if γ > 1

(19)

with θ̌(tk−1) the controller parameters implemented at time

tk−1, and

α ∈ [0, 1) (20)

γ = φT
k θ̌(tk−1) − yk (21)

γc = φT
k θc(tk) − yk (22)

Note that for |γ| > 1, θ̌(tk−1) is falsified by current

measurement data (see (II-C)).

The parameter α, (20), determines the stepsize of the switch-

ing algorithm. Choosing α = 0 corresponds to switching

to the center of the Unfalsified set, which is the point

furthest from the bound of the Unfalsified set, but which

might be considered as aggressive switching. To decrease

aggressiveness, a larger α might be chosen. However, to

guarantee a limited number of switches, α should be chosen

strictly smaller then 1 (see [8]).

F. Extension to MIMO

The theory of EUC has successfully been applied to

several SISO systems [1], [2]. However, for MIMO systems

both the controller structure (2) has to be adapted to treat

multiple inputs, outputs, and references, and the update of

the Unfalsified Set (Section II-D) has to be addressed such

that the same arithmetics can be applied, which enables real-

time implementation [1].

III. MULTIVARIABLE EUC

In this section, the methodology of Ellipsoidal Unfalsified

Control is extended to cover general multivariable

controllers. The conditions that are imposed on the

control law are analyzed, and a controller structure that

fulfills these conditions is proposed. It is shown how the

new controller structure fits in the EUC framework and how

the same arithmetics as in EUC can be used to update the

Unfalsified Set.

A. Plant properties

Consider the general MIMO plant in Fig. 1. Plant

P (q−1) has inputs u(tk) ∈ Rm, outputs y(tk) ∈ Rn and

performance channels z(tk) ∈ Rl.

+-

+

-

r(tk) z(tk) e(tk)
u(tk)

y(tk)
C(q−1) P (q−1)

Gm(q−1)

Fig. 1: Schematic representation of general MIMO plant

P (q−1) with controller C(q−1) and reference model

Gm(q−1).

Gm(q−1) is the desired multivariable closed loop dynamics

of the controlled system. Gm(q−1) might for instance be

diagonal, if a decoupled closed-loop system is desired.

Gm,i(q
−1) denotes the ith row of Gm(q−1).

It is assumed that the controller C(q−1) has access to all

plant outputs y(tk) and references r(tk) ∈ Rl. The error

e(tk) is defined as e(tk) = Gm(q−1)r(tk) − z(tk); e(tk) ∈
Rl.
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B. Controller structure

If we consider a full-block multivariable controller, all

individual plant inputs depend on all plant outputs and

references.

ui(tk) = fi(r(tk), y(tk), q−1), for i = 1, . . . ,m (23)

with ui(tk) the ith element of vector u(tk). In the EUC

framework, a restriction applies to (23) so that it can be

converted to a controller structure as (24) , i.e., the inverse

to r(tk) of (23) has to be linear in the parameters:

r(tk) = W (u(tk), y(tk), q−1)θ̌ (24)

A further restriction is that u(tk) has to be defined by

(24), for given θ̌, r(tk) and measured inputs and outputs.

Therefore, consider the controller structure

r(tk) = Θ̌uu(tk) + Λ(u(tk−1), y(tk), q−1)θ̌l (25)

=
[

I ⊗ uT (tk) Λ(u(tk−1), y(tk), q−1)
]

[

θ̌u

θ̌l

]

(26)

Here, ⊗ denotes the Kronecker product. The matrix Θ̌u

and vector θ̌u contain the elements of θ̌ which correspond

to u(tk). The matrix Λ contains (stably filtered) measured

input/output data. From (25), it can be seen that u(tk) is

well defined, if Θ̌u is invertible. The resulting controller

has an ARMA structure, with basis functions defined by the

elements of Λ.

From (24) the fictitious reference rfict(θ, tk) is easily derived,

by considering general parameters θ

rfict(θ, tk) = W (u(tk), y(tk), q−1)θ (27)

C. Performance Requirement

Consider the l∞ performance requirement (3), as pre-

scribed by EUC. For multivariable systems, this translates

to the vector requirement

|Gm(q−1)rfict(tk) − z(tk)| + |K (tk)u(tk)| ≤ ∆(tk) (28)

where ∆ ∈ Rl defines the maximum allowed tracking errors

and K (tk) is a full rank matrix of appropriate size ∀tk.

D. Unfalsified Set

The Unfalsified Set at time tk−1 is described by the

ellipsoid E(tk−1), (1). The region of parameters that is

unfalsified by the current measurement data, U(tk), is defined

by

U(tk) =
{

θ | −∆̂(tk) ≤

Gm(q−1)W (u(tk), y(tk), q−1)θ − z(tk) ≤ ∆̂(tk)
}

(29)

with ∆̂(tk) = ∆(tk) − |K (tk)u(tk)|.
Equation (29) has to hold for all rows and, therefore, is

evaluated element-wise. As a consequence, (29) defines l
sets of parallel half-spaces, i.e., a polygon.

The Unfalsified Set at time tk, E(tk), is constructed from

the intersection E(tk−1)∩U(tk). However, current analytical

results to approximate the intersection only exist for the

intersection of an ellipsoid with 1 set of parallel half-spaces.

Therefore, the intersection is approximated by considering

the parallel half-spaces (29) sequentially. The ordering in

this sequential procedure can be chosen arbitrarily.

The sequential update of the Unfalsified Set is in many ways

analogous to the update in consecutive time-steps, where

only the parallel half-spaces of the last measurement are

regarded. However, with time-steps the ordering is fixed.

Lemma 1: The condition E(tk) ⊇
(

E(tk−1) ∩ U(tk)
)

holds with the sequential update of E(tk−1) ∩ U(tk)
Proof: Let Ui be defined as the set of ith parallel half-

spaces of U(tk) for i = 1, . . . , l and let Ei be the ellipsoid

after the sequential update with Ui. From Section II-D it

follows that

Ei ⊇ (Ei−1 ∩ Ui) (30)

since Ei is the outer-bounding ellipsoidal approximation of

the intersection. Consequently, it holds that

Ei+1 ⊇ (Ei ∩ Ui+1) ⊇ (Ei−1 ∩ Ui ∩ Ui+1) (31)

By expanding (30) and (31) for i = 1, . . . , l, it follows that

El ⊇ (E0 ∩ U1 ∩ · · · ∩ Ul) (32)

Next, consider that at some time tk, E0 = E(tk−1) and

El = E(tk). Furthermore, U(tk) = U1 ∩ · · · ∩Ul. The lemma

follows by substitution of E(tk−1), E(tk) and U(tk) in (32).

The sequential update procedure results in a sub-optimal

approximation of the Unfalsified Set, since consecutive outer-

bounding approximation are made. Nevertheless, the volume

of the Unfalsified Set decreases monotonically, as follows

from Section II-D and the observation of the analogy with

consecutive time-steps.

E. Controller Selection

For MIMO EUC, the controller selection (19) is main-

tained. However, the controller update is applied after every

sequential update with Ui, i = 1, . . . , l. Then, θ̌(tk) is the

controller after the last sequential update at time tk.

F. Stability

In [8] sufficient conditions are derived for the stability

of SISO EUC. The conditions can be summarized as: 1)

feasibility of the adaptive control problem, 2) discarding of

demonstrably destabilizing controllers, and 3) a maximum

number of controller switches. It was shown that conditions

2) and 3) are fulfilled for SISO EUC. Hence, with the

assumption of feasibility, SISO EUC is stable.

For MIMO EUC, condition 2) and 3) are also fulfilled. The

controller structure (26) is Stably-Causally-Left-Invertible if

Θ̌u is invertible and Λ(·) contains only stable filters, and the

cost-function (28) is an l∞ performance requirement, hence,

MIMO EUC discards demonstrably destabilizing controllers.

Furthermore, the number of distinctive ellipsoids is limited

and the number of controller switches per ellipsoids is

limited, thereby limiting the number of overall controller

switches. For proofs see [8].

WeA15.6

513

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 30,2010 at 06:26:32 EDT from IEEE Xplore.  Restrictions apply. 



To guarantee that the final controller is chosen from the

region with controllers that fulfill the performance require-

ment, a controller from E(tk−1) ∩ U(tk) should be chosen.

However, due to the sequential update of E(tk), it can no

longer be guaranteed that θ̌(tk) ∈ E(tk−1)∩U(tk) ∀tk with

controller selection (19). Nevertheless, the following lemma

can be derived.

Lemma 2: If E(tk−1) = E(tk), it can be guaranteed that

θ̌(tk) ∈ E(tk−1) ∩ U(tk) with sequential application of

controller selection (19).

Proof: First, suppose θc(tk−1) /∈ U(tk). Then for some

i ≤ l, |Gm,i(q
−1)W (·)θc(tk−1) − zi(tk)| � ∆̂i(tk) and

a+a− < 0 (7)-(11), (27), (28). For a+a− < 0 < ǫ/p,

E(tk) 6= E(tk−1) (12), (13). Hence, if E(tk) = E(tk−1),
then θc(tk−1) ∈ U(tk).
Second, from controller selection (19) it follows that θ̌(tk) ∈
[

θ̌(tk−1), θc(tk)
]

, if E(tk) = E(tk−1). Since α < 1 (20),

θ̌(tk) is selected inside the bound Ui that is closest to θc(tk)
on

[

θ̌(tk−1), θc(tk)
]

. Consequently, θ̌(tk) ∈ U(tk). Further-

more, by applying the controller selection (19) sequentially, it

is guaranteed that θ̌(tk) ∈ E(tk). Hence, it can be concluded

that θ̌(tk) ∈ E(tk−1) ∩ U(tk) if E(tk−1) = E(tk).
With Lemma 2, it can be guaranteed that θ̌(tk) ∈

E(tk−1)∩U(tk) if the Unfalsified Set approaches the region

with controllers that satisfy the performance requirement at

all times. The existence of this region follows from the

feasibility assumption.

Concluding, with the assumption of feasibility, MIMO EUC

is stable.

IV. EXAMPLE APPLICATION

Ellipsoidal Unfalsified Control has been applied to the

MIMO plant shown in Fig. 2. The plant is sampled at 1 kHz

with a zero-order-hold and the EUC algorithm is applied

every sample time. The complexity of the algorithm is such

that an online implementation would be feasible at this

sample rate. An uncorrelated, bounded noise with power

10−10 [m2] and a maximum of 10−3 [m] is added to the plant

outputs y. The plant inputs u are in [kN]. The performance

M2M1

u1

y1 y2

u2
k

d

Fig. 2: Schematic representation of dual-stage plant, with M1

= 1 [kg], M2 = 0.1 [kg], k = 0.9 [N/m] and d = 0.1 [Ns/m].

outputs z are the displacements of both masses: z = y. The

trajectory for M1 is a square wave of amplitude 5 [m] every 5

[s], starting at tk = 0.5 [s]. The trajectory for M2 is a square

wave of amplitude 1 [m] every 2 [s], starting at tk = 0 [s].

The reference model Gm is given by

Gm(s) =

[

10
2

s2+2·10s+102 0

0 40
2

s2+2·40s+402

]

(33)

0 5 10
0

5

r
1
,

G
m

1
,
1
r
1

time [s]

0 2 4

0

1

r
2
,

G
m

2
,
2
r
2

time [s]

Fig. 3: Plots of trajectories (grey) and filtered trajectories

(black) (Note the different scales).

It should be noted that Gm is given here in continuous time

solely for ease of perception.

The bounds on the tracking errors are given by

∆(tk) =

[

10e−0.15tk + 0.005
10e−0.20tk + 0.0012

]

(34)

An offset is included in ∆(tk) to guarantee feasibility in the

presence of output noise, whereas the exponential decay is

included to allow for transients. The matrix K (tk) is chosen

as a constant matrix such that |u(tk → ∞)| ≤ [5, 5]T :

K =
1

5

[

0.005 0
0 0.0012

]

(35)

The controller structure is given by

W (u, y, q−1) = I2⊗
[

uT (tk)
1

1 − 0.8q−1
uT (tk−1) yT (tk) yT (tk−1)

]

(36)

The controller is initiated with the parameter set

θ̌(0) =
[

1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
]

(37)

which is equivalent to u(tk) = r(tk) − y(tk). This initial

controller is destabilizing the plant. The initial ellips E(0) is

defined by θc(0) = θ̌(0), Σ(0) = 1e4 I16.

In Fig. 4, the errors of both performance channels are shown

as a function of time, together with the performance bounds.
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Fig. 4: Plot of tracking error (solid) of controlled system and

bounds ±∆ (dashed) as a function of time.
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When the performance requirement is not met, the current

controller parameter set is falsified and replaced by a new

controller parameter set. In Fig. 5, θ̌2 is shown as a function

of time, as an example of the evolution of the implemented

controller parameters. Synchronously, the Unfalsified Set

can change even if the currently implemented controller

parameter set meets the performance requirement, as follows

from the theory of EUC (29).

0 20 40 60 80 100

-10

-5

0

time [s]

θ̌
2

Fig. 5: Plot of θ̌2 as a function of time.

The final values of the controller parameters are shown

in Table I. As already mentioned in Section II-E, these

parameters are just one selection from the Unfalsified Set.

However, since it is in the Unfalsified set, this set fulfills the

performance requirement.

TABLE I: Parameter values at tk = 100
θ̌1 10.1442 θ̌5 200.4127 θ̌9 -0.0001 θ̌13 0.6815

θ̌2 -9.1482 θ̌6 1.4528 θ̌10 6.6789 θ̌14 50.7923

θ̌3 0.0108 θ̌7 -199.4222 θ̌11 0.0001 θ̌15 -0.6754

θ̌4 -0.2962 θ̌8 -1.4442 θ̌12 0.0142 θ̌16 -49.7983

Since in the simulation the plant-model is known, the fre-

quency response functions of the closed loop system are

investigated a posteriori. In Fig. 6, the closed loop transfer

function is shown from ri to zi. The diagonal terms resemble

the reference model (33), whereas the non-diagonal terms

are close to zero. The influence of the tight error bound

on performance channel 2 is visible from the small (2,1)-

component of the closed loop transfer function, which im-

plies that the undesired coupling from r1 to z2 is reduced

to a factor 10−5 (–100 dB). From the output sensitivity

frequency response function, shown in Fig. 7, it follows that

low-frequent output-noise is suppressed by approximately 40

dB. The non-diagonal terms maintain this suppression in the

entire frequency range.

V. CONCLUSION

In this paper, the EUC framework as introduced in [1]

is extended to cover multivariable controllers. With the

extension, general full-block multivariable controllers can be

obtained via this data-driven, plant-model-free control design

method.

The extensions, as proposed in Section III, cover a general

multivariable controller, with an arbitrary number of inputs,

outputs and performance channels. Inherent to the EUC

method, the controllers have a fixed, predefinable structure. A

reference model can be prescribed to enforce a desired closed
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Fig. 6: Bode magnitude-plot of the closed loop frequency

response function.
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Fig. 7: Bode magnitude-plot of the output sensitivity fre-

quency response function.

loop behavior (e.g., decoupling). As in previous works, an

l∞ performance requirement is imposed on the tracking

performance of the performance channel. The extensions

consist of a proposal for the controller structure (26) and

an update procedure of the ellipsoidal Unfalsified Set that

considers the intersection with the parallel half-spaces of

U(tk) sequentially. The effectiveness of the proposed method

to find a decoupling controller is shown in a simulation

example.
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