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Data-driven non-linear elasticity: constitutive manifold

construction and problem discretization
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Abstract The use of constitutive equations calibrated from

data has been implemented into standard numerical solvers

for successfully addressing a variety problems encountered

in simulation-based engineering sciences (SBES). However,

the complexity remains constantly increasing due to the

need of increasingly detailed models as well as the use

of engineered materials. Data-Driven simulation constitutes

a potential change of paradigm in SBES. Standard sim-

ulation in computational mechanics is based on the use

of two very different types of equations. The first one, of

axiomatic character, is related to balance laws (momentum,

mass, energy,. . .), whereas the second one consists of mod-

els that scientists have extracted from collected, either natural
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or synthetic, data. Data-driven (or data-intensive) simulation

consists of directly linking experimental data to computers

in order to perform numerical simulations. These simula-

tions will employ laws, universally recognized as epistemic,

while minimizing the need of explicit, often phenomenolog-

ical, models. The main drawback of such an approach is the

large amount of required data, some of them inaccessible

from the nowadays testing facilities. Such difficulty can be

circumvented in many cases, and in any case alleviated, by

considering complex tests, collecting as many data as possi-

ble and then using a data-driven inverse approach in order to

generate the whole constitutive manifold from few complex

experimental tests, as discussed in the present work.

Keywords Data-driven computational mechanics · Data-

intensive simulation · Inverse problems · Constitutive

manifold

1 Introduction

Machine and manifold learning techniques, and more specif-

ically nonlinear dimensionality reduction, as for example

locally linear embedding (LLE), kernel-PCA (the nonlin-

ear counterpart of principal component analysis—PCA),

referred as k-PCA, local-PCA, among many other choices,

allows us to remove correlations in data [10,17,19–21]. Such

data, free of correlation, constitute the real information, often

very limited when compared with the big data from which it

was extracted.

This information is then translated into knowledge, and

from it to decision making. For the human being knowledge

is primordial: we are interested in understanding the intimate

and subtle mechanisms about the nature of things. However,

when dealing with machines, these intellectual needs are not
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inherent to their nature, and decisions can be made from a

new kind of (artificial) intelligence that, more than based on

mathematical expressions, are based on data via data mining

and data analytics.

In many models, the extraction of uncorrelated parameters

remains a tricky issue. It is the case of parameters describ-

ing microstructures or shapes for example, often referred to

as latent parameters. As soon as the uncorrelated parame-

ters are extracted, two main options have been considered to

date: (1) when a new case, not included in the data, must be

analyzed, its solution is simply interpolated on the manifold

(constructed from the training data) from its closest neigh-

bors [12] so that decisions can be taken in real time; and (2)

an explicit parametric solution could be constructed by using

the just extracted uncorrelated parameters so that it could be

particularized in real-time [6,7].

Data-Driven simulation constitutes another appealing

opportunity. Furthermore, in our humble opinion, it con-

stitutes a real change of paradigm in simulation-based

engineering sciences (SBES), with plenty of potential [1,11,

13–16,18].

Standard simulation in classical mechanics is based on the

use of two very different types of equations. The first one, of

axiomatic or epistemic character, is related to balance (con-

servation) laws (momentum, mass, energy. . .). The second

one consists of models extracted from collected data.

Data-driven simulation consists of directly employ data in

order to perform numerical simulations. These simulations

will employ universal laws while minimizing the need of

explicit, often phenomenological, models. They are based on

manifold learning methodologies able to extract the uncorre-

lated behavior of constitutive relations from a huge amount

of collected data [8,9].

This approach is especially interesting when considering

complex engineered materials (meta-materials), for which

constitutive relations become hard to write, because there

are (too) many possible designs, and the intimate nature of

most of them remains inaccessible and/or confidential.

The main drawback of such an approach is the huge

amount of required data, some of them inaccessible from the

nowadays testing facilities. Such difficulty can be circum-

vented in many cases, and in all cases alleviated, as proved

in the present work, by considering complex tests, collect-

ing as many data as possible and then using a data-driven

inverse approach in order to generate the whole constitutive

manifold [8], in a subtle alliance of testing machines, devices

for collecting data and powerful computers for treating these

huge amount of data in a variety of ways (machine and deep

learning).

To better understand the data-driven rationale here

addressed, let us consider, for the sake of clarity, a very

simple problem: linear elasticity. In that case, the balance

of (linear and angular) momenta leads to the existence of

a symmetric second-order tensor σ (the so-called Cauchy’s

stress tensor) verifying equilibrium, expressed in the absence

of body forces and inertia effects, as

∫

�

ε
∗ : σ dx =

∫

ŴN

u∗ · t dx, (1)

∀u∗ regular enough and vanishing on ŴD (portion of the

domain boundary Ŵ ≡ ∂� where the displacement is pre-

scribed), being the tractions t known in the complementary

boundary region ŴN , with ŴD ∪ŴN = Ŵ and ŴD ∩ŴN = ∅.

In order to solve problem (1) some relationship linking

kinematic and mechanical (static) variables is required, the

so-called constitutive equation. The simplest one, giving rise

to isotropic linear elasticity, is known as Hooke’s law (even if,

more than a law, it is simply a constitutive model), and reads

σ = λTr(ε)I + με, (2)

where Tr(•) denotes the trace operator, ε is the strain tensor,

and λ and μ are the Lamé coefficients directly related to the

Young modulus E and the Poisson coefficient ν.

By introducing the constitutive model, Eq. (2), into the

weak form of the balance of momentum, Eq. (1), the so-

called virtual work principle, a problem is obtained that can

be formulated entirely in terms of the displacement field u.

By discretizing it, using standard finite element approxima-

tions, for instance, and performing numerically the integrals

involved in Eq. (1), we finally obtain a linear algebraic sys-

tem of equations, from which the nodal displacements can

be obtained.

In the case of linear elasticity there is no room for discus-

sion: the approach is simple, efficient and has been applied

successfully to many problems of practical interest. Today,

there are numerous commercial codes making use of this

mechanical behavior and nobody doubts about its pertinence

in engineering practice. However, there are other material

behaviors for whom simple models fail to describe any

experimental finding. These models lack of generality (uni-

versality) and due to this reason a mechanical system is

usually associated to different models that are progressively

adapted and/or enriched from collected data.

The biggest challenge could then be formulated as follows:

can simulation proceed directly from data by circumventing,

or at least alleviating, the necessity of establishing a con-

stitutive model? In the case of linear elasticity it is obvious

that such an approach lacks of interest. However, in other

branches of engineering science and technology it should be

an appealing alternative to standard constitutive model-based

simulations.

In [8] we proposed some methods for performing simu-

lation employing the just developed concept of constitutive

manifolds arising from data. However, in that work the issue
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related to the data-collection and curation was nos addressed.

The present work constitutes a first tentative in that direction.

As argued in [8], the main issue related to data-based

approaches lies in the huge amount of data required in order

to represent the mechanical behavior. Thus, constructing the

constitutive manifold by carrying out a sequence of homo-

geneous tests with the purpose of activating all the possible

strain states, seems today too expensive, but probably not in

the future where data is expected playing a major role. In the

present paper we consider an alternative route. If instead of

performing simple tests, we consider one involving complex

and evolving loads applying on a quite complex geometry.

In this way numerous mechanical states will coexist in the

part, and having access for example to the strain in a region

of the specimen, we could by using an inverse identification

strategy, identifying a large part of the constitutive manifold.

This is the main idea explored in the present paper.

However, this inverse technique can be performed in dif-

ferent ways. In this paper we consider two strategies. The

first consists in gradually constructing the manifold from data

collected during the loading. Thus, at each loading step the

elastic tensor for a new strain value is identified. However,

such a procedure has as main drawback the fact of using the

elastic tensor as main mechanical variable as well as its com-

plexity in the case of nonlinear behaviors, as discussed later.

Another appealing possibility consists of constructing a poly-

nomial approximation of the elastic energy, whose second

derivative results in the elastic tensor, and whose identifica-

tion from collected data seems to be more robust.

Both strategies will be presented in Sects. 2 and 3 respec-

tively, and then their efficiency checked ad discussed in

Sect. 4.

2 Progressive construction of the constitutive

manifold

2.1 Linear setting

We consider first, for simplicity, mechanical tests conducted

on a perfectly linear elastic material, in a specimen exhibiting

uniform stresses and strains. We will later consider issues

related to data generation and curation. Thus, for M randomly

applied external loads, we assume ourselves able to collect M

couples (σ m, εm), m = 1, . . . , M . Each stress-strain couple

could thus be represented as a single point Pm in a phase

space of dimension D = 12 (the six distinct components of

the stress and strain tensors, respectively). In the sequel Voigt

notation will be considered, i.e. stress and strain tensors will

be represented as vectors and consequently the fourth-order

elastic tensor reduces to a 6 × 6 square matrix.

Each vector Pm thus defines a point in a space of dimension

D and, therefore, the whole set of samples represents a set of

M points in R
D . We conjecture that all these points belong to

(or can be embedded into) a certain low-dimensional mani-

fold embedded into the high-dimensional space R
D allowing

for a nonlinear dimensionality reduction as discussed in [8].

As soon as the elastic manifold C(ε) is determined from

a locally-linear interpolation, we can proceed from the stan-

dard weak form

∫

�

ε
∗(x) : σ (x) dx =

∫

ŴN

u∗(x) · t(x) dx, (3)

that using Voigt notation and the behavior derived from the

constitutive manifold, becomes

∫

�

ε
∗(x) · (C(ε(x))ε(x)) dx =

∫

ŴN

u∗(x) · t(x) dx. (4)

By using an appropriate linearization, this last expression

allows one to compute (at convergence) every mechanical

field.

However, as previously argued, prior to proceed with the

calculations summarized above and analyzed in detail in [8],

one must accomplish the construction of the so-called con-

stitutive manifold.

Taking as reference the strain- and stress-free reference

configuration of the solid, the problem can be expressed in

the incremental form (particularly interesting in the nonlinear

case addressed in Sect. 2.2)

∫

�

�ε
∗(x) · �σ (x) dx =

∫

ŴN

�u∗(x) · �t dx, (5)

with �ε
∗(x) the virtual strain field related to the kinemati-

cally admissible increment of displacement test field�u∗. By

introducing the linear behavior the previous integral equation

reads

∫

�

�ε
∗(x) · (CT �ε(x)) dx =

∫

ŴN

�u∗(x) · �t dx, (6)

where the tangent matrix CT (that coincides with the secant

one C because of the assumed linearity) is unknown. How-

ever, because of the assumed linear elastic behavior, it

remains constant everywhere in the domain.

Using ac-term parametrization of 6×6 matrices (the more

general consisting of canonical matrices fulfilling symmetry

constraints) we can write

CT =
c

∑

i=1

αi Mi , (7)

with coefficients αi unknown.

By introducing this tangent matrix representation into the

equilibrium weak form it results
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∫

�

�ε
∗(x)·

((

c
∑

i=1

αi Mi

)

�ε(x)

)

dx =
∫

ŴN

�u∗(x)·t dx,

(8)

whose discrete form reads

�U∗ ·
(

c
∑

i=1

αi Ki

)

�U = �U∗ · T, (9)

with Ki the stiffness matrices corresponding to the canonical

behaviors and �U the nodal vectors of incremental displace-

ments.

We assume that local displacements, and consequently

their associated strains, are accessible (experimentally mea-

surable) at a certain region of the domain (in general a portion

of its boundary). Their associated degrees of freedom are

hereafter referred to with the superscript •O. Thus, making

use of a partition of the displacement vector �UO and �UH

referring to the observable and hidden displacements, respec-

tively, the previous discrete system reads

⎛

⎜

⎜

⎝

c
∑

i=1

αi K
HH
i

c
∑

i=1

αi K
HO
i

c
∑

i=1

αi K
OH
i

c
∑

i=1

αi K
OO
i

⎞

⎟

⎟

⎠

(

�UH

�UO

)

=
(

TH

TO

)

. (10)

This system of equations is obviously complemented with

appropriate Dirichlet boundary conditions on ŴD . In the pre-

vious algebraic system, vectors TO and TH refer to the nodal

traction contributions at nodes related to the observable and

hidden displacements, respectively.

The algebraic system (10) has as unknowns the hidden dis-

placements �UH and the constitutive coefficients αi , being

known the observable displacements �UO. If the number of

known displacements that corresponds with the size of vector

�UO is large enough (in all cases larger than the number of

alpha-coefficients, c) it is thus possible to solve the resulting

nonlinear algebraic problem to compute both the unknown

displacements �UH and the coefficients defining the mate-

rial behavior αi . In the opposite case it is always possible to

apply some regularization to solve the undetermined result-

ing problem (e.g. Tikhonov regularization). In the sequel we

focus in the former scenario.

System (10) can be rewritten as follows

⎛

⎜

⎜

⎝

c
∑

i=1

αi K
HH
i KHO

1 �UO · · · KHO
c �UO

c
∑

i=1

αi K
OH
i KOO

1 �UO · · · KOO
c �UO

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

�UH

α1

...

αc

⎞

⎟

⎟

⎟

⎠

=
(

TH

TO

)

, (11)

or, by defining vector α and matrices κ
HO and κ

OO as

⎧

⎨

⎩

α = (α1, . . . , αc)
T

κ
HO = (KHO

1 �UO, . . . , KHO
c �UO)

κ
OO = (KOO

1 �UO, . . . , KOO
c �UO)

, (12)

the previous system can be rewritten as

⎛

⎜

⎜

⎝

c
∑

i=1

αi K
HH
i κ

HO

c
∑

i=1

αi K
OH
i κ

OO

⎞

⎟

⎟

⎠

(

�UH

α

)

=
(

TH

TO

)

, (13)

that represents an overdetermined nonlinear algebraic sys-

tem.

By premultiplying by the transpose of the matrix, a square

algebraic system is obtained,

⎛

⎜

⎜

⎝

c
∑

i=1

αi K
HH
i κ

HO

c
∑

i=1

αi K
OH
i κ

OO

⎞

⎟

⎟

⎠

T ⎛

⎜

⎜

⎝

c
∑

i=1

αi K
HH
i κ

HO

c
∑

i=1

αi K
OH
i κ

OO

⎞

⎟

⎟

⎠

(

�UH

α

)

=

⎛

⎜

⎜

⎝

c
∑

i=1

αi K
HH
i κ

HO

c
∑

i=1

αi K
OH
i κ

OO

⎞

⎟

⎟

⎠

T

(

TH

TO

)

, (14)

that allows us to calculate �UH and α by using an adequate

nonlinear solver (e.g. fixed point, Newton, etc.).

When considering a linear behavior the resulting dis-

placements, strains and stresses can easily be derived from

U ≡ �U = (�UH,�UO)T by considering

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u(x) =
nd
∑

i=1

Ui Ni (x)

ε = ∇su

σ = Cε

, (15)

where C ≡ CT ,nd is the number of nodes considered

to approximate the displacement field u(x) and Ni (x) the

associated shape functions. ∇s(•) denotes the symmetric

component of the gradient operator and CT results from αi

CT =
c

∑

i=1

αi Mi . (16)

2.2 Nonlinear elastic behavior

In the nonlinear case a major difficulty appears: since the

behavior depends on strain, and it can be different at each

physical point x ∈ �, the procedure just proposed and

described to address the linear case must be adapted accord-

ingly.

4



The external traction t is progressively applied, that is

t =
ℓ

∑

j=1

�t j , (17)

with traction increments small enough to ensure the accu-

racy of the identified behavior. Thus, from the stress- and

strain-free reference state the application of the first traction

increment �t1 results in the equilibrium weak form

∫

�

ε
∗(x) · σ 1(x) dx =

∫

ŴN

u∗(x) · t1 dx, (18)

or its incremental counterpart taking into account that σ 1 =
σ 0 + �σ 1 (with σ 0 = 0) and t1 = t0 + �t1 (with t0 = 0)

∫

�

�ε
∗(x) · �σ 1(x) dx =

∫

ŴN

�u∗(x) · �t1 dx, (19)

whose linearized form writes

∫

�

�ε
∗(x) ·

(

CT1�ε1(x)
)

dx =
∫

ŴN

u∗(x) · �t1 dx, (20)

where the tangent matrix CT1 , assumed unknown, can be

considered almost constant everywhere in the domain as soon

as the first traction increment is taken small enough to ensure

that this first loading produces a linear response everywhere

in the domain �, i.e. the first tests considered for starting

the construction of the behavior manifold should avoid the

appearance of stress or strain localization.

Applying the same rationale that was employed in the

linear case, we consider the c-term parametrization

CT1 =
c

∑

i=1

α1
i Mi , (21)

that, together with

⎧

⎨

⎩

α
1 = (α1

1, . . . , α1
c)

T

κ
HO
1 = (KHO

1 �UO
1 , . . . , KHO

c �UO
1 )

κ
OO
1 = (KOO

1 �UO
1 , . . . , KOO

c �UO
1 )

, (22)

leads to

⎛

⎜

⎜

⎝

c
∑

i=1

α1
i KHH

i κ
HO
1

c
∑

i=1

α1
i KOH

i κ
OO
1

⎞

⎟

⎟

⎠

T ⎛

⎜

⎜

⎝

c
∑

i=1

α1
i KHH

i κ
HO
1

c
∑

i=1

α1
i KOH

i κ
OO
1

⎞

⎟

⎟

⎠

(

�UH
1

α
1

)

=

⎛

⎜

⎜

⎝

c
∑

i=1

α1
i KHH

i κ
HO
1

c
∑

i=1

α1
i KOH

i κ
OO
1

⎞

⎟

⎟

⎠

T

(

�TH
1

�TO
1

)

, (23)

that allows us to calculate �UH
1 and α

1 and, from them,

displacements, strains and stresses, according to

⎧

⎨

⎩

U1 = U0 + �U1 = �U1

ε1 = ε0 + �ε1 = �ε1

σ 1 = σ 0 + �σ 1 = σ 0 + CT1�ε1 = CT1�ε1

. (24)

This last equation makes use of the constitutive matrix CT1

CT1 =
c

∑

i=1

α1
i Mi . (25)

Consider now a second loading step �t2. The process

is repeated to calculate the sequence (ε2, σ 2), . . . , (εℓ, σ ℓ).

However, in the second and subsequent iterations the sit-

uation is a bit different with respect to the first one just

described, deserving some additional comments.

After the first loading step, in which a uniform stress-strain

state was assumed due to the small traction increment, now

the different points in � will be subject to a non-uniform

strain field and consequently we cannot assume that a con-

stant CT2 will apply in the whole domain. Because the very

small magnitude of the applied loading increments only the

points having the maximum deformation energy at the previ-

ous iteration are potential candidates to exhibit at the present

iteration a tangent behavior different to one of the previously

identified. Thus, two groups of finite elements are consid-

ered: (1) first, the ones whose stress-strain couple remains

close enough to any of the ones previously identified, and (2)

the ones that do not fulfill that condition. For the first group

the already identified tangent behavior can be considered (up

to a tolerance) still valid, whereas for the second group the

strains are checked to verify if they are close enough among

them. If it is the case, a common unknown tangent behavior

[parametrized according to Eq. (7)] is assigned to all them.

This constitutive clustering can be performed by using an

appropriate classifier. In our case we employed k-means with

two populations.

Assume therefore that the domain � can be decomposed in

two parts �U and �A, the former involving elements belong-

ing to the cluster whose behavior is assumed unknown (thus

far from all the behaviors already identified) and the last the

one that concerns elements whose behavior, already identi-

fied, is assumed to remain valid. The linearized equilibrium

at the loading increment j can be written accordingly as

∫

�A

�ε
∗(x) ·

(

CT (x)�ε j (x)
)

dx

+
∫

�U

�ε
∗(x) ·

(

CT j
�ε j (x)

)

dx

=
∫

ŴN

u∗(x) · �t j dx. (26)
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The first integral defines a linear contribution, whereas

the second one remains nonlinear because it involves the

unknown displacement vector as well as the unknown con-

stitutive coefficients, grouped into the tangent matrix CT j
.

3 Polynomial approximation of the constitutive

manifold

As proposed in [4] a simple and still appealing possibility to

describe the constitutive manifold consists of approximating

it in an adequate polynomial basis. The simplest alternative

consists of approximating the elastic energy (as a function of

the strain) whose first derivative results in the stress tensor

and the second one leads to the elastic tensor.

Proceeding to identify the energy density functional seems

to be a better alternative than identifying the elastic tensor,

for two important reasons. The first is that it ensures thermo-

mechanical consistency, and thus all symmetries associated

to the material behavior. The second reason is based on the

fact that the polynomial approximation of all the components

of the elastic tensor is much more expensive computation-

ally than the approximation of a single scalar function, the

energy in the present case, and the identification procedure

much more robust from a computational viewpoint.

The choice of the approximation basis deserves some

comments. Imagine for a while the approximation of a

one-dimensional function f (ξ) in I = [ξ−, ξ+]. A natu-

ral possibility consists of using piecewise continuous linear

functions Ni (ξ) to define its approximation, as it is usual

within the finite element framework, by considering a mesh

composed of q nodes uniformly distributed in I, with coor-

dinates ξi , i = 1, . . . ,q (ξ1 = ξ− and ξq = ξ+), from which

the approximation reads

f (ξ) =
q

∑

i=1

f (ξi )Ni (ξ), (27)

where Ni (ξ), for 1 < i < q writes

Ni (ξ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ξ−ξi−1

ξi −ξi−1
if ξ ∈ [ξi−1, ξi ]

ξi+1−ξ

ξi+1−ξi
if ξ ∈ [ξi , ξi+1]

0 elsewhere

, (28)

N1(ξ) =
{

ξ2−ξ
ξ2−ξ1

if ξ ∈ [ξ1, ξ2]
0 elsewhere

, (29)

and

Nq(ξ) =
{

ξ−ξq−1

ξq−ξq−1
if ξ ∈ [ξq−1, ξq]

0 elsewhere
. (30)

If the solution is known at different positions � j , j =
1, . . . ,j, Eq. (27) will read

f (� j ) =
q

∑

i=1

f (ξi )Ni (� j ), j = 1, . . . ,j, (31)

that results in the linear system

⎛

⎜

⎝

N1(�1) . . . Nq(�1)
...

. . .
...

N1(�j) · · · Nq(�j)

⎞

⎟

⎠

⎛

⎜

⎝

f (ξ1)
...

f (ξq)

⎞

⎟

⎠
=

⎛

⎜

⎝

f (�1)
...

f (�j)

⎞

⎟

⎠
. (32)

At this point, different situations can be found:

– An undetermined system if j < q;

– A determined one, if j = q;

– An overdetermined one, if j > q. However, even when

j ≥ q the resulting system can become undetermined

if at least for one node ξi , no point � j ,∀ j , falls in its

support, [ξi−1, ξi+1].

In these circumstances different algebraic solutions exist

(e.g. pseudo-inverse, “matlab backslash”, L2 or L1

optimization,. . .). However, in this work we decided to con-

sider global approximation functions in [ξ−, ξ+]. To avoid

the issues related to high-order Lagrange approximations,

we consider approximations based on the use of orthogonal

polynomials, and more precisely Chebyshev polynomials.

Thus, Eq. (27) is replaced by

f (ξ) =
q

∑

i=1

γi Ti (ξ), (33)

where Ti (ξ) refer to Chebyshev polynomials and the weights

γi are computed from its associated linear system

f (� j ) =
q

∑

i=1

γi Ti (� j ), j = 1, . . . ,j, (34)

where singularity issues are circumvented as soon as j ≥ q

and there are not repeated points.

However, problems arise as soon as the approximation

becomes multidimensional. This is the case when approxi-

mating the elastic energy ψ as a function of the 6 components

of the strain tensor ε, using the same degree (q) for each com-

ponent. In this case, the approximation

ψ(ε) ≈
q6
∑

i jklmn

γi jklmnTi (ε11)T j (ε12)Tk(ε13)

Tl(ε22)Tm(ε23)Tn(ε33), (35)
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contains too many coefficients γi jklmn (in fact q6), and con-

sequently the accuracy requires the same number of data

points (even if sparse sampling could be an appealing alter-

native). Of course the approximation could be limited to a

certain degree D by considering in the previous sum indexes

verifying i + j + k + l + m + n ≤ D.

An alternative approximation makes use of a separated

representation (usually considered within the proper gener-

alized decomposition (PGD) framework [2,3]) that reads

ψ(ε) ≈
p

∑

i

E11
i (ε11) E12

i (ε12) E13
i (ε13)

E22
i (ε22) E23

i (ε23) E33
i (ε33). (36)

This separated representation is specially appropriate

when ε is defined in the hyper-hexahedral domain E =
[ε−

11, ε
+
11]×[ε−

12, ε
+
12]×· · ·×[ε−

33, ε
+
33]. However, admissible

deformations imply non separable domains. The application

of separated representation in non-separable domains was

deeply addressed in [5] where the use of R-functions suc-

ceeded to represent complex non-separable geometries.

To avoid singularity issues, functions Ekl
i , are approxi-

mated by using global Chebyshev polynomials, according to

Ekl
i (εkl) ≈

qkl
∑

j=1

γ
kl,i
j T j (εkl). (37)

Starting from the weak form

∫

�

ε
∗ · σ dx =

∫

ŴN

u∗ · t dx, (38)

we substitute the constitutive relationship

∫

�

ε
∗ · Cε dx =

∫

ŴN

u∗ · t dx, (39)

with the elastic tensor expressed as the second order deriva-

tive of the energy.

Note that functions Ekl
i , as well as the unknown nodal

displacements, should be computed from the knowledge of

the measurable nodal displacements accessible in a part of

the domain �, as was the case in the procedures discussed

previously.

As in the case of the PGD constructor, we consider a

greedy algorithm that computes sequentially these functions

[3]. Thus at iteration n, n < p, we assume that the rank-n

approximation of the elastic energy ψn was already com-

puted, i.e.,

ψ(ε) ≈ ψn(ε) =
n

∑

i

E11
i (ε11) . . . E33

i (ε33). (40)

At present iteration we look for the new functional product

leading to the updated enriched rank-n + 1 expression of

ψn+1(ε) from

ψn+1(ε) = ψn(ε) + E11
n+1(ε11) . . . E33

n+1(ε33)

= ψn(ε) + �ψ(ǫ), (41)

that introduced into the weak form results

∫

�

ε
∗ ·

(

Cn(ε) + �C(ε)
)

ε dx =
∫

ŴN

u∗ · t dx. (42)

where �C(ǫ) results from the second derivative of the energy

enrichment �ψ(ε).

As is the case when applying the PGD solver, the solution

procedure consists of using an alternated direction fixed point

strategy, that proceeds as follows [3]:

1. By considering E
12(r−1)
n+1 , . . . , E

33(r−1)
n+1 from the previ-

ous fixed point iteration r − 1 of the nonlinear solver

(initialized at r = 1 from the functions at the previous

enrichment iteration n), we compute E
11(r)
n+1 .

2. The process is repeated but now with E
11(r)
n+1 , E

13(r−1)
n+1 ,

. . . , E
33(r−1)
n+1 known. This allows to compute the

unknown nodal displacements and functions involved in

E
12(r)
n+1 . The process is repeated for all the other com-

ponents until computing E
33(r)
n+1 . Then, the fixed point

convergence is checked and if it is not attained we move

to the next fixed point iteration r + 1.

3. When reaching the fixed point convergence, the enrich-

ment convergence is evaluated and if it is not attained we

move to the next elastic energy approximate ψn+2 from

the just competed ψn+1. We assume that at iteration p

the enrichment process converges and consequently we

have access to the elastic tensor manifold from which

simulations can be carried out as described in [8].

Remark It is important to note that at each solution step in

the fixed point loop, the unknowns are the unknown nodal

displacements as well as the nodal variables related to the

approximation of functions involved in Ekl
i .

4 Numerical results

To illustrate the capabilities of the just described proce-

dure, we consider the simple mechanical problem depicted

in Fig. 1. It consists of a two-dimensional unit squared solid,

x = (x, y) ∈ � = (0, 1)× (0, 1), equipped with a nonlinear

elastic material, clamped along its basis y = 0, free of trac-

tion on its lateral boundaries x = 0 and x = 1 and with a

uniformly distributed traction t on its upper boundary y = 1.

We analyze the performance of the just presented strategies.

7



Fig. 1 Schema of the considered mechanical problem

4.1 Progressive construction of the behavior manifold

In the present case, we consider an applied traction whose ori-

entation, i.e. t = tp, is arbitrary: p(θ) = (cos θ, sin θ)T , θ ∈
[0, 2π). As just discussed, this traction is applied incremen-

tally in magnitude and orientation. From

t =
ℓ

∑

j=1

�t j , (43)

we can define an intermediate traction magnitude at step r, tr ,

from

tr =
r

∑

j=1

�t j , (44)

that leads to different tractions depending on the orientation

ts
r =

r
∑

j=1

�t j p(θ s), (45)

θ s =
s

∑

m=1

�θ, (46)

with M defining the angular discretization, that is the number

of discrete angles considered,

M�θ = 2π. (47)

Thus, for each intermediate traction magnitude, the whole

orientation space is fully swept before incrementing the trac-

tion magnitude, to better explore the constitutive manifold.

To discretize the mechanical problem, the domain �

was equipped with a uniform mesh consisting of P × P

square finite elements, where a bilinear approximation of

the displacement field was considered. The displacement is

therefore assumed to be experimentally measurable at each

finite element node located on the upper-boundary, that is,

it is assumed measurable at the P + 1 nodes located on its

upper boundary y = 1.

4.1.1 Synthetic generation of displacement measures

In order to generate pseudo-experimental displacement mea-

surements, we consider a nonlinear elastic behavior of the

type (Voigt notation is employed here)

C =
E

1 − ν2

⎡

⎣

1 ν 0

ν 1 0

0 0 1−ν
2

⎤

⎦ , (48)

with the elastic coefficients given by

{

E = E0 + E1Tr(ε)

ν = ν0 + ν1Tr(ε)
, (49)

with E0, E1, ν0 and ν1 positive constants and where Tr(•)

refers to the trace operator acting on tensor •. Coefficients ν0

and ν1 where selected such that ν ∈ (0, 0.5) in the range of

deformations considered.

In the numerical example discussed below the material

coefficients were selected as E0 = 10, ν0 = 0.1, E1 = 10

and ν1 = 0.1. The applied tension was t = 0.1 and it was

applied by considering 10 loading steps, i.e. ℓ = 10 and 10

orientations, i.e. M = 10. The mesh consisted of 10 × 10

Q1 finite elements.

The standard finite element solution of the resulting non-

linear model allowed the calculation of the displacement at

each loading step at each of the 11 nodes located on the

upper-boundary, y = 1.

4.1.2 Unveiling the constitutive manifold

The fact that the constitutive law employed to generate

pseudo-experimental displacements was known is now for-

gotten, and the behavior is assumed unknown from now on.

The main objective is therefore to determine the constitutive

manifold of the material, that is, its sampling stress-strain

couples, with the only information provided by the mechan-

ical test illustrated in Fig. 1 and the recorded displacements

at the 11 locations at each loading step.

For this purpose we proceed as described in Sect. 3. Fig-

ures 2, 3 and 4 compare the different identified components

of the stress tensor, σ xx , σ yy and σ xy and the reference

ones obtained from Eq. (48). The stress magnitude in those

figures is represented from the color bar. These figures

reveal an almost perfect stress-strain couple match with the

pseudo-experimental ones, with relative errors lower than

1%.
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Fig. 2 σ xx = σ xx (ε): identified from data (left) and reference values (right)

Fig. 3 σ yy = σ yy(ε): identified from data (left) and reference values (right)

It was proved, that as expected, by decreasing the loading

step, that is, by increasing ℓ and M in the loadings expressed

from Eqs. (43) and (47), the error with respect to the ref-

erence one [related to the constitutive Eq. (48)] decreases

proving the expected convergence of the proposed inverse

identification strategy as Fig. 5 reveals. The accuracy was

also checked by comparing the identified components of the

tangent matrix with the analytical one, and as shown in Fig. 6

the results almost match as soon as the sampling (loading

increments) becomes fine enough. Errors fewer than few per-

cent using the norm ‖Cidenti f ied − C‖2, are easily reachable

(Fig. 5).

To further explore the method, we decided to apply a

non-linear dimensionality reduction technique to the stress-

strain couples just obtained. By applying on them Locally

Linear Embedding nonlinear dimensionality reduction strat-

egy, see Fig. 7, we compare the dimensionality of the

resulting linear and nonlinear constitutive manifolds. In

the linear case two parameters seemed to be enough for

visualizing and parametrizing the constitutive data (this

number corresponds with the number of lowest eigenval-

ues before reaching the typical plateau of LLE techniques

[19], see Fig. 7). However, when considering the mani-

fold that results from the identified stress-strain couples

describing the nonlinear case, the dimensionality seems

to increase to three parameters. This is natural since the

nonlinear behavior implies the need for more complex

descriptions.
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Fig. 4 σ xy = σ xy(ε): identified from data (left) and reference values (right)

Fig. 5 Evolution of the error with the loading steps ℓ

Alternatively, we employed k-PCA nonlinear dimension-

ality reduction [7], that allows to visualize low-dimensional

manifolds within a higher dimensional space. When applying

k-PCA to the identified data corresponding to the nonlinear

behavior, we obtain the embedding depicted in Fig. 8. Here,

in order to prove that the embedded, low-dimensional data is

well distributed on the slow manifold, we assigned a color to

each data point corresponding to its elastic energy. In order

to prove that the reduced data define an almost perfect 2D

manifold, we represent in Figs. 9 and 10 two different views

of the solution shown in Fig. 8.

4.1.3 Data-driven simulation

The nonlinear elastic problem is now solved by employ-

ing the constitutive manifold just identified, when a traction

t = tp, pT = (cos 3π/2, sin 3π/2) applies on the top bound-

ary. The reference displacement field calculated with the

constitutive model (48)–(49) is depicted in Fig. 11 and com-

pared with the one obtained when solving the same problem

but now with the identified constitutive model whose solu-

tion is depicted in Fig. 12. Both results are in good agreement

despite the coarse descriptions considered.

4.2 Polynomial approximation of the constitutive

manifold

The second proposed procedure consisted on the polyno-

mial representation of the constitutive manifold described in

Sect. 3. In this case, the identified behavior was in perfect

agreement with the reference one considered above. Fig-

ure 13 represents the relative error in the component C11.

It can be noticed that maximum relative errors remain again

lower than 1%.

When considering ∀k, l,qkl = q = 5 and only

one load applied on the top boundary t = 0.1p, with

p = (−1/
√

2,−1/
√

2), and by assuming that our pseudo-

experimental technique is able to provide us with nodal

displacement values in the 25% of the nodal locations in

the model, a perfect agreement was obtained between the

identified and the reference behavior as proved in Fig. 14.

The reduction of the number of measured displace-

ments requires the use of additional loading test cases. We

also proved that the convergence is significantly enhanced

with the number of considered loading cases, the number

of measured displacements and the considered polyno-

mial degree for approximating the behavior. Moreover, the

use of a separated representation allows to diminish the

number of experimental measurements because it involves

optimal polynomial representations of the constitutive man-

ifold.
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Fig. 6 Comparing the exact and identified C11(ε). Most of that data-point ara almost superpose

Fig. 7 Dimensionality of the linear (left) and nonlinear (right) manifolds when applying the LLE nonlinear dimensionality reduction technique

on the stress-strain data

Fig. 8 Constitutive manifold represented in a 3D space
Fig. 9 View of the manifold represented in Fig. 8 as a function of the

two first embedding coordinates
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Fig. 10 Lateral view of manifold represented in Fig. 8 that allows con-

cluding on its almost perfect two-dimensional nature

Fig. 11 Data-driven simulation based on the reference constitutive manifold. Displacement field: ux (left) and uy (right)

Fig. 12 Data-driven simulation based on the identified constitutive manifold. Displacement field: ux (left) and uy (right)

Fig. 13 Relative error related to the component C11. Black points indi-

cate the strains that were available for the identification procedure
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Fig. 14 Identified constitutive coefficients C11(ε) (left) versus the reference ones (right)

5 Conclusions

We proved in a previous work [8] that numerical sim-

ulations can be performed from the only knowledge of

data defining the material behavior. It was claimed that

the main drawback of one such approach is the neces-

sity of unveiling the whole constitutive manifold. How-

ever, at present, testing facilities are not able to explore

the whole strain-stress space in a continuous way. In this

paper we considered elastic behaviors (linear and nonlin-

ear), proving that the constitutive manifold can be extracted

from a data-driven inverse procedure in an effective man-

ner.

Two procedures have been proposed: the first one is indeed

a progressive construction of the constitutive manifold, while

the second involves the polynomial approximation of the

whole constitutive manifold. The first scheme results to

be quite simple. However, the error accumulates all along

the identification process. Moreover, the fact of using clus-

tering techniques remains also a tricky issue. The second

route, however, seems to be more robust from all points of

view, and its immersion in a hierarchical or multi-resolution

strategy seems an appealing choice for future develop-

ments.

Even if the results only concerned some simplistic behav-

iors, the methodology seems to be appropriate to address

more complex scenarios, such as behaviors involving large

strains, as well as inelastic deformations. Other points that

should be considered are the ones related to existence and

propagation of noise. This constitutes our current effort of

research.
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