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Summary

F
or hundreds of years, atmospheric turbulence has imposed a serious con-
straint on the angular resolution of ground-based astronomical telescopes.

Without any form of compensation, atmospheric turbulence blurs the images and
limits the angular resolution in the visible to about 0.5 to 1arcsec. Adaptive optics
(AO) is a technique for correcting the optical wavefront distortions introduced in
a light beam as it propagates through a turbulent medium. An AO imaging sys-
tem compensates for the wavefront phase errors by sensing the perturbation with
a wavefront sensor (WFS) and adding the estimated conjugated phase by actively
adjusting the optical path length differences with a deformable mirror (DM). This
thesis focuses on the control aspects of AO.

Most AO systems are based on a simple control law that consists of a static
wavefront reconstruction step followed by a series of parallel single-input single-
output temporal compensators. Important drawbacks of this approach are that it
implicitly assumes a decoupling of the spatial and temporal dynamics and that
it is not able to explicitly account for the DM and WFS dynamics and the tem-
poral evolution of the wavefront. Furthermore, when using a minimum-variance
wavefront reconstructor, the modified wavefront statistics as a result of closed-
loop operation are usually neglected. The temporal error caused by the finite time
delay between measurement and correction is know to be one of the main limita-
tions on the performance of an AO system. Also the measurement noise is known
to constitute an error source of significant importance, especially when the AO
system is operating on faint guide stars. The purpose of the research presented
in this thesis is to demonstrate that these errors can be reduced by using a rigor-
ous control strategy that is able to exploit the spatio-temporal correlation in the
wavefront and explicitly accounts for DM and WFS dynamics.

The control strategy used to achieve these goals is one of data-driven dis-
turbance and system modeling followed by a minimum-variance or H2-optimal
control design. In this approach the second-order statistics of the atmospheric
wavefront distortions are modeled as a regular stochastic process. The prob-
lem of finding the spectral factor that accurately describes the relevant turbu-
lence dynamics, is the most complicated and fundamental step. For this rea-
son, a significant part of the work has been devoted to stochastic disturbance
modeling. Two strategies for identifying an atmospheric disturbance model have
been elaborated. The first strategy is based on approximating the theoretical tur-
bulence spectrum. To this end, a subspace-based algorithm for estimating the
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2 Summary

minimum-phase spectral factor from samples of a matrix-valued power spectrum
has been developed. The algorithm has been successfully applied to approximate
the non-rational Kolmogorov power spectrum, but lacks computational efficiency
required to identify a full multi-variable atmospheric disturbance model for the
number WFS channels in an AO system. The second approach for determining
an atmospheric disturbance model has been proven to be more suitable for this.
It consists of a dedicated subspace identification algorithm that estimates the at-
mospheric disturbance model directly from open-loop WFS. In combination with
a re-parametrization of the WFS space, the developed subspace algorithm is suf-
ficiently efficient to identify an atmospheric disturbance model for AO systems
with up to a few hundred degrees of freedom. Since the approach does not as-
sume any form of decoupling, the identified disturbance model should be able to
capture the spatio-temporal correlation imposed by frozen turbulence satisfying
the Taylor hypothesis.

Given the identified atmospheric disturbance model and a model of the AO
system dynamics, the AO control problem has been formulated in a H2-optimal
control framework. It has been shown that, as a result of the minimum-property
of the disturbance model, the general solution to the H2-optimal control problem
can be simplified so that, instead of two, at most one Riccati equation has to be
solved. Moreover, if the model of AO system dynamics is minimum-phase or has
a known inner-outer factorization, also the second Riccati equation can be elimi-
nated, giving rise to an analytical way of computing the optimal controller. This
observation has been used to derive an analytical expression for the H2-optimal
controller in the case that the AO system can be characterized by a scalar-dynamic
transfer function consisting of an integer number of samples delay and a two taps
impulse response. By analyzing the dynamic behavior of the WFS camera, this
particular model structure has shown to be valid for any AO system with a DM
that has a time-constant that is short to the WFS exposure time.

The data-driven optimal control approach obtained by combining the pro-
posed subspace identification algorithm and the analytical expression for the H2-
optimal controller has been experimentally demonstrated on an AO laboratory
setup. An extensive validation study has shown that, compared to the common
control law consisting of a minimum-variance wavefront reconstructor and a first-
order lag filter, optimal control is effective in reducing the temporal error. This im-
plies that the gain in performance is especially large at high Greenwood to sample
frequency ratios, where the temporal error becomes dominant. Optimal control
may therefore help to improve the performance of current AO systems in heavy
turbulence conditions, including high wind speeds and small Fried parameters, as
well as under low level light conditions where high sampling frequencies is ruled
out because of the measurement noise. Even this has not been considered in the
validation experiments, optimal control is also expected to be useful in reducing
the error contribution due to measurement noise as it explicitly accounts for the
spatio-temporal correlation in the wavefront.



Samenvatting

A
tmosferische turbulentie heeft eeuwenlang het oplossend vermogen van tele-
scopen op aarde beperkt. Zonder enige vorm van compensatie, vervaagt

het de beeldvorming en beperkt de resolutie tot ongeveer 0.5−1arcsec voor zicht-
baar licht. Adaptieve optica (AO) is een techniek waarmee het mogelijk is om
de golffront verstoringen die ontstaan in een turbulent medium actief te com-
penseren. Gebruik makend van een golffront sensor (WFS) schat het systeem de
verstoringen, waarna deze worden gecompenseerd door actief het optische we-
glengte verschil in het systeem aan te passen met een vervormbare spiegel (DM).
Dit proefschrift concentreert zich op de regeltechnische aspecten van AO.

De meeste AO systemen zijn gebaseerd op een eenvoudig regelschema, dat
bestaat uit een statische golffront reconstructie stap, gevolgd door een serie on-
afhankelijke parallelle servo compensatoren. Een nadeel van deze aanpak is dat
het impliciet een ontkoppeling van de spatiële en temporele dynamica veronder-
stelt. Daarnaast laat de structuur van de servo compensatoren het veelal niet
toe om expliciet rekening te houden met de dynamica van de DM en WFS en
de temporele evolutie van het golffront. Bovendien wordt bij gebruik van een
minimum-variantie golffront reconstructor de gewijzigde golffront statistiek als
gevolg van het feit dat de verstoringen in gesloten lus worden gemeten, meestal
buiten beschouwing gelaten. Het is bekend dat de temporele fout veroorzaakt
door de tijdsvertraging tussen meting en correctie, één van de belangrijkste beper-
kingen is met betrekking tot de prestaties van een AO systeem. Ook de meetruis
levert een belangrijke bijdrage aan het totale fouten budget van het AO systeem,
met name wanneer er gewerkt wordt met een zwakke hulp ster. In dit onder-
zoek wordt aangetoond, dat deze fouten kunnen worden beperkt door gebruik
te maken van een regelstrategie die rekening houdt met zowel de DM- en WFS
dynamica als de spatiële en temporele dynamica van de golffront verstoring.

Om dit doel te bereiken wordt voor het modelleren van zowel de golffront
verstoringen als de AO dynamica gebruik gemaakt van data gebaseerde systeem
identificatie. De geïdentificeerde modellen worden vervolgens benut om een mini-
mum-variantie of een H2-optimale regelaar te bepalen. In deze aanpak wordt de
tweede-orde statistiek van de golffront verstoringen gemodelleerd als een regulier
stochastisch proces. Het vinden van de spectrale factor die de relevante turbulen-
tie dynamica nauwkeurig beschrijft is hierbij de moeilijkste en de meest funda-
mentele stap. Een belangrijk deel van het onderzoek is daarom aan het modelleren
van stochastische turbulentie gewijd. Er zijn twee strategieën ten aanzien van
het identificeren van een verstoringsmodel nauwkeurig onderzocht. De eerste
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4 Samenvatting

methode is gebaseerd op het benaderen van het theoretische verstoringsspectrum.
Hiertoe is een op subspace identificatie gebaseerd algoritme ontwikkeld dat als
doel heeft de minimum fase spectrale factor te vinden die de gegeven samples
van het powerspectrum zo nauwkeurig mogelijk beschrijft. Het algoritme is met
succes gebruikt om het niet-rationele Kolmogorov power spectrum te benaderen,
maar ontbeert de efficiëntie om een volledig multi-variabel atmosferisch verstor-
ingsmodel te identificeren voor het aantal WFS kanalen dat in AO gebruikelijk
is. De tweede methode blijkt hiervoor meer geschikt en maakt gebruik van een
subspace identificatie algoritme, dat het atmosferisch verstoringsmodel direct op
basis van open-loop WFS schat. In combinatie met een reparametrizatie van de
WFS ruimte, is dit algoritme voldoende efficiënt om een verstoringsmodel voor
AO systemen met maximaal een paar honderd vrijheidsgraden te identificeren.
Aangezien de methode geen enkele vorm van ontkoppeling veronderstelt, zou
het verstoringsmodel de spatiële en temporele correlatie, zoals opgelegd door een
als bevroren te beschouwen stroming van turbulentie in overeenstemming met de
Taylor hypothese, moeten kunnen beschrijven.

Uitgaande van het geïdentificeerde verstoringsmodel en het model van het AO
systeem, kan het AO regelprobleem worden geformuleerd als het bepalen van de
H2-optimale regelaar. Aangezien het verstoringsmodel minimum fase is, kan de
algemene oplossing van het H2-optimale regelprobleem worden vereenvoudigd
zodat in plaats van twee hooguit één Riccati vergelijking moet worden opgelost.
Een verdere vereenvoudiging kan worden bereikt indien het model van het AO
systeem minimum fase is of een bekende inner-outer factorizatie heeft. In dit geval
kan ook de tweede Riccati vergelijking worden geëlimineerd zodat een analytisch
uitdrukking ontstaat. Op deze manier kan er een analytische uitdrukking voor
de H2-optimale regelaar worden afgeleid in het geval dat het AO systeem kan
worden gekarakteriseerd door een scalaire overdrachtsfunctie bestaande uit een
geheel aantal samples vertraging en een impulsresponsie met twee coëfficiënten.
Door het dynamisch gedrag van de WFS camera te analyseren blijkt dat deze
modelstructuur voor ieder AO systeem met een DM die een tijds-constante heeft
die kort is ten opzichte van de WFS belichtingstijd geldt.

De data gedreven optimale regelstrategie, verkregen door het combineren van
het subspace identificatie algoritme en de analytische uitdrukking voor de H2-
optimale regelaar, is experimenteel gevalideerd op een AO laboratorium opstelling.
Een validatie studie laat zien dat, in vergelijking tot de algemeen gangbare regel-
strategie bestaande uit een minimum variantie golffront reconstructor en een eerste
order filter, de voorgestelde optimale regelstrategie een effectief middel is om de
temporele fout te reduceren. De winst van optimaal regelen ligt derhalve in het
gebied waar de Greenwood frequentie groot is ten opzichte van de sample fre-
quentie en de temporele fout dominant wordt. Optimaal regelen kan daardoor
bijdragen aan het verbeteren van de prestaties van bestaande AO systemen, met
name tijdens zware turbulentie met hoge wind snelheden en kleine Fried param-
eters, maar ook in situaties waar de sample frequentie wordt gelimiteerd door
meetruis. Voorts is het aannemelijk, dat optimaal regelen een bijdrage kan lev-
eren aan het reduceren van de foutbijdrage ten gevolge van meetruis, aangezien
het de spatiële en temporele correlatie in het golffront in rekening brengt.
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1 CHAPTER

Introduction

A
daptive optics is nowadays a well established technique to actively
compensate the wavefront distortions introduced in a light beam

as it propagates trough a turbulent medium. It has found widespread
use in ground-based astronomical telescopes to restore the image quality
by counteracting the devastating effect of atmospheric turbulence on the
angular resolution.

This thesis focuses on the control aspects of adaptive optics (AO). To pro-
vide some additional background information and to better position the
work, this introductory chapter will start with a brief overview of the ba-
sic principles and developments in the field of AO. Since AO is still a
rapidly developing area the overview will be far from exhaustive. For
more background information the reader is referred to the standard text
books (Tyson 1998; Roddier 1999; Hardy 1998; Tyson 2000).

After this elementary overview, different control strategies in AO are re-
viewed. This forms the starting point for motivating the followed research
strategy. The chapter finishes with an overview of the main contributions
and a brief outline of the remaining chapters of the thesis.

1.1 Adaptive optics in astronomy

For thousands of years, astronomical observations play a crucial role in our at-
tempts to reveal the mysteries of the universe. The introduction of the telescope
at the beginning of the seventeenth century, resulted in a quantum leap in the
angular resolution with respect to the naked-eye. Several important discoveries
and breakthroughs in astronomy can be attributed to technical improvements of
the telescope. These days, ground-based optical and near-infrared astronomical
telescopes (see Figure 1.1) are indispensable tools in astronomy.

9



10 Chapter 1 Introduction

1.1.1 The need for adaptive optics

Two important properties of a telescope are its light collecting power and angular
resolution. Like any optical imaging system, the angular resolution of a telescope
is ultimately limited by diffraction (Hecht 1987; Born and Wolf 1999). Adopting
Lord Rayleigh’s criterion, the diffraction limited angular resolution of an optical
imaging system with a circular aperture of diameter D is given by

sin θ ≈ 1.22
λ

D
, (1.1)

where λ denotes the observing wavelength and the resolution θ is expressed in
units of radians. The amount of detail that can be resolved increases hence with
the telescope diameter D. This in combination with the improved light collecting
power, forms an important drive to build larger and larger telescopes.

Figure 1.1: Gemini North telescope with open wind vents and observing slit.
Gemini North is a 8m telescope located on Mauna Kea, Hawaii. Image Credit:
Gemini Observatory / Association of Universities for Research in Astronomy.

The size of modern telescopes, however, has increased to such an extend that
atmospheric turbulence has become a limiting factor. Atmospheric turbulence
arises from large scale temperature inhomogeneities caused by solar heating of
the Earth’s atmosphere. By mixing air of different temperatures, it is responsible
for random local fluctuations in the refractive index. The light collected by the
telescope will hence experience time and space varying random fluctuations in
the optical path length. As a result, a perfectly plane wavefront from a far and
distant star will be no longer flat at the time it arrives at the telescope aperture.
Some parts of the incoming light beam will be delayed with respect to other parts,
resulting in a distorted wavefront.

Without taking any counter measures, the atmospheric wavefront distortions
limit the achievable angular resolution to about 1 arcsec for observations in the
near infrared. This type of resolutions correspond to the diffraction limited per-
formance of a telescope with a diameter in the order of only 10 to 20 cm. So when
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the telescope diameter is increased beyond this size, the improvement in angular
resolution will stay behind what can be expected from (1.1). The resolution will
be completely determined by the atmosphere and is said to be seeing limited. To
further improve the imaging quality of large ground-based telescopes it is neces-
sary to reduce the devastating effect of the atmospheric wavefront distortions on
the imaging process. This is the task of an adaptive optics system.

1.1.2 Principle of adaptive optics

To explain the principle of AO, consider the schematic drawing in Figure 1.2.
When light from a distant star arrives at the outer layers of the atmosphere, it
has a perfectly plane wavefront. However, this plane wavefront will never reach
the telescope as the turbulent atmosphere will introduce time and space varying
optical path length differences. This gives rise to a turbulence induced phase pro-
file φ(ρ, t), where ρ ∈ �2 specifies the spatial position in the telescope aperture
and t denotes time. The AO system tries to cancel out these wavefront distortions
by actively introducing optical path length differences of opposite phase.
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Figure 1.2: Schematic representation of an AO system, and its main components.

An AO system is typically composed of the following components – a wave-
front sensor (WFS), an active component to influence the optical path length dif-
ferences or phase and a feedback controller. In most systems, like the one depicted
in Figure 1.2, the active optical component is a deformable mirror (DM). For the
ease of discussion we will simply assume that the active component is a DM.
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Light entering the AO system is first directed to the DM. By actively changing
the mirror shape, the DM is able to apply a phase correction φm(ρ, t). The residual
phase error is the difference between the turbulence induced wavefront and the
applied correction, i.e. ǫ = φ − φm. After applying the wavefront correction, a
beam splitter divides the reflected light beam in two parts. The first part of the
corrected light beam leaves the AO system and is used by the science camera to
form an image of the object of interest. The remainder of the light is directed to
the WFS, which provides quantitative information about the residual wavefront.
Based on the WFS measurements s(·), the controller has to determine the actuator
inputs u(·) to the DM. The controller should adapt the input signal in such a way
that the DM cancels out most of the distortions.

By counteracting the wavefront distortions, AO is able to reduce the devastat-
ing effect of atmospheric turbulence on the imaging process. If the AO system is
working properly, the light to the science camera should have an almost flat wave-
front, as if there where hardly any distortions. In this way, the corrected image can
be recorded without being spread out when using long exposure times. By using
AO, large ground-based based telescopes may reach close to diffraction limited
performance in the near infrared (Rousset et al. 1990; Beckers 1993). Figure 1.3
provides an example of the gain in angular resolution that can be achieved by AO.
It shows an image of a star-burst galaxy obtained with the Canada-France-Hawaii
Telescope (CFHT), atop of the Mauna Kea volcano, Hawaii, with and without AO.
The AO corrected image has a much higher resolution and shows more details.

Figure 1.3: NGC7469, a galaxy belonging to the class known as star-burst galaxies.
The left image has been obtained with AO compensation and has a resolution of
0.13 arcsec. The right panel shows the image that would have been obtained with-
out AO compensation and has an resolution of 0.7 arcsec. Image Credit: Canada-
France-Hawaii Telescope (CFHT).

In astronomy, it is common to make a distinction between adaptive optics and
active optics. The latter term is used to refer to the technique of compensating
static and low frequency errors in the primary mirror geometry of the telescope
itself. Examples of the compensated error sources include mechanical errors in-
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troduced by gravitational sag and wind forces at different telescope inclinations.
Active optics is also used to align the different segments in telescopes with a seg-
mented primary mirror. In contrast to adaptive optics, active optics operates at a
fairly low temporal frequency in the order of 0.05 Hz or less.

1.1.3 Early developments of adaptive optics

The idea of AO was already known in the fifties. In 1953, Babcock (Babcock 1953)
proposed the usage of an Eidophor1 in feedback configuration to compensate
atmospheric wavefront distortions. However, the demanding technical require-
ments of this idea delayed the realization of AO systems for several decades. In
the early seventies, the US Air Force built the first operational AO systems both for
improved imaging of satellites and for the projection of high energy laser beams
onto missiles. In the late 1980’s, the European Southern Observatory (ESO) and
the US National Optical Astronomy Observatories (NOAO) decided to start a pro-
gram for the development of AO for infrared astronomy.

In 1989, ESO unveiled the first non-military AO system for large telescopes.
The Come-On system, developed through collaboration between ESO, ONERA
and astronomical institutes in France, was the first system to provide diffraction-
limited astronomical images in tests on the 1.52 m telescope (Rousset et al. 1990).
The system was later put into service on the ESO 3.6 m telescope at la Stilla (Chili).
Nowadays AO is a well established technique. By the mid-1990s virtual all large
telescopes had either been retrofitted or had integrated AO system in their design.
So most modern observatories are able to offer their astronomers an AO system.

1.1.4 Improved sky coverage by laser guide stars

An important complication in astronomical imaging is that the amount of light
available for wavefront sensing is typically very small. If the science object has
a stellar magnitude (Roddier 1999; Hardy 1998) of 13 or more, it is too faint for
the WFS to function properly. Under these circumstances, AO can only be used if
there is a bright guide star close to the science object that can be used as alternative
target for wavefront sensing. The idea behind this is that light from this reference
source experiences almost the same turbulence as the light from the faint science
object. This implies that the WFS measurements from the guide star can be used
to correct the wavefront distortions associated with the science image.

For an reference source to be a suitable guide star, it should be sufficiently close
to the science object to ensure that the WFS measures approximately the same dis-
tortions. A quantitative measure for the admissible angular separation between
guide star and science object is the so called isoplanatic angle. The isoplanatic
angle θ0 is defined as angle between two light beams so that they experience a
mean-square non-common path phase difference of 1 rad2. Realistic values of the

1An Eidophor is an old-fashioned television projection system that was used to create theater-sized
images. Its working is based on electrostatic deformation of an oil surface by electron bombardment.
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isoplanatic angle are in the order of a few arc seconds. This means that still only
0.1 to 1% of the stars in the sky are close enough to a bright star to benefit from
AO (Rigaut and Genrdon 1992). Unfortunately, many interesting science objects
lack therefore a sufficiently bright natural guide star.

Similar limitations existed for many military applications of AO. To deal with
this issue and improve the sky coverage, the US Air Force started to develop laser-
beacon assisted AO in the 1980’s. In laser-beacon assisted AO (see e.g. Fugate et al.
1991), a laser beam is projected into the air to create an artificial guide star or laser
guide star (LGS), in the vicinity of the science object. Two strategies are used
for creating artificial guide stars. The first concept is based on back-scattering
of pulsed laser light by sodium resonance in the high mesosphere at an altitude
of approximately 90 km, while the second approach uses Rayleigh diffusion of
particles and molecules in the low stratosphere at 10 to 20 km.

An important disadvantage of the use of LGS is that it leads to a significant
increase of the complexity and costs of the AO system. Especially the need for
expensive high performance and high quality lasers, which produce an enormous
amounts of heat, is complicating matters. Also the problem of projecting the laser
beam to the sky with minimal distortions is a challenging task. Another compli-
cation of laser assisted AO is that LGS cannot be used as an absolute reference to
stabilize the image motion. The laser beam projected from the ground is also ef-
fected by turbulence, resulting in random displacements of the guide star position.
Since the absolute position of the LGS is unknown, it is impossible to measure the
global tilt and tilt modes. To compensate these low order modes, an additional
faint natural reference guide star is needed. The source brightness required for tilt
tracking (typically around 16 on the magnitude scale), however, is much less than
that needed for compensating higher order modes.

Also the effect known as conical anisoplanatism is posing a physical limitation
on the use of LGSs. Since the artificial guide star is located at a relatively low
altitude, the back-scattered light forms a conical beam which samples a different
part of the atmosphere than the light coming form a distant star. The error caused
by conical anisoplanatism scales with the telescope diameter and the observing
wavelength. Consequently, LGS assisted AO becomes unusable for telescopes
larger than 8 m diameter in the visible (Ragazzoni et al. 2000). To overcome this
problem, a constellation of multiple guide stars has to be used. At this moment,
several large ground-based telescopes have an operational LGS system.

1.1.5 Extension to multi-conjugate adaptive optics

Besides the achievable angular resolution and the sky coverage, also the field of
view (FoV) is an important property in astronomical telescopes. Because of aniso-
planatism, the AO performance is not uniform over the sky but degrades with
the angular distance from the guide star. Since the turbulence is distributed in a
volume above the telescope, light waves from different directions experience dif-
ferent distortions so that the wavefront corrections derived from WFS measure-
ments of a guide star in one part of the sky will only compensate turbulence in
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a small FoV. To improve the FoV of classical AO systems, a technique known as
multi-conjugate adaptive optics (MCAO) has been proposed.

The basic concept of MCAO has already been proposed as early as 1975 (Dicke
1975), and received renewed attention after the papers of Beckers (1989) and Eller-
broek (1994). Whereas classical AO uses a single DM and WFS to compensate
the wavefront distortions in a single plane conjugated to the telescope aperture,
MCAO tries to compensate the turbulence in the three-dimensional volume above
the telescope. This is achieved by using multiple DMs and WFSs. By combining
the WFS measurements obtained from guide stars in different directions it is pos-
sible to determine the wavefront distortions at different heights. The process of
converting the WFS measurements in a three-dimensional turbulence profile is
called turbulence tomography. With multiple DMs conjugated at turbulent lay-
ers at different height, MCAO is able to correct the wavefront distortions in a
three-dimensional fashion. This results in a more uniform correction that is less
sensitive to the direction of observation over a much larger FoV.

Ragazzoni et al. (2000) has experimentally demonstrated the principle of at-
mospheric turbulence tomography by collecting WFS data from a constellation of
three off-axis natural guide stars ≈ 15 arcsec from a central star. The measurement
data from the off-axis stars has been used to compute the wavefront distortions in
the direction of the central star. By comparing the computed distortions with real
WFS measurements from the central star, it is shown that tomographic reconstruc-
tion reduces the wavefront anisoplanatic error by a factor three compared to the
wavefront reconstructed by simply taking the arithmetic average over the neigh-
boring guide stars. Other studies to access the feasibility of MCAO have shown
that for an 8 m telescope with three mirrors and five LGSs, a ten-fold increase in
the area of the compensated FoV should be possible (Ellerbroek and Rigaut 2000).

With MCAO being based on multiple DMs, WFSs and LGSs it is far more com-
plex than a classical AO system. MCAO is still in an experimental stage, and
there is a lot of research effort in developing the necessary concepts and technical
expertise to demonstrate it on sky. A MCAO system for the Gemini South tele-
scope is currently under development and expected to be commissioned in 2007.
Meanwhile, ESO is working on the multi-conjugate adaptive optics demonstrator
(MAD) to investigate the feasibility of different MCAO techniques for the next
generation of very large telescopes (VLTs).

1.1.6 Non-astronomic application of adaptive optics

Now that AO has reached a certain level of maturity, it is starting to have spin-offs
beyond the traditional applications in astronomy and the military. The technol-
ogy has found its way in several new developments in medicine, manufacturing
and laser communication. One of the first commercial applications is in the field
of ophthalmology. Here AO is used in laser eye surgery and to improve the reso-
lution of images of the human retina for early detection of eye diseases.

Besides correcting for optical distortions, AO can be used to alter the char-
acteristics of an optical system. The objective here is not to improve the image
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quality, but rather to adapt the wavefront to achieve a particular effect. Some of
the emerging AO applications, such as femto-second pulse shaping and accurate
focus control of laser beams, are based on this idea.

Furthermore, AO is finding its way in several three-dimensional in vivo and
in vitro imaging applications, systems for vision assessment, in applications of
laser communications and material processing, in confocal microscopy, optical
data storage and defense applications such as laser beam delivery and surveil-
lance applications. For an extensive overview of medical and industrial applica-
tions of AO, as well as an overview of its market prospects, the reader is referred
to Greenway and Burnett (2004).

1.2 Imaging through atmospheric turbulence

Both for the design and performance evaluation of AO systems, it is important
to have a basic understanding of the physical processes that cause turbulence. A
good appreciation of the structure of turbulence is particularly useful as it shows
that the wavefront aberrations are not completely random, but can be predicted to
a certain extent. Furthermore, a physical description of turbulence provides more
insight in the way design parameters, like the WFS resolution, the number of DM
actuators and the control bandwidth, influence the overall performance.

There is a wealth of literature on the characterization of atmospheric turbu-
lence and its influence on image formation. It is beyond the scope of this thesis
to provide a complete overview. In this section some of the main results that are
useful in motivating the chosen control strategy will be summarized. For a more
extensive overview, the reader is referred to the standard works of Tatarskii (1971);
Goodman (1985); Léna (1997); Hardy (1998); Roddier (1981) and (Roddier 1999).
At the end of the section we will relate the image quality of a turbulence degraded
image to a convenient performance measure for AO.

1.2.1 Wavefront phase-distortions

Light propagating through the atmosphere is affected by random fluctuations in
the refractive index. The physical source of these inhomogeneities is the turbulent
mixing of air of different temperatures. This effect is most profound at the in-
terface of different wind-layers, where wind shear forms the driving force. Before
entering the atmosphere, light from a distant astronomical object forms essentially
plane waves. However, in the atmosphere, light propagating through regions of
high refractive index will be delayed with respect to other regions. When the light
arrives at the telescope, the wavefront is no longer flat but severely distorted.

To a first approximation, the so called near-field approximation, the optical
path differences ∆l in the telescope aperture can be expressed as

∆l(ρ) =

∫
n(ρ, z) dz, (1.2)
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where z is a coordinate along the line of sight, n(ρ, z) denotes refractive index
and ρ ∈ �2 is the spatial position in the aperture. The refractive index can be
approximated as the sum of a wavelength dependent part n(λ) and a randomly
fluctuating part nf (ρ, z) dependent on the temperature and pressure variations,
i.e. n(ρ, z) = n(λ) + nf(ρ, z). Since the fluctuating nf (ρ, z) part is fairly wave-
length independent, also the shape of the DM needed to compensate the optical
path length differences of light with different wavelengths is the same. This is
particularly important as it implies that the WFS can be operated at a different
wavelength than the wavelength used for the observations.

The effect of the wavefront distortions on the image formation process, on the
other hand, shows a strong wavelength dependence. The image quality is not
determined by the absolute optical path differences but by their relative impact,
that is by the optical phase differences. The phase and the optical path length
are related as φ = k∆l, where k = 2π/λ is the wave number and λ denotes the
wavelength. Hence, the phase fluctuations are inversely proportional with the
wavelength. This explains why atmospheric turbulence has a less detrimental
effect on the imaging performance at longer wavelengths.

1.2.2 Spatial structure of atmospheric turbulence

Atmospheric turbulence is a random process that can only described in terms
of statistical quantities. The theoretical framework for understanding imaging
through turbulence relies heavily on the model of the velocity of motion in a tur-
bulent medium as proposed by Kolmogorov (1960). This model assumes that
energy is added to the medium in the form of large-scale inhomogeneities with
a characteristic size L0, the so called outer scale. In the case of atmospheric tur-
bulence, the ultimate energy source for generating these inhomogeneities is solar
heating, which leads to kinetic energy in the form of convection and wind shear.

Kolmogrov suggested that these large scale disturbances successively break
down, transferring the kinetic energy into smaller and smaller structures. If the
characteristic size of the turbulent vortexes reaches the level l0 for which it is no
longer possible to sustain the turbulence, the energy is dissipated as heat by vis-
cous friction. For the process to continue at a stable rate, the energy transferred
to each of the disturbances with a characteristic size l0 ≤ l ≤ L0 should equal
the energy dissipation. Under the assumption that the atmosphere can be con-
sidered as locally homogeneous and isotropic, this energy balance can be used to
derive a relation between the velocity fluctuations and the characteristic distur-
bance size. This gives rise to a statistical description of spatial distribution of the
velocity fluctuations in a turbulent medium.

In describing the phase fluctuations it is commonly assumed that a passive ad-
ditive, i.e. a quantity that does neither affect the dynamics nor the composition
of the turbulent medium, has the same spatial distribution as the velocity fluctua-
tions. This implies that also the refractive index fluctuations follow a Kolmogorov
power law. By performing the integration (1.2) over the refractive index it is now
possible to determine the spatial distribution of the phase distortions in the tele-
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scope aperture. The spatial distribution of the phase distortions is usually char-
acterized by the structure function, which is the variance of the phase difference
between two points separated by a vector r, i.e.

Dφ(r) =
〈
|φ(ρ, ·) − φ(ρ + r, ·)|2

〉
, (1.3)

where 〈 〉 denotes the ensemble average over different realization of φ(ρ, ·) and · a
single time-instant. The structure function was introduced by Kolmogorov to de-
scribe non stationary random functions with a slowly varying mean. Because the
difference between two nearby phase points is not affected by the slowly varying
mean, the increment can be considered stationary whereas the phase itself is not.
Structure functions are also useful as one is not interested in the absolute phase,
but only in the relative fluctuations over the aperture.

Since the turbulence is assumed to be homogeneous and isotropic, the struc-
ture function does not depend on the absolute positions ρ and ρ + r, but only on
their mutual distance |r|. For Kolmogorov turbulence, the phase structure func-
tion over the aperture is given by

Dφ(r) = 6.88

( |r|
r0

)5/3

, (1.4)

where

r0 =

[
0.423

(
2π

λ

)2

sec(ζ)

∫
C2

n(h)dh

]−3/5

, (1.5)

is the Fried parameter, ζ the angular distance of the source from zenith and Cn(h)
the refractive index structure coefficient characterizing the turbulence strength at
a height h above the ground. An interesting interpretation of r0 is that it spec-
ifies the aperture diameter for which the mean-square wavefront phase error is
approximately 1 rad2. Typical values for r0 in the visible range from less than 5 cm
in strong daytime turbulence to over 20 cm at good sites at night.

The phase structure function plays an important role in characterizing the ef-
fect of atmospheric turbulence on the image formation. Under the assumption
that the wavefront distortions are Gaussian random process, it is related to the
coherence function as

Γ(κ) = e−
1/2Dφ(λfκ), (1.6)

where f is the focal length of the imaging system and κ denotes the spatial fre-
quency in the aperture. For long exposure images, the coherence function can
be interpreted as the optical transfer function (OTF) (see e.g. Hecht 1987) of the
atmosphere. If the turbulence rather than the telescope is limiting the imaging
performance, the Fourier transform of the coherence function defines the seeing
limited point spread function (PSF) in the focal plane. The turbulence limited PSF,
the so called seeing disk, has a full width of half maximum (FWHM) of 0.98λ/r0,
which corresponds in good approximation to the diffraction limited performance
of a telescope with a diameter D of r0. Consequently, a telescope with D ≫ r0 is
seeing limited whereas a telescope with D ≪ r0 is limited by diffraction.
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Furthermore, equation 1.4 allows one to calculate an estimate of the wavefront
fitting error, caused by the inability of the DM to assume any arbitrary shape. The
mean-square fitting error is given by

σ2
f = af

(
d

r0

)5/3

, (1.7)

where d is the characteristic size of the inter-actuator spacing and af is a fitting
error coefficient depending on the influence function of the corrector. Wavefront
phase fluctuations with a variance below a threshold of about 1 radian have little
effect on the image quality and therefore typically do not need to be compensated.
Using this threshold as a rule of thumb, equation (1.7) can be used to estimate the
required d/r0 and hence the minimal number of mirror actuators. Likewise the
size of anisoplanatic error can be estimated from the structure function.

1.2.3 Temporal evolution of the wavefront

The Kolmogorov model for turbulence describes only the spatial distribution of
the wavefront distortions. For control design, however, it is also useful to have
some insight in the time scale on which the distortions evolve. The common way
to model the temporal evolution of the wavefront is by using the Taylor hypothe-
sis of frozen turbulence (Taylor 1938).

The Taylor hypothesis is based on the assumption that the atmospheric turbu-
lence is concentrated in a number of discrete layers which each move with their
own wind speed and direction over the telescope aperture. Since the lifetime of
the turbulent refractive index inhomogeneities is assumed to be much longer than
the time needed for the layers to cross the telescope aperture, the different layers
can be considered as frozen phase-screens. With the spatial distribution of the
layers being fixed, the temporal evolution of the wavefront is entirely due to the
wind transport. Considering a single layer of turbulence moving with a wind ve-
locity v ∈ �2, the phase distortion at point the ρ and time t + τ can be related to
the phase at time t as

φ(ρ, t + τ) = φ(ρ − vτ, t).

The temporal difference τ is thus transformed into a spatial difference |r| = vτ ,
which is characterized by (1.4). When the wavefront is affected by several layers,
the temporal evolution of a single point in the aperture can be approximated as a
phase screen propagating with a turbulence weighted velocity v̄, defined as

v̄ =

(∫
C2

n(z)|v(z)|5/3dz∫
C2

n(z)dz

)3/5

, (1.8)

where the integration is performed over the line of sight. As a result, the tempo-
ral phase structure function Dφ(τ) is obtained by substituting |r| = τ v̄ in equa-
tion (1.4). The characteristic time for the turbulence to move over a distance τ0,
i.e. τ0 = r0/v̄ is called the turbulence coherence time. Typical values for the wind
speed are in the order of 10 m/s with peak values up to 40 − 50m/s.
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The validity of the frozen flow hypothesis depends on the time scales that are
considered. Whereas the model is a good approximation for short time scales, it
cannot be valid for long time scales because of the temporal evolution of the tur-
bulence itself. This effect is also referred to as boiling. By analyzing data from the
1.5 m and 3.5 m telescopes at the Starfire Optical Range, it has been demonstrated
that the frozen flow hypothesis is an accurate description of the temporal devel-
opment of atmospheric turbulence on time scales shorter than approximately to
10 to 20 ms (Schöck 1998; Schöck and Spillar 2000).

Besides the structure function also the power spectrum is often used to de-
scribe the phase fluctuations. The power spectrum Φ(f) and the structure function
Dφ(τ) are related through the Wiener-Khinchin theorem. The (temporal) power
spectrum corresponding to the temporal phase structure function Dφ(τ) is given
by (Conan et al. 1995; Glindemann et al. 2000)

Φ(f) = 0.077r
−5/3
0

1

v̄

(
f

v̄

)−8/3

. (1.9)

This power spectrum can be used to derive an estimate of the temporal errors
introduced by pure time delays and the finite bandwidth of the control system.
Greenwood (1977) has shown that the temporal wavefront error as a result of
bandwidth limitations for an AO system with a first-order temporal feedback con-
troller or a low-pass controller with an infinitely sharp cut-off, is given by

σ2
t = at

(
fG

fS

)5/3

, (1.10)

where fS is the bandwidth of the feedback system and fG = 0.427v̄/r0 is a char-
acteristic frequency known as the Greenwood frequency. The scaling constant
at ∈ � depends on the type of feedback controller and is equal to 1 for the first-
order controller. Finally, the wavefront error caused by a pure time delay τd ∈ �

in the system is given by σ2
d = 28.4(τdfG)5/3 (Fried 1990).

1.2.4 Formulation of the AO control objective

The quality of a turbulence degraded image is often expressed in terms of the
Strehl ratio. The Strehl ratio is defined as the peak intensity of the image of a point
source, normalized to the diffraction limited peak intensity (Tyson 1998; Hardy
1998). This is an useful and sensitive performance measure as any wavefront error
is expected to diffract light away from the center of the image, thereby reducing
the peak intensity. For an optical system with a (residual) phase distortion ǫ(ρ, ·),
the Strehl is given by

S =

〈
1

A

∣∣∣∣
∫∫

eikǫ(ρ,·) dρ

∣∣∣∣
2
〉

, (1.11)

where the integration extends over the opening aperture and A denotes the light
collecting area. From equation (1.11) it is clear that Strehl ratio for an undistorted
wavefront, i.e. ǫ(ρ, ·) = 0, is equal to S = 1. In the presence of any wavefront
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aberration, the Strehl ratio will be less than 1. The general objective of AO can
hence be formulated as maximizing the Strehl.

From a practical point of view, the above expression for Strehl is not very con-
venient. Evaluating the Strehl requires accurate knowledge of the wavefront ǫ(ρ, ·)
over the entire aperture, which is generally not available. Because of the random
nature of turbulence, at most the statistical properties of the wavefront are known.
However, if the wavefront distortions are not too large, it is possible to relate the
Strehl to the variance of the phase error over the aperture σ2

ǫ . By expanding the
exponential in (1.11) and preserving the first few terms, the Strehl can be approx-
imated as (Born and Wolf 1999)

S ≈ 1 − σ2
ǫ ≈ exp(−σ2

ǫ ) (1.12)

where

σ2
ǫ =

1

A

〈∫∫
ǫ2(ρ, ·)dρ −

(∫∫
ǫ(ρ, ·)dρ

)2
〉

. (1.13)

The above expressions provide a reasonable description of S for phase errors with
variances up to respectively 0.4 and 4 rad2. The latter of the two approximation is
sometimes called the extended Maréchal approximation.

With the Strehl being a strictly decreasing function of σ2
ǫ , the approximations

in (1.12) suggest that the objective of maximizing the AO imaging quality can
be replaced by that of minimizing the residual phase variance. An analysis per-
formed by Herrmann (1992) confirms that even though the above approximations
might be rather crude, the minimum-variance wavefront leads indeed to the max-
imum Strehl. Since the objective of maximizing the Strehl is rather awkward, the
AO control objective is usually reformulated as that of minimizing σ2

ǫ .

1.3 Classical AO control approach

This section provides a concise overview of what we will refer to as the classical
AO control approach. The considered control strategy is still the most widespread
control approach used in AO systems for ground-based telescopes (see e.g. Brase
et al. 1998; van Dam et al. 2004). For this reason, the outlined control procedure
will form the baseline for comparing the control strategies developed in this thesis.
The shortcomings of the classical AO control approach will be used in Section 1.6
to motivate the followed research strategy. More background information on most
of the theory introduced in this section can be found in the standard works Tyson
(1998); Roddier (1999); Hardy (1998).

1.3.1 A closer look at the AO control system

In the previous sections we have seen that the general objective of AO is to sup-
press the wavefront distortions introduced by the turbulent atmosphere. Further-
more, it has been pointed out that optimizing the imaging performance can be
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achieved by minimizing the residual phase variance. The AO control problem
should therefore be directed to the design of a controller that achieves this goal.
Figure 1.4 provides a schematic representation of a standard AO control loop con-
sisting of a WFS, a DM and a controller C, each indicated by a shaded block. The
block diagrams within the shaded blocks show the mathematical structure of the
models of the components as used in the classical AO control approach.

φ

φm

ǫ

C
WFS

DM
u

+

+

+
G×

H×

E×

F×

T1 T2 Tmφ

ǫ̂i

φ̂i

η

s

-

Figure 1.4: Schematic representation of a standard AO control loop consisting of
a WFS, a DM and a controller C. The controller has the structure of what we refer
to as the classical AO control law.

An important complication in controlling the AO system is that it is not pos-
sible to directly measure the residual phase error. In contrast to what might be
expected from the name, a WFS typically provides a signal that is a measure of
the slope or curvature of the wavefront. Different types of WFS, based on differ-
ent physical principles, have been developed including the curvature WFS, the
pyramid WFS, the shearing interferometer and the Shack-Hartmann sensor. Of
these WFSs, the Shack-Hartmann sensor is the most commonly used. Although in
this thesis we will restrict our attention to the Shack-Hartmann type of WFS, the
other types of WFS can be handled in a similar framework.

The working principle of a Shack-Hartmann WFS is illustrated in Figure 1.5.
Its main component is a grid of identical lenses, the so called lenslet array, that
segments the telescope aperture into a number of sub-apertures. Each of the
sub-apertures focuses the incident light into a spot on a charged-coupled device
(CCD). When the incoming wave-front is plane (left-hand side of figure), each
spot is located exactly under the geometrical center of its respective sub-aperture,
defining a regular grid. Any wavefront aberration (right-hand side), causes the
spots to depart from their reference positions. The displacements of each of the
spots is proportional to the averaged wavefront slope across the corresponding
sub-aperture. By determining the displacement of the spots, the Shack-Hartmann
sensor is hence able to measure the wavefront slopes. The current state-of-the-art
telescopes have AO systems with in the order of a few hundred Shack-Hartmann
sub-apertures and DM actuators (e.g. the Keck telescope has a WFS with 304 sub-
apertures and a DM with 349 actuators van Dam et al. (2004)).

The classical AO control approach decomposes the controller in a cascade of
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Figure 1.5: Schematic representation of a Shack-Hartmann wavefront sensor for a
plane wavefront (left) and a distorted wavefront (right).

static mapping and a series of parallel single-input single-output (SISO) feedback
loops. For the ease of discussion we will temporally assume that the parallel feed-
back loops are in between two of such static mappings. This situation is depicted
in Figure 1.4. To deal with the discrepancy between measurement and control
objective, the classical AO control approach includes a separate wavefront recon-
struction step. The wavefront reconstruction problem is solved in a static sense
and corresponds to the first matrix multiplication, denoted by E, in Figure 1.4.
Since the AO system is operated in closed loop, the wavefront reconstructed from
the WFS measurements s is an estimate of the residual phase error ǫ. This im-
plies that the estimated wavefront is not the wavefront correction that has to be
applied by DM but can be seen as an increment to the current correction. It is
the task of the dynamic temporal compensator consisting of the parallel feedback
loops T1, . . . , Tmφ

to estimate the required wavefront correction out of these incre-
ments. The temporal compensator is hence responsible for achieving stability and
closed loop performance. The second static mapping, denoted by F , projects the
estimated phase correction on the actuator space. The wavefront reconstruction
and the temporal compensator will be discussed in the subsequent subsections.

1.3.2 Finite-dimensional representation of the wavefront

The atmospheric wavefront distortions φ(ρ, ·), the applied wavefront correction
φm(ρ, ·) and the residual wavefront ǫ(ρ, ·) are continuous functions of time and
space and can therefore be regarded as an infinite-dimensional signals. The WFS
on the other hand produces only a finite-dimensional measurement signal s(k) ∈
�ms at discrete-time instants t = kT , where T denotes the sampling time. A Shack-
Hartmann WFS for instance, probes the incoming wavefront distortion with a fi-
nite spatial resolution set by sub-aperture spacing. The dimension of the WFS
signal in this case is twice the number of active spots. Given only the WFS signal
s(k) it is impossible to reconstruct the infinite-dimensional wavefront distortions.
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For this reason it is common practice to represent the wavefront distortion over
the aperture by means of a discrete-time finite-dimensional vector signal.

Depending on the way the finite-dimensional vector signal is obtained, we
distinguish zonal and modal representation. A zonal representation refers to the
spatial sampling of the wavefront by considering the local deformation at specific
positions in the aperture. Let the finite-dimensional vector representation of the
wavefront φ(ρ, k) be denoted by φ(k) and let the sampling locations be denoted
by ρi ∈ �2, i ∈ {1, . . . , mφ}, then the ith component of φ(k) is obtained as φi(k) =
φ(ρi, k). Note that to avoid an abundance of notation we use the same symbol
for the continuous and sampled wavefront. The two are distinguished from each
other by their arguments. The modal representation of the wavefront is on the
other hand obtained by expanding the phase on a set of basis functions

φ(ρ, k) =

mφ∑

i=0

φi(k)Zi(ρ), (1.14)

where the coefficients φi(k) form the components of the vector signal φ(k) and
Zi(ρ), i ∈ {1, . . . , mφ} is a set of suitable basis functions. Frequently used basis
functions include the Zernike basis, the Karhunen-Loéve basis or a basis com-
posed of the eigenmodes of the mirror. Whether a zonal or modal representation
is used is irrelevant for the remaining discussion. It is however assumed that the
2-norm of the obtained vector signal φ(k) provides a good approximation of the
phase variance over the aperture.

1.3.3 Static reconstruction and the actuator projection step

In the classical AO control approach, the wavefront reconstruction step and the
projection of the required wavefront correction onto the actuator space are both
considered in a static setting. Using the finite-dimensional vector representation
of the wavefront, an incoming wavefront φ(k) and the corresponding (open-loop)
WFS measurements can be related as

s(k) = Gφ(k) + η(k) (1.15)

where G ∈ �ms×mφ is the so called geometry matrix and η(k) represents the mea-
surement noise, which is assumed to be zero-mean, white and uncorrelated to
φ(k). The precise form of G depends on the modal basis functions used in the
finite-dimensional vector representation of φ(ρ, ·), or on the locations of the sam-
pling points ρi when using a zonal representation. In fact for a Shack-Hartmann
WFS, the positions ρi are typically chosen in such a way that the WFS slope mea-
surements can easily approximated in a finite-difference setting. Common con-
figurations for defining the phase reconstruction points include the Hudgin and
Fried geometry (see Figure 1.6). Let the static relation between s(k) and the wave-
front estimated φ̂(k) be given by φ̂(k) = Es(k), then the wavefront reconstruction
problem can be formulated as

E = argmin
eE

〈∥∥∥φ(k) − Ẽs(k)
∥∥∥

2

2

〉
, (1.16)
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where 〈 〉 denotes the conditional expectation over different realizations of φ(k),
and s(k) is given by equation (1.15). Note that the objective of minimizing the
expected value of the difference between φ(k) and φ̂(k) squared is in agreement
with the objective of minimizing the variance of the wavefront estimation error.

1 2

3 4

s1

s2

Figure 1.6: Schematic representation of the Fried geometry. The large circles repre-
sent the sub-apertures of the Shack-Hartman WFS and the small circles mark the
points of reconstructed phase. The arrows and denote averaged slope over the
aperture. Using the Fried geometry, the slopes s1 and s2 are related to the phase
points using the finite-difference approximations s1 = (φ3 + φ4 − φ1 − φ2)/2l and
s2 = (φ2 + φ4 − φ1 − φ3)/2l, where l is the pitch size and φi, i ∈ {1, 2, 3, 4} denote
the phase in corresponding phase points.

The earliest approaches to wavefront reconstruction (Fried 1977; Hudgin 1977;
Herrmann 1980) neglected the stochastic nature of the wavefront distortions. This
implies that the wavefront distortion φ(k) in (1.16) is seen as a deterministic signal.
Under this simplifying assumption the wavefront reconstructor reduces to

E = GT (GGT )−1.

This least-squares type of wavefront reconstructor has been successfully applied
in many AO systems and is still applied today. Even though it has a reasonable
performance for high signal to noise rations, it is rather sensitive to measurement
noise. To improve the wavefront reconstruction performance under low light level
conditions, it is useful to return to the stochastic setting of equation (1.16). This
has lead to the following minimum-variance of maximum a posteriori (MAP) es-
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timator Wallner (1983); Bakut et al. (1994); Law and Lane (1996)

E = CφGT
(
GCφGT + Cη

)−1
, (1.17)

where Cφ
.
= E{φ(k)φT (k)} and Cη

.
= E{η(k)ηT (k)} denote the covariance ma-

trices of φ(k) and η(k), respectively. From the above expression it is clear that
the minimum-variance reconstructor can be interpreted as a regularized pseudo-
inverse where the regularization reduces the sensitivity to poorly sensed modes.
Up to now, the wavefront reconstruction problem has been considered in an open-
loop setting. However, when used in an AO system, the WFS does not measure
the open-loop wavefront distortions φ(k) but the residue ǫ(k). This implies that
in (1.17) the covariance matrix Cφ should be actually replaced by the residual
wavefront variance Cǫ

.
= {ǫ(k)ǫT (k)}. In the classical AO control approach this

modification in the wavefront statistics is usually neglected.

The projection of the required wavefront correction on the actuator space is
also described by a static matrix multiplication, i.e. u(k) = F φ̂(k). In estimating
the required actuator inputs, it is usually assumed that the DM can be modeled
as φm(k) = Hu(k), where H is the so called influence matrix. Considering this
DM model, the problem of finding the projection matrix F that minimizes the
wavefront fitting error is given by

F = argmin
eF

∥∥∥φ̂(k) − HF̃ φ̂(k)
∥∥∥

2

2
. (1.18)

In contrast to the wavefront estimation and reconstruction problem in equation
(1.16), this is a deterministic optimization problem and its solution is given by F =
(HT H)−1HT . Furthermore, note that since the temporal feedback T1, . . . , Tmφ

loops in the classical AO control approach are all the same, the static multiplica-
tions F and G can be combined in a single matrix R = FE. This matrix is usually
referred to as the control matrix. By combining the matrices, the classical AO
control law can be implemented as a single matrix-vector multiply followed by a
temporal compensator.

1.3.4 Temporal compensator design

As outlined above, the task of the temporal compensator is to update the estimate
of the required wavefront correction φ̂(k) on the basis of the estimate of residual
wavefront error ǫ̂(k). Furthermore, we have seen that in the wavefront recon-
struction step and in the projection on the actuator space typically all dynamics
are neglected. On the other hand, in temporal compensator design it is impossi-
ble to neglect the AO system dynamics. In any AO system there will be a finite
delay between measurement and correction. Pure time delays, for instance, are
caused by CCD read out times in the WFS and the time needed for processing
the WFS image to produce the measurement signal s(k). Typical values for the
time required to read out the CCD detectors are in the order of 0.5 − 1 ms. The
time delay between the middle of the exposure period and the availability of the
reconstructed wavefront is typically about 2 frames for astronomical AO systems.
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In the temporal compensator design one has to pay attention to this type of de-
lays. The temporal compensator design is responsible for achieving stability and
closed loop performance in spite of the presence of any system dynamics.

The temporal compensator used in classical AO control consists of a series of
parallel feedback loops. This decomposition is based on the implicit assumption
that the spatial and temporal dynamics can be decoupled. It is assumed that each
component of the required wavefront correction φ̂i(k) can be obtained as

φ̂i(k) = Ti(z)ǫ̂i(k), i ∈ {1, . . . , mφ},

where the sub-index i is used to denote the ith component of the corresponding
vector. Furthermore, it is commonly assumed that all feedback loops are the same,
i.e. Ti(z) = T (z). The design of the scalar feedback compensator T (z) typically has
its roots in classical control design. Commonly applied control structures include
first-order lag filters, proportional-integral (PI) controllers and Smith predictors.
Given the control structure, the control design problem boils down to the choice
of the appropriate control parameters, which determine the effective bandwidth.
For a bright guide star, the bandwidth requirements are set by the turbulence.
The effect of the bandwidth on the residual wavefront error for a first-order com-
pensator has been extensively studied in literature (Greenwood and Fried 1976;
Greenwood 1977; Tyler 1994). To achieve a good performance, the bandwidth
should be chosen sufficiently high without loss of stability.

Things get more involved for faint guide stars where measurement noise be-
comes an important issue. In this case the choice of the control bandwidth is
a trade off between disturbance rejection and measurement noise amplification.
A large control bandwidth is attractive for reducing temporal latency errors, but
also increases the propagation of measurement noise. The optimal control band-
width is the bandwidth that minimizes the sum of these error contributions and
depends on both the signal-to-noise ratio (SNR) of the WFS measurements and
the prevalent turbulence conditions, while retaining stability. A simulation study
by (Brigantic et al. 1998) shows that under low light levels the choice of the band-
width is mainly determined by minimizing the measurement noise errors and is
rather insensitive to the prevalent seeing conditions.

The classical control approach has already a reasonable performance under
moderate conditions. This can be explained by the fact that the turbulence has a
power spectrum in which the low frequency components are dominant. A con-
troller with integrating action gives rise to a high loop gain in this frequency range,
which implies a good disturbance rejection for slowly varying processes. It has
been shown by Looze (2005a, 2006) that if the temporal dynamics of the atmo-
spheric wavefront distortions can be modeled as independent first-order auto-
regressive processes, i.e.

φk+1 = aiφk + w(k),

with ai ∈ � and w(k) a zero-mean white noise process, the classical AO control
structure is optimal under some stringent conditions. More specifically, it is as-
sumed that the only dynamics in the AO system is a one-sample delay and that
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the DM influence matrix H is invertible. Under these conditions, the minimum-
variance controller is composed of the MAP wavefront reconstructor (1.17) (with
Cφ replaced by Cǫ), followed by a first-order lag filter with a time-constant equal
to the time constant of the considered atmospheric disturbance model. Here, it
is important to note that the resemblance between the atmospheric disturbance
model and the optimal controller is no coincidence but a direct consequence of the
well know Internal Model Control (IMC) principle (Francis and Wonham 1976).

1.3.5 Separation principle

In Section1.3.3, the problems of wavefront reconstruction and the subsequent pro-
jection on the actuator space have been considered independently. Wallner (1983)
has analyzed these problems in an unified framework. The analysis accounts for
the fact that the wavefront distortions over the aperture are continuous functions
and includes the effect that the WFS averages the slopes over a finite area. Also
Wiberg et al. (2004, 2005) have analyzed the wavefront reconstruction and fitting
problem in the setting of infinite-dimensional vector signals. The analysis shows
that the unified approach of wavefront reconstruction and the projection on the
actuator space as pursued by Wallner (1983) does not yield any additional perfor-
mance gain. It is shown that the reconstruction and fitting problem can be solved
separately, without any loss in performance. This is in fact a direct consequence of
the well-known separation principle in control Wonham (1968); Doyle et al. (1989).

Furthermore, the analysis of Wiberg et al. shows that the residual wavefront
error in the static reconstruction and fitting problem can be decomposed into three
errors sources; that is, turbulence modes that cannot be controlled by the DM,
modes that cannot be observed by the WFS and errors in the estimation process
due to measurement noise. This leads to the definition of the concepts of control-
lability and observability. Fusco et al. (2001) derived a minimum-variance estima-
tor for estimating the phase corrections to be applied by each of the DMs in an
MCAO system. The reconstructor is directed to the minimization of the mean-
square residual phase error over a desired FoV. It is shown that the optimal esti-
mator consists of a full tomographic reconstruction of the turbulent atmosphere,
followed by a projection onto the DMs accounting for the FoV. Also this is a con-
sequence of the separation principle.

1.4 More recent developments in AO control

Besides the classical AO control approach discussed in the previous section, an
number of other approaches have been proposed in literature. This section pro-
vides a concise overview of the most important developments in this field. How-
ever, one should keep in mind that especially the most advanced control schemes
are still not common practice. The most important differences with the strategies
developed in this thesis will be briefly reviewed at the end of subsection 1.6.3.
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1.4.1 Modal gain optimization

Modal gain optimization is basically an extension of the classical AO control ap-
proach discussed in Section 1.3. The temporal compensator used in the classical
AO control consists of a series of parallel but exactly the same feedback loops, i.e.
Ti(z) = T (z). As we have seen, the choice of the control parameters of these feed-
back loops is a trade off between disturbance rejection, noise amplification and
closed-loop stability. To relax this trade off, modal gain optimization (Gendron
and Léna 1994, 1995; Ellerbroek et al. 1994) uses a modal representation of the
wavefront in which the feedback loop corresponding to each model coefficient,
Ti(z) is allowed to be tuned differently. Instead of using a common control band-
width, the bandwidth is hence optimized on a mode-by-mode basis. Since modes
with a low spatial frequencies content have a higher SNR, these modes should be
assigned a larger bandwidth in minimizing the residual wavefront error.

Gendron and Léna (1994, 1995) developed and experimentally demonstrated
a procedure for optimizing the modal gains of an integrator feedback law. It uses
a fixed a priori chosen set of basis functions that resembles a Karhunen-Loève de-
composition. The optimization of the modal gains is entirely based on open-loop
WFS data obtained from the AO system to make it independent from assump-
tions on the turbulence structure. The modal gain optimization approach has been
taken a step further by Ellerbroek et al. (1994), who proposed a procedure for si-
multaneous optimization of both the basis functions used in the modal expansion
and their associated control bandwidth. Using this approach with optimized ba-
sis functions, it is shown that an AO control system with only two distinct control
bandwidths, of which one is zero, achieves almost the same performance as a full
optimization. Such a control system has implementational advantages in making
the algorithm adaptive to turbulence changes as it requires to adjust only a single
control bandwidth rather than an entire set.

1.4.2 Control and wavefront prediction

Apart from the measurement noise and the finite control bandwidth, the inher-
ent time delay in the feedback loop is known to be one of the main limitations
on the AO correction performance. It has been suggested that wavefront predic-
tion can be used to reduce the effect of these latency errors. Several papers, like
for instance Aitken and McGaughey (1996); Lloyd-Hart and McGuire (1995), have
shown that atmospheric turbulence can be predicted over a short time horizon.
McGuire et al. (2000) have compared several prediction strategies, including re-
cursive least squares (RLS), a fixed finite impulse response filter (FIR) referred to
as matrix-inversion least squares algorithm and different training rules for neu-
ral networks, on simulated open-loop data. To reduce the time delay error, Wild
(1996) has developed a predictive optimal estimator. This predictor does not truly
predict future wavefront distortions from a set of past WFS measurements, but
minimizes the time delay error in an ensemble averaged sense.

Many demonstrations of the predictability of atmospheric turbulence have
been based on open-loop simulations scenarios. A predictive controller that oper-
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ates in closed-loop has been proposed by (Dessenne et al. 1997, 1998; Madec 1999).
The so called modal linear predictive controller has a lot in common with the
modal gain approach. Like modal gain optimization, the temporal compensator
is assumed to be composed of a series of parallel scalar feedback loops applied
to modal coefficients. Instead of optimizing only the gain of an integrator, each
temporal compensator is fully parametrized by an autoregressive moving average
(ARMA) filter. Under the assumption that the only dynamics in the AO system
is a delay of 2 samples, a recursive least-squares algorithm is used to estimate
the optimal ARMA coefficients that minimize the mean-square residual phase er-
ror. The algorithm determines the parameters on open-loop measurements. The
modal linear predictive controller has been successfully demonstrated on a 1.52 m
telescope (Dessenne et al. 1999) at the Observatoire de Haute Provence, France.

1.4.3 Static wavefront reconstruction for large telescopes

As telescope designs move to larger and larger apertures, also the number of de-
grees of freedom of the AO system (i.e. the number of DM actuators and WFS
channels) will increase substantially. Things will even get worse since virtually all
large telescope designs will incorporate MCAO to exploit the full potential of the
increased aperture size. For the least-squares and minimum-variance wavefront
reconstruction techniques discussed in Section 1.3, the complexity of computing
the control matrix and applying it to the WFS data in the form of a vector-matrix
multiply scales respectively as O(n3) and O(n2), where n is either the number
of DM actuators or the number of WFS sub-apertures. As a result, current recon-
struction techniques will become computationally intractable for future extremely
large telescopes (ELT) using AO systems with 104 − 105 degrees of freedom.

To overcome these problems, there has been recently quite some effort in im-
proving the scalability of the wavefront reconstruction and projection step. This
has resulted in a variety of iterative algorithms that exploit the specific structure
of the reconstruction problem and avoid the explicit computation of the recon-
structor matrix (see e.g. Ellerbroek 2002; Gilles et al. 2002; Poyneer et al. 2002;
Gilles et al. 2003; Gilles 2003; MacMartin 2003). Besides the gain in computa-
tional efficiency, these methods have a memory advantage in that they do not
need to store the entire reconstructor matrix. Ellerbroek (2002) proposed the use
of a slight modification to the regularization term appearing in the minimum-
variance reconstructor to obtain a representation that can be efficiently solved by
sparse matrix techniques. This approximation appears to have a negligible effect
on the estimation accuracy, and the sparse matrix techniques reduce the overall
complexity of the approximate reconstructor to O(n3/2).

The algorithm described by Gilles et al. (2002) approximates the phase covari-
ance matrix by a block circulant matrix with circulant blocks, which can be effi-
ciently inverted in Fourier domain. Then a multi-grid preconditioned conjugate-
gradient (MGCG) method is used to reconstruct the minimum-variance estimate
of the wavefront with a total complexity in the order of O(n log n). Another recon-
struction technique that uses fast Fourier transforms is based on direct inversion of
the WFS model in the frequency domain (Poyneer et al. 2002). Also this algorithm
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has a computational complexity of O(n log n). The use of preconditioned conju-
gate gradient solvers for MCAO has been elaborated in (Gilles et al. 2003). The
two preconditioners considered in this paper require an off-line sparse Cholesky
factorization of complexity O(n3/2), but their averaged update rate is typically 4-5
orders of magnitude lower than the sample rate. All on-line computations scale
linear in the number of sensors and actuators, i.e. O(n). Similar preconditioners
are considered in Gilles (2003). The use of local reconstructors wherein the actu-
ator commands depend only on sensor information in a neighboring region has
been analyzed by MacMartin (2003). To prevent performance degradation from
global modes, the local estimators are either augmented by a second hierarchic
layer of global estimators, or extended to include past local estimates, resulting
in an overall computational complexity of O(n4/3) and O(n3/2), respectively. To
arrive at a control strategy that offers full scalability for future generations of large
DMs (see e.g. Hamelinck et al. 2004, 2005a,b, 2006), (Ellenbroek et al. 2006) pro-
posed a distributed control framework for AO in which each actuator has a sepa-
rate processor that can communicate with a few direct neighbors.

1.4.4 Optimal control for adaptive optics

Paschall and Anderson where the first to formulate the AO control problem in
a Linear Quadratic Gaussian (LQG) optimal control framework (Paschall 1991;
Paschall and Anderson 1993). In contrast to the control approaches discussed
up to now, this is a model-based control approach which explicitly tries to mini-
mize the residual phase variance. The control design starts with deriving dynamic
models of both the AO system and the turbulent atmosphere. Given these models,
LQG control theory can be used to compute the optimal controller that minimizes
the mean-square residual phase error. By deriving appropriate and accurate mod-
els, the LQG framework is not only able to account for pure time delays in the AO
system but also for DM and WFS dynamics. Which of these effects are included in
the control design, depends entirely on the detail of modeling. Hence, the quality
of the models will make or break the success of LQG.

The centralized LQG control design by Paschall and Anderson is based on an
atmospheric disturbance model that describes the wavefront distortions in terms
of the first 14 Zernike modes with modal coefficients generated by an independent
first-order Markov process (for definition Markov process, see Shanmugan and
Breipohl 1988). The atmospheric disturbance model is identified from simulation
data obtained from analytical expressions for the auto-correlation kernels of the
Zernike coefficients. The mirror dynamics are modeled as a first-order lag filter
and a one sample delay is included to account for the time delay in the feedback
loop. A modal control algorithm that uses the LQG formalism has been proposed
by Looze et al. (1999, 2003). In this approach the controller is decomposed in a set
of modes derived by expanding the wavefront distortions on a Karhunen-Loève
basis. The individual modes are assumed to be decoupled and the effect of the
atmospheric turbulence on each of them is described by a separate ARMA model.
Open-loop WFS data are used to identify the model parameters. Under the as-
sumption of modal decoupling, the control design reduces to a bunch of scalar
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LQG optimal control problems. Gavel and Wiberg (2003) recently proposed an
optimal control approach which is explicitly based on the assumption that the at-
mosphere can be described by a single layer of frozen Kolmogorov turbulence,
satisfying the Taylor hypothesis. To perform the time update the so called near-
Markov approximation is introduced. This approximation states that all informa-
tion needed to predict the wavefront phase at a certain time-instant is contained
in the phase distortion over the aperture at the previous time-instant. Using this
assumption, only the conditional mean of the wavefront in the aperture is needed
to convey all statistical information from the past.

The use of the LQG optimal control formalism has been extended by Le Roux
et al. (2004) to make it suitable for MCAO. The basic idea is to discretize the FoV
over the area over which the performance has to be optimized. Considering a
finite number of discrete turbulence layers, the problem of optimizing the mean-
square residual phase error can again be formulated as minimizing the norm of
a finite-dimensional vector signal. Under the assumption that the DM dynam-
ics can be neglected, the control law reduces to a Kalman filter for estimating the
phase distortions followed by a static state feedback law. Also in this case, the
control design is based on a simple atmospheric turbulence model that describes
modal coefficients of a Zernike expansion of the wavefront distortions by means
of a first-order AR model. The AR coefficient matrix is chosen diagonal and its
elements have been adjusted to enforce a correlation time that decreases with the
Zernike radial order. The covariance matrix of the zero-mean white noise input
is determined in such a way, that the phase covariance matrix satisfies the Kol-
mogorov spatial distribution. The same atmospheric disturbance model is used
in the Kalman based optimal control approaches presented in (Petit et al. 2004,
2006). The first paper shows that the flexibility of optimal control also allows
counteracting the effect of telescope vibrations. The latter reports the first exper-
imental results of Kalman based optimal control for active vibration suppression
and extending the FoV.

1.4.5 Adaptive and quasi-adaptive control schemes for AO

The control schemes discussed so far, are all time invariant. The most advanced
concepts rely upon a priori knowledge of the turbulence statistics to improve their
performance. The required a priori knowledge is obtained by matching physical
parameters to the expected turbulence conditions or are acquired in a separate
identification experiment. Since atmospheric parameters like the wind velocity
and the atmospheric turbulence strength change on time scales of minutes, it be-
comes necessary to constantly update the controller to the changing atmospheric
statistics in order to prevent a loss in performance. To account for the varying tur-
bulence conditions and track the chances in the spatial and temporal correlations,
different adaptive control schemes have been proposed (Ellerbroek and Rhoad-
armer 1998, 2001; Gibson and Chang 1999; Gibson et al. 1999, 2000, 2001; Chang
and Gibson 2000; Liu and Gibson 2004).

The adaptive control scheme proposed by Ellerbroek and Rhoadarmer (1998,
2001), relies on a recursive least squares (RLS) algorithm to adaptively optimize
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the wavefront reconstructor of an AO system on the basis of closed-loop WFS
measurements. The approach applies also to wavefront reconstructors that in-
clude multiple frames of past measurement data to compensate for the system
latency. The main idea of this control strategy is to decompose the WFS mea-
surement vector in two subspaces, namely the range space of the DM actuator
commands and its orthogonal complement. By introducing a suitably chosen
constraint on the reconstructor, it is fully specified on the first subspace but un-
constrained on the second. Furthermore, the constraint guarantees that both the
estimated residual phase error and the second component of the WFS measure-
ment vector are completely independent form the current DM actuator command
so that an open-loop RLS can be used for optimizing the second part of the wave-
front reconstructor. This results in a control strategy which has a fixed reconstruc-
tor for nominal performance, augmented by an adaptive feedback loop.

Another adaptive control strategy for AO is based on multi-lattice RLS filtering
(Gibson and Chang 1999; Gibson et al. 1999, 2000, 2001; Chang and Gibson 2000;
Liu and Gibson 2004). Like the previous approach, this control strategy employs
augmentation of a LTI feedback loop with an adaptive loop. The design of the
controller is posed as an generic adaptive feedforward disturbance rejection or a
noise cancellation problem. The common denominator of the different flavors of
this approach is that they all reconstruct an estimate of the open-loop WFS signal
by subtracting the influence of the DM wavefront corrections from the closed-loop
measurements. Using this estimate as a reference input, RLS updates the coeffi-
cients of a FIR filter with the objective to minimize the variance of an estimate of
the residual wavefront. The adaptive RLS filter is implemented in the form of a
multi-channel lattice filter to provide the required numerical stability and speed
required for real-time AO. Furthermore, an efficient re-parametrization of the ac-
tuator space leads to a control space from which the degrees of freedom in the
actuator space, that are most effective for wavefront correction, can be easily in-
ferred. In this way, it is possible to disregard ineffective degrees of freedom which
reduces the necessary on-line computations. Finally, it has been recently pointed
out by Liu and Gibson (2004) that a quasi adaptive controller which updates the
gains periodically may be as effective as a full adaptive control loop.

1.5 Scope of the thesis

This thesis focuses on the control aspects of AO. The requirements on the control
strategy are strongly intertwined with the system design. Many choices in the
AO system design, like the choice of the DM and WFS, have a large influence on
the achievable (control) performance. It is therefore to be expected that the over-
all performance may benefit from an integrated AO system and control design.
Ideally, both the AO system and control design should be tailored to the preva-
lent atmospheric seeing conditions. In practice, however, the AO system design
choices are rather permanent and cannot easily be adapted to the seeing. As a
result, the AO system components are typically optimized for averaged seeing
conditions. The AO control design, on the other hand, is more flexible and can
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hence be adjusted to turbulence conditions. For this reason, it will be assumed
that the AO system design is fixed. The effect of important AO system design
choices, such as the type of WFS and DM, the optimization of the sensor-actuator
layout and the sampling time, are beyond the scope of this thesis. Furthermore, it
will be assumed that the design has been optimized to such an extend that there
is still room for improvement by control. This means that under the considered
seeing conditions the control performance is one of the limiting factors.

The objective of this research is to demonstrate that advanced control strate-
gies are able to improve the performance of operational AO systems by explicitly
accounting for both the turbulence and WFS dynamics. In analyzing the control
problem it will be assumed that the AO system components, that is the DM and
WFS, can be modeled as LTI systems. Later on, this will be narrowed down to
the assumption that the DM can be considered to be static and the only dynamics
in the AO feedback link is caused by the integrating action of the WFS. This is a
reasonable assumption for most AO systems as the time-constant of the DM mir-
ror is typically much smaller than the WFS exposure-time. The proposed control
strategy is not restricted to a particular type of WFS. The only requirement how-
ever is that the optical transformation from phase to wavefront slopes, curvature
or whatever quantity is measured, can be described by a static linear mapping.
Furthermore, it will be assumed that second-order statistics of the atmospheric
distortions can be modeled as a stationary regular stochastic process, at least over
a time-span that is long compared to the sampling rate and the time constant of
the fluctuations themselves. This assumption on the turbulence structure will be
considered in more detail in Section 1.6.

In this thesis we will not consider the problem of making the proposed algo-
rithms scalable for future generations of large telescope with many hundreds to
thousands of sensors and actuators. As we have see in Section 1.4.3, the develop-
ment of efficient wavefront reconstruction algorithms for this type of telescopes is
an important research area in itself. For the proposed control strategy, the off-line
identification of the atmospheric disturbance model is the most computational de-
manding step. This step can be performed within a few minutes on a general pur-
pose PC with a 3 GHz Intel Pentium IV processor and 512 Mb of internal memory,
for AO systems with up to a few hundred degrees of freedom. This corresponds
to the typical size of current AO systems. Finally, we will restrict our attention to
a classical AO system where only a single WFS, conjugated to the telescope aper-
ture, is used to sense the wavefront distortions. Even though MCAO will not be
considered, there are no fundamental limitations to extend the proposed control
strategy to MCAO. More specifically this can be achieved by using the theoretical
framework similar to the one proposed by Conan et al. (1995).

1.6 Motivation and research strategy

In Section 1.3 we have seen that most AO systems are still based on a control
strategy that decomposes the control problem in a static wavefront reconstruction
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step and a temporal compensator design. Even though this classical control ap-
proach provides already remarkable results, there is still a need for improvement.
As pointed out by Roddier (1998), the compensational efficiency of current AO
systems is sometimes unduly low. Rather than focusing only on the development
of AO systems with more sensors and actuators it may therefore rewarding to
improve the performance of current AO systems. The development of improved
AO control strategies may help to achieve this goal, especially when operating
under low light level conditions and rough turbulence. Starting from the short-
comings of the classical control approach, this section will explain and motivate
the research strategy followed in this thesis.

1.6.1 Limitations of classical AO control approach

From a control engineering point of view, the classical AO control approach leaves
a lot of room for improvement. The structure of the control law is mainly based
on physical insights. Rather than treating the control problem as an integral dis-
turbance rejection problem, the control design is seen as servo control problem
in which the wavefront correction applied by the DM has to follow the distor-
tion reconstructed from the WFS measurements. The main shortcomings of this
approach can be summarized as follows:

• The decomposition of the control law in a static wavefront reconstruction
step and a temporal compensator consisting of parallel feedback loops, im-
plicitly assumes that the spatial and temporal dynamics are decoupled.

• Since the parallel feedback loops typically have a fixed servo controller struc-
ture (e.g. PI, first-order lag filter or Smith Predictor), it usually is not possible
to account for the AO system and turbulence dynamics in an optimal way.
The temporal controller design is pragmatic and not model based.

• The wavefront reconstruction problem is usually solved assuming open-
loop conditions. When using a minimum-variance reconstructor, the modi-
fied wavefront statistics as a result of closed-loop operation, are neglected.

To illustrate that the above limitations are indeed rather restrictive, it is use-
ful to reconsider the structure of the atmosphere. As explained in Section 1.2, the
temporal evolution of the wavefront is usually described by considering the atmo-
sphere as being composed of different wind blown frozen phase-screens. Assume
for the moment that this is true and that there is only one dominant turbulence
layer moving with a velocity v ∈ �2 (see Figure 1.7). Since the turbulence is as-
sumed to be frozen, the wavefront distortions observed at time t will have only
been shifted over a distance vτ at time t + τ . This implies that the phase ob-
served at the point x − v τ and time t can be used to predict the distortion at the
point x ∈ �

2 and time t + τ . More generally, wavefront distortions observed at
the windward side provide direct information on (the future) development of the
turbulence elsewhere in the aperture.
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Figure 1.7: Visualization of the Taylor approximation. A layer of frozen turbulence
is passing over the telescope aperture.

Even though this example is overly simplistic, it clearly shows that the spatial
and temporal dynamics of the wavefront distortions cannot be decoupled. Be-
cause of the existing coupling, WFS measurement from neighboring channels can
be used to improve the estimate of the wavefront and to predict its future devel-
opment. The ability to predict future wavefront distortions is particularly useful
to reduce the latency errors in the control system. The spatio-temporal correlation
in the wavefront may also be exploited to reduce the sensitivity to measurement
noise, since photons collected by different WFS channels at different time instants
may all contribute to the wavefront estimation process. This is particularly in-
teresting when using a faint guide star. Also in more complicated cases where
the turbulence consists of several frozen layers or is partially non-frozen, there is
no reason to believe that the spatial and temporal dynamics are decoupled. Any
control approach (like the classical AO control approach) that departs from this as-
sumption, will therefore inevitably sacrifice a part of the achievable performance.

1.6.2 An control engineering approach to AO

The above considerations call for an integrated control strategy that departs from
a minimal number of prior assumptions on the spatio-temporal structure of the
turbulence. In this thesis we will approach the AO control problem from a con-
trol engineering point of view. The AO control problem will be formulated as
a multi-variable disturbance rejection problem. More specifically, the proposed
control design strategy is one of data-driven disturbance modeling followed by
a model based H2-optimal control design (Shu and Chen 1995; Chen and Fran-
cis 1995; Zhou et al. 1996; Burl 1999; Hassibi et al. 1999). The use of data-driven
identification is attractive as it yields a good match with the prevalent turbulence
conditions without the need to accurately estimate all kinds of physical parame-
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ters. Furthermore, it provides the necessary flexibility to ensure that the control
approach does not depend on restrictive assumption such as Kolmogorov turbu-
lence and the frozen flow assumption. Before elaborating the proposed control
approach, it is useful to formulate the general purpose of this research.

- Research objective -

The aim of the research presented in this thesis is to demonstrate that the
performance of the current generation of AO systems can be improved by
applying advanced control strategies that are able to account for the AO
system dynamics, the spatio-temporal correlation in the wavefront and
the fact that the AO system is operated in closed-loop.

In the above statement, the notion performance improvement should be inter-
preted in the broadest sense of the word. Advanced control is expected to realize
performance improvements with respect to the following objectives:

• Imaging performance - AO is used to restore the imaging quality despite the
presence of turbulence. The main objective is therefore to optimize imaging
performance; i.e. achieve higher Strehls.

• Sky coverage - By reducing the sensitivity to measurement noise, it should
be possible to relax the requirements on the limiting magnitude of the guide
star. This will improve the sky coverage.

• Reliability - The performance of the current AO systems is very sensitive
to the particular observing conditions. If this sensitivity can be reduced this
will improve the usability and reliability of AO.

As already mentioned, the proposed control design strategy is based on data-
driven identification followed by an H2-optimal control design. The reason why
this approach is expected to improve the performance of current AO systems is
that it basically removes the major limitations of the classical control approach.
If the data-driven identification provides accurate models of the AO system dy-
namics and the atmospheric disturbances, the H2-framework will automatically
account for the DM and WFS dynamics and the spatio-temporal correlation in
the wavefront. Furthermore, the H2-framework inherently yields a closed-loop
control design. In the case that there are no model errors, the H2-optimal con-
trol design will find the controller that is optimal in the sense that it minimizes
the residual phase variance. Because of the relation between phase variance and
Strehl, the controller also optimizes the imaging quality.

The extend to which the data-driven optimal control design strategy is able
to exploit the spatio-temporal correlation in the wavefront depends on the atmo-
spheric disturbance model. In the data-driven identification procedure, the only
assumption imposed on the wavefront distortions is that their second-order statis-
tics can be modeled as a regular stochastic process. In other words, it is assumed
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that one can think of the wavefront distortions as being generated by a finite-
dimensional LTI system with a white noise input. This way of modeling stochas-
tic distortions is quite common in the field of signal processing and systems and
control (Åström and Wittenmark 1997; Hayes 1996; Kailath et al. 2000; Shanmu-
gan and Breipohl 1988) and often yields a reasonable description for bandwidth
limited processes. An important consequence of this assumption, however, is that
the wavefront statistics are assumed to be stationary. Whether or not this is re-
alistic for AO depends on the considered time-scales. The statistical properties
of the wavefront distortions are known to change on a time-scale in the order of
minutes, while the fluctuations themselves have time-constant in the order of a
few milliseconds. This implies that at least on a time-scale of minutes the station-
ary assumption is quite reasonable. To guarantee a good performance over longer
periods however, a regular update of the disturbance model might be required.

The proposed control strategy will use a dedicated subspace identification al-
gorithm to identify the atmospheric turbulence model on the basis of open-loop
WFS data. In the end, the goal is to identify a full multi-variable ARMA distur-
bance model that does not assume any form of decoupling between the chan-
nels. Such an atmospheric disturbance model is sufficiently general to capture the
spatio-temporal correlation imposed by one or more frozen layers. In this way, the
proposed control strategy will be able to benefit from the existence of one or more
frozen layers, without being dependent on it. The problem of identifying such a
full multi-variable disturbance model is probably the most complicated step, in
the entire procedure. Because of the large number of WFS channels, identifying
a disturbance model without any form of decoupling is a challenging problem
which requires efficient algorithms. For this reason, a significant part of this work
is devoted to this problem.

1.6.3 Difference with existing control approaches

The H2-optimal control strategy presented in this thesis is closely related to the
LQG and Kalman filter based minimum-variance approaches discussed in Sec-
tion 1.4.4. Indeed, the LQG and the H2-optimal control framework are equivalent
in the sense that an LQG problem can be reformulated in an H2-optimal problem
and visa versa (Zhou et al. 1996; Hassibi et al. 1999). The main difference with the
proposed control strategies is therefore not in the framework of analysis but in the
model structure used to describe the disturbance model.

The existing LQG approaches are based on an atmospheric disturbance model
that either assumes modal decoupling, or restricts the spectral factor to the class
of first-order autoregressive (AR) processes. Neither of these model structures
is able to account for the spatio-temporal correlation imposed by a frozen flow.
The first model structure is too restricted because it assumes a decoupling of the
spatial and temporal dynamics. In this perspective it is important to note that also
a Karhunen-Loève basis (see e.g. Roddier 1999; Hardy 1998; Wang and Markey
1978) does not provide spatio-temporal decoupling as it diagonalizes only the first
coefficient matrix of the auto-correlation function. For time-shifts larger than one,
the covariance matrices still contain off-diagonal entries so that there remains a
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coupling between the individual modes. On the other hand, the impulse response
of a first-order AR process is too short for modeling the temporal dynamics.

Like the LQG and Kalman filter based approaches, also the adaptive control
strategies discussed in subsection 1.4.5 impose a restriction on the spatio-temporal
correlation of the atmospheric turbulence that can be accounted for. The model
structure of the adaptive control loop is typically restricted to a finite impulse re-
sponse (FIR) filter with only a few taps. This implies that the atmospheric turbu-
lence as well as the residual wavefront error after compensation by the additional
LTI feedback loop, is implicitly assumed to have this structure. Furthermore, the
proposed control approach does not require any tuning of parameters like the
step-size, is not prone to convergence problems and has an on-line computational
demand that is much lower than that of an adaptive approach. An important
advantage of adaptive control, however, is that it is able to respond to gradual
changes in the turbulence statistics. The proposed control strategy has to be ex-
tended with some kind of model update scheme to cope with such changes.

1.7 Main contributions

Considering the research strategy presented in the previous section, this section
provides a brief overview of the main contributions. The different contributions
as well as their mutual relation will be discussed in more detail in Section 1.8. The
contributions in this thesis can be summarized as follows:

• A new subspace-based identification algorithm for estimating the minimum-
phase spectral factor of a (matrix-valued) stochastic process given samples
of its power spectrum. One of the key features of the algorithm is the use
of conic linear programming to guarantee the preservation of the positive
realness property of the estimated power spectrum.

• A stochastic subspace identification algorithm that avoids the need for spec-
tral factorization by directly estimating the state-space matrices of the one-
step ahead predictor, from time-domain data. By paying special attention
to an efficient implementation, the algorithm is able to identify a full multi-
variable disturbance model for AO systems with up to a few hundred de-
grees of freedom using a single general purpose PC with 3 GHz Intel Pen-
tium IV processor and 512 Mb internal memory.

• The combination of data-driven subspace identification andH2-optimal con-
trol design in the context of AO. The H2-optimal control framework pro-
vides a convenient way to deal with the discrepancy between the WFS sig-
nal and the control objective. The minimum-phase property of the identified
disturbance model implies that at most one Riccati equation has to be solved
in computing the optimal controller.

• The transfer function from control inputs to WFS outputs has been analyzed
for the common case that the DM can be considered static and the only dy-
namics in the AO system derives from the integrating action of the WFS. A
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data-driven identification algorithm has been developed for identifying the
model parameters of the derived model structure. For this model structure
an analytical expression for the H2-optimal controller has been derived.

• Experimental validation of the proposed data-drivenH2-optimal control ap-
proach on an AO laboratory setup. By analyzing the dominant error sources
it has been shown that optimal control is able to reduce the latency errors
in the AO system. Furthermore, the experiments show that the same level
of performance can be achieved at lower sample rates, enabling longer WFS
integration times, reducing the noise. This may improve the sky coverage.

1.8 Organization of the thesis

This section provides a brief overview of the organization of the thesis. This thesis
consists of 5 chapters and an appendix. Each of the subsequent chapters, except
for Chapter 5, are basically extended versions of papers that have been published
or submitted for publication in well-established journals in the field of optics and
control. Chapter 5 concludes the dissertation. It summarizes the main conclusions
that can be drawn and gives suggestions for future research. Finally, appendix A
includes the formal proof of the main theorem in Chapter 3. The results presented
in Chapters 2 to 4 are based on the following papers:

1. Hinnen, K., Verhaegen, M., Doelman, N., Oct. 2005. Robust spectral factor
approximation of discrete-time frequency domain power spectra. Automat-
ica 41 (10), 1791–1798.

2. Hinnen, K.J.G., Verhaegen, M., Doelman, N. J., Mar. 2006. A data-driven
H2-optimal control approach for adaptive optics, submitted to IEEE Trans-
actions on Control Systems Technology.

3. Hinnen, K., Verhaegen, M., Doelman, N., Jun. 2006. Exploiting the spatio-
temporal correlation in adaptive optics using data-driven H2-optimal con-
trol, submitted to Journal of the Optical Society of America A.

Each of these papers forms the backbone of a separate chapter of the thesis. The
different papers have been extended to include more background information
which makes them more accessible for people from both the optics and control
communities. In addition, the link between the first paper and the remaining part
of the dissertation has been clarified. The other two papers have been augmented
to include some additional simulations and experimental results. Part of these
results have previously appeared in conference proceedings. A complete list of
publications and papers submitted during this PhD research period is included in
the list of publications at the end of thesis.

Using this structure, the three main chapters of the thesis can be regarded as
separate entities, which can be read independently. A consequence of this setup,
however, is that it also gives rise to a certain extend of overlap between the in-
dividual chapters. To maintain the independent nature of Chapters 2 to 4, the
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references are included at the end of the corresponding chapter. In order to en-
sure that the papers form an integral part of the dissertation, all references have
also been collected in the bibliography at the end of the thesis. For similar reasons,
an attempt has been made to keep the notation consistent throughout the thesis.
A concise overview of the content of the main chapters is provided by the paper
abstracts at the beginning of each chapter.

1.9 Outline of the thesis

This section provides an outline of the thesis. Its main objectives are to moti-
vate the different choices in elaborating the research strategy and to present an
overview of the relation between the main research results. Furthermore, the mu-
tual relation between the different chapters will be explained in more detail. As a
result, the reader may use this section as a guideline to find his way through the
thesis. The discussion is organized topologically, but shows a rather close resem-
blance with the chapter division.

1.9.1 Disturbance modeling from discrete-time power spectra

As explained in Section 1.6, the general strategy pursued in this thesis is to capture
second-order statistics of the wavefront distortions in a minimum-phase spectral
factor, and then use the identified spectral factor to solve the control problem in
an optimal control framework. When no measurement data are available, the
spectral factor has to be determined on the basis of a theoretical description of
the atmosphere. For this purpose, the description of atmospheric turbulence in
terms of frozen layers with a Kolmogorov spatial distribution is sufficient. Given
the turbulence strength, the wind speed and the direction of the different lay-
ers, such a model provides a complete specification of the second-order statistics
of the wavefront. So, the problem is to find a minimum-phase spectral factor
that provides an accurate description of the second-order statistics imposed by
the theoretical model. Considering a single point in the aperture, the theoretical
atmospheric disturbance model gives rise to the power spectrum defined in equa-
tion (1.9). Likewise, by accounting for the contribution of the different layers, it is
possible to derive a matrix valued power spectrum for the wavefront phase vector
φ(k) ∈ �mφ . For this reason it would be desirable to have a way of estimating the
minimum-phase spectral factor directly from power spectrum data.

The problem of estimating a minimum-phase spectral factor from a matrix val-
ued power spectrum is not restricted to this particular application. It occurs in any
application that requires a filtered white noise model of a stochastic process that
is characterized by its power-spectrum only. Using power spectra to describe a
stochastic process may, for instance, be attractive when considering large data se-
quences which are difficult to handle in the time-domain. Indeed, by going to the
frequency domain one can condense the relevant information in a smaller amount
of data points. Chapter 2 considers the spectral factor approximation problem
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in a general setting. It provides a subspace-based algorithm for identifying the
state-space quadruple [A, B, C, D] of a minimum-phase spectral factor that accu-
rately approximates the given spectral data. Since the objective is to determine
a state-space realization of a spectral factor that provides a good match with the
given power spectrum, the algorithm will be referred to as the spectral factor ap-
proximation algorithm. The proposed spectral factor approximation algorithm
basically consists of a subspace identification algorithm followed by a parametric
optimization procedure. The rationale behind this is that the subspace algorithm
provides a first reasonable estimate of the spectral factor. This estimate is then
used to initialize the parametric optimization procedure to further minimize the
weighted 2-norm of the error between the estimated and the given power spec-
trum. Since the subspace algorithm generally provides good initial estimates of
the spectral factor, the drawbacks associated with the highly nonlinear and non-
convex nature of the parametric optimization problem are partially relaxed.

The proposed subspace identification algorithm is based on an approximate
relation between the inverse-discrete Fourier transform (IDFT) of the power spec-
trum and the system matrices [A , C] of the corresponding spectral factor. The con-
sidered approximation can be interpreted as neglecting the effect of aliasing, an
assumption that is quite reasonable whenever the stochastic process is well sam-
pled. In comparison with the exact relation used in the subspace algorithm for the
identification of discrete-time frequency domain power spectra, proposed by Van
Overschee et al. (1997), the use of this approximation avoids the need to carry out
a complicated split, which is very sensitive to errors on the power spectrum.

Another key aspect of the proposed subspace algorithm is the way it deals
with the well-known positive realness issue in stochastic identification. Like most
stochastic subspace identification algorithms for time series (see e.g. Aoki 1990;
Van Overschee and De Moor 1993a; Mari et al. 2000a; Dahlén 2001), the proposed
subspace algorithm does not directly estimate the minimum-phase spectral factor.
Instead of this, the algorithm first identifies a model that describes the covariances
or power spectrum of the stochastic process, which is then factorized to obtain an
estimate of the minimum-phase spectral factor. For this approach to be successful,
it is important to ensure that the power spectrum model identified in the interme-
diate step is positive real. If this condition is not satisfied, the identified power
spectrum has no physical meaning and the spectral factorization cannot be per-
formed (see e.g. Sayed and Kailath 2001; Kailath et al. 2000). The risk of getting
stuck on the spectral factorization step is especially large when the power spec-
trum is contaminated by measurement noise or when it cannot be attributed to a
finite-dimensional linear time invariant system.

To prevent the proposed subspace algorithm from ending up in this situation,
the intermediate power spectrum estimate has to preserve the positive realness
property. In the proposed subspace algorithm this is achieved by imposing an
additional constraint on estimating the pair [B, D]. More specifically, for a given
pair [A, C], the problem of finding the optimal [B, D] is formulated as a least
squares problem with linear matrix inequality constraint. It will be shown that
the resulting constrained least squares problem can be efficiently solved via conic
linear programming (CLP). This is computationally far more efficient than the
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standard approach in which the constrained least squares problem is solved as a
large scale semi-definite program, and avoids the problems associated with local
minima that may occur when using direct nonlinear least squares optimization
over the unknowns [B, D] (Mari et al. 2000a; Van Overschee et al. 1997). In this
perspective, it is important to note that the idea of using conic linear programming
to deal with the positive realness issue is not restricted to the proposed spectral
factor approximation algorithm. Indeed, since the positive real requirement in
stochastic subspace algorithms for time domain identification can be formulated
analogously, also these algorithms may benefit from this idea.

Furthermore, note that since CLP is convex, the problem of estimating the pair
[B, D] can be solved in a globally optimal sense. This property is used to derive a
numerical analogue of the separable least-squares principle which is used to facil-
itate the parametric optimization procedure over the parameters of the minimum-
phase spectral factor. Separable least squares reduces the number of parameters
in the optimization problem and is known to give rise to a better numerical con-
ditioning and reduction in the required number of iterations (Bruls et al. 1999;
Sjöberg and Viberg 1997; Ribarits et al. 2003).

The performance of the proposed spectral factor approximation algorithm has
been demonstrated by applying it to a number of challenging simulation exam-
ples. The first simulation example is not directly related to AO and is used to
investigate the performance in the case the power spectrum is indeed generated
by a stochastic process with a spectral factor that belongs to the class of finite-
dimensional systems. Furthermore, the example is used to investigate the perfor-
mance robustness with respect to estimation errors on the power spectrum. The
stochastic process considered in the simulations is vector-valued and has a chal-
lenging power spectrum that consists of a number of distinct resonance and anti-
resonance peaks. The simulation experiments show that in the case the spectral
factor approximation algorithm is applied directly to the true power spectrum, it
is able to find a minimum-phase spectral factor that approximates the spectrum
close to the numerical precision and round-off errors. Also in the case that the
power spectrum is estimated by using an averaged periodogram and is hence
contaminated by estimation errors, the algorithm is able to provide a good fit to
the provided spectral data. In fact, the weighted 2-norm of the difference between
true spectrum and power spectrum corresponding to the estimated minimum-
phase spectral factor is smaller than the weighted 2-norm of difference between
the true spectrum and the averaged periodogram.

The paper in Chapter 2 has been extended with a second simulation example
that bears a much closer relation with the purpose for which the spectral factor
approximation algorithm has been actually developed. It considers the problem
of estimating the spectral factor that describes the temporal evolution of the wave-
front distortions at a single point in the aperture. The theoretical power spectrum
of the phase at a single point in the aperture is given by equation (1.9). This is a
non-rational power law, which gives rise to a spectral factor of infinite-dimension.
In contrast to the previous example, the power spectrum can no longer be de-
scribed by a stochastic process that is in the model set considered by the spectral
factor approximation algorithm. The problem at hand is therefore to approxi-
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mate the power spectrum of an infinite-dimensional stochastic process by a finite-
dimensional minimum-phase spectral factor.

The simulation example shows that the algorithm is able to provide a good
match with the given power spectrum over a rather large bandwidth. Only in the
low frequency range, the approximation error is relatively large. The relatively
large fitting error in this frequency region can be explained by the fact that the
Kolmogorov power spectrum has a singularity at f = 0, which causes the power
spectrum to approach infinity. Since the spectral factor approximation algorithm
always requires the specification of the power spectrum at a number of discrete
sample points including f = 0, where inevitably an error is introduced. Note that
this is not really a shortcoming of the proposed algorithm. It is well known that
due to the singularity at f = 0, the Kolmogorov turbulence is physically not re-
alistic as it corresponds to a process with infinite variance (Hardy 1998; Tatarskii
1971; Goodman 1985). Indeed, the Kolmogorov model is only valid in the iner-
tial sub-range which excludes the low frequency range. To avoid the singularity
problem, one should account for the finite outer scale L0 by using the Von Kár-
mán spectrum. The bottom line of the simulation experiment, however, is that
at least in the relevant frequency range the temporal dynamics can be accurately
modeled by a regular stochastic process. When the spatial and temporal dynamics
are assumed to be decoupled, as in the common control approach, the identified
spectral factor can be used to compute the optimal servo controller.

1.9.2 Disturbance modeling from time-domain data

Given the theoretical power spectrum of the wavefront distortions at a single
point in the aperture, the proposed spectral factor approximation algorithm can
be used to identify the minimum-phase spectral factor that captures the tempo-
ral dynamics in the wavefront. The identified spectral factor can then be used
to account for the temporal dynamics in the control design. The ultimate goal
however, is not only to account for the temporal dynamics, but to exploit the full
spatio-temporal correlation in the control design. This requires a multi-variable
disturbance model that provides a full description of the auto-correlation of, and
the cross-correlation between, all WFS channels or phase points in the aperture.
Such a model could, in principle, be obtained by first deriving all the spectra and
cross-spectra from the theoretical frozen flow model, and then using the spectral
factor approximation algorithm to determine the minimum-phase spectral factor.

Yet, from a practical point of view, this approach seems to be unnecessarily
laborious and restrictive. First of all, determining the spectra and cross-spectra
on the basis of the frozen flow assumption requires accurate knowledge of the
number of frozen layers, their respective turbulence strengths, wind speeds and
directions. To obtain accurate knowledge of the current value of these physical
parameters, they have to be estimated on the basis of WFS data. Estimating the
parameters is not that simple, and are only needed to construct the spectra and
cross-spectra. Actually, it is much easier to directly estimate the required power
spectra, or the equivalent correlation functions in the time-domain, from the WFS
data. This has the additional advantage that the estimated power spectra depend
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no longer on the theoretical atmospheric disturbance model. Indeed, estimating
the power spectrum from the WFS data does not require any assumption on the
structure or underlying physical model of the turbulent atmosphere.

Also, when using open-loop WFS data, a procedure consisting of estimating
the power spectra and then using the spectral factor approximation algorithm is
unnecessarily involved. The first step in estimating the pair [A, C] is to compute
the IDFT, by which we effectively return to the time-domain. Moreover, estimat-
ing the power spectrum from time-domain data is a delicate process which in-
volves the choice of one out of many different methods and settings. It is also
questionable whether or not the formulation of the identification problem as a
weighted 2-norm approximation of the spectrum is very natural in the sense that
it is able to guarantee consistency of the covariance parameters. Only in the case
that the spectrum is weighted by the true power spectrum, the chosen criterion
reduces to the classical prediction criterion. Finally, several simulation experi-
ments show that the spectral factor approximation algorithm is computationally
too complex to determine the spectral factor for a realistic number of phase points
or WFS channels. Even the use of CLP cannot avoid that the number of indepen-
dent channels that can be modeled, without making serious concessions to the
spectral resolution, remains limited to roughly five to ten channels.

The above arguments are strongly in favor of a time-domain identification ap-
proach that estimates the minimum-phase spectral factor directly from open-loop
WFS data. Simply choosing to work in the time-domain, however, does not auto-
matically solve all problems. As already mentioned in Section 1.9.1, the positive
real issue in stochastic identification is not restricted to the frequency domain. It
can be formulated in a completely analogous way in the time domain. Indeed,
many algorithms for stochastic time-domain identification, estimate a rational co-
variance model as an intermediate step. As pointed out by Lindquist and Picci
(1996), such a procedure might easily fail if there is no additional constraint to en-
sure that the estimated covariance model is positive real and has a valid spectral
factor. Also in the time-domain, the positive realness requirement can be formu-
lated as a constraint least squares problem. Since solving this problem is the most
computationally intensive step in the power spectrum approximation algorithm,
it is to be expected that only a little can be gained by considering stochastic identi-
fication algorithms that estimate a rational covariance model as intermediate step.
Furthermore, it should be pointed out that both the dimension and the number of
unknowns in the least squares problem scales quadratically with the number of
channels. It is therefore not likely that this type of algorithms can be easily scaled
to the dimension of a realistic AO system.

The first part of Chapter 3 presents a dedicated subspace-identification algo-
rithm that is able to avoid the need for spectral factorization. This is achieved
by working directly with the raw time domain data, rather than first estimating a
covariance model. The proposed subspace algorithm is basically an output only
version of a subspace algorithm introduced by Jansson (2003), which has been im-
proved to make it more efficient when dealing with large numbers of channels. By
first estimating the coefficients of a high order AR model, more structure is added
to the data equations used by the subspace algorithm to estimate a basis for the
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state vector. This opens the possibility to directly estimate the state-space matri-
ces A, Σ1C and K of the innovation predictor model corresponding to the minimum-
phase spectral factor. In this way the minimum-phase requirement is translated to
a stability requirement on the system matrices of the innovation predictor model
and the minimum-phase spectral factor, A − KΣ1C and A, respectively. Another
advantage of the proposed subspace algorithm is that it is based on a method orig-
inally developed for closed-loop identification. As a result, the algorithm can be
easily extended to the case that the WFS data are collected in closed-loop. This
is especially important since this may be used to update the disturbance model
without interrupting the observations.

To arrive at an efficient implementation of the subspace algorithm, a different
weighting scheme is used in reconstructing the state sequence. The original sub-
space algorithm described by Jansson (2003) uses canonical correlation analysis
(CCA) to estimate a state-space basis from the data equation. The proposed sub-
space algorithm, on the other hand, is based on a weighting scheme similar to the
one used in the MOESP class of subspace algorithms (Verhaegen 1994). By consid-
ering these weights it is possible to arrive at a square root implementation of the
algorithm that avoids the explicit computation of the inverse square-root of the
correlation matrix of filtered future measurement data. Apart from the fact that
this leads to a more efficient implementation, avoiding the explicit computation
of the inverse square-root covariance matrix is attractive from the viewpoint of
numerical robustness. In the square-root implementation, a single RQ factoriza-
tion of the stacked block-Hankel matrix of past and future data can be used both
for computing the required AR coefficients and for data compression. Indeed, the
entire subspace algorithm can be expressed in terms of the R factor of the block-
Hankel matrix. A further efficiency improvement is achieved by exploiting the
displacement structure of the stacked block-Hankel matrix. To this end, the pro-
posed identification algorithm uses the fast RQ factorization algorithm for block-
Hankel matrices as proposed by Mastronardi et al. (2001). This leads to an efficient
implementation in terms of the number of flops and the memory requirements.

Another important issue in making the identification of a full multi-variable
atmospheric disturbance model computationally feasible for a realistic number of
WFS channels, is the choice of the number of block rows in the proposed subspace
algorithm. As in most subspace algorithms, the number of block-rows used in
constructing the block-Hankel matrices of past and future data are important user
defined parameters that have a large influence on the computational complexity,
especially in the multi-variable case. When the stochastic process is generated by a
finite-dimensional linear stochastic process with a minimal state-space representa-
tion of order n, a sufficient condition to guarantee that the extended observability
matrix can be estimated from the data equations is that the number of future and
past block rows, f ∈ � and p ∈ � are chosen larger than n. For this reason, it is
common practice to choose the parameters f and p much larger than the expected
model order and the order of the identified model. For multi-variable systems,
this condition is usually overly conservative. To reduce the computational load
we will generally choose f, p much smaller than the order of the identified dis-
turbance model. Finally, in identifying an atmospheric disturbance model it is
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advantageous to account for the fact that only a part of the wavefront can be re-
constructed from the WFS measurements. By introducing a new set of basis func-
tions it is possible to reduce the dimension of both the WFS signal and the vector
representation of the wavefront, without loosing any information. Apart from re-
ducing the dimension of the identification problem, this is also advantageous as it
leads to an improved numerical conditioning of the identification problem.

The proposed subspace identification algorithm has been thoroughly tested in
numerous simulation experiments. To assess whether or not the algorithm is suit-
able for atmospheric disturbance modeling, especially the simulation experiments
based on open-loop WFS are of interest. The data used in these experiments have
been obtained from both an AO laboratory setup at TNO Science and Industry,
the Netherlands, and from real turbulence measurements with the JOSE (Saint-
Jacques 1998) seeing-monitor at the William Herschel Telescope situated on Las
Palma, Canary Islands. The performance of the proposed subspace algorithm has
been evaluated by first identifying a disturbance model and then using this model
to predict open-loop wavefront distortions one sample in advance. The perfor-
mance of this one-step ahead predictor is compared with the optimal one-step
ahead predictor for a random walk or Wiener process (Shanmugan and Breipohl
1988). For a Wiener process, the optimal one-step ahead predictor is equal to the
current value of the sample, that is, the change in the signal is completely un-
predictable. Since atmospheric turbulence has basically a low pass spectrum, the
random walk predictor usually has already a reasonably good performance.

The close link between wavefront prediction and control has already been
pointed out before. Indeed, it can be shown that the performance of the random
walk predictor is equal to the performance of the common AO control approach in
which the temporal compensator is a pure integrator. The simulation experiments
show that the proposed subspace algorithm is able to identify a full multi-variable
atmospheric disturbance model for an AO system with in the order of hundred
active WFS spots. Furthermore, the one-step ahead predictor based on the identi-
fied atmospheric disturbance model is able to achieve a considerable reduction in
the mean-square wavefront prediction error when compared to the random walk
approach. The identified disturbance model provides an adequate model of the
atmosphere, which can be used for controller design. Finally, the simulation ex-
periments on the JOSE data confirm that the atmospheric wavefront distortions
can be regarded wide sense stationary; at least on a time scale in the order of a
few minutes.

1.9.3 H2-optimal controller design for AO

As explained in Section 1.6, the identified atmospheric disturbance model is used
as one of the basic ingredients in computing the optimal controller. The problem
of computing the optimal controller is the central issue in the second part of Chap-
ter 3. Suppose for the moment that the transfer function from control input to the
wavefront correction reconstructed from the WFS measurements, H(z), can be de-
scribed by a LTI system. Then, by using an atmospheric disturbance model, the
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problem of finding the optimal controller that minimizes the mean-square resid-
ual wavefront error, can be conveniently expressed in a H2-optimal control frame-
work. Since the H2-optimal control framework makes a clear distinction between
performance outputs and measured outputs, it is perfectly suitable to account for
the fact that the WFS is not able to directly measure the phase.

After having formulated the AO control problem in a H2-optimal control frame-
work, standard H2-optimal control theory can be used to compute the closed-loop
optimal controller. This generally involves the numerical solution to two Riccati
equations. Due to the special structure of the AO control problem it is, however,
possible to simplify the computations. In the second part of Chapter 3, it will be
shown that, because of the minimum-phase property of the spectral factor, at least
one of the Riccati equations can be avoided. Also the second Riccati equation can
be avoided if the model of the DM and WFS dynamics, H(z), is minimum-phase
or has a known inner-outer factorization. It will be shown that this is the case if the
transfer function is of the form H(z) = z−d(1 + αz−1)H . As a result it is possible
to derive an analytical expression for the H2-optimal controller in this case.

Having an analytical expression for the optimal controller is attractive both
from a computational and a numerical robustness point of view. Solving the large-
scale Riccati equations associated with the standard solution to the H2-optimal
control problem may become impractical, especially since the changing turbu-
lence conditions may require a regular update of the controller (Looze et al. 2003).
From a numerical point of view, the analytical expressions are attractive since, as a
result of the particular nature of turbulence spectrum, the poles of the disturbance
model typically cluster in the vicinity of the point z = −1. Standard Riccati solvers
may suffer from convergence problems and increased sensitivity when the poles
are located too close to the unit circle. Furthermore, the numerical sensitivity of
most Riccati solvers typically increases with the order of the system. By using
analytical solution these problems can be avoided. For more information on nu-
merical methods for solving Riccati equations the reader is referred to (Arnold
and Laub 1984; Benner et al. 1997) and references therein. Finally, note that the
control design procedure obtained by combining the proposed subspace identi-
fication algorithm and the analytical expressions for the H2-optimal controller is
exclusively based on standard matrix manipulations. It provides a non-iterative
procedure to go from open-loop WFS data to optimal control design.

Apart from the computational advances, the analytical expressions are attrac-
tive as they provide more insight in the precise structure of the optimal controller.
From the derived expressions it is clear that the optimal controller can be decom-
posed in a part that is concerned with the problem of predicting the uncorrected
wavefront distortions over a time-horizon of the pure delay z−d in the transfer
function H(z), and a dynamic filter that is responsible for projecting the estimated
wavefront on the actuator space. The dynamic filter is basically a regularized in-
verse of the remaining part of the transfer function H(z), i.e. the two FIR taps
(1 + αz−1)H , where the regularization makes a trade off between the objective of
finding the best actuator inputs to compensate for the estimated wavefront and
the objective of minimizing the contribution of the control effort to the cost func-
tion. The above interpretation confirms the close relation between wavefront pre-
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diction and optimal control. Indeed, if H(z) consists of a pure delay the optimal
controller reduces to a d-step ahead predictor and a static mapping onto the actu-
ator space. Furthermore, the above interpretation of the optimal controller shows
the close resemblance with the common AO control approach that also decom-
poses in a wavefront estimation step and a projection on the actuator space. The
main difference between both approaches, however, is that the static wavefront re-
constructor and the temporal compensator in the common AO control approach
are replaced by a dynamic wavefront prediction scheme that uses current and past
WFS measurements from all WFS channels to exploit the spatio-temporal corre-
lation in the wavefront. Another important difference is that the wavefront pro-
jection on the actuator space becomes dynamic, whenever the H(z) deviates from
being a pure delay. At the end of Chapter 3, the proposed data-driven optimal
control approach is demonstrated by simulations on open-loop WFS data.

1.9.4 Experimental validation of H2-optimal control strategy

In order to demonstrate the practical feasibility of the proposed data-driven H2-
optimal control approach, it has been implemented on the previously mentioned
AO laboratory setup. Validation experiments with this setup serve as a proof of
concept for demonstrating the ability of optimal control to improve the wavefront
disturbance rejection by exploiting the spatio-temporal correlation in the wave-
front. Furthermore, the experiments are used to gain a better insight in the condi-
tions under which optimal control is able to outperform the common AO control
law. To this end, the performance of the optimal controller is compared with the
common AO control law. In the discussion so far, the transfer function H(z) from
control input to the reconstructed wavefront, has been assumed to be given. In re-
ality however, the model of the DM and WFS dynamics is not known in advance.

Apart from describing the validation experiments, Chapter 4 is concerned with
modeling the transfer function H(z). Accurate modeling of the wavefront correc-
tion link is of utmost importance, as it is a part of the control loop. As a result,
model errors on H(z) have a large influence on the overall performance and may,
in the worst case, even destabilize the loop. Moreover, the gain in performance
brought about by the predictive capabilities of the atmospheric disturbance model
may be completely lost by inaccurate modeling of the wavefront correction link.
On the other hand, in order to apply the derived analytical expressions for the H2-
optimal controller, the transfer function H(z) has to possess the special structure
of scalar dynamics consisting of an integer number of samples delay and a two tap
FIR impulse response. These requirements may seem very conflicting and restric-
tive. By analyzing the WFS sampling process, however, it is shown that the as-
sumed model structure is still rather general. Indeed, any AO system can be mod-
eled in this way when it has a wavefront correction device that can be considered
static in the sense that its time-constant is short compared to the WFS exposure-
time. Since the transfer function is influenced by many factors (like the precise
alignment of the WFS) the relevant parameters in the transfer function H(z) are
preferably estimated on the basis of measurement data. Hence, also in modeling
the AO system we adhere to a data-driven identification approach. Also in the
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common AO control approach the influence matrix H is often estimated on the
basis of measurement data collected in identification experiments. The problem of
identifying the unknowns α and H in the transfer function H(z) = z−d(1+αz−1)H
is formulated as finding the parameters that minimize a prediction-error criterion.
Since H(z) contains a term with the product αH , this gives rise to a non-convex
optimization problem.

In Chapter 4, it will be shown that the resulting optimization problem can
be efficiently solved by using the concept of separable least squares (Golub and
Pereyra 1973). This gives rise to an efficient data-driven identification procedure
to identify the relevant parameters in the structured transfer function H(z). From
a system theoretical point of view it is interesting to note that the different parts
of the generalized plant model, i.e. the atmospheric disturbance model and the
model of the wavefront correction link, are identified separately. Separate identi-
fication has the advantage that more structure is added to the generalized plant
model, which reduces the overall size of the identification problem. Indeed, both
models have their own state without any cross-coupling between them. Another
advantage of considering separate identification is that the atmospheric distur-
bance model may require a regular update to cope with the changing turbulence
conditions, while the mirror can be considered constant. Finally, separate identifi-
cation is expected to give more accurate results as there is no need to distinguish
between the contributions of turbulence and the mirror to the WFS measurements.

In validating both control approaches on the AO laboratory setup, a wide vari-
ety of performance measures has been used. The considered performance criteria
are based on measurements from the WFS as well as on images obtained from the
science camera. The performance criteria derived from the WFS measurements
include an estimate of the mean-square residual wavefront error and a sample
estimate of the cost function. The second class of performance criteria provides
a measure of the optical quality of the science image and includes an estimate of
the full-width of half maximum (FWHM), the improvement in Strehl ratio and the
normalized encircled energy. Each of these performance criteria has been evalu-
ated over a large range of Greenwood to sample frequencies. The different per-
formance measures are all consistent in that the performance improvement at low
Greenwood to sample frequency ratios is rather moderate, while a considerable
gain in performance is observed at high ratios. It is shown that this behavior can
be related to a reduction of the temporal error.

The dominant error source in the AO laboratory setup depends on the actual
turbulence conditions. By analyzing the error sources it is shown that the total
mean-square residual wavefront error can be decomposed in the wavefront fit-
ting error and the temporal error. The wavefront fitting error depends only on
the turbulence strength and the wavefront correction device, and can hence be
considered constant. The temporal error, on the other hand, is an exponentially
increasing function of the Greenwood to sample frequency ratio and is strongly
influenced by the controller design. As a result, at low Greenwood to sample fre-
quency ratios the wavefront fitting error is the dominant error source and little can
be achieved by using optimal control. At high Greenwood to sample frequency
ratios, however, the temporal error becomes the limiting factor. By exploiting
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the spatio-temporal correlation in the wavefront, optimal control is able to reduce
this error source. Optimal control is only able to achieve a considerable perfor-
mance error reduction if one of the dominating error sources is influenced by the
controller design. As a result, optimal control will be especially beneficial in con-
ditions like violent turbulence and weak guide stars, which require a low sample
frequency.
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Robust Spectral Factor
Approximation of Discrete-Time

Frequency Domain Power Spectra

T
his paper presents a subspace-based identification algorithm for es-
timating the state-space quadruple [A, B, C, D] of a minimum-phase

spectral factor from matrix valued power spectrum data. The key step in
the algorithm is the preservation of the positive realness (PR) property
of the estimated power spectrum derived from the spectral factor. For
a given pair [A, C] with A stable, this PR property is guaranteed via the
solution of a conic linear programming (CLP) problem. In comparison
with the classical LMI-based solution, this results in a more efficient way
to minimize the weighted 2-norm of the error between the estimated and
given power spectrum.

The property that the CLP problem can be solved in a globally optimal
sense, is exploited in the derivation of a separable least squares proce-
dure for the (local) minimization of the above 2-norm with respect to the
parameters of a parametrization of the minimum-phase spectral factor.

The advantages of the derived subspace algorithm and the iterative
local minimization procedure are illustrated in a brief simulation study.
In this study the effect of dealing with short length data sets for com-
puting the power spectrum, on the estimated spectral factor, is illustrated.

Keywords: Spectral factorization; Subspace identification; Power spectra; Stochas-
tic realization; Conic linear programming
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2.1 Introduction

Estimating a minimum-phase spectral factor from a matrix valued discrete-time
frequency domain power spectrum is a challenging problem. In several appli-
cations it is important to have an accurate estimate of the spectral factor of a
stochastic process. In active vibration suppression for instance, the spectral factor
of the disturbance source plays an important role in designing the optimal feed-
back controller (Fraanje, Verhaegen, Doelman, and Berkhoff 2004). Furthermore,
it has been demonstrated that the spectral factor of the disturbances measured by
an accelerometer may be useful in determining the modal parameters of civil en-
gineering structures (Kirkegaard and Andersen 1997). One can think of a number
of situations in which only the power spectrum of a stochastic process is known.
This is, for instance, the case when considering the optical wavefront fluctuations
introduced by atmospheric turbulence, which are theoretically described by a Kol-
mogorov spectrum. To deal with such stochastic processes it is desirable to have
an algorithm that is able to estimate the minimum-phase spectral factor directly
on the basis of power spectrum data. A promising approach to tackle this problem
is based on subspace identification.

Subspace identification has its origin in stochastic state-space realization the-
ory as developed in the 1960s. Some of the main principles on which subspace
identification is based can already be recognized in the classical contribution by Ho
and Kalman (1966). Over the years, the concept of subspace identification has
been refined and by now a large number of algorithms is available (Larimore
1990; Verhaegen 1994; Van Overschee and De Moor 1996; Viberg 1995). A concise
overview of different subspace identification algorithms is provided by Viberg
(1995). Also for the identification of stochastic systems, a large variety of sub-
space algorithms have been proposed (Aoki 1990; Van Overschee and De Moor
1993; Mari, Stoica, and McKelvey 2000). Most of these algorithms however oper-
ate on time-domain data. Up to our knowledge, the algorithm described by Van
Overschee, De Moor, Dehandschutter, and Swevers (1997) is the only subspace
algorithm to identify a stochastic system directly from discrete-time frequency
domain power spectrum data.

The use of subspace identification algorithms has a number of important ad-
vantages over classical prediction error methods (Ljung and Glad 1994). Predic-
tion error methods are based on the optimization of system parameters over a
suitable cost function, which is usually a highly nonlinear optimization problem.
Due to the existence of local minima and non-convexity, the performance may be
very sensitive to both the starting point in the optimization procedure and the
chosen model parametrization. Subspace identification does not suffer from these
problems. There is no need for model parametrization and no iterative nonlin-
ear optimization is required. In contrast, they rely on numerically robust tools of
linear algebra and their computational complexity is modest. Finally, subspace
identification algorithms inherently treat the multi-variable case.

This paper presents an algorithm for estimating a minimum-phase spectral
factor that accurately approximates a given power spectrum. Since the objective
is to determine a spectral factor that provides a good match to the given spec-
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tral data, we will refer to the algorithm as the spectral factor approximation al-
gorithm. The algorithm includes a number of provisions to assure a reasonable
performance in the case that the given power spectrum cannot be exactly de-
scribed by a finite-dimensional LTI spectral factor. This is for instance the case
for non-rational and estimated power spectra. The proposed estimation algo-
rithm roughly consists of a subspace identification algorithm, supplemented by
a parametric optimization procedure. Here, the subspace identification algorithm
is used to provide an accurate initial estimate of the spectral factor, which is then
further optimized with respect to the desired cost function. In the latter step, the
spectral factor is parametrized in output normal form. Since this parametrization
only represents the class of stable systems, the additional optimization over the
cost function will not jeopardize the stability of the spectral factor that is explic-
itly enforced on the obtained initial estimate by using the Schur re-stabilization
procedure as proposed in (Mari, Stoica, and McKelvey 2000). The subspace iden-
tification algorithm differs in several aspects from one proposed by Van Overschee
et al. (1997). The main contributions presented in this paper are:

• It will be show that in relating the inverse discrete Fourier transform (IDFT)
of the given power spectrum to the system matrices of the spectral factor, it
is advantageous to introduce an approximation which amounts to neglect-
ing the effect of aliasing. In comparison with the algorithm described by Van
Overschee et al. (1997), this avoids the need to carry out a numerically very
sensitive split. As a result, the introduced approximation results in better
estimates of the pair [A, C] and hence of the quadruple [A , B , C , D , ]. Fur-
thermore, the proposed simplification is not restricted to square Hankel ma-
trices, which is beneficial from a computational point of view.

• A key issue in the identification of stochastic systems is to ensure that the
estimated spectrum is positive semi-definite on the unit circle. This prop-
erty is needed to ensure that the estimated spectrum has a minimum-phase
spectral factor. The requirement imposes a constraint on the estimation of
the pair [B , D]. It will be shown that for a given estimate of the pair [A, C],
the problem of finding the optimal values of the pair [B, D] can be formu-
lated as a conic linear program (CLP). This approach is numerically far more
efficient than solving formulating the estimation problem as a large semi-
definite program or a nonlinear least squares problem (Mari et al. 2000; Van
Overschee et al. 1997).

• The ability to solve the CLP in a global optimal sense is exploited to de-
rive a numerical analogue of the separable least squares principle (Golub
and Pereyra 1973; Ruhe and Wedin 1980). Separable least squares reduces
the number of parameters that have to be optimized in the parametric opti-
mization. It is know that this may result in better numerical conditioning of
the optimization problem and less iterations (Bruls et al. 1999; Sjöberg and
Viberg 1997; Ribarits et al. 2003).

The remainder of this paper is organized as follows. In Section 2.2, we will
first provide an accurate description of the considered discrete-time power spec-
trum identification problem and introduce the necessary notation. Sections 2.3, 2.4
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and 2.5 will subsequently deal with each of the three items discussed above. In
Section 2.6, the performance of the proposed algorithm is demonstrated by means
of two simulation experiments. In the first simulation experiment the algorithm is
applied to a spectrum estimated on the basis of a small amount of measurement
data. During this experiment the performance robustness of the proposed algo-
rithm with respect to estimation errors has been demonstrated. The second simu-
lation experiment considers the problem of approximating a non-rational power
spectrum, as encountered in turbulence modeling. The paper concludes with a
short discussion in Section 2.7.

2.2 Problem formulation and notation

This section provides a description of the stochastic identification problem that is
considered in this paper. Before focusing on the actual problem formulation, we
will first consider some notational issues. In this paper, XT is used to denote the
transpose of the matrix X and X∗ denotes its conjugate transpose. Furthermore,
‖X‖F denotes the Frobenius norm of X and X† its Moore-Penrose pseudo inverse.
λi(X), i ∈ {1, . . . , m} are the eigenvalues of the real-valued m×m matrix X . The
Euclidean norm of a vector x is denoted by ‖x‖2. E{x} denotes the expected value
of a process x, with respect to the underlying probability distribution. x̂ is an
estimate of x. The Kronecker product between two matrices X and Y is denoted
by X ⊗ Y . Furthermore, we use the notation X � 0 to denote that the matrix X is
positive semi-definite. The shorthand vec (X) is introduced for the operator that
stacks the columns of a matrix X ∈ �k×m in a km-dimensional column vector.
Each conjugate symmetric matrix X can be split as X = L + D + L∗, where the
matrix L is strictly lower-triangular and D is diagonal. The operator vecS (X)
performs this split and stacks the nonzero elements of (L + D/2) in a l(l + 1)/2-
dimensional vector. The working of the operator is illustrated in the following
example:

X =

[
2 3 − j

3 + j 4

]
⇐⇒ vecS (X) =

⎡
⎣

1
3 + j

2

⎤
⎦ . (2.1)

Consider a stationary stochastic process y(k) ∈ �l with discrete-time index
k ∈ � and power spectrum Φ(z). Furthermore, assume that there exists a stable
linear time invariant (LTI) system S(z) satisfying the relation Φ(z) = ΦS(z) where

ΦS(z)
.
= S(z)ST (z−1). (2.2)

The system S(z) provides a model of the stochastic process y(k) in the sense that
the signal, obtained by filtering a unit variance white noise sequence u(k), has
the same second order statistics. When the system S(z) has a stable inverse (i.e.
|λi(A)| < 1 and |λi(A − BD−1C)| < 1, ∀i ∈ {1, . . . , n}), it is called a minimum-
phase spectral factor of Φ(z). Let the minimum-phase spectral factor S(z) have a
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state-space realization

x(k + 1) = Ax(k) + Bu(k) (2.3)
y(k) = Cx(k) + Du(k), (2.4)

where x(k) ∈ �n denotes the state-vector and u(k) ∈ �l and y(k) ∈ �l are the
input and output signals, respectively. In the following it will be assumed that
the state-space realization of S(z) is minimal and we will briefly refer to the state-
space realization as {A, B, C, D}. The state-space realization {A, B, C, D} and the
power-spectrum are related through equation (2.2) via the transfer function rep-
resentation

S(z)
.
= C(zI − A)−1B + D. (2.5)

For practical reasons, it is convenient to introduce an alternative expression
for the power spectrum Φ(z) in terms of the system matrices {A, B, C, D}. Let us
define the transfer function L(z) and the matrix Q ∈ �n+l as follows:

L(z)
.
=
(

C(zI − A)−1 I
)

Q
.
=

(
B
D

)(
BT DT

)
. (2.6)

From equation (2.5) and (2.2) one can easily infer that the power-spectrum associ-
ated with the input-output system (2.3)-(2.4) can be expressed as

ΦS(z) = L(z)QLT (z−1). (2.7)

This representation of the power spectrum separates the system matrices into two
groups. The transfer function L(z) depends only on the pair {A, C}, while the
matrix Q depends only on the pair {B, D}. This partitioning is of particular inter-
est in identifying the system matrices. It is important to note that not every real
valued matrix Q corresponds to a valid power spectrum. From equation (2.6) it
is clear that Q has to be symmetric and positive semi-definite (i.e. Q � 0). Only
this class of Q matrices yields a valid spectrum that can be factorized to recover
the system matrices B and D that describe the spectral factor. This constraint
on the class of valid Q matrices corresponds to the positive realness condition,
which requires that Φ(z) � 0 for all |z| = 1. Any physically meaningful spectrum
has to satisfy this condition. Finally, note that besides the above formulation, the
power spectrum can also be defined as the z-transform of the covariance function
Rk

.
= E{yk+myT

m}, which is given by (Mari et al. 2000)

Rk =

{
CPCT + DDT for k = 0

CAk−1G for k ≥ 1
(2.8)

and R−k = RT
k , where G

.
= APCT + BDT and P

.
= E{x(k)x(k)T }, the state co-

variance matrix, can be obtained as the solution to the discrete Lyapunov equation
P = APAT + BBT .

The stochastic identification problem can now be formulated as follows. Given
(N + 1) equidistantly distributed samples Φk ∈ �l×l of power-spectrum Φ(z), i.e.

Φk = Φ(ej(2πk/2N)), k = 0, . . . , N ,
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find a state-space realization {A, B, C, D} of the unit variance minimum-phase
spectral factor S(z) that provides the best fit to samples Φk. The accuracy of the
fit is quantified by means of the cost function

J
.
=

N∑

k=0

vecS

(
Φk − ΦS

k

)∗
Wk vecS

(
Φk − ΦS

k

)
(2.9)

where ΦS
k

.
= ΦS(ej(2πk/2N)) and Wk ∈ �l(l+1)/2, Wk � 0 is a suitably chosen fre-

quency dependent weighting function. This cost function is a quadratic form with
full weighting at each frequency. The frequency dependent weighting might be
useful when the samples Φk are estimated empirically. Increasing the penalty in
frequency regions where the variance is expected to be small, makes it possible to
improve the accuracy with respect to the true underlying power spectrum. When
the estimator used to determine the power spectrum is unbiased, has a Gaussian
distribution and provides estimates Φ̂k that are uncorrelated for different frequen-
cies, we may turn the cost function into a maximum likelihood type of criterion
by choosing Wk equal to the inverse of the variance of the estimate. Frequency
weighting is also interesting in the case that the samples Φk are obtained from
a process that does not belong to the class of linear finite-dimensional stochastic
systems. Here frequency weighting may be used to specify a region of interest.

In the above discussion it is assumed that the system S(z) is square. There ex-
ist, however, situations in which the number of noise inputs required to model the
stochastic process is smaller than the number of output channels l. The problem
of modeling a stochastic process with the minimal number of white noise inputs
is non-trivial and is beyond the scope of this paper. For time-domain state-space
identification, this problem has been addressed by Johansson et al. (2001).

2.3 Initial estimate of the A and C matrices

As outlined in the introduction, the proposed spectral factor approximation al-
gorithm uses subspace identification to obtain an initial estimate of the system
parameters. This section describes the part of the subspace algorithm that is used
to provide an initial estimate of {A, C}. The approach is related to the algorithm
of Van Overschee et al. (1997) and the main differences will be discussed.

The first step in the algorithm is to expand the given samples Φk to 2N points
over the entire unit circle. By exploiting the periodicity and conjugate symmetry
of the spectrum, we have Φk = Φ∗

2N−k for k = N + 1, . . . , 2N , where ∗ denotes the
conjugate transpose. The IDFT of the power spectrum can now obtained as:

φm =
1

2N

2N−1∑

k=0

Φk ej(2πmk/2N) . (2.10)

The following theorem provides the relation between the IDFT coefficients φm and
the system matrices of S(z), and forms the basis of the algorithm.
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Theorem 2.1 (Van Overschee et al. (1997)) Let G be defined as in equation (2.8) and
let M

.
= (I − A2N )−1, then the IDFT φk, m ∈ 1, . . . , 2N − 1 of the extended sequence

Φk is given by:

φ0 = R0 + CA2N−1MG + GT (AT )2N−1MT CT (2.11)
φm = CAm−1MG + GT (AT )2N−m−1MT CT (2.12)

An important observation is that the IDFT coefficients φm in (2.12) consists of two
terms. Since the minimum-phase spectral factor S is stable, the effect of the second
term becomes negligible whenever 2N −m−1 gets sufficiently large. This gives
rise to the result summarized in the following corollary:

Corollary 2.1 Define the block-Hankel matrix H(q,s) as:

H(q,s)
.
=

⎡
⎢⎢⎢⎣

φ1 φ2 . . . φs

φ2 φ3 . . . φs+1

...
. . .

...
φq φq+1 . . . φq+s−1

⎤
⎥⎥⎥⎦ , (2.13)

where the number of block rows q and block columns is at least the system order n (i.e.
n ≤ q, s < ∞). Then:

lim
N→∞

H(q,s) =

⎡
⎢⎢⎢⎣

C
CA

...
CAq−1

⎤
⎥⎥⎥⎦
[
G AG · · · AGs−1

]
= OC, (2.14)

with O the extended observability matrix and C the extended controllability matrix. From
equation (2.8) it is clear that in the limit N → ∞ the block-Hankel matrix (2.13) is a
matrix of process covariances Rk.

The factorization of H(q,s) as given in Corollary 2.1 holds only in the limit
N → ∞. When N is sufficiently large however, it is possible to choose q and
s such that the effect of the second term in equation (2.12) is negligible for all
m ≤ q + s − 1. With each block being well approximated by φm ≈ CAm−1MG,
we have the approximate factorization H(q,s)≈OMC. This implies that the block-
Hankel matrix H(q,s) can be factorized to obtain an estimate the column space of
O. By exploiting the shift invariant structure of the extended observability ma-
trix O (see, e.g. Verhaegen (1994)), the pair {A, C} may be determined up to a
similarity transformation. To make this more explicit, consider the singular value
decomposition (SVD) of H(q,s)

H(q,s) =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
, (2.15)

where the diagonal matrix Σ1 ∈ �n×n contains the dominant singular values and
U1 and V T

1 denote matrices composed of the corresponding singular vectors. Since
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the spectral factor is assumed to be minimal, the rank of the matrix H(q,s), and
hence the number of singular values in Σ1, provides an estimate of its order n.
Furthermore, the columns of U1Σ

1/2
1 provide a basis for the column space of H(q,s).

This, in combination with Corollary 2.1, implies that

Ô = U1Σ
1/2
1 T,

for some non-singular matrix T . The estimated extended observability matrix Ô
determines the system matrices A and C up to the similarity transformation T .
When T is set to identity, it follows from the definition of O that an estimate of
the matrix C can be obtained by reading off the first l rows of O. An estimate
of the matrix A, on the other hand, can be determined from the set of overdeter-
mined equation, OA = O, where O and O are the matrices obtained by deleting
the l first and last rows of the matrix O, respectively. Even though the described
subspace approach often yields a stable A matrix, stability is by no means guaran-
teed. In order to avoid unstable A matrices, the Schur re-stabilization procedure
as described in Mari et al. (2000) is applied if necessary. This rescue is especially
important when working on noisy power spectra and power spectra that cannot
be attributed to a finite dimensional linear system.

The subspace approach used to obtain an initial estimate of the pair {A, C}
differs from the power spectrum identification algorithm proposed by Van Over-
schee et al. (1997). Figure 2.1 provides a schematic representation of the main
steps in both algorithms. The steps that correspond to our approach are enclosed
in the shaded block.

{Φk}N−1
k=0

Φk = Φ
∗

2N−k

{Φk}2N−1
k=0

{φn}2N−1
n=0 H(q,s)

col(H(q,s)) ≈ col(O)

H(q,q)

col(Hq,q) = col([O C̃T ])

IDFT

Â, Ĉ

q = s

Figure 2.1: Comparison between the applied subspace identification approach and the
subspace identification approach described by Van Overschee et al. (1997). The approach
described in this paper is enclosed in the shaded area.

From Figure 2.1 it is clear that the first few steps, up to and including the
calculation of the inverse DFT φm, are the same. Furthermore, both algorithms
are based on equation (2.12). The main difference however is that the algorithm
of VanOverschee et al. explicitly accounts for the contribution due to the second
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term. In Van Overschee et al. (1997) it is shown that if q, s ≥ 2n, the column
space of the matrix H(q,s) (2.13) is equal to the column space of [O C̃T ], with the
reversed extended controllability matrix C̃ defined as C̃ .

= [Aq−1G . . . AG G].
This implies that the rank of the block-Hankel matrix H(q,s) provides an estimate
of two times the system order and that its column space is an approximation of
the space spanned by [O C̃T ].

The main difficulty of this approach, is to find a similarity transformation
T ∈ �2n×2n that separates the column space of H(q,s) into a part that corresponds
to the matrix O and a part that corresponds to the matrix C̃T . Adopting the same
notation for the singular value decomposition of Hq,q as in equation 2.15, this im-
plies that one has to find a matrix T such that U1S

1/2
1 T = [O C̃T ]. Finding this

transformation appears to be a very delicate and sensitive process, due to the as-
sumption that one of the intermediate matrices has precisely n stable and n unsta-
ble reciprocal eigenvalues. This assumption might easily fail, especially when the
spectrum is perturbed by noise. Finally it is important to note that in determining
the similarity transformation T , it is implicitly assumed that the matrix H(q,s) is
square (q = s). This is a disadvantage as it results either in large block Hankel ma-
trices or matrices with a relatively small number of block-rows. By neglecting the
contribution due to the second term in equation (2.12), the need for finding a sim-
ilarity transformation that separates the column space of the block-Hankel matrix
in two separate parts is avoided. As a result, the proposed subspace algorithm is
numerically more robust. Finally, recall that the second term in equation (2.12) can
be neglected whenever N is sufficiently large. This condition can be interpreted
as the requirement that the given power spectrum Φ(ej(2πk/2N)) is sampled with
a sufficient resolution. In this perspective, the contribution of the second term can
be seen as the analog of aliasing which occurs when a process is under-sampled
in the time-domain. So, whenever the power spectrum is sampled with sufficient
resolution it is attractive to introduce the proposed approximation.

2.4 Initial estimate of B and D matrices

In this section we consider the second part of the subspace algorithm, which is
concerned with providing an initial estimate of the system matrices B and D. The
most direct approach would probably be to estimate the matrix G, from the row
space of H(q,s). Once the matrices A, C and G are known, it is possible to compute
the pair {B, D} by solving the Riccati equation:

P = APAT + (G − APCT )(R0 − CPCT )−1(·)T (2.16)

where R0 is obtained from equation (2.11). The pair {B, D} of the minimum-
phase spectral factor S(z) is now obtained from the positive definite solution of
equation (2.16) as:

B = (G − APCT )(R0 − CPCT )−
1
2 , D = (R0 − CPCT )

1
2 . (2.17)
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The B and D matrices obtained in this way guarantee that the resulting spectral
factor (2.3)-(2.4) is minimum-phase.

The main disadvantage of the above approach of estimating B and D is that the
Riccati equation (2.16) may fail to have a positive semi-definite solution. The risk
of failure is especially high when the samples Φk are corrupted by measurement
noise. This problem is closely related to the covariance extension problem, which
is extensively discussed by Lindquist and Picci (1996); Dahlén (2001). The infinite
covariance sequence synthesized by substituting the estimated triplet {A, C, G}
in equations (2.8) and (2.11) may not be a valid covariance sequence in the sense
that its discrete-time Fourier transform (DTFT) Φ̂(z) is not positive semi-definite
on the unit circle, i.e. the estimated spectrum is not positive real. When this is
the case, the estimated spectrum Φ̂(z) is not physically meaningful and does not
have a spectral factor S(z). The same problem occurs in Van Overschee et al.
(1997), when the system matrices B and D are determined by estimating G from
the column space of H(q,q).

One way to deal with the positive real requirement on the spectrum is to for-
mulate the problem of estimating {B, D} as an optimization problem over the cost
function (2.9). With the alternative representation of the spectrum (2.7) and a fixed
pair {A, C}, this gives rise to the following constraint least squares problem:

Q∗= argmin
Q�0

N∑

k=0

∥∥∥∥W
1
2

k vecS

(
Φk−LkQLT

−k

)∥∥∥∥
2

2

(2.18)

where Lk
.
= L(e

j2πk
2N ) and the constraint Q � 0 ensures that the matrix Q∗ can be

factorized to find B and D. In Van Overschee et al. (1997) two methods are pre-
sented to solve the constraint least squares problem. In the first approach the con-
straint least squares problem is expressed as semi-definite program. This has the
advantage that one is guaranteed to find the global optimum of equation (2.18).
A drawback, however, is that the resulting large scale LMIs are computationally
very demanding. A similar problem occurs in time-domain stochastic subspace
identification. In Mari et al. (2000) it is shown that the positive realness require-
ment in stochastic identification can be imposed by fitting a filtered version of the
process covariances. This results in an LMI having the same structure. To reduce
the size of the LMIs, Mari et al. (2000) takes into account only a small number of
process covariances. Similarly we could restrict the constraint least squares prob-
lem (2.18) to a small number of sample points Φk. This kind of simplification, is
not very attractive since it throws away valuable data.

The second approach uses a nonlinear least squares solver to optimize the cost
function (2.9) directly over B and D. Because of the structure of the matrix Q (see
equation (2.6)), the constraint Q � 0 is automatically satisfied. An initial guess
of the matrices B and D is obtained by perturbing the estimated R0 to such an
extend that the Riccati equation has a positive semi-definite solution. This method
is computationally more efficient but it may end in a local minimum.

A more efficient way to solve the constraint least squares problem (2.18) is to
express it as a conic linear program (CLP) (Ben-Tal and Nemirovski 2001). The
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Matlab toolbox SEDUMI (Sturm 2002) provides an efficient tool to find numerical
solutions to this kind of problems. This results in an algorithm that is far more
efficient than the LMI approach. Moreover, since the approach is based on con-
vex optimization, it will be able to find the global optimum with respect to the
matrices B and D. Before deriving the CLP, we will introduce some definitions.

We are particularly interested in two types of symmetric cones; the cone of
positive semi-definite matrices (denoted by Ks) and the Lorentz cone (denoted by
Kl). The most natural way the define the cone of positive semi-definite matrices,
would be in terms of matrices. For the purpose of this paper, a definition in terms
of vectors is more convenient. This issue is resolved by vectorization and results
in the following definition:

Ks
.
=
{
vec (X) | X ∈ �

w×w, XT = X � 0
}

,

Kl
.
=

{(
γ
x

)
∈ �× �

v | ‖x‖2 ≤ γ

}

Furthermore, we introduce generalized inequalities. We say that x �K y if and
only if x − y ∈ K, with K a positive cone. The notation X � 0 without subscript,
remains in use as a shorthand to denote positive semi-definite matrices. With the
above notation and definitions, we are now ready to formulate the constrained
least squares problem of equation (2.18) as a CLP:

Theorem 2.2 Let P be the projection matrix that maps a vector vec (X) ∈ �l2 onto the
vector vecS (X) ∈ �l(l+1)/2 (i.e. vecS (X)=Pvec (X)) and define Φ̃ ∈ �(N+1)l(l+1)/2

and L̃ ∈ �(N+1)l(l+1)/2×v as follows:

Φ̃
.
=

⎡
⎢⎢⎢⎢⎣

W
1/2
0 P vec (Φ0)

W
1/2
1 P vec (Φ1)

...

W
1/2
N P vec (ΦN )

⎤
⎥⎥⎥⎥⎦

, L̃
.
=

⎡
⎢⎢⎢⎢⎣

W
1/2
0 PL0

W
1/2
1 PL1

...

W
1/2
N PLN

⎤
⎥⎥⎥⎥⎦

(2.19)

with Lk
.
= L(e−j(2πk/2N)) ⊗ L(ej(2πk/2N)) and v = (n + l)2 the number of entries in

the matrix Q. Furthermore, let A, b and c be defined as:

AT .
=

⎡
⎣

−1 01×v

0 L̃
0v×1 Iv×v

⎤
⎦, b

.
=

[
1

01×v

]
, c

.
=

⎡
⎣

0

Φ̃
0v×1

⎤
⎦ , (2.20)

then finding the solution to the constrained least squares optimization problem of equa-
tion (2.18), is equivalent to solving the following CLP:

min
z

{
bT z | c − AT z �K 0

}
(2.21)

where K .
= Kl × Ks is the Cartesian product of a Lorentz cone and a cone of positive

semi-definite matrices. The optimal vector z∗ and the optimal matrix Q∗ are related as

z∗ = (γ | vec (Q∗)
T
)T .
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Proof: Let us first apply the projection matrix P as defined in Theorem 2.19 to get
rid of the vecS operators in equation (2.18). By using the relation vec (ABC) =
(CT ⊗ A)vec (B), we obtain the following equivalent optimization problem:

min
Q�0

N∑

k=0

∥∥∥W 1/2
k P

(
vec (Φk) − Lk vec (Q)

)∥∥∥
2

2
,

with Lk defined as in the theorem. Stacking the vectors that correspond to each of
the samples and introducing the auxiliary variable γ, gives:

min
Q

{
γ
∣∣ Q � 0, ‖Φ̃ − L̃vec (Q) ‖2 ≤ γ

}

where Φ̃ and L̃ are defined as in (2.19). With the vector z
.
= (γ | vec (Q)

T
)T , the

above optimization problem can be formulated as:

min
z

{
[1 | 0]z

∣∣∣∣
[
0

Φ̃

]
+

[
1 0

0 −L̃

]
z �Kl

0 , [0 |I]z �Ks 0

}
,

with Ks the cone of positive semi-definite matrices and Kl the Lorentz cone. By
combining the two conic constraints and using the definitions in (2.20), we ob-
serve that the constrained least squares problem (2.18) is equivalent to the CLP in
equation (2.21). �

From Theorem 2.2 it is clear that the optimal solution to the constrained least
squares problem (2.18) can be found by solving the CLP in equation (2.21). The
optimal Q∗ satisfies the constraint Q � 0 and can be factorized (see equation (2.6))
to determine a B and D. This factorization is performed by first extracting the
matrices BBT , BDT and DDT as the n× n upper left sub-matrix, the n× l upper
right sub-matrix and the l × l lower right sub-matrix of Q∗. The sub-matrices are
then used to determine the matrices R0 and G as defined in equation (2.8). As
in the approach described at the start of this section, the system matrices B and
D can now be obtained from the identified quadruple {A, G, C, R0} by solving
Riccati equation (2.16). The positive semi-definite solution P finally determines
the B and D by means of equation (2.17). Since {B, D} is computed through the
positive semi-definite solution of (2.16) the spectral factor is guaranteed to be
minimum-phase.

2.5 Optimization of the cost function

The initial estimate obtained in Section 2.3 and 2.4 may be refined by means of
parametric optimization. This is especially useful for power spectra that are con-
taminated by noise or do not belong to the class of finite dimensional LTI systems.
In this section we will consider both direct optimization over all system parame-
ters and a numerical variant of the separable least squares approach (Golub and
Pereyra 1973; Ruhe and Wedin 1980).
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In the additional optimization step, the pair (A, C) is parametrized in output
normal form (Hanzon and Peeters 2000) with parameter vector θAC ∈ �nl, while
the pair (B, D) is described by stacking all entries in a vector θBD ∈ �(n+l)l. This
parametrization has the advantage that it only represents the class of stable sys-
tems and observable state-space systems for −1 ≤ θAC ≤ 1. The estimate of the
spectral factor may therefore be refined by using it as an initial estimate in the
following optimization problem:

(θ∗AC , θ∗BD) = arg min
θAC∈[−1,1],θBD

J(θAC , θBD) (2.22)

where J is the cost function (2.9) expressed in terms of the introduced parametriza-
tion. The most straightforward approach to tackle this problem is to optimize the
cost function directly over all (2n + l)l-elements in θAC and θBD, by using nonlin-
ear optimization techniques. In our implementation, we use the Matlab routine
lsqnonlin, which is based on a interior-reflective Newton method. This routine,
is able to take into account the inequality constraint on the entries of θAC .

Apart from direct optimization over all (2n + l)l-parameters, it is possible to
exploit the special structure in (2.22). This approach, which is based on the ob-
servation that optimization with respect to θBD is much easier than optimization
with respect to θAC , can be interpreted as the numerical variant of the separable
least squares principle. Empirical evidence shows that separable least squares op-
timization is more robust and requires less iterations than direct optimization over
all parameters (Bruls et al. 1999; Ribarits et al. 2003). From Section 2.4 it is clear
that for every fixed θAC , the problem of determining the optimal θ∗BD, i.e.

Ψ(θAC)
.
= min

θBD

J (θAC , θBD) , (2.23)

is a convex optimization problem. This gives rise to the following relation be-
tween (local) minimizers of Ψ(θAC) and J(θAC , θBD).

Theorem 2.3 Let θ∗BD(θAC) denote the global minimizer of (2.23) for fixed θAC and let
J(θAC , θBD) be the cost function as defined in equation (2.9). With Ω an open subset of
�nl, the following statements hold:

1. If θ∗AC ∈ Ω is a local minimizer of Ψ(θAC) and θ∗BD = θ∗BD(θAC), then (θ∗AC , θ∗BD)
is a local minimizer of J(θAC , θBD) in θAC ∈ Ω. Furthermore the following equal-
ity holds J(θ∗AC , θ∗BD) = Φ(θ∗AC).

2. (θ∗AC , θ∗BD) is a global minimizer of J(θAC , θBD) in θAC ∈ Ω, if and only if θ∗AC

is a global minimizer of Φ(θAC) in Ω and θ∗BD = θ∗BD(θAC).

Proof: Assume that θ∗AC is a local minimizer of Ψ(θAC) in Ω and let θ∗BD be the
corresponding global minimizer of (2.23), i.e. θ∗BD = θ∗BD(θAC). From the defini-
tions of Ψ(θAC) and θ∗BD(θAC), it is immediately clear that J(θ∗AC , θ∗BD) = Ψ(θ∗AC).
Let us now assume that (θ∗AC , θ∗BD) is not a local minimizer of J(θAC , θBD) in
Ω. With Bǫ(ξ)

.
= {ζ| ‖ξ − ζ‖2 < ǫ} an ǫ-environment around the point ξ, this

implies that for any ǫ > 0 there exists a (θ̃AC , θ̃BD) such that [θ̃T
AC θ̃T

BD]T ∈
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Bǫ

(
[θ∗ T

AC θ∗ T
BD]T

)
, θ̃AC ∈ Ω, and J(θ̃AC , θ̃BD) < J(θ∗AC , θ∗BD). As the function

θ∗BD(θAC) is defined as the global minimizer of sub-problem (2.23), we observe
that Ψ(θ̃AC) = J(θ̃AC , θ∗BD(θ̃AC)) ≤ J(θ̃AC , θ̃BD) < J(θ∗AC , θ∗BD) = Ψ(θ∗AC). From
this inequality, we infer that Ψ(θ̃AC) < Ψ(θ∗AC). Furthermore it is easy to see
that ‖θ∗AC − θ̃AC‖2 < ǫ and hence θ̃AC ∈ Bǫ(θAC). Because the above arguments
hold for any ǫ > 0, it is not possible to find an ǫ-environment Bǫ(θ

∗
AC) such that

Ψ(θ∗AC) ≤ Ψ(θAC) for all θAC ∈ Bǫ(θ
∗
AC). This is in contradiction with the as-

sumption that θ∗AC is a local minimizer of Ψ(θAC) in Ω. Therefore (θ∗AC , θ∗BD) has
to be a local minimizer of J(θAC , θBD) in Ω, which finishes the proof of part 1 of
Theorem 2.3. The proof of part 2 can be found in (Golub and Pereyra 1973). �

From Theorem 2.3 it is clear that is reasonable to replace the original optimiza-
tion problem (2.22) by the following alternative problem:

min
−1≤θAC≤1

Ψ(θAC) = min
−1≤θAC≤1

J
(
θAC , θ∗BD(θAC)

)
(2.24)

Note that the alternative optimization problem (2.24) has only nl variables, in
comparison with the (2n + l)l-dimensions of the original problem. The price paid
for this reduction in dimensions is that each function evaluation of Ψ(θAC) is quite
time consuming as it needs the solution of the (n + l)l-dimensional optimization
problem (2.23). In fact the optimization over the parameter vectors θAC and θBD is
performed separately, which explains the name separable least squares. As in the
direct optimization over all parameters, we use the Matlab nonlinear least squares
solver lsqnonlin to carry out the optimization over the θAC-vector.

Once we have determined the (local) optimum of the parameter vectors θ∗AC

and θ∗BD, either via direct optimization or by using the separable least squares
approach, it is straightforward to determine the system matrices A, B, C and D of
the corresponding spectral factor. The used parametrization guarantees that the
spectral factor is stable, but the quadruple {A(θ∗AC), B(θ∗BD), C(θ∗AC), D(θ∗BD))}
might not be minimum-phase. This issue is resolved, by calculating the matrix
products BBT , BDT and DDT and proceeding along the steps as described at the
end of Section 2.4. In this way we find new B and D such that the spectral factor
is stable, non-minimum-phase and still has the same performance.

2.6 Numerical validation

The performance of the spectral factor approximation algorithm has been demon-
strated by means of two simulation examples. This section describes the test pro-
cedure and summarizes the most important results. The first simulation example
is used to demonstrate the performance of the proposed algorithm in the case that
the given power spectrum is in the model class of finite-dimensional LTI systems.
Also the robustness to estimation errors on the given power spectrum is consid-
ered in this example. The second simulation example considers the problem of
approximating a non-rational power spectrum over a certain frequency region of
interest. In contrast to the first example, the given power spectrum does no longer
belong to the class of systems considered by the spectral factorization algorithm.
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2.6.1 Example I: Approximation of an estimated power-spectrum

In the first simulation example we consider a finite-dimensional stochastic system
with known spectral factor. The considered spectral factor has order n = 10 and
describes the displacement measured at l = 2 positions of a vibrating plate excited
by a broadband noise. The true power-spectrum Φtr(z), evaluated at N = 500
points, is given by the solid line in Figure 2.2 and shows a number of distinct res-
onance peaks. Apart from the true spectrum, we consider the spectrum estimated
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Figure 2.2: True auto and cross power-spectra (dark solid line), Averaged pe-
riodogram obtained from simulation experiment (gray noisy line in the back-
ground), Power spectrum of initial estimate (dashed line). Power spectrum ob-
tained with the separable least squares variant of the proposed algorithm (dashed-
dotted line). The frequency axis has been normalized on the Nyquist frequency.

from 5000 samples y(k) ∈ �2 of the stochastic process. The samples are generated
by driving the spectral factor with a zero mean unit variance white noise sequence.
An estimate of the power spectrum is then obtained by determining the averaged
periodogram. To this end, the output sequence {y(k)}5000

k=1 is divided in 5 batches
of 1000 samples, i.e. {yi(k)}1000

k=1 = {y1000(i−1)+j}1000
j=1 , where the superscript i is

used to distinguish between the different data batches. Using this notation, the
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averaged periodogram Φav
k is calculated as:

Φav
k =

1

5

5∑

i=1

Y i
k (Y i

k )∗ ∈ �
2×2 for k = 0, . . . , N

where Y i
k is the DFT of {yi(k)}1000

k=1 . This may seem a laborious way of generating
noisy spectral data, but for validation purposes it has the advantage that the true
spectrum is known. The averaged periodogram Φav

k used in the simulations is
depicted by the gray noisy line in the background of Figure 2.2. It has a large
variance, giving rise to a challenging identification problem.

In the tests on the averaged periodogram (i.e. Φav
k = Φk), the following func-

tion has been used as the weight Wk, to accentuate the relative fitting error:

W av
k =

⎡
⎣
ǫ + |Φav

11k| 0 0
0 ǫ + |Φav

21k| 0
0 0 ǫ + |Φav

22k|

⎤
⎦
−2

(2.25)

where Φav
ijk denotes the {i, j}th-element of Φav

k . The regularization ǫ = 10−2 is
included to avoid large weights. In a similar way, the weighting function W tr

k is
defined by replacing the averaged periodogram Φav

k in the above definition with
the true power spectrum Φtr

k . This weighting function will be used in the simula-
tion experiments on the true power spectrum.

Two different performance criteria are used to quantify the performance of
the algorithm in the identification experiments. The first performance criterion is
basically a scaled version of cost function (2.9), where Φk is the power spectrum
used as the input in the identification experiments and the weighting function Wk

is chosen equal to Wav
k . This gives rise to the following definition:

Pw
av

.
=

2

N + 1

N∑

k=0

vecS

(
Φav

k − ΦS
k

)∗
W av

k vecS

(
Φav

k − ΦS
k

)
, (2.26)

where ΦS
k denotes the power spectrum corresponding to the identified spectral

factor. This performance index provides a measure of the fitting error with respect
to the averaged periodogram Φav

k . Furthermore, it is desirable to have a quanti-
tative measure of the fitting error with respect to the true spectrum Φtr

k . Such
a measure is provided by the second performance index P w

tr , which is derived
from (2.26) by replacing the functions Φav

k and W av
k with Φtr

k and W tr
k respectively.

As an initial test, the proposed algorithm and the power spectrum subspace
identification algorithm of Van Overschee et al. (1997) have both been applied to
the true spectrum Φtr

k . The block-Hankel matrix used in the algorithm of Van
Overschee et al. (1997) was square with q=s=500, while the proposed algorithm
used a rectangular matrix with s = 20, q = 481. The results of the simulations
are included in second part of Table 2.1. The initial estimate obtained by the pro-
posed algorithm fits the true spectrum to such an extent that there is no need to
consider further optimization. Also the computation time on a PC with 2.7 GHz
Intel Pentium® IV processor with 512Mb of internal memory, is included in the
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table. Table 2.1 shows that the proposed algorithm performs much better than
the algorithm of Van Overschee et al. (1997). The proposed algorithm is faster
and gives rise to better results. The relatively large computation time of the algo-
rithm of Van Overschee et al. (1997) is partially caused by the necessity of having
a square Hankel matrix (see Section 2.3). This results in large Hankel matrices of
which calculating the SVD is computationally intensive.

Pw
av Pw

tr Time [s]

Properties of Test Data

True spectrum 7.87 × 10−2 0 –

Averaged periodogram 0 7.93 × 10−2 –

Tests on True Spectrum

Initial estimate – 8.58 × 10−17 44.3

Van Overschee et al. – 1.74 × 10−1 80.6

Tests on Averaged Periodogram

Initial estimate 6.29 × 10−2 2.22 × 10−2 36.4

All parameters 5.72 × 10−2 1.79 × 10−2 216

Separable least squares 5.73 × 10−2 1.80 × 10−2 1.0 × 104

Van Overschee et al. – – –

Table 2.1: Simulations results. Performance of the proposed spectral factor ap-
proximation algorithm and the power spectrum identification algorithm by Van
Overschee et al. (1997), with respect to the performance criteria P w

av and P w
tr .

The second set of simulation experiments is concerned with estimating the
minimum-phase spectral factor from the noisy periodogram Φav

k . In these ex-
periments we consider the performance of each of the three possible estimates
provided by the proposed spectral factor approximation algorithm, i.e. the ini-
tial estimate, the estimate after optimization over all system parameters and the
estimate obtained by the separable least squares approach. The results of the ex-
periments are included in Table 2.1. Figure 2.2 shows the power spectra corre-
sponding to the initial estimate (dotted line) and the spectral factor obtained af-
ter separable least squares optimization (dash-dotted line). Also the algorithm of
Van Overschee et al. (1997) has been tested on the averaged periodogram Φav

k .
The algorithm however failed to produce a sensible result, as it did not succeed in
finding a similarity transformation to split the column space of the block-Hankel
matrix H(q,s) (see Section 2.3). At a certain point in the procedure used to find the
similarity transformation, it is assumed that the block-Hankel matrix has n stable
and n unstable eigenvalues. When the spectrum is perturbed by noise, such as
the averaged periodogram Φav

k , this assumption might easily fail. This problem
has also been recognized in Van Overschee et al. (1997), where they refer briefly
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to an alternative approach based on parametrizing the null space of the extended
observability matrix. This approach is however not pursued, as it is numerically
less reliable.

From Table 2.1 and Figure 2.2 it is clear that the proposed spectral factor ap-
proximation algorithm is indeed able to find a minimum-phase spectral factor that
provides an accurate description of the given power spectrum. Furthermore, the
algorithm appears to be robust with respect to the estimation errors that are intro-
duced when the power spectrum is estimated on the basis of a finite amount of
measurement data. Indeed, the initial estimate obtained by the spectral approx-
imation algorithm provides already a better approximation of the true spectrum
than the averaged periodogram that is used as input. The additional parametric
optimization step gives rise to a further performance improvement. The perfor-
mance improvement achieved with direct optimization over all parameters and
the numerical variant of the separable least squares approach, is almost identi-
cal. The fitting error with respect to Pw

av and P w
tr reduces by 9.0% and 18.9%,

respectively. These results demonstrate that the numerical variant of the separa-
ble least squares principle really works in practice. The separable least squares
algorithm appears to be computationally more demanding. The simulation ex-
periments however confirm that separable least squares approach requires less it-
erations (13 against 25) to reach approximately the same performance. From Bruls
et al. (1999); Ribarits et al. (2003) it is to be expected that the separable least squares
has advantages in the sense of numerical robustness.

2.6.2 Example II: Approximation of Kolmogorov spectrum

In the second simulation example, we consider the problem of finding the spec-
tral factor that accurately approximates a non-rational power spectrum satisfying
a −8/3 power law. In contrast to the previous example, the underlying true power
spectrum no longer belongs to the class of regular stochastic processes that can be
described by a finite-dimensional spectral factor. Indeed, the fractional power in
the power law could be expanded in terms of an infinite series, giving rise to a
spectral factor of infinite dimension. Since the considered power spectrum is out-
side the model class considered by the spectral approximation algorithm, an exact
match over the entire frequency range is out of the question. The problem is there-
fore to approximate the given power spectrum over a certain region of interest.

The particular spectrum considered in this simulation study, is the well-known
Kolmogorov power spectrum, which usually arises in the theoretical framework
of imaging through atmospheric turbulence. Accurate knowledge of the minimum-
phase spectral factor that describes the temporal evolution of the optical phase
fluctuations, might be useful in adaptive optics (AO) control design. For a single
layer of frozen turbulence, the temporal power spectrum of the phase fluctuations
at a single point in space in radians squared per Hertz is given by (Hardy 1998;
Conan et al. 1995; Glindemann et al. 2000)

Φ(f) = 0.077r
−5/3
0

1

v

(
f

v

)−8/3

, (2.27)
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where v is the speed of the wind blown frozen layer and r0 denotes the so-called
Fried parameter or turbulence coherence length. In the simulation experiments,
we will use the typical values r0 = 20 × 10−2m and v = 10m/s. At this point it is
important to note that the Kolmogorov power spectrum has a pole at f = 0. Be-
cause of this singularity, the integral over the temporal power spectrum and hence
the variance of the phase fluctuations, is infinite. This physically non-realistic sit-
uation is a well-known property of the Kolmogorov spectrum (Tatarskii 1971). In
fact, the Kolmogorov model is known to provide only a reasonable description of
the phase fluctuations in the inertial sub-range v/L0 ≪ f ≪ v/l0, where L0 is the
outer of turbulence and l0 is the inner scale at which the viscous dissipation starts.
To describe the turbulence outside the inertial sub-range more advanced models,
like the Von Kármán phase spectrum, are required.

In this paper, we will restrict our attention to the problem of approximating
the Kolmogorov spectrum as given in (2.27). To this end, the spectrum is sampled
by evaluating it on a grid of equidistantly distributed frequency points, i.e.

Φk = Φ

(
kfs

2N

)
, k = 1, . . . , N

where fs denotes the sample frequency of the stochastic process. To avoid the
problem of evaluating the power spectrum at f = 0, the spectral sample at this
frequency, i.e. Φ0, is chosen equal to the value of Φ1. This implies that the spec-
trum that is approximated is chopped off and deviates from the −8/3 Kolmogorov
asymptote for frequency smaller than f = fs/(2N). The choice of the sample
frequency fs and the number of samples N , therefore determine the frequency
region of interest in approximating the Kolmogorov spectrum. In generating the
data for the simulation experiments, the Kolmogorov power spectrum is sampled
at N = 1000 points and the sample frequency is set to fs = 500 Hz. This implies
that Φk provides undistorted samples of the Kolmogorov power spectrum in the
frequency range f ∈ [0.25 250] Hz. The samples Φk, k = 1, . . . , N used in the
identification experiments are included as the crosses in Figure 2.3. To accentu-
ate the relative fitting error and to put more emphasis on the frequencies in the
mid-frequency range, the fitting error is weighted by the inverse spectrum and a
Gaussian window. This gives rise to the following weighting function

Wk =
1

|Φk|2
e
−α2

0

@

k − N/2

N/2

1

A

2

, (2.28)

where the parameter α is set to 2.5. In evaluating the performance, the previously
defined cost function Pw

tr will be used as a performance criterion.

The proposed algorithm has been used to identify spectral factors of different
orders. The number of block rows used to form the block-Hankel matrix is s = 15,
and the number of block columns is q = 984. Figure 2.3 shows the power spectra
of the identified spectral factors of order n = 2 (dashed line) and n = 6 (solid
line), obtained using parametric optimization over all parameters. The identified
second order model provides a reasonable approximation of the given spectral
samples. With a sixth order model it is already possible to obtain an almost perfect
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Figure 2.3: Samples of the non-rational Kolmogorov phase spectrum, used as the
input Φk to the power spectral factor approximation algorithm (crosses). Power
spectrum of identified spectral factor of order n = 2 (dashed line). Power spec-
trum of identified spectral factor of order n = 6 (solid line).

fit to the given spectral samples, over the entire frequency range. The performance
of the identified spectral factor for different model orders, both before and after
parametric optimization, has be included in Table 2.2. Apart from the computed
performance measure P w

tr , the table includes the total computation time on a PC
with AMD Athlon™ 64 X2 Dual Core 4800+ Processor and 4Gb of internal memory.
Furthermore, the table indicates whether or not Schur re-stabilization has been
used to guarantee stability of the identified minimum-phase spectral factor.

From Table 2.2 it is clear that the subspace identification algorithm generally
provides already a reasonable good initial estimate of the minimum-phase spec-
tral factor. Especially for low model orders the additional gain achieved by para-
metric optimization is rather modest. The parametric optimization step seems to
be particularly useful in the case that Schur re-stabilization has been applied to
enforce stability. This is to be expected, since the Schur re-stabilization procedure
is formulated as a matrix nearness which is concerned with the problem of finding
a stable A matrix that is as close as possible to the identified matrix, with respect
to some weighted norm. There is no guarantee that this procedure is optimal
with respect to the cost function considered in the spectral factor approximation
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algorithm. The table shows that Schur re-stabilization is only necessary for model
orders larger than n = 6. This is in accordance with the general observation that
the chance of identifying an unstable system in subspace identification generally
increases with the selected model order. Finally, note that the performance after
parametric optimization increases monotonically with the model order. Also this
is to be expected since the increased model order gives rise to additional degrees
of freedom, which can be exploited to reduce the fitting error. The small fitting
error, especially when the model order is chosen sufficiently large, confirms that
the proposed algorithm is able to accurately approximate the given spectral sam-
ples. As a result, the proposed spectral factor approximation algorithm provides a
way to obtain a reasonable approximation of the non-rational Kolmogorov power
spectrum over a frequency range set by the sampling.

n Pw
tr Time [s] P w

tr Time [s] Schur

Initial estimate After parametric optimization

1 2.0354× 10−3 0.75995 2.0354× 10−3 1.2048 no

2 1.9815× 10−3 0.66981 1.9632× 10−3 41.434 no

4 9.3376× 10−5 2.5923 4.1842× 10−5 74.571 no

5 3.4852× 10−5 3.7426 3.4484× 10−5 18.942 no

6 3.7943× 10−5 7.4214 3.5044× 10−5 80.412 no

8 4.3463× 10−7 14.925 1.3824× 10−7 32.881 yes

10 2.4415× 10−7 13.999 9.8324× 10−9 30.260 yes

12 4.4671× 10−7 15.331 1.9854× 10−9 40.976 yes

Table 2.2: Simulation results. Performance of the proposed spectral factor approx-
imation algorithm in modeling a non-rational Kolmogorov phase spectrum.

2.7 Conclusions

We have developed a subspace-based algorithm for estimating a minimum-phase
spectral factor that accurately approximates a given discrete-time frequency do-
main power spectrum. A key issue in solving the stochastic realization problem
is to guarantee that the estimated power spectrum satisfies the positive semi-
definiteness condition on the unit circle. It has been shown that this issue can be
resolved by formulating it as a CLP. The ability to solve the CLP in a global optimal
sense, has been used to derive a numerical analogue of the separable least squares
principle. Since the procedure inherently attempts to minimize the (weighted) 2-
norm of the power spectrum error, the procedure is robust with respect to errors
on the given power spectrum.
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The performance and robustness have been studied in two simulation exam-
ples. In the first simulation example we have studied the case that the given
power spectrum is indeed generated by a stochastic system within the class of
finite-dimensional LTI systems. The simulation example has also been used to
demonstrate the performance robustness with respect to the estimation error on
the power spectrum. In the second simulation example we have considered the
problem of approximating the non-rational Kolmogorov spectrum over a certain
frequency region of interest. It is show that the algorithm is able to provide a good
approximation to the selected set of equidistantly distributed spectral samples. As
a result, the proposed algorithm can be used to identify a finite dimensional spec-
tral factor that is close to the theoretical power spectra describing the temporal
evolution of the optical phase fluctuations due to atmospheric turbulence. Knowl-
edge of this spectral factor may be useful in designing the feedback controller or
temporal compensator in an adaptive optics system.
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3 CHAPTER

Data-Driven H2-Optimal Control for
Adaptive Optics

A
daptive optics is currently used in ground-based astronomical tele-
scopes to improve the resolution by counteracting the effects of at-

mospheric turbulence. Most AO systems are based on a simple control
law that neglects the temporal evolution of the distortions introduced by
the atmosphere.

This paper presents a data-driven control design approach that is able to
exploit the spatio-temporal correlation in the wavefront, without assum-
ing any form of decoupling between the different wavefront sensor chan-
nels and phase reconstruction points. The approach consists of a dedi-
cated subspace-identification algorithm, used to identify an atmospheric
disturbance model from open-loop wavefront sensor data, followed by
H2-optimal control design.

It is shown that in the case that the deformable mirror and wavefront
sensor dynamics can be represented by a delay and an impulse response
of two taps, it is possible to derive an analytical expression for the
H2-optimal controller. Together with the identification algorithm, this
provides a non-iterative way to go from open-loop measurement data
to closed-loop controller design. Numerical simulation experiments
demonstrate a performance improvement with respect to the common
AO control approach.

Keywords: Adaptive optics; Data-driven disturbance modeling; Stochastic identi-
fication; Optimal control

77
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3.1 Introduction

Adaptive optics is a technique to actively sense, estimate and correct the wave-
front distortions that are introduced in a light beam as it propagates through a
turbulent medium. Nowadays, adaptive optics has found widespread application
in ground-based astronomical imaging, where it is used to compensate the wave-
front distortions introduced by the turbulent atmosphere. By using measurements
from a wavefront sensor (WFS), AO tries to cancel out most of the wavefront dis-
tortions by varying the optical path difference with an active optical element, such
as a deformable mirror (DM). Whereas atmospheric turbulence otherwise severely
limits the angular resolution, AO may now help to improve the image quality and
enable the recording of long-exposure images with resolutions close to the diffrac-
tion limit. For an extensive overview of AO, the reader is referred to Hardy (1998);
Tyson (1998); Roddier (1999), and the references therein.

This paper focuses on the control aspects of AO. An important complication
in the AO control problem is that the WFS typically provides some measure of
the slope (or curvature) of the residual wavefront, while the performance is often
evaluated in terms of the mean-square wavefront. The common way to deal with
the discrepancy between measurement and control objective is to include a sepa-
rate wavefront reconstruction step. Given the reconstructed wavefront, the prob-
lem of imposing the proper shape on the DM is seen as a servo control problem.
As a result, the majority of the AO systems are based on a control law that con-
sists of a separate wavefront reconstruction step, the projection of the estimated
wavefront on the DM actuator space and a dynamic servo compensator responsi-
ble for stability and closed-loop performance. The wavefront reconstruction and
DM fitting problem are usually solved in a static setting (Roddier 1999; van Dam
et al. 2004). In the simplest case the wavefront reconstructor and the DM fitting
matrix are obtained as the pseudo-inverse of the phase-to-slope mapping and the
DM influence matrix. Both maximum likelihood and maximum a posteriori tech-
niques are used to improve the accuracy of the wavefront estimate by incorpo-
rating prior knowledge on the second order statistics of the spatial distribution
of the wavefront (Roddier 1999; Law and Lane 1996). The modified statistics due
to closed-loop operation, however, are often neglected. In designing the dynamic
servo controller it is typically assumed that the control loop can be decoupled in
a series of independent single-input single-output (SISO) feedback loops with a
predefined control structure having its roots in classical control theory. Common
servo controller structures include the leaky integrator, the proportional-integral
(PI) controller and the Smith predictor. The choice of the control parameters is a
trade off between disturbance rejection, noise propagation and closed-loop stabil-
ity. It can be easily shown that the higher the control bandwidth, the better the
disturbance rejection but also the higher the noise propagation and risk of closed-
loop instabilities. The optimal bandwidth depends both on the signal-to-noise
ratio (SNR) and the atmospheric turbulence conditions. In the modal control opti-
mization approach (Ellerbroek et al. 1994; Gendron and Léna 1994), the wavefront
is decomposed in a set of modal basis functions and the servo gain is optimized on
a mode to mode basis. Since the SNR decreases with the spatial frequency, modes
with a high spatial frequency should have a smaller bandwidth. Stability criteria
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for first-order closed-loop AO servo systems have been analyzed in Wild (1998).

Even though the above described common AO control strategy does already
a remarkable job under favorable conditions, there is still need for performance
improvement. As pointed out by Roddier (1998), especially the compensation ef-
ficiency of large AO systems is unduly low. Rather than focusing only on the
development of AO systems with more sensors and actuators, it may therefore be
rewarding to search for ways of improving the performance of current AO sys-
tems. It is clear that the common AO control approach does not explicitly account
for the temporal evolution of the wavefront disturbance and the dynamics of the
AO system components. On the other hand, the finite time delay between mea-
surement and correction is known to be one of the major limitations on the AO
performance (Dessenne et al. 1997; van Dam et al. 2004). A promising way to re-
duce the effect of the temporal error is to exploit the temporal correlation in the
wavefront to anticipate future wavefront distortions. This has for instance mo-
tivated the development of the predictive optimal estimator (Wild 1996), which
minimizes the time delay error in an ensemble averaged, sense rather than actu-
ally predicting future wavefronts. In the spirit of modal optimization, a modal
linear predictive controller, whose parameters are optimized by recursive least-
squares, has been introduced (Dessenne et al. 1997). Since the latter approach
assumes decoupling of the different modes however, it is still not able to take ad-
vantage of the spatio-temporal correlation in the wavefront.

This paper presents a data-driven control design approach that take full ad-
vantage of the spatio-temporal correlation. In contrast to the above approaches,
it does not assume any form of decoupling between the spatial and temporal dy-
namics. The proposed control design approach consists of two major steps. In the
first step a dedicated subspace identification algorithm is used to identify a multi-
variable atmospheric disturbance model on the basis of open-loop WFS data. In
the second step the identified atmospheric disturbance model is used to compute
the optimal controller by formulating the AO control problem in an H2-optimal
control framework. Apart from the fact that the H2-optimal control provides a
more elegant framework of dealing with the discrepancy between measurement
and control objective, it is closely related to Linear Quadratic Gaussian (LQG) con-
trol design. The LQG framework has been used by Paschall and Anderson (1993)
to design an AO controller under the restrictive assumption that the atmospheric
wavefront distortions can be described in terms of the first 14 Zernike modes with
coefficients generated by independent first-order Markov processes. Looze et al.
(1999, 2003) have used LQG to design a diagonal modal controller based on an at-
mospheric disturbance model in which each individual mode is described by an
autoregressive moving average (ARMA) model identified from open-loop wave-
front data. The LQG control approach has proved to be suitable for both classical
and multi-conjugated AO systems Le Roux et al. (2004). Each of these LQG ap-
proaches use a rather restrictive atmospheric disturbance model in the sense that
modal decoupling is assumed. By assuming model decoupling, it is not possible
to make optimal use of spatio-temporal correlation that is imposed by the Tay-
lor hypothesis (Hardy 1998; Roddier 1999). From the Taylor hypothesis, which
states that the atmospheric turbulence evolves at a time scale much longer than
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the time it takes for the inhomogeneities to cross the line of sight, it is clear that the
upper wind WFS channels provide direct information on the future development
of the turbulence elsewhere in the aperture. Gavel and Wiberg (2003), recently
proposed an optimal control approach which is explicitly based on the Taylor hy-
pothesis. Even though this is very elegant from a theoretical point of view, the
Taylor hypothesis may only be partially satisfied in practice. The proposed control
approach uses a model structure that is sufficiently general to exploit the spatio-
temporal correlation imposed by the Taylor hypothesis, but does not depend on it.
Furthermore, the data-driven modeling approach has the advantage that it yields
a good match with the prevalent turbulence conditions and it does not require ac-
curate estimates of physical parameters like the wind speed and direction of the
frozen layers.

Apart from introducing a more general model structure for the disturbance
model, this paper shows that the special structure of the AO control problem can
be exploited in computing the H2-optimal controller. In general, computing the
H2-optimal controller requires the numerical solution of two Riccati equations.
Due to the special structure of the identified disturbance model, in the worst case
only one Riccati equation needs to be solved. Furthermore it will be shown that an
analytical expression for the closed-loop optimal controller can be derived when
the deformable mirror dynamics can be represented as a delay and a finite im-
pulse response (FIR) model of two taps. This is a realistic assumption when the
characteristic time of the deformable mirror is small compared to wavefront sen-
sor integration or exposure time.

The remainder of this paper is organized as follows. Section 3.2 provides an
accurate description of the AO control problem and introduces most of the nec-
essary notation. The subspace identification algorithm used to obtain a control-
relevant atmospheric disturbance model from open-loop wavefront sensor data
will be considered in more detail in Section 3.3. The algorithm is capable to iden-
tify an accurate atmospheric disturbance model for small to medium sized AO
systems. This will be illustrated in Section 3.4 by means of two simulation exam-
ples on the basis of open-loop WFS data obtained from an AO laboratory setup
and real-life data from the William Herschel telescope. Given the identified dis-
turbance model, Section 3.5 presents a general strategy to determine the controller
that minimizes the mean-square residual phase error. The AO control problem
will be formulated in the H2-optimal control framework for which the standard
solution is known. The central topic in Section 3.6 is how to exploit the special
structure of the AO problem in computing the H2-optimal controller. Section 3.7
presents a validation study in which the performance of the proposed control de-
sign strategy is compared with the common AO control law. Also these simu-
lations are performed on the basis of open-loop wavefront sensor data obtained
from an AO test bench. Finally, the paper concludes with a short discussion in
Section 3.8.
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3.2 The adaptive optics control problem

Figure 3.1 provides a schematic representation of the functional relation between
the main components of a classical AO system. Light with an atmospherically
distorted phase profile φ(·) enters the system and is reflected from a deformable
mirror (DM), which introduces a phase correction φm(·). Part of the compensated
light, with residual phase error ǫ = φ−φm, is directed to a wavefront sensor (WFS).
The WFS signal s(·) forms the input to the controller, which is responsible for
determining the actuator commands u(·). The measurement noise is represented
by an additive noise term η(·).

A common objective in AO is to maximize the Strehl ratio, which is defined
as the on-axis intensity of a point source relative to that of the diffraction limit.
Through the Maréchal approximation (Born and Wolf 1999), this is equivalent to
minimizing the mean-square residual phase error. The AO control problem can
hence be defined as the problem of finding the closed-loop controller that min-
imizes the mean-square residual phase error. In this paper it will be assumed
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Figure 3.1: Functional relationship between main components of an AO system.

that the phase distortion profile over the telescope aperture can be represented
by a finite-dimensional discrete-time vector signal. At each time instant k ∈ �,
the uncorrected wavefront φ(·), the phase correction introduced by the DM φm(·)
and the residual wavefront error ǫ(·) are described by the vectors φ(k) ∈ �mφ ,
φm(k) ∈ �

mφ and ǫ(k) ∈ �
mφ . Whether the vector signal φ(k) provides a zonal

or modal description of the wavefront is irrelevant as long as its mean-square er-
ror provides a good approximation of the mean-square error of the unsampled
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wavefront over the telescope aperture.

An important issue in the AO control problem is that the wavefront distortion
φ(k) cannot be measured directly. Only the WFS slope measurements s(k) ∈ �ms

are available for identification and control. It is generally not possible to recon-
struct the entire wavefront from the measurement signal. In order to arrive at a
well-posed control and identification problem it is important to exclude the unob-
servable part of the wavefront from the problem formulation. This is achieved by
introducing a signal of lower dimension that describes only the observable part
of the wavefront φ(k). To this end, let the wavefront φ(k) and the open-loop WFS
slope measurements s(k) be related as

s(k) = G(z)φ(k) + η(k), (3.1)

where G(z) = g(z)G is the cascade of a scalar stable linear time invariant (LTI)
system g(z), which accounts for the WFS dynamics, and the phase-to-slope geom-
etry matrix G ∈ �ms×mφ , which describes the optical transformation from phase
to slopes. Here, the assumption of scalar dynamics is not very restrictive since
the WFS dynamics are typically determined by the finite CCD exposure time, the
readout delays and the data processing delays, which are the same for each of
the channels. From equation (3.1) it is clear that only the part of the wavefront
that is in the row space of G can be reconstructed from the measurements. The
number of unobservable modes is equal to the rank deficiency of the matrix G. A
reduced representation of the observable part of the wavefront can be obtained by
considering the singular value decomposition (SVD)

G = UΣV T =
[
U1 U2

] [Σ1 0
0 0

] [
V T

1

V T
2

]
,

where U ∈ �ms×ms and V ∈ �mφ×mφ are orthonormal matrices and the partition-
ing of Σ ∈ �ms×mφ is such that Σ1 ∈ �my×my contains all nonzero singular values.
Substituting the SVD in (3.1) and pre-multiplying both sides with UT

1 , gives rise
to the following reduced WFS model

y(k) = Σ1ϕ(k) + ν(k), (3.2)

where y(k)
.
= UT

1 s(k) ∈ �my and ϕ(k)
.
= g(z)V T

1 φ(k) ∈ �my . The signal ϕ(k) can
be interpreted as a filtered reduced representation of the observable part of the
wavefront φ(k). This can be easily seen by noting that due to the orthogonality of
V the wavefront can be decomposed as φ(k) = V1V

T
1 φ(k) + V2V

T
2 φ(k). Whereas

the first term has a direct influence on the measured output s(k), the second term
cannot be observed as it lies in the null-space of G. Furthermore, it is clear that the
signal g(z)φ(k) and ϕ(k) have the same 2-norm. The signal y(k) can be regarded
as a representation of the informative part of s(k). Here it is interesting to note
that projection UT

1 removes the measuring noise that is not in the range space of
G and cannot be caused by the wavefront. Since G is generally tall, the proposed
projection results in a considerable reduction of the dimension of the signal that
has to be modeled. In accordance with above definitions, the filtered reduced rep-
resentation of the DM wavefront correction and residual phase error are defined
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as ϕm
.
= g(z)V T

1 φm and ε(k)
.
= ϕ(k) − ϕm(k). Linearity of the WFS implies that

the measured output corresponding to the reduced residual wavefront ε(k) can be
expressed as r(k)

.
= y(k) − ym(k), where y(k) and ym(k) denote the contributions

due to atmospheric turbulence and the DM.

It will be assumed that the relation between the actuator inputs u(k) ∈ �
mu

and the DM wavefront correction ϕm(k) ∈ �my , can be described by a stable LTI
system with state-space realization

H(z) = Cm(zI − Am)−1Bm. (3.3)

The absence of a direct feed-through term in the DM model is not very restrictive
as there is always at least one sample delay between measurement and correction.
Without loss of generality this delay can be included in the DM model. Further-
more, it should be noted that by the definition of the signal ϕ(k) also the WFS
dynamics g(z) are implicitly included in the DM model. Because of this, the re-
duced WFS model (3.2) is now free of any dynamics. The reason for this particular
choice of the reduced signals ϕ(k), ϕm(k) and ε(k) will become more clear when
defining the cost function in (3.5).

Optimizing the AO system performance requires accurate knowledge of the
statistical properties of the uncorrected wavefront and the corresponding WFS
signal. In this paper it is assumed that the observable part of the uncorrected
wavefront ϕ(k), and hence also the reduced WFS signal y(k), can be modeled as
a wide sense stationary (WSS) regular stochastic process. This is a reasonable as-
sumption since the statistical properties of the wavefront change on a time scale
that is long compared to the time scale of the fluctuations themselves. To guar-
antee a good performance over longer time periods however, it is necessary to
update the disturbance model on a regular basis. Under the assumption of wide
sense stationarity, the second order statistics of the reduced WFS signal y(k) can
be described as the output of an LTI system with a zero-mean white noise input
v(k) ∈ �my and covariance matrix Rv

.
= E{v(k)vT (k)}. This in combination with

the reduced WFS model (3.2) motivates the choice of the following model struc-
ture

S :

⎧
⎨
⎩

x(k + 1) = Adx(k) + Kdv(k)
y(k) = Σ1Cdx(k) + v(k)
ϕ(k) = Cdx(k) + ζ(k),

(3.4)

where Ad − KdΣ1Cd ∈ �nd×nd and Ad ∈ �nd×nd are assumed to be stable, and
ζ(k) = Σ−1

1 (v(k) − ν(k)) is again a zero-mean white noise sequence with covari-
ance matrix Rζ

.
= E{ζ(k)ζ(k)T }. The cross-covariance between the v(k) and ζ(k)

will be denoted by Rvζ
.
= E{v(k)ζ(k)T }. The above description of the atmospheric

turbulence is assumed to be minimal in the sense that output signals cannot be de-
scribed by a model of order less than nd. An important characteristic is that the
model is in innovation form with respect to the WFS output y(k). It provides a
minimum-phase spectral factor of the stochastic process y(k), which will appear
to be a very useful property in determining the optimal controller.

The problem considered in this paper divided into two sub-problems. Given
a batch of Ni ∈ � open-loop WFS observations y(k), the first sub-problem is
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to determine an estimate of the system matrices Ad ∈ �nd×nd , Kd ∈ �nd×my

and Σ1Cd ∈ �my×nd such that the estimated atmospheric disturbance model S
matches the second order statistics of the process y(k). This part of the problem
is referred to as the stochastic identification problem. Starting from the identified
disturbance model S, the second sub-problem is to find the optimal controller C(z)
that minimizes the cost function

J = E
{
εT (k)ε(k)

}
+ E

{
uT (k)Qu(k)

}
, (3.5)

where Q ≥ 0 is a positive regularization matrix which makes a trade-off between
the expected mean-square reduced residual wavefront error E(ε(k)εT (k)) and the
expected amount of control effort E(u(k)uT (k)). By increasing the control effort
weighting Q it is possible to reduce the amount of energy dissipated by the DM
and make the controller more robust to model uncertainties. The matrix Q will be
typically chosen diagonal, allowing for a penalty on the control effort on each of
the actuators separately. Furthermore it is important to recall that signal ε(k) has
been defined in such a way that it incorporates the WFS dynamics g(z). Minimiz-
ing the first term of (3.5) is therefore equivalent to minimizing the mean-square
error of the observable part of the filtered signal g(z)ǫ(k). Even though it is pos-
sible to explicitly account for the WFS dynamics in the definition of cost function,
this is usually not sensible because the WFS usually has low-pass characteristics.
This implies that the WFS dynamics mainly distorts the high frequency region of
ε, while the turbulence is dominant at low-frequencies. Moreover by inverting the
WFS dynamics one risks the chance of high-frequency noise amplification.

3.3 Data-driven disturbance modeling

In this section we present a dedicated subspace identification algorithm that is
able to deal with the stochastic identification problem considered in previous sec-
tion. Based on open-loop WFS data, the algorithm provides a full spatio-temporal
atmospheric disturbance model S, without assuming any form of decoupling be-
tween the channels. A consequence of this rather extensive description is that
even for relatively small AO systems a huge identification problem has to be
solved. Computational efficiency is therefore an important issue. The proposed
algorithm is able to identify a full atmospheric disturbance model for AO systems
with up to a few hundred degrees of freedom on a PC with a 3 GHz Intel Pen-
tium IV processor and 512 Mb of internal memory, within the period of only a few
minutes time.

Based on numerically robust matrix operations, subspace algorithms bypass
the need for model parametrization and nonlinear optimization. This is an im-
portant advantage over the more traditional maximum likelihood and prediction
error methods (Ljung and Glad 1994; Ljung 1999), which rely on the optimization
of a suitably chosen cost function of structural model parameters. Apart from the
increased risk of ending up in a local minimum, the computational complexity of
these algorithm grows rapidly with the number of independent parameters. This
becomes especially a problem in the multivariate case where the mapping from
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each input to each output is often parametrized independently. With subspace
identification the multivariate case can be handled within the same framework.

The subspace identification algorithm presented in this paper is basically an
efficient output only implementation of the SSARX algorithm proposed by Jans-
son (2003). In analogy with the name SSARX, the new algorithm will be called
SSAR. An important advantage of the proposed algorithm is that it provides a
direct estimate of the state-space matrices of the minimum-phase spectral factor.
Most subspace identification algorithms for stochastic identification, are based on
a two-step procedure where the minimum-phase spectral factor is obtained af-
ter the factorization of some intermediate estimate. Apart from the fact that such
a two step procedure is computationally more complex, it is important to note
that, depending on the type of intermediate estimates, the spectral factorization
problem may fail to have a solution. The class of subspace algorithms which first
estimate a rational covariance model (Van Overschee and De Moor 1993), for in-
stance, suffers from this problem. As demonstrated by Lindquist and Picci (1996),
the spectral factorization problem has only a solution when the rational covari-
ance model is positive real. A possible workaround when the positive realness
condition has failed is to modify the system matrices of the covariance estimate
in a spirit of a matrix nearness problem (Mari et al. 2000). Even though the re-
sulting covariance matching problem can be efficiently formulated in terms of a
semi-definite program, this approach is computationally not feasible for the size of
systems considered in this paper. The SSAR algorithm avoids the need for spectral
factorization by directly estimating the system matrices of the Kalman predictor
model corresponding to the minimum-phase spectral factor. The minimum-phase
requirement is translated to a stability requirement on the system matrices of the
Kalman filter and the minimum-phase spectral factor. This requirement can be
easily checked and if necessary stability can be enforced by using the Schur pro-
cedure in (Mari et al. 2000).

The computational demands of the proposed subspace algorithm have been
reduced by using an efficient implementation. By applying a different weight-
ing in estimating the state sequence, a single RQ factorization of a stacked block-
Hankel matrix of past and future data can be used both for computing the required
AR coefficients and for data compression. This leads to an efficient implementa-
tion both in terms of the number of flops and the memory requirements. Before
providing a detailed description of the new SSAR implementation, the SSARX al-
gorithm as presented by (Jansson 2003) will be briefly reviewed. Since the interest
is in stochastic identification, also the SSARX algorithm will be considered in an
output only setting. Reviewing the SSARX algorithm will prove to be valuable
both for explaining the proposed algorithm and in outlining the difference with a
straightforward output only implementation of SSARX.

The SSARX algorithm is based on an alternative representation of the stochas-
tic process y(k) ∈ �

my . Consider the stochastic disturbance model introduced in
equation (3.4). By using the output equation to eliminate the noise input v(k) ∈
�my from the state-update equation, the stochastic process y(k) can be represented
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in the alternative form

S̃ :

{
x(k + 1) = Ãx(k) + K̃y(k)

y(k) = C̃x(k) + v(k),
(3.6)

where the matrices Ã and C̃ are defined as Ã
.
= Ad − KdC̃, C̃

.
= Σ1Cd and where

K̃ is defined as K̃ = Kd to achieve conformity in notation. The above represen-
tation of y(k) can be seen as the Kalman predictor model corresponding to (3.4).
Furthermore, it is clear that the minimum-phase requirement on the stochastic
disturbance model is equivalent to demanding that Ã is asymptotically stable. Let
the vectors of stacked past and future outputs and the vector of future innovations
be defined as

yp(k−p)
.
=
[
yT(k−p) . . . yT(k−2) yT(k−1)

]T
,

yf(k)
.
=
[
yT(k) yT(k+1) . . . yT(k+f−1)

]T
,

vf (k)
.
=
[
vT(k) vT(k+1) . . . vT(k+f−1)

]T
,

with p, f ∈ � some user defined parameters, whose selection will be discussed
in more detail at the end of the section. Then, by iteratively applying the state-
update equation in (3.6), it can be shown (Jansson 2003; Peternell et al. 1996) that
for a stable Ã and p sufficiently large, the state x(k) can be approximated as a
linear combination of the past outputs

x(k) ≈ Kpyp(k − p), (3.7)

where the matrix Kp ∈ �nd×pmy is defined as

Kp
.
=
[
Ãp−1K̃ . . . ÃK̃ K̃

]
. (3.8)

Here it should be noted that the ordering of the output data in the vector of past
observations yp(k − p) differs form the one used in Jansson (2003). While in the
above definition the observations are ordered forward in time, the vector of past
observations in the original presentation of SSARX is ordered backward in time.
This is by no means a fundamental difference. The only effect of reordering the
observations in yp(k − p) is that also the block columns of Kp are ordered in a re-
verse way. The considered ordering of yp(k−p) will appear useful in achieving an
efficient implementation of the proposed algorithm. Furthermore, by using (3.6)
it is possible to establish the following relation between past and future outputs

yf(k) = Ofx(k) + Tfyf (k) + vf (k), (3.9)

where the extended observability matrix Of and Toeplitz matrix of Markov pa-
rameters Tf are defined as

Of
.
=

⎡
⎢⎢⎢⎣

C̃

C̃Ã
...

C̃Ãf−1

⎤
⎥⎥⎥⎦ , Tf

.
=

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0

C̃K̃
. . . 0

...
. . . . . .

...
C̃Ãf−2K̃ · · · C̃K̃ 0

⎤
⎥⎥⎥⎥⎦

. (3.10)
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Consider the state estimate in (3.7) and the relation between past and future out-
puts (3.9), then the SSARX algorithm consists of the following steps. In the first
step a high order autoregressive model is estimated from the data to get an un-
structured estimate of the Markov parameters C̃ÃiK̃ for i ∈ {0, . . . , f − 2}. The
estimated Markov parameters are then used to construct an estimate T̂f of the
Toeplitz matrix Tf . In the next step the constructed estimate T̂f is used to define
the signal z(k) as z(k)

.
= (I − T̂f )yf (k). Together with the definition of B .

= OfKp,
the approximation of z(k) obtained by substituting (3.7) in (3.9) can be expressed
as

z(k) ≈ B yp(k − p) + vf (k). (3.11)

This equation can be viewed as a low rank linear regression problem in B and is
used to obtain an estimate of Kp. The least squares estimate of B, in the sense that
it minimizes the conditional expectation of the mean-square error between z(t)
and Byp(k − p), is given by Γzp(Γpp)

−1, where Γzp is the cross-correlation matrix
between z(k) and yp(k−p) and Γpp is the correlation matrix of yp(k−p). Given only
a finite data set, the correlation matrices are approximated by their finite sample
estimates Γ̂zp and Γ̂pp, with Γ̂zp defined as

Γ̂zp =
1

N

N−1∑

k=0

z(k)yT
p (k − p), (3.12)

and Γ̂pp defined accordingly. This gives rise to the following approximation B̂ =

Γ̂zpΓ̂
−1
pp of B. An estimate of the row space of the matrix Kp can now be obtained

by factorizing B̂. This is achieved by computing the SVD of

M
.
= W1B̂W2 = Ũ Σ̃Ṽ T , (3.13)

where Ũ and Ṽ T are orthonormal matrices, Σ̃ is a diagonal matrix composed of
the singular values arranged in non-decreasing order, and W1 and W2 are non-
singular weighting matrices. The estimate of Kp obtained from the factorization,
up to within a similarity transformation T , is then given by K̂p = V T

nd
W−1

2 , where
V T

nd
is the matrix composed of the first nd columns of Ṽ T . In the SSARX algorithm

the row-space of Kp is estimated by performing a canonical correlation analy-
sis (CCA) on the signals z(k) and yf (k − p). This is equivalent to choosing the
weighting matrices in the SVD as W1 = Γ̂

−1/2
zz and W2 = Γ̂

1/2
pp . These weighting

matrices have the nice statistical property that they lead to the maximum likeli-
hood estimate for a Gaussian linear regression problem with a rank constraint on
the coefficient matrix (Peternell et al. 1996).

The next step of the SSARX algorithm consists of substituting the estimate of
Kp in equation (3.7) to obtain an estimate of the corresponding state sequence
x(k). By replacing the true state with the estimated state x̂(k) = V T

nd
W−1

2 yp(k−p),
the system matrices can now be estimated by finite linear regression in the state-
space equations (3.6). Here the term finite linear regression refers to the linear
regression problem obtained by replacing the conditional expectation by finite
sample estimates, as was done to obtain B̂ from (3.11). In this way, an estimate of
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the system matrices Ã and K̃ is obtained by regressing x̂(k + 1) on x̂(k) and y(k).
Likewise, the system matrix C̃ is estimated by regressing y(k) on x̂(k).

To arrive at an efficient implementation of the algorithm SSAR proposed in this
paper, the data equations are expressed in terms of block Hankel matrices. Given
N samples of the stacked data vector of past or future outputs yq(k), q ∈ {p, f},
the data block Hankel matrix Yi,q,N is defined as

Yi,q,N
.
=
[
yq(i) yq(i+1) · · · yq(i+N−1)

]
∈ �

qmy×N ,

where the first entry of the subscript of Yi,q,N refers to the time index of its top
left entry, the second refers to the number of block rows and the third refers to
the number of columns. Using the same notational convention, the block Hankel
matrix constructed from the vector of future innovations vf (k) will be denoted by
Vi,f,N . By stacking time-shifted versions of (3.9), the equivalent data equation in
terms of block Hankel matrices can be expressed as

(I − T̂f )Yp,f,N ≈ BY0,p,N + V0,f,N . (3.14)

Recall that the first step in the SSARX algorithm is to identify a high order
AR model to get an unstructured estimate of the Markov parameters C̃ÃiK̃ i ∈
{0, . . . , f − 1}. An important observation is therefore that equation (3.14) is noth-
ing but the stacked outputs of an AR model. This implies that if the AR model
order is not too high, the problem of identifying the Markov parameters can be
conveniently expressed in terms of the block Hankel matrices of the above equa-
tion. By selecting the right block rows, the block Hankel matrices in (3.14) contain
sufficient information for identifying an AR model of order p + f − 1. However,
since exploratory experiments show that for the considered type of data the choice
of the AR model order has no or little influence on the overall performance, it will
be chosen as small as possible for reasons of efficiency. The order of the AR model
will therefore be chosen f − 1, which is the minimal amount needed to construct
the estimate T̂f . The problem of identifying such an AR model can now be formu-
lated as the following least squares optimization problem (Ljung and Glad 1994;
Ljung 1999)

̂̃
CKf−1 =arg min

eCKf−1

‖Yp+f−1,1,N−(C̃Kf−1)Yp,f−1,N‖2
F , (3.15)

where ‖ · ‖F denotes the Frobenius norm and where, in accordance with defini-
tion (3.8), the matrix C̃Kf−1 is composed of the first f−1 Markov parameters. It
is well known that the above optimization problem has the following solution

̂̃
CKf−1 = Yp+f−1,1,N (Yp,f−1,N )†, (3.16)

where (·)† denotes the pseudo-inverse. Since the matrices Yp+f−1,1,N and Yp,f−1,N

correspond to respectively the last and first f −1 block rows of Yp,f,N , the solution
to the problem of identifying the Markov parameters necessary for constructing
the estimate of Tf , can be completely expressed in terms of the data block Hankel
matrices in (3.14).
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Also the problem of determining an estimate for the extended controllability
Kp can be conveniently formulated in terms of the data block Hankel matrices.
By comparing the definitions of the block Hankel matrix and the finite sample
estimate of the correlation matrices Γzp and Γpp in (3.12), it is clear that the finite
sample estimates can be expressed as

CΓ̂zp =
1

N
(I − T̂f )Yp,f,NY T

0,p,N

Γ̂pp =
1

N
Y0,p,NY T

0,p,N .

With the correlation matrix Γ̂zz expressed in a similar way, the above equations
could in principle be used to compute the matrix M

.
= W1B̂W2 for the canonical

correlation weights W1 and W2 as defined before. Instead of proceeding in this
way, the proposed SSAR algorithm uses a different set of weights. More specifi-
cally, the weighting matrices are chosen as W1 = I and W2 = ( 1

N Γpp)
1/2, which

corresponds to the weighting scheme used by the MOESP class of subspace algo-
rithms (Verhaegen 1994). This choice of weighting matrices is motivated by the
desire to reduce the computational complexity. Even though the CCA weighting
scheme might be more attractive from a statistical point of view, it involves the
additional step of computing the inverse square root of the estimated correlation
matrix Γ̂zz . For the particular choice of weights, explicit computation of square
root matrices can be avoided by using a square root implementation based on a
single RQ factorization of the block Hankel matrices. This will be made more
clear in Theorem 3.1. At this stage it is important to note that the square root
implementation could be extended to include the CCA weighting scheme but
this would involve the need for an additional RQ factorization step. Consider-
ing the new weights, the matrix M as defined in equation (3.13) becomes equal
to M =

√
N(Γ̂zp)(Γ̂pp)

−1/2. By substituting the finite sample estimates (3.17)
and (3.17), this gives rise to the following expression in terms of the data block
Hankel matrices Y0,p,N and Yp,f,N

M = (I − T̂f )Yp,f,NY T
0,p,N

(
Y0,p,NY T

0,p,N

)−1/2
. (3.17)

In the same way, the corresponding estimate of the extended controllability ma-
trix, K̂p =

√
NV T

nd
Γ̂

−1/2
pp , can be expressed as

K̂p = V T
nd

(
Y0,p,NY T

0,p,N

)−1/2
. (3.18)

Given the estimate of the extended controllability matrix Kp, the remaining
steps of proposed subspace identification algorithm are again to reconstruct the
approximate state sequence x̂(k) = V T

nd
W−1

2 yp(k − p), from which the system ma-
trices are estimated by finite linear regression in the state-space equations. By
selecting the right block-rows, also the finite linear regression step can be conve-
niently expressed in terms of the data block Hankel matrices Y0,p,N and Yp,f,N .
Using the same notational convention as for the data block Hankel matrices, the
sequence of reconstructed states can be expressed as X̂p,1,N = K̂pY0,p,N . Like-
wise, the sequence of time-shifted states is given by X̂p+1,1,N = K̂pY1,p+1,N . By
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considering the state-space equations (3.6), it should be clear that the finite linear
regression problem used to estimate the system matrices Ã and K̃ from the re-
constructed state sequences X̂p,1,N and X̂p+1,1,N , can formulated as the following
least squares optimization problem

min
[ eA| eK]

∥∥∥∥X̂p+1,1,N − [Ã|K̃]

[
X̂p,1,N

Yp,1,N

]∥∥∥∥
2

F

, (3.19)

In the same way, the estimate of the system matrix C̃ obtained by regressing
yp(k−p) on x̂(k) can be expressed as the minimizing argument of the least squares
optimization problem

min
eC

‖Yp,1,N − C̃X̂p,1,N‖2
F . (3.20)

The above least squares optimization problems and the expressions for the recon-
structed state sequences X̂p,1,N and X̂p+1,1,N , give rise to the following estimate
of the system matrices Ã, C̃ and K̃

C
̂

[Ã | K̃] = K̂pY1,p+1,N

[
K̂pY0,p,N

Yp,1,N

]†
(3.21)

̂̃
C = Yp,1,N(K̂pY0,p,N )

†
. (3.22)

The obtained estimate of the triple (Ã, C̃, K̃) in combination with the singular val-
ues Σ1 of the geometry matrix, provide a complete specification of the system ma-
trices of atmospheric disturbance model (3.4). By applying the definitions of Ã, C̃

and K̃ it is possible to explicitly compute Ad, Cd and Kd. As will be demonstrated
in Section 3.6, this last step is not always necessary for computing the controller.

The outcome of each of the steps of the proposed subspace identification al-
gorithm, that is the identification of the AR model, the problem of estimating the
extended controllability matrix Kp and the finite linear regression step used to es-
timate the system matrices, has been expressed in terms of the data block Hankel
matrices Y0,p,N and Yp,1,N . Even though these expressions provide a direct way
to estimate the system matrices Ã, C̃ and K̃, this is computationally not attractive
since the number of columns in the data block Hankel matrices is typically very
large. However, due to specific choice of the weighting matrices W1 and W2, the
solution to each of the sub-problems can be computed from the R factor of the
stacked data block Hankel matrix Y0,p+f,N . This results in an efficient implemen-
tation, both with respect to the number of flops and required memory storage.
Furthermore, since the approach avoids the explicit computation of the square
root matrices in (3.17) it will help to improve the numerical robustness. The pre-
cise relation between each of the steps of the subspace algorithm and the R factor
of the data block Hankel matrix is summarized in Theorem 3.1. The use of a RQ
factorization to improve the computational efficiently of subspace algorithms is
by no means new and has been proposed before in Verhaegen (1994).
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Theorem 3.1 (SSAR via RQ factorization) Given a signal y(k) ∈ �my , consider the
economy size RQ factorization of the block Hankel matrix Y0,p+f,N ∈ �(p+f)my×N

⎡
⎢⎢⎢⎢⎣

Y0,1,N

Y1,p−1,N

Yp,1,N

Yp+1,f−2,N

Yp+f−1,1,N

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

R11 0 0 0
R21 R22 0 0

...
...

. . . 0
R51 R52 . . . R55

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Q1

Q2

...
Q5

⎤
⎥⎥⎥⎦ , (3.23)

where the R and Q factor are partitioned in accordance with the partitioning of the block-
rows of Y0,p+f−1,N and p, f ∈ � are such that nd ≤ p my, fmy ≤ N . Furthermore let

the matrices M and K̂p be defined as in (3.17) and (3.18). Then the solutions (3.16), (3.21)
and (3.22) to the optimization problems (3.15), (3.19) and (3.20), respectively, can be
completely characterized in terms of the R factor only:

1. The solution to optimization problem (3.15) is given by

̂̃
CKf−1 =

[
R51 · · · R54

] [
R41 · · · R44

]†
.

2. Let T̂f denote the matrix obtained by replacing C̃ÃiK̃ in (3.10) by the f−ith block

column of the estimate C̃Kf−1, then

M̂ =(I − T̂f )

⎡
⎣

R31 R32

R41 R42

R51 R52

⎤
⎦ K̂p =V T

nd

[
R11 0
R21 R22

]†
,

where V T
nd

contains the right singular vectors corresponding to the nd largest sin-
gular values of M .

3. Given K̂p and V T
nd

, the solutions to the optimization problems (3.19) and (3.20) can
be expressed as

̂
[Ã|K̃] = K̂p

[
R21 R22 0
R31 R32 R33

][
V T

nd
0

R31 R32 R33

]†

̂̃
C =

[
R31 R32

]
(V T

nd
)
†
.

The solution to each of the optimization problems is unique if and only if the matrices in
the pseudo-inverse are non-singular.

Proof: In order to prove the first statement, note that Yp+1,f−3,N and Yp+f−2,1,N

can be easily expressed in terms of the sub-matrices of (3.23). The partition-
ing of the RQ factorization is such that these matrices correspond to the fourth
and the fifth block row. Substituting the resulting expressions for Yp+1,f−3,N and
Yp+f−2,1,N in (3.16) and using the orthonormality of Q gives the desired result.
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The second and third statement can be proved by proceeding in a similar
way. The matrices Y0,p,N and Yp,p+f,N are expressed in terms of the sub-matrices
of RQ factorization (3.23) and the resulting expressions are substituted in (3.17)
and (3.18). Using the orthogonality of Q leads to the given expressions for M and
Kp. The condition nd ≤ p my, fmy ≤ N guarantees that M is sufficiently large to
have at least n right singular vectors, as needed in constructing V T

nd
.

In proving the third statement, Y0,p,N , Y1,p+1,N and Y1,p+1,N are expressed in
terms of the RQ factorization and the result is substituted in equations (3.21)
and (3.22). Again due to the orthogonality the Q-factor drops out the equation.
Finally by substituting the obtained expression for Kp in the pseudo-inverse term
of the equations finishes the proof. �

The above theorem forms the starting point for an efficient implementation of
the proposed subspace identification algorithm. It shows that the entire SSAR al-
gorithm can be characterized in terms of the R factor of the block Hankel matrix
Y0,p+f,N and that here is no need to actually compute the Q factor. Since the com-
putation of the R factor is the only operation performed directly on the data block
Hankel matrices, it has a large influence on the overall computational efficiency of
the algorithm. To arrive at an efficient implementation, the R factor is computed
by using the fast algorithm described by Mastronardi et al. (2001). Especially for
large block Hankel matrices, this algorithm is far more efficient than a standard
RQ decomposition based on Householder transformations, as it is able to exploit
the displacement structure in the block Hankel matrix Y0,p+f,N .

The precise choice of the user defined parameters f and p remains a difficult is-
sue in subspace identification (Bauer 2004). In the SSARX algorithm, it is assumed
that the parameters f and p are always chosen strictly larger than the order of the
system nd. With the stochastic disturbance model (3.4) being a minimal repre-
sentation of the stochastic process, this is a sufficient condition to ensure that the
matrix B = OfKp has rank nd and can be factorized to find an estimate of the
extended controllability matrix Kp. For multi-variable systems, the requirement
f, p > nd may be overly conservative. As will be demonstrated by the numerical
validation experiments in Section 3.7, it may be useful to choose the parameters f
and p much smaller than the order of the identified disturbance model. The pa-
rameters f and p should however be chosen sufficiently large to guarantee that the
rank of the matrix B is larger than the order of the identified disturbance model.
A thorough consistency analysis of both the SSARX and the proposed algorithm
is still a topic for future research.

3.4 Numerical validation disturbance modeling

To demonstrate that the proposed subspace identification algorithm can indeed be
used to identify an accurate atmospheric disturbance model, numerous of simula-
tion experiments have been performed. This section reports on the results of two
such identification experiments, each performed on a different data set. The first
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simulation example considers open-loop WFS data obtained from an AO labora-
tory setup at TNO Science and Industry. This data set is particularly interesting
as is will also be used in the closed-loop simulation examples in Section 3.7. The
data set is generated by a turbulence simulator that can be considered as truly
frozen. The second simulation example considers open-loop WFS data from a real
telescope and is important to verify if proposed subspace identification algorithm
is also useful in modeling realistic turbulence scenarios.

3.4.1 Simulation procedure and performance measures

Each of the simulation experiments considered in this paper is based on a data
set consisting Nt = 1.0 × 104 samples of open-loop WFS data. This data batch
is divided into two parts. The first Ni = 8000 samples are used to identify an
atmospheric disturbance model with the proposed SSAR subspace identification
algorithm, while the remaining Nv = 2000 samples are reserved for validation
purposes. In accordance with this functional division, the first part of the data set
is referred to as the identification set, while the second part is called the validation
set. The performance of the identified atmospheric disturbance model is judged
by considering its ability to predict the wavefront distortions, or more specifically,
the wavefront at next sample instant. For an atmospheric disturbance model of
the from (3.4), the optimal one-step ahead predictor that minimizes the prediction
error in a mean-square sense, is given by (see e.g. Kailath et al. 2000)

{
x(k + 1) = Ã x(k) + K̃ y(k)

ϕ̂(k|k − 1) = Σ−1
1 C̃ x(k)

, (3.24)

where ϕ̂(k|k − 1) denotes the estimate of ϕ(k) given all past WFS measurements
up to and including time k − 1. The performance of the optimal one-step ahead
predictor derived from the identified atmospheric disturbance model is compared
with the optimal predictor for a random walk process. Here, a random walk pro-
cess is defined as a process of which the increments from sample to sample are
zero-mean and white. Hence, for such a process, the optimal wavefront estimate
at the next sample is equal the wavefront reconstructed from the current WFS
measurement, i.e. ϕ̂(k|k−1) = Σ−1

1 y(k−1). Given the estimates from the optimal
and the random walk predictor, the wavefront prediction error is computed as

ǫ(k) = ϕ(k) − ϕ̂(k|k − 1).

The wavefront prediction error is evaluated for both predictors on both the iden-
tification and the validation set. The reason for considering the random walk pre-
dictor is motivated by the fact that it bears a close resemblance with the common
AO control law. Indeed, it can be shown that the temporal error in an AO system
using static wavefront reconstruction and pure integrators as feedback compen-
sators, gives rise to the same prediction error as the random walk approach.

In quantifying the performance of both the random walk predictor and the
optimal one-step ahead predictor derived from the identified atmospheric distur-
bance model, two different performance measures have been considered. Both of
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these performance measures are computed on the basis wavefront prediction error
ε(k). The first performance measure can be interpreted as a normalized version of
the mean-square prediction error and is defined as

J1 =

∑Ns

k=1 tr(ε(k)εT (k))
∑Ns

k=1 tr(ϕ(k)ϕT (k))
, (3.25)

where Ns denotes the number of samples in the performance evaluation, which is
Ni for the identification set and Nv for the validation set. The performance index
J1 provides a quantitative measure of the total reduction in the mean-square pre-
diction error and is independent of the scaling of the wavefront. To obtain some
more insight in the temporal dynamics of the controller it is useful to consider the
normalized averaged power spectrum P (ω) of the simulated residual phase error.
The normalized averaged power spectrum P (ω) is defined as

P (ω) =

∑my

j=1 Φj(ω)

1/(Ns − 1)
∑Ns

k=1 tr(ϕ(k)ϕT (k))
, (3.26)

where Φj(ω) is the estimated power spectral density of the jth component of the
residual wavefront ε(k), evaluated at the frequency ω. The spectrum Φj(ω) is
computed as the Welch averaged periodogram with a window size of 256. The
performance of the optimal one-step ahead predictor has been evaluated for at-
mospheric disturbance models of different orders.

3.4.2 Open-loop WFS data AO laboratory setup

The open-loop WFS data used in the first set of simulation experiments have been
obtained from an AO test bench. The AO test bench uses a turbulence simulator
consisting of a circular plan parallel glass plate that is rotated through the optical
beam by means of a driving stage. One side of the glass plate has been machined
in such a way that the glass plate introduces spatial wavefront distortions char-
acterized by a Kolmogorov spectrum with a D/r0 = 5, where D is the diameter
of the simulated telescope aperture and r0 denotes the Fried parameter (Hardy
1998). This type of turbulence simulator gives rise to a single frozen layer sat-
isfying the Taylor hypothesis. The open-loop WFS data are recorded by using a
Shack-Hartmann WFS with an 16×16 orthogonal micro-lens array. After aligning
the setup, only the best illuminated micro-lenses and least distorted spots were
selected for wavefront sensing. The active spots have been selected in such a way
that no micro-lenses within the convex hull of the selected spots are excluded. In
other words, there are no holes or missing spots in the set of selected active micro-
lenses. This resulted in a total of 53 active spots, which corresponds to a WFS
signal s(k) of dimension ms = 106. The geometry matrix G used for reconstruct-
ing the wavefront was defined according to the Fried geometry. Considering this
geometry matrix, projecting out the unobservable modes leads to a reduced WFS
signal y(k) = UT

1 s(k) of dimension my = 69. The open-loop WFS has been col-
lected at a sampling rate of f = 25 Hz. The rotational speed of the glass plate
results in a Greenwood frequency of fG = 0.95 Hz. Since the temporal error scales
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as σ2
T ∝ (fG/f)5/3 (Hardy 1998), the AO test bench has the same temporal error as

an AO system with a sample frequency of f = 750 Hz and a Greenwood frequency
of fG = 28.5 Hz.
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Figure 3.2: Normalized mean-square wavefront prediction error J1 as a function
of the order of the identified disturbance model on AO breadboard data. The
center of the cross formed by the dashed lines indicates the performance and the
effective model order of the random walk predictor.

Figure 3.2 shows the normalized mean-square prediction error J1, for the opti-
mal one-step ahead predictor, as a function of the order nd of the identified distur-
bance model. The crosses in the figure correspond to the performance estimates
computed on the basis of the validation data set, while circles are used to indi-
cate the performance corresponding to the identification data set. Furthermore,
the large cross formed by the dashed lines indicates the performance level and the
effective model order of the random walk approach. Note that since the random
walk approach uses only the last WFS measurements to obtain an estimate of the
wavefront, it only needs to remember this measurement, which gives rise to an ef-
fective model order equal to the number of WFS channels. The results depicted in
Figure 3.2 have been obtained by using p = 15 past and f = 15 future block-rows
in the proposed subspace identification algorithm. Similar results are obtained for
p = f ∈ {20, 25, 30, 35}, with a slightly lower performance for the higher values
of p and q. This weak dependence, simplifies the choice parameters p and q. The
slightly improved performance for smaller p and q is probably caused by the fact
that the smaller the number of block-rows, the more columns of the block-Hankel
matrix can be formed, which in turn has a positive influence on the accuracy of
the estimated extended observability. It does not need any explanation that p and
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q should be chosen sufficiently large to capture all dynamics. The figure shows
that the performance of the identified disturbance model increases monotonically
with the model order, and that for model orders nd ≥ 40 the identified disturbance
model provides already a better estimate than the random walk approach. When
the model order is equal to the equivalent order of the random walk predictor,
i.e. nd = 69, the normalized mean-square prediction error on the identification
and validation set are J1 = 2.38 × 10−3 and J1 = 2.49 × 10−3. Compared to the
random walk predictor with J1 = 3.55 × 10−3, this is an improvement of respec-
tively 33.0% and 29.9%. The figure also shows that for increasing model orders
the performance of the optimal one-step ahead predictor converges to a more or
less constant level. For nd = 300, the performance is J1 = 1.35 × 10−3 for the
identification set and J1 = 1.52 × 10−3 for the validation set. This corresponds to
an performance improvement of respectively 65.7% and 60.5%, with respect to the
random walk predictor. So, even though the performance on the validation set is
somewhat lower that on the identification set, the simulation example shows that
there still plenty of room to improve on the random walk predictor.

Finally, it is interesting to note that the proposed subspace identification algo-
rithm is indeed able to capture (at least part of) the frozen like behavior of the
wavefront. To illustrate this, the identified atmospheric disturbance model for
nd = 300 has been excited with a zero-mean white noise sequence. Figure 3.3
shows 24 out of the Nt = 1.0 × 104 frames of the observable part of the wave-
front V1V

T
1 φ(k) = V1ϕ(k) generated in this way. The depicted sequence of frames

clearly shows a wavefront that is propagating over the aperture. Since the in-
put to the disturbance model 3.4 has been zero-mean and white, the observed
frozen like behavior can only be due to the disturbance model. In other words,
the observed frozen like behavior has to be part of the identified atmospheric dis-
turbance model.

3.4.3 Open-loop WFS data from William Herschel Telescope

The previous subsection has shown that the proposed subspace identification al-
gorithm is able to identify an atmospheric disturbance model that can be used to
improve on random walk prediction. It is important to verify whether or not this
also holds for real turbulence. For this reason, the second data set consists of real-
life open-loop WFS data obtained from the William Herschel Telescope (WHT).
With a diameter of 4.2 m, the WHT is the largest of the Isaac Newton Group of
telescopes at the Observatorio del Roque de Los Muchachos, La Palma, Spain.
The data set has been collected by one of the two seeing monitors, implemented as
part of the Joint Observatories Seeing Evaluation (JOSE) project. The JOSE seeing
monitor has been designed to resemble the WFS sensor of the WHT AO system as
closely as possible, in order to examine both the spatial and temporal properties
of turbulence on the appropriate scale. It consists of a Shack-Hartmann WFS with
an 8 × 8 orthogonal micro-lens array, which partitions the telescope aperture in
sub-apertures with an effective size of 0.5 m. Each sub-aperture has a field of view
of 2.2 arcsec and is imaged on a 8 × 8 sub-region of a 64 × 64 CCD camera, giving
rise to a sensitivity of approximately 0.27 arcsec/pixel. The device is operated in
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frame :5000 frame :5001 frame :5002 frame :5003

frame :5004 frame :5005 frame :5006 frame :5007

frame :5008 frame :5009 frame :5010 frame :5011

frame :5012 frame :5013 frame :5014 frame :5015

frame :5016 frame :5017 frame :5018 frame :5019

frame :5020 frame :5021 frame :5022 frame :5023

Figure 3.3: Wavefront distortions generated by exciting the identified atmospheric
disturbance model (p = f = 15 and nd = 300) by zero-mean white noise. The
wavefront sequence clearly possess a frozen flow component. This shows that
the subspace identification algorithm is able to capture the second-order statistics
associated with the frozen WFS data obtained from the AO breadboard.
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the visible at a wavelength around 700 nm. For a more detailed description of the
JOSE seeing monitor the reader is referred to Saint-Jacques (1998). The data used
in the simulations have been recorded on June 5, 1997, under good seeing condi-
tions characterized by a full width of half maximum (FWHM) of 0.5 − 0.7 arcsec.
The sampling rate during the data acquisition was 296 Hz and the centroid posi-
tions have an accuracy of approximately 0.1 pixels. Just as in simulations on the
breadboard data, the phase-to-slope matrix G is defined according to a Fried ge-
ometry. Considering only the 48 best illuminated spots, this gives rise to a reduced
WFS signal of dimension my = 67, which is close to the number of channels in the
breadboard data set. An important difference with the previous data set, however,
is that the WFS layout of the JOSE seeing monitor contains a central obscuration,
because of the telescope’s secondary mirror.
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Figure 3.4: Normalized mean-square wavefront prediction error J1 as a function
of the order of the identified disturbance model on William Herschel telescope
data. The center of the cross formed by the dashed lines indicates the performance
and the effective model order of the random walk predictor.

The outcome of the simulation experiments on the open-loop telescope data is
depicted in Figure 3.4. Just as in the previous experiments, the circles denote the
normalized mean-square prediction error J1 computed on the basis of the identifi-
cation data set, while the crosses correspond to the performance on the validation
data. The center of the large cross formed by the dashed lines is again used to
denote the performance level and the effective model order of the random walk
approach, which in this case are given by nd = 67 and J1 = 2.02×10−2. The simu-
lation results presented in the figure have been obtained by choosing p = f = 30.
Like the simulations of the breadboard data, the performance of the subspace
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identification algorithm has been analyzed for p = f ∈ {15, 20, 25, 30} with al-
most identical results. In contrast to the previous experiments, however, the per-
formance is slightly better for higher values of p and q. In the trade off between
modeling the higher order dynamics and improving the statistical averaging by
increasing the number columns in the block-Hankel matrix, the modeling of the
higher order dynamics now seems to gain the upper hand. Furthermore, note
the simulation experiments on the breadboard data and the real WFS data show
a similar trend. In both cases, the wavefront prediction error decreases monoton-
ically with the model order and seem to converge to a constant level. The order
at which the optimal one-step ahead predictor starts to improve on the random
walk approach however, is much closer to the effective order of the random walk
predictor. A possible explanation for this is that the turbulence can no longer be
seen as a single frozen layer. For frozen turbulence, many of the WFS channels
have common dynamics, which may help to reduce the model order. The normal-
ized mean-square residual prediction error achieved for a model order nd = 300
is J1 = 3.24×10−3 for the identification set and J1 = 6.38×10−3 for the validation
set. Compared to the random walk approach, this corresponds to a reduction of
respectively 84.0% and 68.4%. The relative improvement on real telescope data
is therefore even larger than on the breadboard data. This can be explained by
the fact that, when considering the temporal error, the equivalent Greenwood fre-
quency for the AO breadboard data at the sampling rate of the telescope is only
fG = 11.25 Hz. Since typical values for the Greenwood frequency are around the
20− 30 Hz, the temporal error is likely to be much smaller on the breadboard data
set than on the telescope data set. This implies that there is potentially more to
gain by applying the optimal one-step ahead predictor on the real telescope data.

For nd = 300, Figure 3.5 shows the normalized averaged power spectra P (ω)
of the open-loop wavefront distortions (upper dashed-dotted line), of the wave-
front prediction error using the random walk approach (solid line), of the wave-
front prediction error using the optimal one-step ahead predictor on validation
data (dashed line) and of the wavefront prediction error using the optimal one-
step ahead predictor on the identification data (lower dashed-dotted line). Also
from this figure it is clear that the proposed subspace identification algorithm is
able to identify an accurate atmospheric disturbance model that can be used to
considerably reduce the wavefront prediction error. Note that the wavefront pre-
diction error corresponding the optimal one-step ahead predictor is almost white.
This shows that the identified atmospheric disturbance model provides an accu-
rate description of spatial averaged temporal correlation. The wavefront predic-
tion error on the validation set, on the other hand, is slightly colored. Note that
the slightly reduced performance on the validation set is also apparent from Fig-
ure 3.4. Whether this is caused by the fact that the lower frequencies are more diffi-
cult to model or by slow changes in the turbulence statistics is hard to distinguish.
To verify if the assumption of modeling the turbulence as a regular stochastic pro-
cess is reasonable on a time scale of a few minutes, two data sets each consisting
of Nt = 1.0 × 104 have been recorded 5 minutes and 2 seconds apart. The first
data set has been used to identify an atmospheric disturbance model, while the
second set is used for performance evaluation. Considering this validation set,
the relative reduction of the mean-square wavefront prediction error compared to
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Figure 3.5: Normalized averaged power spectrum P (ω) of wavefront prediction
error on William Herschel telescope data.

the random walk approach is still 58.9%. This shows that the stationarity assump-
tion is still usable over a time horizon of minutes, but that in order to guarantee
a good performance over significant longer time scales a regular update of the
disturbance model is probably necessary.

3.5 AO in an optimal control framework

Given an atmospheric disturbance model of the form (3.4), this section provides a
general recipe to approach the AO control problem as formulated in Section 3.2.
An important aspect of the AO control problem is that there is a difference be-
tween the objective of minimizing the mean-square residual WFS signal r(k) and
the actual cost function (3.5). The H2-optimal control framework provides an
attractive way to deal with this discrepancy between measurement and control
objective. It will be shown that the AO control problem can be conveniently ex-
pressed as an H2-optimal control problem. Standard H2-optimal control theory
can then be used to compute the closed-loop optimal controller.

Consider the block-diagram in Figure 3.6, which provides a schematic repre-
sentation of the closed-loop AO control system. The shaded box in this figure
defines the so-called generalized plant P(z), which forms the starting point in
formalizing the H2-optimal control framework. The generalized plant makes a
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Figure 3.6: Block-diagram of AO system in generalized plant representation

clear distinction between exogenous zero-mean white noise inputs w(k) and con-
trol inputs u(k) on the one hand and measurement outputs r(k) and performance
outputs e(k) on the other hand. In the following, it will be assumed that the zero-
mean white noise input w(k) has unit covariance E{w(k)wT (k)} = I and that the
generalized plant has the following state-space description

⎡
⎣

ξ(k + 1)
e(k)
r(k)

⎤
⎦ =

⎡
⎣

A Bw Bu

Ce Dew Deu

Cr Drw 0

⎤
⎦
⎡
⎣

ξ(k)
w(k)
u(k)

⎤
⎦ , (3.27)

where ξ(k) denotes the state variable. To facilitate the discussion, it is useful to
partition the generalized plant P in the same way as the input and output signals.
The input-output relation is described by the open-loop transfer functions Pew(z),
Peu(z), Prw(z) and Pru(z), where the subscripts refer to the corresponding input
and output signals. Using this notation the feedback connection of P and C is
given by

F(P , C) = Pew + Peu(I − CPru)−1CPrw.

H2-optimal control theory deals with the problem of finding the causal controller
C(z) that minimizes the H2-norm of the closed-loop transfer function F(P , C). The
following theorem provides a solution to the general H2-optimal control problem
(see Shu and Chen 1995; Chen and Francis 1995; Zhou et al. 1996).

Theorem 3.2 (Discrete-time H2-optimal control) Consider the generalized plantP(z)
with state-space realization (3.27) and let the following conditions be satisfied

• (A, Bu) is stabilizable and (A, Cr) is detectable;

• Reu
.
= DT

euDeu > 0 and Rrw
.
= DrwDT

rw > 0;
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• the matrices [
A − λI Bu

Ce Deu

]
,

[
A − λI Bw

Cr Drw

]

have full rank for all λ ∈ � such that |λ| = 1.

Under these conditions, the following Riccati equations have a unique and stabilizing
solution X = XT ≥ 0 and Y = Y T ≥ 0

X = AXAT − (AXCT
r + ST

rw)(CrXCT
r + Rrw)−1(·)T + Qw

Y = AT Y A − (AT Y Bu + Seu)(BT
u Y Bu + Reu)−1(·)T + Qe

where Qw
.
= BwBT

w , Qe
.
= CT

e Ce Seu
.
= CT

e Dew, and Srw
.
= BwDT

rw. With X and Y
the stabilizing solutions to the above Riccati equations, define the matrices

F
.
= (BT

u Y Bu + Reu)−1(BT
u Y A + ST

eu)

F0
.
= (BT

u Y Bu + Reu)−1(BT
u Y Bw + DT

euDew)

L
.
= (AXCT

r + BwDT
rw)(CrXCT

r + Rrw)−1

L0
.
= (FXCT

r + F0D
T
rw)(CrXCT

r + Rrw)−1

Then the proper real-rational controller C(z) which internally stabilizes P(z) and is min-
imizing the H2-norm of the transfer function F(P , C) from e to w, is given by

[
ξ̂(k + 1)

u(k)

]
=

[
A + BuL0Cr−BuF − LCr BuL0−L

F − L0Cr −L0

] [
ξ̂(k)
r(k)

]
,

with ξ̂(k) the estimate of ξ(k) given y(i), i ≤ k − 1.

As depicted in Figure 3.6, the AO control system can be extended to fit in the
generalized plant framework. By moving the system boundaries and considering
the atmospheric disturbance model as a part of the generalized plant, the only
exogenous inputs are the zero-mean white noise inputs v(k) and ζ(k) of the dis-
turbance model. Even though the signals are zero-mean and white, the signal
w̃(k) = [vT (k) ζT (k)]T obtained by stacking v(k) and ζ(k) cannot be directly used
as the exogenous input w(k) of the generalized plant because it does not have unit
covariance. In order to ensure that also this condition is satisfied, the atmospheric
disturbance model is augmented with a static matrix multiplication to normal-
ize the input covariance. Let the covariance matrix of w̃(k) be denoted by Rw̃,
then the input weight needed to generate a signal w̃(k) with the desired statistical
properties out of the exogenous input signal w(k), is equal to the square root of
the covariance matrix Rw̃. The input to the atmospheric disturbance model w̃(k)
and the exogenous input to the generalized plant w(k) are therefore related as
w̃(k) = R

1/2
w̃ w(k). In order to evaluate R

1/2
w̃ , note that the measurement noise ν(k)

shoud be uncorrelated with the wavefront distortions ϕ(k) and the state vector
x(k). By multiplying the second output equation in (3.4) from the right by νT (k)
and substituting the definition of ζ(k), we can therefore write

E
{
ϕ(k)νT (k)

}
= E

{
(Cdx(k) − Σ−1

1 ζ(k))νT (k)
}

= 0

= Σ−1
1 (Rvν − Rν),
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where Rvν
.
= E{v(k)νT (k)} and Rν

.
= E{ν(k)νT (k)}. From the above equation we

infer that Rvν = Rν , which can be used to express the cross-covariance Rvζ as

Rvζ = E
{
v(k)

(
(vT (k) − νT (k))Σ−1

1

)}
= (Rv − Rν) Σ−1

1 .

In the same way, the coveriance matrix Rζ can be expressed as Rζ = Σ−1
1 (Rv −

Rν)Σ−1
1 . From this it can be easily verified that the weighting matrix R

1/2
w̃ is given by

R
1/2
w̃ =

[
Rv (Rv − Rν)Σ−1

1

Σ−1
1 (Rv − Rν Σ−1

1 (Rv − Rν)Σ−1
1

]1/2

=

[
R

1/2
v 0
Ξ1 Ξ2

]
,

where the matrices Ξ1
.
= Σ−1(R

1/2
v −RνR

−1/2
v ) and Ξ2

.
= Σ−1

1 (Rν −RνR−1
v Rν)1/2,

as we will see, do not effect the controller design. Since the atmospheric distur-
bance model is assumed to be minimal, R

1/2
v is non-singular. This in combination

with the non-singularity of the measurement noise covariance matrix Rν , implies
that the chosen input weighting R

1/2
w̃ has full rank. Because R

1/2
w̃ is upper trian-

gular, the input weighting preserves the minimum-phase property of the atmo-
spheric disturbance model with respect to y(k).

In order to express the AO control problem in a H2 optimal control framework,
it is still necessary to choose an appropriate performance output e(k). The perfor-
mance output e(k) should be chosen in such way that it is consistent with the AO
control objective. This can be achieved by choosing the performance output as
e(k) = [εT (k) uT (k)Q1/2]T . For this particular choice, the MSE of the performance
output takes the same value as the cost function (3.5). Furthermore, it follows
by the Parseval theorem that the H2-norm of the closed-loop transfer function
F(P , C) is equal to the MSE value of e(k), i.e.

J = trE{e(k)eT (k)} = ‖F(P , C)‖2
2

where ‖ · ‖2
2 denotes the H2-norm. This implies that the AO control problem re-

duces the standard H2-optimal control problem of finding the controller C(z) that
minimizes H2-norm of the closed-loop transfer function F(P , C).

The shaded block in Figure 3.6 illustrates the relation between the generalized
plant with performance output e(k) and the different components in the AO sys-
tem like the DM, the WFS and the atmospheric disturbance model. By combining
the WFS model (3.2) with the state-space representations of the DM model (3.3),
the atmospheric disturbance model (3.4) and the input weighting (??), it is possi-
ble to derive the following state-space description for the generalized plant P(z)

⎡
⎣

ξ(k + 1)
e(k)
r(k)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Am 0 0 0 Bm

0 Ad KdR
1/2
v 0 0

−Cm Cd Ξ1 Ξ2 0
0 0 0 0 Q1/2

−Σ1Cm Σ1Cd R
1/2
v 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣

ξ(k)
w(k)
u(k)

⎤
⎦ .

Given the above state-space realization of the generalized plant, a general strategy
for computing the optimal controller is to apply Theorem 3.2.
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Figure 3.7: Block-scheme of equivalent feedforward AO control system

3.6 Computing the optimal controller

In the previous section a general recipe to approach the AO control problem has
been provided. From Theorem 3.2 it is clear that this strategy typically requires
the solution of two Riccati equations. In this section it will be shown that since the
atmospheric disturbance model is in innovation form, only one Riccati equation
needs to be solved to compute the optimal controller. In fact, the Riccati equa-
tion which is directly related to the spectral factorization problem can be avoided.
Furthermore, it will be shown that in the case that the settling time of the step re-
sponse of the DM is negligible with respect to the WFS exposure time an analytical
expression for the optimal controller can be derived. An analytical solution is at-
tractive from a computational point of view because the poles of the atmospheric
disturbance model typically cluster in the neighborhood of the point z = −1.
When the poles are close to the unit circle, standard Riccati solvers (Arnold and
Laub 1984) may suffer from convergence problems and increased numerical sen-
sitivity. An analytical solution provides also more insight in the relation with the
common AO control approach than a numerical solution.

Instead of approaching the AO control problem by applying Theorem 3.2, a
different strategy is used. In this section the AO feedback control problem is trans-
formed in a feedforward control problem, which is solved by causal Wiener filter-
ing. This strategy is known as the Internal Model Control (IMC) approach (Morari
and Zafiriou 1989). The main difficulty in determining the controller C(z) is that
it enters the residual wavefront error ε(k) in a nonlinear way. Since the WFS and
DM mirror models are assumed to be known, the open-loop wavefront signal y(k)
can be reconstructed by subtracting the influence of the DM on the measured WFS
signal r(k), i.e. y(k) = r(k) − Σ1H(z)u(k). In this way, it is possible to open the
feedback loop and replace the original control problem by the problem of find-
ing the optimal feedforward controller u(k) = W(z)y(k). Figure 3.7 provides a
block-diagram of the equivalent feedforward AO control system. As can be easily
verified, the feedforward controller W(z) and feedback controller C(z) are related
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in the following way

C(z) = W(z)(I − Σ1H(z)W(z))−1. (3.28)

For stable H(z), the class of stableW(z) parametrizes the class of stabilizing closed-
loop controllers C(z). This parametrization of all stabilizing controllers is the so-
called Youla parametrization (Youla et al. 1976). Considering the performance
output e(k) of the generalized plant P as defined in the previous section, it follows
again from the Parseval theorem that the relation between the cost function (3.5)
and the H2-norm of the open-loop transfer function Pew − PeuWPyw is given by

J = ‖Pew − PeuWPyw‖2
2, (3.29)

where Pyw denotes the open-loop transfer function from the exogenous white
noise input w(k) to the reconstructed open-loop WFS signal y(k). With a slight
abuse of notation, Pew is used to denote the transfer function describing the influ-
ence of w(k) on the performance output e(k). Given the transfer functions Peu(z),
Pew(z) and Pyw(z), the solution to the problem of finding the optimal feedforward
controller W(z) that minimizes cost function (3.29) is given by Lemma 3.1. If the
transfer function I + Peu(z)W(z) is invertible, the feedback optimal stabilizing
controller C(z) can be computed from the Youla parametrization (3.28).

Lemma 3.1 (Causal Wiener filter (Vidyasagar 1988)) Let Pew, Peu and Pyw belong
to the set of asymptotically stable rational transfer functions and assume that Peu(z) and
Pyw(z) do not loose rank ∀|z| = 1. Then the optimal feedforward controller W(z) which
is minimizing (3.29) is given by

W = −P†
eu,o

[
P∗

eu,iPewP∗
yw,i

]
+
P†

yw,o (3.30)

with [·]+ the causality operator, Peu = Peu,iPeu,o the inner-outer factorization of Peu,
Pyw = Pyw,oPyw,i the outer-inner factorization of Pyw and (·)† the left or right pseudo
inverse. Here, Peu = Peu,iPeu,o is an inner-outer factorization of Peu if Peu,i and Peu,o

are asymptotically stable, P∗
eu,iPeu,i = I and Peu,o has a stable right inverse. Likewise,

Pyw = Pyw,oPyw,i is an outer-inner factorization of Pyw if Pyw,o and Pyw,i are asymp-
totically stable, Pyw,iP∗

yw,i = I and Peu,o has a stable left inverse.

As demonstrated in Vidyasagar (1988), the inner-outer and outer-inner factor-
izations of Peu(z) and Pyw(z) can be expressed in terms of the solution of a Riccati
equation. This implies that the approach of computing the optimal feedback con-
troller via Youla parametrization and Wiener filtering, like the H2-optimal con-
trol approach in Theorem 3.2, generally involves the need to solve two Riccati
equations. In fact it can be shown, that both approaches to compute the optimal
feedback controller are completely equivalent (Fraanje 2004). Due to the special
structure of the atmospheric disturbance model (3.4) and the input weighting (??)
however, it is possible to directly give a valid outer-inner factorization of Pyw(z).
The state-space realization of the open-loop transfer function Pyw(z) is given by

Pyw(z) =
[(

Σ1Cd(zI − Ad)
−1Kd + I

)
R

1/2
v 0

]
(3.31)
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Since the atmospheric disturbance model is in innovation form and R
1/2
v is only a

non-singular weighting matrix, the open-loop transfer function Pyw is minimum-
phase. This implies that the outer factor can be chosen equal to the transfer func-
tion itself, which gives rise to the outer-inner factorization Pyw = Pyw,oPyw,i with
Pyw,o = Pyw and Pyw,i = I . As a result only the inner-outer factorization of Peu

has to be computed and at most one Riccati equation has to be solved in deter-
mining the optimal AO controller.

Like the open-loop transfer function Pyw(z), the following state-space realiza-
tion of the open-loop transfer function Pew(z) can be immediately read off from
the atmospheric disturbance model (3.4) and the derived input weighting (??)

Pew(z) =

[
Cd(zI − Ad)

−1KdR
1/2
v + Ξ1 Ξ2

0 0

]
. (3.32)

Furthermore, it follows from the particular choice of the performance output e(k)
that the transfer function Pew(z) is equal to Peu(z) = [HT (z) QT/2]T , where the
DM model H(z) has a state-space realization (3.3). The above state-space realiza-
tions of Pew, Peu and the outer-inner factorization of Pyw can be used to compute
the optimal controller C(z).

Instead of considering the general state-space description (3.3) of the DM mir-
ror, it is interesting to focus on the specific case where the DM can be considered
as approximately static. Since the bandwidth of the DM is usually much larger
than the control bandwidth (Le Roux et al. 2004), this is a reasonable assumption
for a large class of AO systems. When the DM settling time can be neglected with
respect to the WFS exposure-time, the dynamics of transfer function from u(k)
to y(k) are completely determined by the zero-order hold (ZOH) nature of the
digital-to-analog conversion, the integrating action related to the finite exposure-
time of the WFS and the time delay caused by data acquisition and processing.
With the WFS exposure-time being smaller than the sampling time T , this implies
that the DM, including the WFS dynamics g(z), can be described by means of the
following finite impulse response (FIR) model (see for example Looze et al. 2003)

H(z) = z−d
(
H + αz−1H

)
, (3.33)

where α ∈ �, d ∈ � is an integer number of samples delay and H ∈ �mp×mu

denotes the DM input-to-phase influence matrix. The number of samples delay
should satisfy the condition d ≥ 1 in order to account for the unavoidable one
sample delay between measurement and correction. This delay is also necessary
to avoid an algebraic loop.

Considering the above model structure for the DM model, it is possible to
derive an analytical expression for the optimal feedback controller C(z). To this
end it is useful to note that since the generalized plant P(z) is time-invariant,
each of the channels of the performance output e(k) can be delayed by an inte-
ger number of samples without modifying the cost function. By introducing a
d-samples delay in the channels that correspond to the control effort weighting,
i.e. Peu(z) = [HT (z) z−dQT/2]T , all channels of the transfer function Peu(z) are
delayed by the same amount and it is possible to factor out the delay z−d. As can
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be easily verified, this gives rise to a valid inner-outer factorization of Peu(z) for
|α| ≤ 1. A similar strategy can be followed for |α| > 1. Since the value of the cost
function is not influenced by an all-pass filter, the all-pass filter that contains the
non minimum-phase zero of H(z) can be factored out. As a result the modified
transfer function Peu(z) has the following factorization

Peu(z)=

⎧
⎪⎪⎨
⎪⎪⎩

1

zd
I ×

[
−(1+ αz−1)H

Q1/2

]
for |α| ≤ 1

(z + α)

zd(αz + 1)
I ×

[
−(α + z−1)H

Q1/2

]
for |α| > 1

, (3.34)

The derived expressions for the inner-outer and outer-inner factorizations of Peu(z)
and Pyw(z), can be used to compute the optimal feedforward and feedback con-
troller via Lemma 3.1 and the Youla parametrization (3.28). This leads to the fol-
lowing theorem, which provides an analytical expression for the controllers W(z)
and C(z) respectively.

Theorem 3.3 (Optimal control with quasi-static DM) Let the wavefront distortions
ϕ(k) and open-loop WFS signal y(k) be characterized by the regular stochastic process (3.4)
with input covariance matrix Rv > 0. Furthermore, assume that the DM (including the
WFS dynamics) can be modeled as (3.33) and that either H or Q has full column rank
(i.e. [HT QT/2]T is left invertible). Then the optimal feedforward controller W(z), which
minimizes (3.5), is given by

⎡
⎢⎢⎣

χ̂1(k+1)

χ̂2(k+1)

u(k)

⎤
⎥⎥⎦=

⎡
⎢⎣

Ã 0 Kd

FÃ −G FKd

FÃ −G FKd

⎤
⎥⎦

⎡
⎢⎢⎣
χ̂1(k)

χ̂2(k)

y(k)

⎤
⎥⎥⎦ , (3.35)

where the matrices Ã, F , G are defined as Ã
.
= Ad − KdΣ1Cd, F

.
= H†

QCdA
d−1
d and

G
.
= γαH†

QH , and where

H†
Q

.
=

{
(HTH + Q)−1HT for α = 0

αγα

(
α2HTH + γ2

αQ
)−1

HT otherwise
, (3.36)

with

γα
.
=

{
α for |α| ≤ 1

sgn(α) for |α| > 1
,

can be interpreted as a regularized left pseudo-inverse of the DM influence matrix H .
Furthermore, let the matrices L and M be defined as L

.
= z−d+1KdΣ1H(αI − G) and

M
.
= Ã + z−d+1KdΣ1HF . Then the corresponding optimal feedback controller C(z) has

a state-space representation

⎡
⎢⎢⎣
ξ̂1(k + 1)

ξ̂2(k + 1)

u(k)

⎤
⎥⎥⎦ =

⎡
⎢⎣

−G F 0
L M Kd

FL + G2 FM−GF FKd

⎤
⎥⎦

⎡
⎢⎢⎣
ξ̂1(k)

ξ̂2(k)

r(k)

⎤
⎥⎥⎦ . (3.37)
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Theorem 3.3 provides an analytical solution to the AO optimal control prob-
lem in the case that the DM model and the WFS dynamics can be described by
equation (3.33). As already pointed out, this assumption on the DM model struc-
ture is quite general in the sense that it holds for a large class of AO systems.
Given the matrix Σ1 composed of the nonzero singular values of geometry ma-
trix G and the DM influence matrix H , Theorem 3.3 can be used to compute the
optimal controller from the system matrices Ã, C̃ and K̃. By combining the sub-
space identification algorithm presented in Section 3.3 and Theorem 3.3, this gives
rise to a direct and non-iterative way to go from open-loop measurement data to
closed-loop controller design. The resulting closed-loop controller design proce-
dure is entirely based on standard matrix operations. Furthermore, it is interesting
to note that due to the presence of the d−1 samples delay in the state-update equa-
tions for ξ2, the optimal feedforward and feedback controllers in Theorem 3.3 are
effectively of order nd + mu(d− 1). A well-known property of H2-optimal control
design is it that leads to a controller of the same dimension as the generalized plant
(see also Theorem 3.2). From the DM model (3.33) and the state-space represen-
tation of the generalized plant, one would therefore expect the controller to be of
order nd+mud. This discrepancy in model order is caused by the special structure
of the generalized plant. Due to this structure, the optimal controller computed
by straightforward application of H2-optimal control theory is non-minimal. By
removing the unobservable modes it is possible to arrive at a controller of reduced
order. An additional advantage of the analytical solution is that the model reduc-
tion step has already been performed.

To obtain some more insight in the structure of the analytical expressions for
the optimal controller, it is useful to consider the case where the combined DM and
WFS dynamics consists of a pure delay. This is to say that the DM mirror model
reduces to H(z) = z−dH , which is equivalent to choosing α = 0 in equation (3.33).
Physically this situation can be achieved by accurate synchronization of the DM
digital-to-analog converters and the WFS exposure time. When the DM settling
time is negligible and the digital-to-analog converters are synchronized in such a
way that the ZOH output does not chance during the CCD exposure time, the only
dynamics that are left is a pure delay. The expressions for the optimal feedforward
and feedback controller obtained by considering this multi-sample delay case are
summarized in Corollary 3.1. Note that the more restrictive case of a unit-sample
delay has been elaborated in our previous work (Hinnen et al. 2005). In contrast to
the derivation presented here however, the optimal controller was found by direct
application of Theorem 3.2.

Corollary 3.1 (Multiple-sample delay) Consider an AO system where the only dy-
namics exhibited by the WFS and DM is an integer number of samples delay, i.e. H(z) =
z−dH , with d ∈ �. Furthermore, assume that the conditions as stated in Theorem 3.3 are
satisfied, then the feedforward controller W(z) which is (3.5) is given by

[
χ̂1(k+1)

u(k)

]
=

[
Ã Kd

FÃ FKd

][
χ̂1(k)

y(k)

]
. (3.38)

Furthermore, the optimal feedback C(z) which internally stabilizes P(z) has a state-space
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representation

[
ξ̂1(k+1)

u(k)

]
=

[
Ã + z−d+1KdΣ1HF Kd

F (Ã + z−d+1KdΣ1HF ) FKd

][
ξ̂1(k)

r(k)

]
, (3.39)

where the matrices Ã and F are defined as in Theorem 3.3, and H†
Q reduces to the expres-

sion H†
Q = (HTH + Q)−1HT .

Proof: The above result follows immediately from Theorem 3.3 by choosing α =
0. Note that for α = 0, L = 0 and G = 0. The latter equality implies that the
state vectors χ̂2 and χ̂1 of the feedforward optimal controller (3.35) differ only by
a multiplicative factor F , i.e. χ̂2 = Fχ̂1. Using this relation to eliminate χ̂2 from
the state-space equations gives the desired expression for W(z). Furthermore, by
substituting G = 0 and L = 0 in the state-space representation for the optimal
feedback controller (3.37), it is clear that the state ξ̂1 is unobservable. Eliminating
this state gives the desired expression for C(z). �

The state-space equations (3.38) of the optimal feedforward controller W(z) al-
lows for a nice physical interpretation of the optimal controller. To make this more
clear, consider the atmospheric disturbance model (3.4) and let x̂(k|k − 1) denote
the conditional mean of x(k) given the past open-loop WFS data {y(j), j ≤ k−1}.
By using the output equation for y(k) to eliminate the white noise input v(k) from
the state-update equation, the conditional mean of the state at the next sample in-
stant can be expressed as x̂(k+1|k) = Ãx̂(k|k−1)+Kdy(k). From this it is clear that
the state in equation (3.38) can be interpreted as the conditional mean x̂(k|k − 1)
of the state x(k). In fact the state corresponds to the state in the Kalman predictor
model. The unpredictability of the white noise input v(k) causes the optimal pre-
diction of future states to be obtained by iterating the state-update equation (3.4)
with the future white noise set to its expected value zero (Goodwin et al. 2001).
This gives rise to the state estimate x̂(k + d|k) = Ad−1(Ãx̂(k|k − 1) + Kdy(k)). By
comparing this with the output-equation of the feedforward optimal controller
W(z), it is clear that the control signal can be expressed as u(k) = H†

QCx̂(k + d|k).
With x̂(k + d|k) being the conditional mean of the state of the atmospheric distur-
bance model (3.4), ϕ̂(k + d|k)

.
= Cx̂(k + d|k) can be interpreted as the conditional

mean of the open-loop wavefront distortion ϕ(k + d) given the past open-loop
WFS data {y(j), j ≤ k}. On the other hand, the matrix H†

Q can be seen as a regu-
larized version of the pseudo-inverse of the DM influence matrix H and provides
a projection of the estimated phase ϕ̂(k + d|k) on the DM actuator space. From
this it is clear that the optimal feedforward controller W(z) decomposes in a mul-
tiple step ahead predictor, which is concerned with estimating the uncorrected
wavefront ϕ(k + d), and a static matrix projection. This can be well understood in
the context of the feedforward control problem in Figure 3.7. Furthermore, since
the feedforward and feedback control problem are equivalent through the Youla
parametrization, the interpretation of the structure of the feedforward controller
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W(z) can be extended to the feedback case. For this reason, the state in the state-
space representation of the optimal feedback controller C(z) can be seen as the con-
ditional mean x̂(k|k−1) given the closed-loop WFS measurements r(j), j ≤ k−1.

The above interpretation of the optimal feedforward and feedback controller
in Corollary 3.1 can be used to obtain some more insight in the structure of the op-
timal controller in the case that the DM model and WFS dynamics are described
by (3.33). To this end note that the first state-update equation in (3.35) and the
state-update equation in (3.38) are equal. This implies that the state χ̂1(k) can still
be interpreted as the conditional mean x̂(k|k − 1) of the state x(k). Furthermore,
since the second state-update equation is equal to the output equation, it is clear
that the state χ̂2(k + 1) is equal to the control signal u(k). Using the above inter-
pretations, the output u(k) of the controller in Theorem 3.3 can be expressed as

u(k) = H†
Qϕ̂(k + d|k) − γaH†

QHu(k − 1) (3.40)

= (I − γaH†
QHz−1)−1H†

Qϕ̂(k + d|k). (3.41)

This shows that the optimal controller still consists of a part that is concerned with
estimating the uncorrected wavefront ϕ̂(k + d|k) but that the static projection H†

Q

has been replaced by a dynamic filter. The dynamic filter makes a trade off be-
tween the problem of inverting the undelayed part of the DM model (1 + αz−1)H
and the problem of minimizing the contribution of the control effort to the cost
function. This can be easily seen for the case that |α| < 1 and the control effort
weighting Q is set to zero. For this specific case γαH†

QH = αI , so that dynamic fil-
ter reduces to (1+αz−1)−1H†, which is precisely the inverse of (1+αz−1)H . Due
to the equivalence between the feedforward and feedback control problem, also
the output of the feedback controller C(z) can be expressed as in equation (3.40),
where the conditional mean ϕ̂(k + d|k) is now determined on the basis of the
closed-loop WFS measurements r(j), j ≤ k − 1 instead of the open-loop data.

3.7 Numerical validation optimal control strategy

In this section, the closed-loop control design approach obtained by combining
the subspace identification algorithm presented in Section 3.3 and the analytical
solution to the H2-optimal control problem presented in Section 3.6, is demon-
strated by means of a simulation example. In this example, the performance of
the proposed control strategy is compared with a control law commonly in AO
systems. Before discussing the simulation experiments, the common AO control
approach will be briefly summarized. For conformity with the rest of the paper,
the common AO control approach will be reviewed in terms of the reduced signals
introduced in Section 3.2.

3.7.1 AO control law used for performance comparison

The common AO control approach consists of a cascade of a static matrix multi-
plication and a series of feedback loops (Roddier 1999). Given a new WFS mea-
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surement y(k), the static part is concerned with the problem of finding the DM
actuator inputs δu(k) that would provide the best fit to the wavefront. In this step
the temporal dynamics of both the wavefront disturbance and the AO system are
neglected. The static relation between the actuator input and the WFS sensor mea-
surement is given by δu(k) = Ry(k) and the DM is modeled as ϕm(k) = Hδu(k),
where H is the input-to-phase influence matrix. Furthermore, the WFS model is
described by the static WFS model obtained by setting G(z) = G in (3.1). Con-
sidering the above models, the problem of finding the matrix R that provides the
best fit is formulated as the following optimization problem

R = argmin
R

E{‖ϕ(k) − HRy(k)‖2}, (3.42)

where ‖ · ‖ denotes the L2-norm and the E is the conditional expectation given the
WFS measurement y(k). Let the covariance matrices of the measured wavefront
ϕ(k) and the measurement noise ν(k) be defined as Cϕ

.
= E{ϕ(k)ϕT (k)} and Cν

.
=

E{ν(k)νT (k)} respectively. Then, under the assumption that ν(k) and ϕ(k) are
uncorrelated and Cν = σ2

νI , the maximum a posteriori estimate of the matrix R is
given by

R = (HT H)−1HT (Σ2
1 + σ2

νC−1
ϕ )−1Σ1,

where σ2
ν denotes the variance of the measurement noise. The signal δu(k) com-

puted from the reconstruction process cannot be directly used as the control sig-
nal. Since the AO system is operated in closed-loop, the WFS measures the resid-
ual wavefront ε(k) = ϕ(k) − ϕm(k) instead of the uncorrected wavefront ϕ(k).
This implies that the signal obtained from the static reconstruction δu(k) = Rr(k)
provides only an estimate of the correction that has to be applied to current ac-
tuator commands. The parallel feedback loops are responsible for stability and
closed-loop performance and have to posses integrating action to overcome this
shortcoming. In this paper, the following control law has been used for perfor-
mance comparison

u(k) =
c1

1 − c2z−1
δu(k) =

c1

1 − c2z−1
Rr(k), (3.43)

where the integrator gain c1 ∈ � and the loss factor c2 ∈ � and are user defined
control parameters. The change in the wavefront covariance matrix Cϕ due to
closed-loop operation is neglected in the common AO control approach.

3.7.2 Simulation procedure and performance measures

The data-driven optimal control approach obtained by combining the subspace
identification algorithm and the analytical expressions for the optimal controller
has been validated using the same open-loop WFS data set from the AO labora-
tory setup, as described in Section 3.4. Just as before, the total data set consisting
of Nt = 1.0 × 104 is divided in a Ni = 8000 samples identification set and data
set consisting of Nv = 2000 samples reserved for performance evaluation. Fur-
thermore, the number of past p and f future block-rows used in the identification
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of the atmospheric disturbance model is again 15 and the model order is cho-
sen equal to nd = 300. This implies that the closed-loop simulation experiments
can be directly compared to the results presented in Section 3.4. To facilitate this
comparison, the performance of the closed-loop controllers will be evaluated in
terms of the performance criteria as introduced in Section 3.4.1. More specifically,
the performance of the controller will be evaluated by simulating the closed-loop
residual wavefront error using the open-loop wavefront distortions reconstructed
from the validation set as disturbance input. The residual wavefront error is then
used to the normalized mean-square residual phase error J1 and normalized aver-
aged power spectrum P (ω) in accordance with equations (3.25) and (3.26), where
ε(k) now denotes the residual wavefront error.

The combined subspace identification and H2-optimal control approach has
been validated for the quasi-static case where the DM mirror and WFS can be
considered to be static apart from an unit-sample delay, i.e. H(z) = z−1H . Two
different simulation scenarios have been elaborated. The first scenario consists
of closed-loop simulations with an ideal DM. Here, the term ideal is used to re-
fer to a hypothetical DM that is able to take the shape of the estimated wave-
front without introducing a fitting error. In terms of the considered DM model
structure, this means that the DM influence matrix H is assumed to have full row
rank. The ideal DM should therefore have at least as many actuators as the num-
ber of independent WFS channels in the system. Even though this condition is
hardly ever satisfied for realistic systems, it is still interesting to consider the ideal
DM as it provides a better insight in error sources other than the DM fitting er-
ror which itself is not influenced by the controller. Note that from the physical
interpretation of the controller structure in the previous section it is clear that in
this case the residual phase error is equal to the wavefront prediction error, i.e.
ε(k) = ϕ(k)− ϕ̂(k|k − 1). The second simulation scenario considers a more realis-
tic DM model. In this case the DM model is obtained by identifying the influence
matrix H of the mirror used in the AO test bench. The AO test bench is equipped
with a 37-actuator electrostatic membrane mirror provided by OKO technologies
in the Netherlands. The mirror is operated around an offset and is almost com-
pletely linear with the applied voltage squared. The influence matrix H has been
estimated from a least squares fit on the reconstructed wavefront data obtained
by measuring the steady state WFS response ym to a set of predefined inputs u.

In the simulation experiments, the performance of the proposed control de-
sign strategy has been compared with the common AO control law in (3.43). The
control parameters c1 and c2 have been tuned so as to minimize the cost func-
tion over the identification data set, which resulted in the values c1 = 1.31 and
c2 = 0.997. The covariance matrix Cϕ has been computed by assuming a perfect
Kolmogorov spatial distribution with a Fried parameter r0 satisfying the speci-
fication of the turbulence simulator. The variance of the measurement noise σ2

ν

has been estimated by computing the variance of the WFS measurements y(k)
for a static wavefront distortion ϕ(k) generated by the turbulence simulator. The
control-effort weighting in cost function (3.5) is neglected by choosing Q = 0.
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3.7.3 Closed-loop simulation results

Figures 3.8 and 3.9 show the normalized averaged power spectra P (ω) of the
open-loop wavefront distortions (dashed-dotted line), of the residual wavefront
error using the common AO control approach (solid line) and of the residual
wavefront error using the data-driven optimal control approach (dashed line), for
respectively the ideal and the estimated DM influence matrix. For the ideal DM,
the normalized averaged residual power spectrum corresponding to proposed
control approach is approximately white. This means that, at least on average,
there is no temporal correlation in the residue that can be used to further improve
the performance of the controller. The residue obtained with the common AO
control law on the other hand has a strong coloring and shows that there is still
plenty room for improvement. From the power spectra it is already clear that the
residual phase error obtained with the optimal control approach is much smaller
than with the common AO control approach. This is confirmed by the normalized
performance index J1. The normalized reductions obtained in the simulations
with the ideal DM are J1 = 3.27 × 10−3 for the common control approach and
J1 = 1.52 × 10−3 for the optimal control approach. This is a reduction of 53.5%.
The corresponding values for the simulations with estimated influence matrix of
the AO test bench mirror are J1 = 3.13× 10−2 and J1 = 1.92× 10−2, which corre-
sponds to a reduction of 38.6%.
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Figure 3.8: Normalized averaged power spectrum P (ω) of residual wavefront er-
ror ε(k) for closed-loop simulations with an ideal DM.

The simulations show that the performance improvement for the simulation
with the estimated DM influence matrix is considerably smaller. Since both simu-
lations differ only in the DM influence matrix, it is clear that in the second scenario
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Figure 3.9: Normalized averaged power spectrum P (ω) of residual wavefront er-
ror ε(k) for closed-loop simulations with realistic DM model.

the DM fitting error is the limiting factor. As the DM fitting error is not influenced
by the controller, it is to be expected that an AO system can only benefit from an
advanced control strategy if the DM fitting error is small compared to other er-
ror sources. The simulations with the ideal DM show that the proposed control
strategy is able to significantly reduce the contribution due to the temporal error.
By predicting the future wavefront distortions as ϕ̂(k + 1|k), the temporal error
caused by the finite time delay between measurement and corrections is reduced.
In the AO test bench, the ratio between the fitting and temporal error is very unfa-
vorable because of the relatively small number of DM actuators compared to the
number of WFS channels. It is therefore to be expected that the performance gain
is larger in AO systems with a smaller fitting error and in situations where the con-
troller related error is more dominant for instance due to an increased turbulence
wind speed or higher levels of measurement noise.

Finally note that the normalized mean-square residual phase error J1 obtained
for optimal controller and the ideal DM is precisely the same as the normalized
prediction error on the validation set in Section 3.4. This is no coincidence. From
the discussion in Section 3.6 it should be clear that the closed-loop optimal control
problem for a quasi-static DM mirror model, of which the only dynamics is an
unit-sample delay, is precisely equivalent to the one-step ahead prediction prob-
lem in open loop. Also the performance of the random walk predictor and the
common AO control approach are very close to one another. The slightly bet-
ter performance of the common AO control law can be explained by the use of
the minimum-variance wavefront reconstructor and the first-order lag filter in the
common AO control approach. The closed-loop equivalent of the random walk
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predictor would a least-squares reconstructor followed by a pure integrator.

3.8 Conclusions

In this paper we have presented a data-driven approach to design a controller
for rejecting the wavefront distortions in an AO system. The proposed control
design strategy is able to take full advantage of the spatio-temporal correlation in
the wavefront distortion and consists of two major steps. In the first step open-
loop wavefront sensor (WFS) measurements are used to identify a multi-variable
atmospheric disturbance model. In the second step the identified atmospheric
disturbance model is used to compute the optimal controller.

To identify the multi-variable atmospheric disturbance model from the open-
loop WFS data, a dedicated subspace identification algorithm has been developed.
An important advantage of the proposed subspace algorithm is that it avoids the
need for spectral factorization by directly estimating the system matrices of the
Kalman predictor model corresponding to minimum-phase spectral factor. Since
AO systems typically have a large number of WFS channels and the atmospheric
disturbance model should describe the full spatio-temporal correlation without
assuming any form of decoupling, computational efficiency is an important is-
sue. For this reason special attention has been paid to reduce the computational
demands of the algorithm. The different steps of the algorithm are expressed in
terms of the R factor of a single RQ factorization of the stacked block Hankel
matrices of past and future data, which is used for data compression. This leads
to an efficient implementation both in terms of the number of flops and required
memory storage. The proposed subspace identification algorithm can be used to
identify an atmospheric disturbance model for small to medium sized AO sys-
tems and has been demonstrated by means simulation examples on open-loop
WFS data. In these simulations data sets from an AO laboratory setup as well as
measurements from a real telescope have been considered. For each of the consid-
ered data sets, the proposed subspace identification algorithm is able to identify
an accurate atmospheric disturbance model that can be used to reduce the one-
step ahead prediction error over the random walk approach. Furthermore, the
simulations on real telescope data confirm that the atmosphere can be reasonable
well modeled as a regular stochastic process on a time scale of a few minutes.

An important aspect of the AO control problem is that there is a difference be-
tween the objective of minimizing the mean-square residual WFS signal and the
actual cost function. Given the identified atmospheric disturbance model, the H2-
optimal control framework provides an attractive way to deal with this discrep-
ancy. Formulating the AO problem as a H2-optimal control problem provides a
general strategy for computing the optimal controller. Computing the H2-optimal
controller typically involves the solution to two Riccati equations. By using the
Youla parametrization to render the AO control problem into an equivalent feed-
forward problem, it has been shown that due to the minimum-phase property of
the atmospheric disturbance model one of the Riccati equations can be avoided.
Furthermore, it has been shown that in the special case that the DM settling time
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can be neglected with respect to the WFS exposure time an analytical expression
for the optimal controller can be derived. The analytical expressions have been
used to interpret the optimal controller as a wavefront estimation problem fol-
lowed by a regularized inversion of the DM model.

The closed-loop control design procedure obtained by combining the proposed
subspace identification algorithm and the analytical solutions to the H2-optimal
control problem, is entirely based on standard matrix operations and provides a
non-iterative way to go from open-loop measurement data to closed-loop con-
troller design. The proposed control strategy has been demonstrated by means of
numerical validation experiments on open-loop WFS data obtained from an ex-
perimental setup. The validation experiments show a performance improvement
with respect to the common AO control approach. Under the assumption that the
DM is able to take the shape of the estimated wavefront, the use of the proposed
control strategy leads to a reduction of the mean-square residual phase error by
more than 70%. Using a realistic DM model, the gain in performance for con-
sidered experimental setup reduces to about 14%. The rather drastic reduction
in performance improvement can be explained by the relatively small number of
DM actuators, which give rise to a large fitting error. In situations where the DM
fitting error is not limiting, a large gain in performance is to be expected.
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4 CHAPTER

Experimental results: Exploiting the
Spatio-Temporal Correlation

I
n this paper, a recently proposed data-driven H2-optimal control
approach is demonstrated on an laboratory setup. Most adaptive

optics (AO) systems are based on a control law that neglects the temporal
evolution of the wavefront. The proposed control approach, on the other
hand, is able to exploit the spatio-temporal correlation in the wavefront
without assuming any form of decoupling. It is shown that for a static
wavefront correction device, the necessary conditions for having an
analytical expression for the optimal controller are satisfied. In this way,
the standard and cumbersome problem of solving two Riccati equation is
bypassed. The performance of the optimal control approach is compared
to the standard common method. A detailed analysis of the dominant
error sources shows that optimal control may lead to a significant reduc-
tion in the temporal error. Since the temporal error increases with the
Greenwood to sample frequency ratio, the performance gain is especially
large at large ratios.

Keywords: Adaptive optics; Data-driven disturbance modeling; Stochastic identi-
fication; Optimal control; Experimental validation

4.1 Introduction

Adaptive optics (Hardy 1998; Roddier 1999) is a well established technique for
real-time compensation of the optical wavefront distortions introduced by a tur-
bulent medium. It has found widespread application in ground-based astronom-
ical imaging, where it is used to counteract the devastating effect of atmospheric
turbulence on the angular resolution. In this paper we concentrate on the control
aspects of adaptive optics (AO). Most AO systems are based on a control strategy
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that is not able to exploit the spatio-temporal correlation in the wavefront. Usu-
ally, the control law (see e.g. van Dam et al. 2004) consists of a cascade of a static
part, concerned with the problem of finding the actuator inputs that provide the
best fit to the wavefront, and a series of parallel feedback loops responsible for
stability and closed-loop performance. In the simplest case, the static wavefront
reconstruction and fitting step is formulated as a matrix inversion problem. To
improve the accuracy, both maximum likelihood and maximum a posteriori tech-
niques have been used to include prior knowledge on the spatial correlation of
the wavefront (van Dam et al. 2004; Law and Lane 1996). Prior knowledge on the
temporal evolution of the wavefront is usually not included in the control design.
Each of the parallel feedback loops typically consist of a first-order lag filter or
proportional-integral (PID) controller, of which the parameters are tuned to make
a trade off between disturbance rejection, noise propagation and closed-loop sta-
bility. To relax the trade off between these conflicting requirements, modal control
optimization has been proposed (Ellerbroek et al. 1994; Gendron and Léna 1994).
In this approach the wavefront is decomposed in a set of modes of which the cor-
responding servo gains are optimized.

The separation of the control law into static wavefront reconstruction and tem-
poral compensation is based on the assumption that the spatial and temporal dy-
namics can be decoupled. The Taylor hypothesis (Taylor 1938; Gendron and Léna
1996), which states that the atmospheric turbulence evolves at a time scale that is
long compared to the time it takes for the wind-blown inhomogeneities to cross
the line of sight, shows that this is typically not the case. When the turbulence can
be considered as a frozen layer, there exists a strong correlation between the spa-
tial and temporal dynamics which may be used to the benefit of the controller. By
including a priori knowledge on the spatio-temporal correlation, wavefront sen-
sor (WFS) measurements from the past and neighboring channels may be used to
predict future wavefront distortions. In this way, it should be possible to reduce
the temporal error due to delayed system response. Also, the sensitivity to mea-
surement noise may be reduced. As such, advanced control may help to improve
the performance, either in terms of the ability to suppress wavefront distortions,
or in terms of the limiting magnitude of the required guide star.

Since the above control laws are composed of a static wavefront reconstruc-
tion step and a series of independent servo loops, they are based on the implicit
assumption that spatial and temporal dynamics can be fully decoupled. The Tay-
lor hypothesis (Taylor 1938), which states that the atmospheric turbulence evolves
at a time scale that is long compared to the time it takes for the wind-blown in-
homogeneities to cross the line of sight, clearly shows that this is typically not the
case. When the atmospheric turbulence can be considered as a frozen layer mov-
ing across the telescope aperture, there exists a strong correlation between the spa-
tial and temporal dynamics of the wavefront, which may be used at the benefit of
the controller (Gendron and Léna 1996). By including a priori knowledge on the
spatio-temporal correlation of the wavefront, WFS measurements from the past
and neighboring channels may be used to anticipate future wavefront distortions.
In this way, it should be possible to reduce the effect of the delayed response asso-
ciated with the temporal error. Also the sensitivity to measurement noise may be



4.1 Introduction 121

reduced as photons collected at different time instants and WFS channels may all
used to improve the wavefront estimate at a certain position in the aperture plane.
As a result, the performance of an AO system may benefit from a control strategy
that is able to account for the spatio-temporal correlation in the wavefront. Such
a control strategy may lead to an improved performance, either in terms of the
ability to suppress the incoming wavefront distortions, or in terms of the limiting
magnitude of the guide star needed for the observations.

To exploit the spatio-temporal correlation in the wavefront, we have recently
proposed a data-driven H2-optimal control strategy consisting of two steps (Hin-
nen et al. 2006). First, a dedicated subspace-identification algorithm is used to
identify a full multi-variable atmospheric disturbance model on the basis of open-
loop WFS data. The identified model is then used to compute the optimal con-
troller by formulating the control problem in an H2-optimal control framework.
This formulation is closely related to the use of Linear Quadratic Gaussian (LQG)
control for AO (Paschall and Anderson 1993; Looze et al. 1999, 2003; Le Roux et al.
2004). In fact, it can be shown that the LQG and the H2-optimal control framework
are equivalent in the sense that an LQG problem can be recasted in an H2-optimal
and visa versa. The H2-optimal control framework however, provides a more el-
egant way of dealing with the fact that there is a discrepancy between the WFS
measurements and the phase signal that we try to minimize. The LQG framework
does not make a distinction between reference and performance outputs.

The main difference between the proposed H2-optimal control design strategy
and the LQG based approaches is not in the framework of analysis, but in model-
ing the atmospheric turbulence and the way of computing the optimal controller.
The subspace-identification algorithm provides an efficient way of identifying an
atmospheric disturbance model, without assuming any form of decoupling. The
existing LQG approaches, on the other hand, are based on an atmospheric dis-
turbance model that either assumes modal decoupling, or consists only of a first-
order auto-regressive (AR) model. As a consequence, the LQG approaches are not
able to fully exploit the spatio-temporal correlation. Since the H2-optimal control
design strategy does not assume any form of decoupling, it is sufficiently gen-
eral to exploit the spatio-temporal correlation imposed by the Taylor hypothesis,
without being dependent on it. To the best of our knowledge, only the control ap-
proach proposed by Gavel and Wiberg (2003) is explicitly based on a frozen-flow
model of the atmosphere. This control approach, which is especially developed to
account for the spatio-temporal correlation imposed by the Taylor hypothesis, re-
quires accurate knowledge of the wind speed and direction of the frozen-flow. A
disadvantage however is that the control approach is not applicable if the Taylor
hypothesis is not or only partially satisfied, if the turbulence is distributed over
different layers or if the relevant physical parameters, like the wind speed and
direction, are not accurately known.

Apart from the extended model structure there is another important difference
between the proposed H2-optimal control approach and existing LQG based ap-
proaches. Computing the H2-optimal controller (and also the LQG controller),
generally involves the numerical solution of two Riccati equation. This may be-
come computationally very intensive, especially when considering a full multi-



122 Chapter 4 Experimental results: Exploiting the Spatio-Temporal Correlation

variable atmospheric disturbance model. In previous work (Hinnen et al. 2006) we
have shown that due to the special structure of the identified disturbance model,
at most one Riccati equation needs to be solved. Furthermore, it has been shown
that if each channel of the transfer function from control input to WFS output ex-
hibits the same scalar dynamics consisting of a two taps impulse response and an
integer number of samples delay, then the H2-optimal control can be computed
analytically. Together with the subspace identification algorithm, this results in
a non-iterative way to go from open-loop WFS data to closed-loop controller de-
sign. The goal of this paper is twofold. First, by analyzing the dynamic behavior
of an AO system, it will be shown that the above requirements on the transfer
function from control input to WFS output are quite general and hold for any AO
system in which the wavefront correction device can be considered to be static.
The second goal of this paper is to demonstrate the data-driven H2-optimal con-
trol approach on an experimental setup. The proposed control approach provides
a proof of concept that clearly shows the relevance of accounting for the spatio-
temporal correlation in the AO controller design.

The remainder of this paper is organized as follows. In Section 4.2 we will
first provide a brief description of the AO laboratory setup that has been used to
validate the proposed optimal control approach. Subsequently, in Section 4.3 we
will have a closer look at the problem of modeling the different components in
the experimental setup. After introducing the required notation, the dynamics of
the AO system will be considered in more detail. It will be shown that in the case
that the wavefront correction device can be considered static, the transfer function
from actuator inputs to WFS outputs can be modeled as an integer number of
samples delay and in impulse response of two taps. Using this knowledge, a data-
driven identification is developed for modeling the AO system. The identified
model is precisely in the right form for the proposed H2-optimal control strategy
that is validated in this paper. Section 4.4 provides a brief outline of the main steps
in the proposed control approach. The performance of the optimal controller will
be compared with a conventional AO control law, which will be briefly reviewed
in Section 4.5. After a brief overview of the dominant error sources, this section
will also provide an overview of the criteria used for performance evaluation. The
outcome of the different experiments is described in Section 4.6. By classifying
the different error contributions in the AO system, it will be shown that optimal
control is indeed able to reduce the effect of the temporal error. Furthermore,
the error classification provides more insight in the conditions under which the
optimal control is to be preferred over the common AO control approach. The
paper concludes with a short discussion in Section 4.7.

4.2 The experimental setup

This section considers the AO laboratory setup used to test the proposed control
approach in an experimental setting. The AO setup, at TNO Science and Indus-
try, the Netherlands, is depicted in Figure 4.1. A schematic representation of the
layout of the optical test bench, is provided in Figure 4.2. In the setup, light
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Figure 4.1: The adaptive optics laboratory set-up at TNO Science and Industry,
Delft, the Netherlands.
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Figure 4.2: Schematic representation of the optical layout of the AO test bench at
TNO Science and Industry, Delft, the Netherlands.
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form a HeNe laser (λ = 633 nm) is focused on a 20 µm pinhole P1 and is then col-
limated by the lens L1 to mimic a distant point source. As the laser produces a
polarized beam, the intensity of the light source can be adjusted by means of the
polarizer D1. The atmospheric turbulence is simulated by a turbulence simulator
TS consisting of a circular plan parallel glass plate that is rotated through the col-
limated beam. One side of the glass plate has been machined in such a way that
the resulting wavefront distortions have a spatial Kolmogorov distribution. The
distortions are characterized by a turbulence coherence length, or Fried parame-
ter (Hardy 1998), of r0 = 2 mm. With an entrance pupil of D = 10 mm, this gives
rise to a D/r0 of 5. By adjusting the rotational speed of the glass plate it is possible
to simulate different wind speeds of a single layer of frozen turbulence.

The distorted light is directed to a tip-tilt mirror (TT) that is conjugated to the
entrance pupil P2. The TT-mirror consists of a flat mirror mounted on a Physik
Instrumente S-330.10 piezo tip-tilt stage. Separate tip-tilt compensation is impor-
tant since compensation by the deformable mirror (DM) would demand too much
of its dynamic range. Via the beam splitter BS1, the entrance pupil is re-imaged
on both the DM and the calibration mirror M3. During normal operation the mir-
ror M3 is shielded; it is only used to calibrate the wavefront sensor (WFS). The
DM is a 37-channel electrostatic membrane mirror provided by OKO technolo-
gies (Vdovin and Sarro 1995). The mirror has a clear aperture of 15 mm in di-
ameter, and the electrostatic actuators are arranged in a hexagonal grid with an
inter-actuator spacing of 1.8mm. A disadvantage of electrostatic actuation is that
the actuators are only able to apply a pulling force on the membrane. To allow
bi-directional actuation, a bias voltage is applied to each of the actuators. The bias
introduces additional focus, and is tuned in such a way that if fully compensates
the negative lens L6 in front of the DM.

The second beam splitter cube BS2 divides the light reflected from the DM in
the WFS path and the science path. The science path is used to visualize the image
after wavefront correction. The lens L7 focuses the light on the objective O2 to pro-
duce an enlarged image of the point source on the science camera C1. A neutral
density filter D2 adapts the light intensity to the dynamic range of the camera. In
the WFS path a Shack-Hartmann sensor is used to probe the residual phase errors.
The WFS signal forms the input to the controller, which is responsible for deter-
mining the actuator commands to the DM and TT-mirror. The Shack-Hartmann
sensor consists of a hexagonal array of 127 micro-lenses ML with a focal distance
of 15 mm and a pitch of 300 µm. Like the DM the micro-lens array is provided by
OKO technologies. The lenses L8 and L9 reduce the beam size to 3.3 mm and en-
sure that also the micro-lens array is conjugated to the entrance pupil P2. The spot
pattern formed by the mirco-lens array is imaged on the WFS camera C2. Both
camera’s are digital progressive scan cameras obtained from SVS-Vistek GmbH.
The science camera C1 is a SVS085 Color camera with 1280 × 1024 square pixels
of 6.7 µm and a maximum frame-rate of 13 Hz. The camera C2 used for wavefront
sensing is a SVS204MFCP, monochrome camera with 1024 × 768 square pixels of
4.65 µm and a maximum frame-rate of 50 Hz. Figure 4.3 provides an impression of
the sensor-actuator layout of the system. The figure shows a false color scale im-
age of the illuminated WFS spots in the case that there are no atmospheric wave-
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front distortions. The yellow crosses on top of the image denote the approximate
positions of the DM actuators in the WFS image plane.

Figure 4.3: Impression of the sensor-actuator layout.

The control computer is a general purpose PC with a 3 GHz Intel Pentium IV
processor and 512 Mb of internal memory, running under real-time Linux. This
provides a flexible environment for developing, implementing and testing dif-
ferent kinds of control algorithms. Apart from implementing the control algo-
rithm, the control computer is also responsible for processing the frames from the
WFS camera. Using a standard center-of-mass type of algorithm with background
compensation and an adjustable threshold level (Hardy 1998; Thomas 2004), the
control computer has to estimate the deviation of the spots from their nominal po-
sition. Both the centroid algorithm and the control algorithm are implemented in
the form of a C-routine, which is executed for each new WFS frame. Using Remote
Data Access (RDA) library developed by TNO Science and Industry gives on-line
access to various control parameters and signals from Matlab. A second general
purpose PC is used for simultaneous recording the images from the camera’s C1
and C2. The recorded images are only used for performance evaluation.

Remark 4.1 To have a well established time reference, the framegrabbers of both cameras
as well as the real-time control computer with digital to analogue converters are triggered
by an external pulse generator. A precise timing of the sampling and the control action
is of utmost importance in demonstrating the optimal control approach. In particular,
when using data-driven identification to estimate the transfer function from control input
to WFS output, it is important to ensure that synchronization during the identification
experiments is precisely the same as during control. Jitter on the sample frequency or
an inaccurate synchronization of the WFS process and the digital to analogue convert-
ers causes a mismatch between the expected and actual time delay between measurement
and correction. Since the optimal control strategy is trying to compensate this delay by
means of prediction, jitter and inaccurate synchronization will inevitably lead to a loss
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of performance. Previous experiments with an analogue WFS camera that was not syn-
chronized with the control computer, showed a performance comparable to common AO
control approach as a result of this effect.

4.3 Modeling the AO system

Computing the H2-optimal controller requires a control relevant model of both
the AO system and the atmospheric wavefront distortions. In this section we will
consider the problem of modeling the discrete-time transfer function from DM
and TT-mirror actuator inputs to WFS outputs. After deriving the appropriate
model structure, a data-driven identification approach is developed to estimate
the relevant parameters. In this paper it will be assumed that the wavefront dis-
tortion profile can be represented by a finite-dimensional vector signal φ(·) ∈ �mφ .
Whether the signal φ(·) provides a zonal or modal representation of the wavefront
is irrelevant. The only requirement, is that the mean-square error of the vector
representation provides a good approximation of the mean-square wavefront er-
ror. A similar representation will be used for the phase correction applied by the
DM and TT-mirror φm(·) and the residual wavefront error ǫ(·) = φ(·) − φm(·).
Furthermore, for notional convenience we will use the argument of a signal (e.g.
φ(·)) to distinguish between its continuous-time (φ(t), t ∈ �) and discrete-time
counterpart (φ(k), k ∈ �). If no argument is specified, the difference between the
continuous-time and discrete-time version of a signal should be clear from the
context. A similar convention will be used to distinguish between the Laplace
transform (φ(s)) and the z-transform (φ(z)).

4.3.1 The wavefront sensor model

The proposed H2-optimal control approach requires a discrete-time model of the
AO system seen by the controller. In order to derive the model structure for the
discrete-time transfer function from control inputs to WFS outputs, we will first
consider the relation between the continuous-time versions of these signals. To
this end, consider the block-scheme of the Shack-Hartmann WFS in Figure 4.4.
The WFS is not able to directly measure the wavefront φ(·), but provides a signal
s(k) that is a filtered version of its slope. The optical transformation from phase

φ(t) s(k)

CCD

G
s(t)∫

te
+ delay

η(t)

c

Figure 4.4: Schematic representation of Shack-Hartmann WFS.

φ(·) to slopes or spot positions c(·) is modeled by the static mapping c = Gφ, with
G the so called phase-to-slope geometry matrix. The shaded block in Figure 4.4
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models the dynamics introduced by the CCD camera. The spot positions on the
CCD camera, cannot be observed instantaneously but the camera integrates the
image over an exposure time te ∈ �. At the end of the integration, the image
is read from the CCD camera, which is then again reset to zero. Furthermore, the
time required to read and process the frames, introduces a time delay td ∈ �. With
the measurement noise represented by the additive zero-mean white noise term
η(t), the relation between s(t) and φ(t) is hence given by

s(t) =
1

te

∫ t−td

t−te−td

Gφ(τ)dτ + η(t). (4.1)

Strictly speaking, the above equation is only valid at the discrete sample instants
t = kT, k ∈ � at which the image is read from the camera. For the moment, how-
ever, it is useful to consider the integrating action of the CCD and sampling pro-
cess separately. Without loss of generality, the discrete WFS output is described as
a sampled version of the fictitious continuous-time signal s(t) as defined in equa-
tion (4.1). Since at the sampling instants t = kT, k ∈ � the signal is well defined,
considering the integrating action and sampling process separately will not effect
the discrete-time output. In the Laplace domain, the above WFS model can be
expressed as

s = G(s)φ + η, where G(s) =
1 − e−ste

ste
e−stdG = g(s)G. (4.2)

Since the delay and the integrating action affect all channels in a similar way, the
WFS dynamics are fully decoupled. Furthermore, it is clear that the dynamics can
be modeled as an LTI system.

An important complication in the AO control problem is that it is generally not
possible to reconstruct the entire wavefront φ(t) from s(t). This can be easily seen
by noting that only the part of φ(t) that is in the row space of G is able to con-
tribute to s(t). With the phase-to-slope geometry matrix G being tall, the number
of modes that cannot be reconstructed from s(t) is equal to the rank deficiency of
G. Another consequence of the rank deficiency of G is that, apart from the mea-
surement noise, the channels of s(t) are linear dependent. These observations can
be used to introduce a reduced basis that parametrizes only the informative part
of s(t). The main advantage of such a basis is that it reduces the effective number
of WFS channels that have to be modeled. Moreover, it improves the numeri-
cal conditioning of the identification and control problem by removing the linear
dependence between the components of the signal Gφ(t). The reduced basis is
obtained by considering the singular value decomposition (SVD)

G = UΣV T =
[
U1 U2

] [Σ1 0
0 0

] [
V T

1

V T
2

]
, (4.3)

where U and V are partitioned such that the matrix Σ1 contains all nonzero sin-
gular values. By substituting the SVD in equation (4.1) and exploiting the orthog-
onality of U , i.e. U1U

T
1 + U2U

T
2 = I , the signal s(t) can be decomposed as

s(t) = U1Σ1ϕ(t) + (U1U
T
1 + U2U

T
2 )η(t)

= U1y(t) + U2U
T
2 η(t),
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where ϕ(t)
.
= V T

1
1
te

∫ t−td

t−td−te
φ(τ)dτ , y(t)

.
= Σ1ϕ(t) + ν(t) and ν(t)

.
= UT

1 η(t). Since
the spaces spanned by U1 and U2 are orthogonal and η(t) is a zero-mean white
noise process uncorrelated to φ(t), the second term is not related to the turbulence
process. For this reason, it is possible to replace the WFS signal s(t) with the lower
dimensional signal y(t) without loosing any relevant information. Furthermore,
by multiplying equation (4.4) from the left by UT

1 it is clear that the signal y(t) can
be simply obtained as y(t)

.
= UT

1 s(t). Since the wavefront cannot be measured
directly, the only way to relate the φ(t) to y(t) via the reduced WFS model

y = Σ1ϕ + ν. (4.4)

Because of the orthogonality of V , φ(t) can be decomposed φ(t) = V1V
T
1 φ(t) +

V2V
T
2 φ(t). By substituting this in the definition of ϕ(t) it is clear that only the first

term, i.e. V1V
T
1 φ(t), can be reconstructed from the measurements. The signal ϕ(t)

can hence be interpreted as a filtered reduced representation of the observable part
of φ(t) (see Hinnen et al. 2006). The signal y(t), on the other hand, can be regarded
as a reduced representation of s(t). Furthermore, since the signals V1V

T
1 φ(t) and

ϕ(t) have the same 2-norm, the control problem can be reformulated as finding
the controller that minimizes the variance of ϕ(t).

In accordance with the above definitions, the reduced representation of the ap-
plied phase correction is defined as ϕm(t)

.
= g(t)V T

1 φm(t), while the correspond-
ing residual phase error is defined as ε(t)

.
= ϕ(t)−ϕm(t). Since the WFS is linear in

its input, the output corresponding to ε(t) can be expressed as r(t)
.
= y(t)− ym(t),

where y(t) and ym(t) denote the contributions due to ϕ(t) and ϕm(t), respectively.
Note that by definition of ϕ(t) and ϕm(t), the WFS model (4.4) becomes static as
the WFS dynamics are included in the mirror model.

4.3.2 Linearization of the deformable mirror

In the proposed H2-optimal control approach it is assumed that the transfer func-
tion from control input u(k) to WFS output y(k) can be described by an LTI system.
This implies that the DM and TT-mirror are assumed to be linear in their actua-
tor inputs. Apart from a possible offset this holds for the TT-mirror, but the DM
still does not satisfy this assumption. For this reason an additional linearization
step has to be performed. As described in Section 4.2, the DM is an electrostatic
actuated membrane mirror and the actuators are almost linear with the applied
voltage squared. Furthermore, to allow bi-directional actuation, a bias voltage
has to be applied to each of the actuators. Taking into account this bias, the DM
can be linearized by defining a new artificial control input udm(k) ∈ �

md , which
is related to the actuator input ul(k) that is actually applied to DM as

ul(k) =
√

udm(k) + udm
b , (4.5)

where udm
b ∈ �

md denotes the bias and md ∈ � is the number of DM actuators.
The above operation on the control input makes the DM linear in udm(k). The
bias udm

b on the actuator inputs has to be chosen in such a way that the initial
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shape of the DM is compensated by the additional negative bias lens in front of
the mirror. The required actuator bias udm

b is found by a calibration procedure.
The calibration procedure consists of an iterative algorithm that searches for the
actuator bias udm

b that minimizes the measured wavefront. In a similar way, the
offset on the TT-mirror is removed by adding a bias utt

b to the TT-mirror control
input utt(k). In the proposed H2-optimal control approach there is no separate
loop for controlling the TT-mirror. Controlling the TT-mirror is seen as an integral
part of the control design problem. The DM and TT-mirror are described by a
integrated model with a control input u(k) obtained by stacking udm(k) and utt(k).
As we will see in Section 4.6, the above procedure linearizes the transfer function
for control input u(k) to WFS output y(k) to such an extend that the system can
be considered LTI for the purposes of this paper.

4.3.3 Discrete-time active mirror and WFS model structure

The WFS model in equation (4.4) provides a continuous-time model of the rela-
tion between the open-loop wavefront distortion ϕ(t) and the corresponding WFS
measurement signal y(t). The continuous-time signal y(t), however, is physically
non-existent as the WFS provides only a sampled data output. Furthermore, the
control design strategy requires a discrete-time description of the AO system. To
derive such a model, consider Figure 4.5. It provides a schematic representation
of the relation between the discrete-time control input u(k) ∈ �mu and the corre-
sponding WFS output ym(k).

u(k) u(t) ϕm(t)
DM/TT WFS

D/A Σ1H(·)
y(t)

Figure 4.5: Schematic representation of AO system as seen from the controller.

The wavefront correction ϕm(t), generated by the DM and TT-mirror, depends
on the continuous-time actuator input u(t) ∈ �ms . This signal is in turn generated
by a digital-to-analog (D/A) converter with discrete-time control input u(k) ∈
�ms . As a result, the contribution of ym(k) to the closed-loop WFS signal r(k) can
be seen as the output of the discrete-time system formed by the cascade of D/A
converter, active mirrors and WFS. In the proposed H2-optimal control approach
there is no separate loop for controlling the TT-mirror. Controlling the TT-mirror
is an integral part of the control design problem. The DM and TT-mirror, also
denoted by active mirrors, are described by a single integrated model ϕm(s) =
H(s)u(s).

Given the model ym(s) = Σ1H(s)u(s), the equivalent discrete-time transfer
function Σ1H(z) from u(k) to ym(k) can be computed using the step-invariant
transformation (Åström and Wittenmark 1997; Chen and Francis 1995). Looze
(2005), for instance, has used the step-invariant transformation to derive the equiv-
alent discrete-time transfer function for a system with ZOH input and discrete-
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time measurements based on a CCD camera with an exposure time equal to the
sampling interval. Even though Σ1H(z) could be derived in this way, the analysis
will be performed in the time-domain as this provides more insight.

The active mirrors used in the experimental setup have a time constant that
is short compared to CCD exposure-time and the sampling period of the system.
Considering a step response, the DM reaches 80% of its maximum value within
500 µs (Vdovin and Sarro 1995). The first resonance frequency of the DM is lo-
cated around the 2 kHz (Weyrauch et al. 2001), while the resonance frequency of
the TT mirror is specified at 2.4 kHz. These resonance frequencies are very high
compared to the maximum sample frequency of 20 Hz considered in the valida-
tion experiments. Also the used CCD exposure time (te = 5 ms) is short compared
to the rise time of the DM. Hence, from a practical point of view, the mirrors can
be considered to be static and the only dynamics in transfer function from u(k)
to ym(k) derives from the D/A converter and the WFS sampling process. The
projected wavefront V T

1 φm(t) can be hence expressed as V T
1 φm(t) = H̄u(t), with

H̄ ∈ �my×my a static influence matrix. By pre-multiplying both sides of equa-
tion (4.1) with UT

1 , and substituting this relation, the WFS output at time instant
t = kT, k ∈ � can be expressed as

ym(k) =
1

te

∫ kT−td

kT−te−td

Σ1H̄u(τ)dτ, (4.6)

where the measurement noise is temporarily left out of consideration as this will
be accounted for in the WFS contribution due to atmospheric turbulence. The
continuous-time actuator input u(t), is obtained from a ZOH type of D/A-converter
operated at the same sample frequency as the camera, i.e.

u(t)
.
= u(k) for kT ≤ t < (k + 1)T. (4.7)

Due to the physical limitations of the CCD camera, the exposure time should al-
ways be in the range 0 < te ≤ T . According to equation (4.6), this implies that
the output ym(k) depends at most on two past samples of u(k). To elaborate the
integral, divide the time-delay td ∈ � in an integer number samples delay d ∈ �

and a remainder τd ∈ � as td = dT −τd, where d ≥ 1 and 0 < τd ≤ T . Furthermore,
let us assume for the moment that te > τd. Then using the ZOH-relation (4.7), the
WFS output ym(k) can be expressed as

ym(k) = Σ1H̄
(

1
te

∫ τd

0 u(k − d)dτ + 1
te

∫ T

T+τd−te
u(k − d − 1)dτ

)
(4.9a)

= Σ1H̄(α1u(k − d) + α2u(k − d − 1)), (4.9b)

with α1 = τd/te and α2 = (te − τd)/te are real-valued coefficients. A similar
analysis can be performed for te ≤ τd. In this case the limits of the first integral
extents for 0 to te, while the contribution due to the second term is zero. As a re-
sult, the WFS output ym(k) can still be expressed as in (4.9b), but with α1 = 1 and
α2 = 0. By comparing equation (4.4) and equation (4.9b) it is clear that for a static
mirror, the discrete time transfer function from u(k) to ϕm(k) can be expressed as
H(z) = g(z)H̄, with g(z) = z−d(α1 + α2z

−1). Hence, for a static mirror the scalar
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dynamics g(z) can be expressed as two taps finite impulse response (FIR) filter
plus an integer number of samples delay. That the transfer function still includes
dynamics, is caused by the particular choice of the reduced wavefront signal ϕ(t).
Due to the definition of the combined DM and TT-mirror, H(z) incorporates the
scalar dynamics introduced by the D/A converter and WFS. By introducing the
definitions H

.
= α1H̄ and α

.
= α2/α1, this gives rise to the following model struc-

ture for the mirror
H(z) = z−d(H + αz−1H). (4.10)

Considering α as a free parameter, the above model structure will also hold when
the DM is not perfectly static but has a time-constant that is short compared to
the WFS exposure time te. This is nicely illustrated by the simulation example
in Looze (2005). If the time-constant is too large, the mirror model substituted
in equation (4.6) should be replaced by a dynamic one. Because of this, the WFS
output ym(k) will generally depend on more than two samples of u(k) and so the
required number of FIR taps for modeling g(z) will increase.

4.3.4 Data-driven modeling of DM and TT-mirror

From the previous discussion it is clear that if the DM and TT-mirror can be con-
sidered to be static, the relation between the actuator inputs u(k) and WFS out-
puts ym(k) reduces to a static influence matrix H followed by a scalar dynamics
g(z) transfer function consisting of an integer number of samples delay and an
impulse response of two taps. Considering the derived model structure (4.10), a
data-driven identification procedure has been developed to estimate the unknown
coefficient α and the influence matrix H . Since the proposed model structure in-
cludes a priori knowledge on the system, imposing the structure is expected to
improve the accuracy of the identified model. Another advantage of consider-
ing the specific model structure is that it allows for analytical solution of the H2

optimal control problem. This will be discussed in more detail in Section 4.4.

The unknown coefficient α and the influence matrix H are estimated on the
basis of the WFS response ym(k) measured by exciting the DM and TT-mirror with
a zero-mean white input sequence u(k). To avoid actuator saturation, the input
signal is generated according a Gaussian probability density function of which the
tails are chopped off. Given a data batch of N ∈ � samples of the applied actuator
input u(k) and the measured WFS response ym(k), the problem of estimating the
unknowns α and H is solved by minimizing a prediction error criterion (Ljung
1999). The main difficulty in estimating the unknowns is that the second term in
the proposed model structure (4.10) contains the product of α and H , which gives
rise to a non-convex optimization problem. Before focusing on the problem of
identifying the unknowns α and H , it is therefore useful to consider the following
more general FIR model structure for describing the DM and TT-mirror

H(z) =

p2∑

i=p1

z−iHi−p1+1, (4.11)
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where p
.
= p2−p1+1 denotes the number of nonzero taps. The above model is lin-

ear in the matrices Hi, i ∈ {1, . . . , p} and will be used to obtain an initial estimate
of the value optimal α in equation (4.10). Considering this model structure, the
WFS output predicted on the basis of the applied input signal can be expressed as
ŷm(k) = Σ1H(z)u(k). The problem of identifying the unknown coefficient matri-
ces Hi is now formulated as the following optimization problem

min
H(z)

N−1∑

k=p2

‖ym(k) − ŷm(k)‖2
2 . (4.12)

Since the predicted output ŷm(k) is linear in the coefficient matrices Hi, the above
optimization problem reduces to a standard linear regression problem. The solu-
tion to this problem can be computed analytically and is given by

[
Ĥp . . . Ĥ2 Ĥ1

]
= Σ−1

1 Yp2 ,N−1 (U0,p,N−p2
)†, (4.13)

where

U0,p,N−p2

.
=

⎡
⎢⎢⎢⎣

um(0) um(1) . . . um(N − p2 − 1)
um(1) um(2) . . . um(N − p2)

...
...

. . .
...

um(p − 1) um(p) . . . um(N − p1),

⎤
⎥⎥⎥⎦ , (4.14)

and Yp2,N−1
.
=
[
ym(p2) ym(p2 + 1) . . . ym(N − 1)

]
and (·)† is used to denote the

(right) pseudo-inverse. By making a proper choice for p1 and p2, exploratory iden-
tification experiments can be used both to validate the proposed model structure
and to obtain an initial estimate of the value of α. Also the number of samples de-
lay d may be determined by exploratory identification experiments using the FIR
model structure. Suppose that p1 and p2 are chosen such that p1 ≤ d ≤ p2−1. Then
if the proposed model structure (4.10) is right, there are at most two FIR coefficient
matrices Hi i ∈ {1, . . . , p}, succeeding one another, with a norm significantly dif-
ferent from zero. Moreover, the index j ∈ � of the first of these coefficient is
related to the number of samples delay as d = j + p1 − 1.

From the derivation of model structure (4.10) it is clear that there are two cases
to be considered. First, if te ≤ τd, the coefficient α is zero, which implies that
the exploratory experiments should give rise to only one FIR coefficient signif-
icantly different from zero. If this is the case, the problem of identifying H re-
duces to a standard linear least squares problem and H can be estimated by set-
ting p1 = p2 = d in the general FIR model (4.13). On the other hand, if te > τd,
there should be precisely two FIR coefficient matrices Hj+1 and Hj+2 with a norm
significantly different from zero. The ratio of these norms, i.e. ‖Hj+2‖2/‖Hj+1‖2,
provides an estimate of α. The so-computed α is used to initialize a numerical pro-
cedure for solving the optimization problem obtained by substituting the model
structure (4.10) in the prediction error criterion (4.12). Using the block-Hankel
notation, this gives rise to the following optimization problem in the unknowns

min
α,H

‖Yd+1,N−1 − Σ1H [I αI]U0,2,N−d−1‖2
F , (4.15)
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where the block Hankel matrix U1,2,N−p2
is defined in accordance with equa-

tion (4.14). Due to the imposed structure on the FIR coefficient matrix, the above
optimization problem is no longer a convex function in the unknowns α and H .
The resulting optimization problem however, can be efficiently solved by using
the obtained initial estimate of α and the concept of separable least squares pro-
posed by Golub and Pereyra (1973).

Separable least squares is a technique for solving nonlinear least squares opti-
mization problems in which the parameters can be divided in a set that enters the
function that is minimized in a linear way and a disjoint set that contains the re-
maining parameters. The parameters that enter in a linear way can be eliminated
from the least-squares problem, resulting in a modified nonlinear optimization
problem in a reduced parameter space. After solving the modified optimization
problem, the linear parameters can be computed from a linear least squares prob-
lem. In the nonlinear least squares problem (4.15), only the product of α and H is
responsible for a nonlinear dependence of prediction-error on the unknowns. For
a fixed value of α, the nonlinear least squares problem (4.15) reduces to a linear
least squares problem. As a result, the optimal matrix H for a given value of α can
be computed analytically and is given by

H∗(α) = Σ−1
1 Yd+1,N−1 ([I αI]U0,2,N−d−1)

† , (4.16)

By substituting the above expression in (4.15) it is possible to eliminate the un-
known H , which gives rise to a modified nonlinear optimization problem over
α ∈ �. Since this is an optimization problem over one single parameter, it can be
efficiently solved using standard numerical optimization tools. Furthermore, the
exploratory experiments provide already a reasonably initial estimate of α, which
reduces the risk of ending up in a local minimum. Given the value for α found
in the numerical optimization process, α∗, the estimate for the influence matrix H
can be computed from equation (4.16).

4.4 Data-driven optimal control for AO

This section provides a brief outline of the recently proposed data-driven H2-
optimal control design strategy considered in (Hinnen et al. 2006) and clarifies the
need for an accurate model of the AO system. More specifically, it will be shown
that the model structure derived in the previous section is in harmony with the
control approach. Indeed, the developed identification procedure for estimating
the parameters in equation (4.10) can be seen as the completion of the proposed
control approach, in line with the philosophy of using data-driven identification.

The proposed H2-optimal control design approach is based on the generalized
plant model depicted in Figure 4.6. Its main ingredients, indicated by the shaded
boxes, are a model of the atmospheric turbulence S(z) and the model of the AO
system H(z) considered in the previous section. Starting from H(z), the first step
of the proposed control design strategy is to identify S(z). Here, it is assumed
that the second order statistics of the signal y(k) can be described as the output
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of a LTI system with a zero-mean white noise input v(k) ∈ �my and covariance
Rv

.
= E{vT v}. This in combination with equation (4.4), gives rise to the following

model structure

S :

⎧
⎨
⎩

x(k + 1) = Adx(k) + Kdv(k)
y(k) = Σ1Cdx(k) + v(k)
ϕ(k) = Cdx(k) + ζ(k)

, (4.17)

where (Ad−KdΣ1Cd) ∈ �
nd×nd and Ad ∈ �

nd×nd are stable, and ζ(k) = Σ−1
1 (v(k)−

ν(k)) is a zero-mean white noise sequence with covariance Rζ
.
= E{ζTζ}. Consid-

ering this model structure is reasonable if the statistical properties of the wave-
front change on a time scale that is long to the time scale of the fluctuations them-
selves. Indeed, validation experiments on open-loop WFS data from the William
Herschel Telescope have shown that a model of this form can be used to predict
future wavefront distortions (Hinnen et al. 2005b). Like H(z), the atmospheric
disturbance model S(z) is identified on the basis of open-loop WFS data y(k).
Data-driven modeling has the advantage that it provides a good match with the
prevalent turbulence conditions and does not depend on restrictive assumptions
like the frozen layer hypothesis. Moreover, since the model structure does not
assume any form of decoupling, it is sufficiently general to capture the spatio-
temporal correlation imposed by a frozen flow without being dependent on it.
A consequence of this extensive description is that already relatively small AO
systems give rise to a considerable identification problem. For this reason, a ded-
icated subspace-identification algorithm has been developed. One of the main
advantages of this algorithm is that it provides an estimate of the system matrices
without the need for spectral factorization.

ϕ(k)
S(z)

ϕm(k)

r(k)

u(k)

C(z)

H

Q1/2

Σ1

ε(k)

e(k)

v(k)

ζ(k) y(k)

ym(k)

Disturbance model

Mirror & WFS

Figure 4.6: Schematic representation of the closed-loop AO system together with
the defined performance outputs.

Given the identified atmospheric disturbance model S(z) and the transfer func-
tion H(z), the final step of the proposed control design strategy is to compute the
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optimal controller. The control objective is to find the controller that minimizes
the 2-norm of the performance output e(k) composed of the sub-signals ε(k) and
Q1/2u(k), where Q = QT ≥ 0 is typically chosen diagonal. As can be easily
verified, this is equivalent to finding the controller C(z) that minimizes the cost
function

J = E
{
εT (k)ε(k)

}
+ E

{
uT (k)Qu(k)

}
, (4.18)

where E denotes the conditional expectation. The regularization Q makes a trade-
off between the objective of minimizing the expected residual wavefront error
E(ε(k)T ε(k)) and the objective of minimizing the expected amount of control ef-
fort E(u(k)T u(k)). By increasing the regularization matrix Q, it is possible to re-
duce the amount of energy dissipated by the DM and make the controller more
robust to model uncertainties. In a normal AO system, the input regularization
should be chosen as small as possible without sacrificing too much robustness in
order to give priority to general objective of minimizing the aperture averaged
mean-square residual wavefront error. The problem of finding the closed-loop
optimal controller C(z) can be conveniently expressed in a H2-optimal control
framework. Even though straightforward application of standard H2-optimal
control theory (see e.g. Chen and Francis 1995) provides a way to compute the
optimal controller, the approach is unable to exploit the special structure in the
AO control problem. Computing the H2-optimal controller generally involves
the numerical solution of two algebraic Riccati equations. However, since the at-
mospheric disturbance model (4.17) is minimum-phase with respect to y(k), the
controller can be computed more efficiently. Indeed, if H(z) has the form (4.10),
it is possible to derive an analytical expression for the optimal controller Hinnen
et al. (2006). This result is summarized in the following theorem.

Theorem 4.1 (Optimal control with quasi-static DM) Let the wavefront distortions
ϕ(k) and open-loop WFS signal y(k) be characterized by the atmospheric disturbance
model (4.17), with input covariance matrix Rv > 0. Assume that the transfer function
from u(k) to ϕm(k) is of the form (4.10) and that either H or Q has full column rank.
Furthermore, let the regularized left pseudo-inverse of the DM influence matrix H be
defined as

H†
Q

.
=

{
(HTH + Q)−1HT for α = 0

αγα

(
α2HTH + γ2

αQ
)−1

HT otherwise
(4.19)

with

γα
.
=

{
α for |α| ≤ 1

sgn(α) for |α| > 1
.

Then the optimal controller C(z), that is minimizing the cost function (4.18), is given by:
⎡
⎢⎢⎣
ξ̂1(k + 1)

ξ̂2(k + 1)

u(k)

⎤
⎥⎥⎦ =

⎡
⎢⎣

−G F 0
L M Kd

FL + G2 FM−GF FKd

⎤
⎥⎦

⎡
⎢⎢⎣
ξ̂1(k)

ξ̂2(k)

r(k)

⎤
⎥⎥⎦ . (4.20)

where the matrices F , G, L and M are defined as F
.
= H†

QCdA
d−1
d , G

.
= γαH†

QH ,

L
.
= z−d+1KdΣ1H(αI −G) and M

.
= Ã + z−d+1KdΣ1HF , with Ã

.
= Ad −KdΣ1Cd.
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The above theorem has first been proved for the special case of d = 1 and
Q = ρI , with ρ ∈ � (Hinnen et al. 2005a). A sketch of the proof for the more
general case considered here, can be found in Hinnen et al. (2006). Having an
analytical expression for the H2-optimal controller is useful as it leads to an effi-
cient implementation of the proposed control design strategy. Together with the
subspace identification algorithm, it gives rise to a non-iterative way to go from
open-loop measurement data y(k) to closed-loop controller design that is entirely
based on standard matrix operations. Besides advantages in computational effi-
ciency, the analytical solution is also attractive for numerical robustness. Since the
poles of the atmospheric disturbance model typically cluster in neighborhood of
the point z = −1, standard Riccati solvers may suffer from convergence problems
and increased numerical sensitivity.

Finally, the analytical solution is useful as it allows for a nice interpretation of
the optimal control design. By comparing the state-space equations of the optimal
and the atmospheric disturbance model, it can be shown (Hinnen et al. 2006) that
the control output can be expressed as

u(k) = (I − γαH†
QHz−1)−1H†

Qϕ̂(k + d|k), (4.21)

where ϕ̂(k+d|k) denotes the conditional estimate of ϕ(k+d) given the past closed-
loop WFS data r(j) = y(j) − ym(j), j ≤ k. From this expression it is clear that
the optimal controller consists of a part that is concerned with predicting future
wavefront distortions, over a time horizon of d samples, and a dynamic filter that
projects the estimated wavefront on the actuator space. In line with the cost func-
tion, the dynamic filter makes a trade off between the objective of finding the con-
trol input u(k) that minimizes the difference with the estimated wavefront and
the one that minimizes the control effort. Here it is interesting to note that the
wavefront prediction part of the controller is unaffected by the input regulariza-
tion applied in the cost function. In the special case that α = 0, the dynamic filter
reduces to the static matrix projection H†

Q. Furthermore, the above division of the
optimal controller also shows the resemblance with the common AO control ap-
proach. As will be shown in Section 4.5, also the common AO control problem
decomposes in a wavefront reconstruction step followed by a projection on the
actuator space. The main difference between both approaches is that in the opti-
mal control approach the static wavefront reconstruction is replaced by dynamic
prediction, which compensates for the delay in the system.

4.5 Validation methods and performance measures

The proposed data-drivenH2-optimal control approach, discussed in the previous
section, will be compared with a regularized version of the control approach com-
monly used in AO. For conformity with the rest of the paper, the common (or clas-
sical) AO control approach will be briefly reviewed in terms of the reduced signals
introduced in Section 4.3. The common AO control approach consists of a cascade
of a static matrix multiplication and a series of parallel feedback loops (Roddier
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1999). Given a new WFS measurement y(k), the static part deals with the prob-
lem of finding the DM actuator inputs u(k) that would provide the best fit to the
wavefront. Let the static relation between u(k) and y(k) be given by u(k) = Ry(k)
and let the mirrors be modeled as ϕm(k) = Hu(k). Then, with the static WFS
model (4.4), the problem of finding the reconstruction matrix R is formulated as

R = arg min
eR

(
E{[ϕ(k) − HR̃y(k)]T [ϕ(k) − HR̃y(k)]} + E{uT (k)Qu(k)}

)
, (4.22)

where E denotes the conditional expectation with respect to the WFS measure-
ment y(k). In comparison with the usual minimum-variance formulation of the
reconstruction problem, the above optimization problem includes an additional
penalty on the control effort. This regularization is needed to enable a fair com-
parison between both control approaches. The dynamic range of the DM is rather
small compared to the wavefront distortions introduced by the atmospheric tur-
bulence simulator. Without input regularization, the actuators of the DM easily
saturate, which may even provoke closed-loop instabilities. For both control ap-
proaches, significant input regularization is needed to ensure that the DM stays
within its linear range. By noting that the first term in equation (4.22) can be inter-
preted as the residual fitting error, it is clear that there is a one to one correspon-
dence with the cost function (4.18) as considered in the optimal control approach.
However, a disadvantage of penalizing the control effort is that it also leads to an
increase in the fitting error. Under the assumption that the wavefront ϕ(k) and
the measurement noise ν(k) are uncorrelated zero-mean stochastic processes with
a Gaussian distribution, the maximum a posteriori estimate of R is given by

R = (HT H + Q)−1HT

︸ ︷︷ ︸
F

CϕΣ1(Σ1CϕΣ1 + Cν)−1

︸ ︷︷ ︸
E

, (4.23)

where Cϕ
.
= E{ϕ(k)ϕT (k)} and Cν

.
= E{ν(k)νT (k)} denote the covariance ma-

trices of ϕ(k) and ν(k), respectively. Form the above equation it is clear that the
reconstruction matrix R can be separated into a fitting operator F and a estima-
tion operator E. The operator E provides a minimum-variance estimate of the
wavefront, while the operator F is responsible for projecting this estimate onto
the actuator space. Note that the fitting operator F is equal to, and has the same
function as, the projection H†

Q in the optimal control approach. Since the AO sys-
tem is operated in closed-loop, the signal obtained from the static reconstruction
u(k) = Ry(k) provides only an estimate of the increment needed to the current
actuator commands. In order to ensure stability and closed-loop performance, the
parallel feedback loops have to possess integrating action. The following control
law has been used for performance comparison

u(k) =
c1

1 − c2z−1
Rr(k), (4.24)

where the gain factor c1 and the loss factor c2 are user defined control parameters.
The modification of the covariance matrix Cϕ, as a result of closed-loop operation,
is neglected in computing the construction matrix R.

To obtain a better insight of the conditions under which the proposed data-
driven H2-optimal control strategy should be able to outperform the classical
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control approach, it is important to have a closer look at the error sources in an
AO system. In order to achieve a performance improvement, at least one of the
dominant error contributions has to be influenced by the control design. Exam-
ples of well-know error sources in AO include anisoplanatic errors, wavefront
measurement errors, wavefront fitting errors, temporal errors and tilt related er-
rors (Hardy 1998). From these error sources, in particular, the temporal error is
strongly dependent on the control design. The temporal error is one of the major
error sources (van Dam et al. 2004) for the AO system on the Keck telescope.

In the experimental setup, the total wavefront error is determined almost ex-
clusively by the wavefront fitting error and the temporal error. The wavefront
fitting error is the error caused by the fact that the active mirrors cannot take an
arbitrary shape. Since the mirrors have only a limited degrees of freedom only a
part of the wavefront can be compensated. The size of the fitting error depends
on both the turbulence statistics and the design of the active mirrors. In the case
of Kolmogorov turbulence, the mean-square fitting error is given by

σ2
f = af (d/r0)

5/3,

where af ∈ � is a fitting coefficient depending on the influence function and d
denotes the inter-actuator spacing. With the Fried parameter r0 of the atmospheric
disturbance simulator being fixed, the fitting error can be considered constant.

The temporal error on the other hand is caused by the inability of the AO sys-
tem to immediately respond to changes in the wavefront at the very moment of
occurrence. Both bandwidth limitations and pure time delays contribute to a de-
layed response. All errors related to imperfections in the temporal compensation
are attributed to the temporal error. Advanced control strategies, like the optimal
control approach considered in this paper, should be able to reduce the effect of
the time delays by predicting the wavefront distortion at the time of correction.
The temporal error contribution depends on turbulence dynamics, the pure time
delay in the system and the bandwidth limitations. Assume for the moment that
the pure time delay is inversely proportional to the sample frequency and that the
bandwidth limitations are proportional to the sample frequency. Furthermore,
assume that the controller consists of decoupled control loops with a first-order
order low pass characteristic, then for Kolmogorov turbulence the mean-square
temporal can be approximated as

σ2
t = at (fG/f)5/3 ,

where at ∈ � is a scaling constant depending on the precise form of the con-
troller and bandwidth specifications and fG is the so-called Greenwood frequency
(Hardy 1998; Fried 1990). The Greenwood frequency can be seen as a characteris-
tic frequency of the atmospheric turbulence. For a single frozen layer with wind
velocity v it can be computed as fG = 0.427(v/r0). From the above discussion it
is clear that the temporal error scales as a power law of the Greenwood to sample
frequency ratio fG/f . Under the assumption that the error sources are uncorre-
lated, the total wavefront error is given by summing the variances, which forms
the motivation for the following generalized error model

σ2
ε ≈ a0 + a1 (fG/f)

a2 , (4.25)
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where a0 is a constant representing the fitting error and a1 and a2 ≥ 0 are the
scaling constant and exponent of the temporal error. For a controller consisting of
first-order feedback loops, the constant a2 should be close to 5/3. Furthermore, it
will be assumed that the residual wavefront error obtained with other control laws
satisfy the same expression, possibly with a different constant a2. Since the fitting
error a0 is independent from the control design, it is to be expected, that large
performance improvements can only be achieved at large Greenwood to sample
frequency ratios.

The performance of both controllers has been compared at different Green-
wood to sample frequency ratios. At each Greenwood to sample frequency ratio,
the mean-square residual wavefront error is estimated on the basis of Ns = 5500
samples of WFS signal r(k), measured during closed-loop operation. Given this
data, the sample estimate of the mean-square residual wavefront error is com-
puted as

σ̂2
ǫ =

1

(Ns − 1)mφ

Ns∑

k=1

ε̂(k)T ε̂(k), (4.26)

where ε̂(k) = Σ−1
1 r(k) denotes the reconstructed residual wavefront. By normal-

izing the sample estimate in this way, it is consistent with the observable part of
the physical mean-square phase error.

To verify if the error model (4.25) indeed provides a good description of the
residual wavefront error, it has been fitted to the observed values of σ̂2

ǫ . For a
fixed a0, the problem of estimating the coefficients a1 and a2 boils down to fit-
ting an exponential relation a1(f/fG)a2 to the measurements (σ̂2

ǫ − a0). Such a
fitting problem is conveniently solved on a logarithmic scale as this renders the
fitting error linear in the unknowns log10(a1) and a2. This forms the motivation
for defining the following least squares problem to estimate a0, a1 and a2:

min
a0,a1,a2

∥∥log10(σ̄
2
ε − a0) − � log10(a1) − a2 log10

(
f̄
)∥∥2

2
, (4.27)

where σ̄2
ε and f̄ are the vectors obtained by stacking the different observations of

σ2
ǫ and the corresponding fG/f ratios, respectively. Furthermore, � is a vector of

the same dimension as σ̄2
ε and f̄ , with all elements equal to 1. For a fixed value of

a0, the above optimization problem reduces to a standard least squares problem,
which has a global optimum given by

[
log10(a

∗
1)

a∗
2

]
=
[
� log10(f̄)

]
† log10(σ̄

2
ε − a0), (4.28)

where the asterisk is used to denote the optimal value. From the above equation
it is clear that the optimal values for a1 and a2 are a function of a0. As a result, it is
again possible to use a separable least squares approach to simplify the optimiza-
tion process. By substituting the optimal values for a1 and a2 in equation (4.27),
the original optimization problem reducers to an optimization problem in a single
parameter, which can easily be solved using a line search.

Apart from the estimated mean-square residual error σ̂2
ε , a number of other

criteria have been used to characterize the performance of the AO system. Since
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the optimal controller is designed to minimize the cost function (4.18), an obvious
choice is to look at the relative improvement in the sample estimates this function.
Given the reconstructed residual wavefront error ε = Σ−1

1 r(k) and the applied
control input u(k) for k ∈ {1 . . .Ns}, the sample estimate of the cost function is
defined as

Ĵ =
1

Ns − 1

Ns∑

k=1

ε̂T (k)ε̂(k) + uT (k)Qu(k). (4.29)

Let Ĵc and Ĵo denote the sample estimates of the cost function J obtained with
the common and optimal control approach respectively, then the relative perfor-
mance improvement by the optimal control approach is defined as Ĵc/Ĵo. Both
performance criteria σ̂2

ε and Ĵc/Ĵo are computed on the basis of the closed-loop
WFS measurement signal r(k). Since the ultimate objective of an AO system is to
obtain a high resolution image of the science object, it is also interesting to have
performance criteria that depend directly on the optical quality of the corrected
image. In the following, the full-width of half maximum (FWHM), the normalized
maximum encircled energy and the Strehl ratio, will be computed as additional
performance measures. Of these measures, the Strehl ratio is the most commonly
used metric to quantify the imaging quality of an AO system. The Strehl is defined
as the peak intensity of the image of a point source, normalized to the diffraction
limited peak intensity (Hardy 1998; Roddier 1999; Roberts Jr. et al. 2004).

To obtain an estimate of these quantities Nf = 250 frames of the science camera
have been collected. Subsequently, the obtained images are averaged as

Ī(p) =
1

Nf

Nf∑

k=1

I(k, p),

where I(k, ·) denotes the measured intensity at time k and the argument p ∈ �2

is used to discriminate between the different pixels of a CCD frame. In this way,
a recording with a long exposure time is mimicked. Since the science camera has
a fixed exposure time of 5 ms, the total recording time of the averaged image is
constant. If the wavefront would have been perfectly compensated, the image of
the point source would have been diffraction limited. For this reason the FWHM
will be estimated by fitting the averaged image Ī(p) to the theoretical Airy pattern
for a diffraction limited spot. This is equivalent to the problem of minimizing the
cost function

Ψ(p0, g1, g2, g3) =
1

∑
p

∥∥Ī(p)
∥∥2

2

∑

p

∥∥Ī(p) − g2A(g1, p0) − g3

∥∥2

2
, (4.30)

where A(g1, p0) denotes a normalized Airy spot with a FWHM g1, centered around
the point p0. Furthermore, g2 and g3 are used to parametrize the peak and back-
ground intensity of the averaged frame. Since the fitted intensity pattern is linear
in g2 and g3, separable least squares can be used again to reduce the number of
parameters in the nonlinear least squares problem.

Also the normalized maximum encircled energy is computed on the basis of
the time averaged image Ī(p). Let Br(p0) = {p ∈ �2| ‖p− po‖2 < r} denote the set
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of pixels p ∈ N2 located in a circle with radius r around the point po ∈ �2, then
we will adopt the following definition for normalized maximum

E(r) = max
po

∑
p∈Br(po) Ī(p) − Īb(p)
∑

p Ī(p) − Īb(p)
, (4.31)

where Īb(p) denotes the CCD dark pattern computed by averaging Nf = 250
background images. The maximum normalized encircled energy defined in this
way provides a measure of the fraction of the total incident energy that is con-
tained in the central core of the imaged spot. The better the wavefront correction,
the more the energy is concentrated in the central spot and the faster the encir-
cled energy will increase with the radius r. Due to the applied normalization, the
encircled energy E(r) will approach one for large values of r. Furthermore, as a
result of the maximization over po, E(r) is not only insensitive to tip-tilt errors but
also to misalignment errors. The normalized maximum encircled energy E(r) is
computed for a number predefined values of the radius r. Note that by defining a
function M(p−po, r) that is one for p ∈ Br(po) and zero otherwise, computing the
normalized maximum encircled energy reduces to evaluating a convolution. To
speed up the computations, the convolution is evaluated in the frequency domain,
using precomputed templates of the Fourier transform of the masks M(p, r).

Using the same notation, the Strehl ratio is computed by using the following
procedure. Let q0 denote the radius of the theoretical diffraction limited spot com-
puted on the basis of the aperture size. Then the first step in estimating the Strehl
is to extract a neighborhood with a radius 0.2q0 around the pixel pm ∈ �with max-
imum intensity. This neighborhood is used to obtain refined estimates of the peak
intensity Iq and position pq by fitting a quadratic form to the background compen-
sated measured intensity Ī(p)− Īb(p), p ∈ B0.2q0

(pm). With the refined estimate of
the peak position a larger neighborhood B2p0

(pq) is extracted over which the total
flux is computed as It =

∑
p∈B2q0

(pq) Ī(p). Also the diffraction limited total flux
Id on this neighborhood is computed from the theoretical diffraction pattern with
unit peak intensity by oversampling the pixels by a factor 8. In the final step, the
Strehl is computed by weighting the estimated peak intensity by the ratio of the
measured and the theoretically computed total flux, i.e. S = (Iq/It)Id.

4.6 Experimental results

Both the H2-optimal control approach and the common AO control law have been
implemented on the experimental setup. After aligning the WFS, only 69 of the
127 micro-lenses are illuminated sufficiently to be used for wavefront sensing (see
also Figure 4.3). This implies that the unreduced WFS signal consists of 138 chan-
nels. The geometry matrix G, specifying the relation between slope measurements
and phase, is defined by adapting the well-know Fried configuration for a hexag-
onal grid. Just as for a rectangular grid, the position of the phase points is de-
termined by shifting the hexagonal grid over half the pitch size. Projecting out
the unobservable modes, leads to a reduced WFS signal of ns = 88 independent
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channels. During the experiments, the WFS exposure time has been adjusted to
te = 5 ms. The WFS gain has been calibrated using the TT-mirror.

The real-time software is implemented in such a way that, for the given expo-
sure time and sample frequencies, the condition te ≤ τd is always satisfied with
d = 2. From subsection 4.3.3 it is clear that, under these conditions, α = 0 and the
transfer function H(z) reduces to a pure delay, i.e. H(z) = z−2H . The choice for
the reduced model structure for H(z) is supported by the exploratory FIR iden-
tification experiments, which show only one FIR coefficient that differs signifi-
cantly from zero. An even more important argument for using the reduced model
structure is the close agreement between measured and predicted WFS output.
Validation experiments on a data set of N = 1000 samples show a mean variance
accounted for (VAF) (Verdult and Verhaegen 2001) of more than 99.2% over the WFS
channels. This implies that more than 99.2% of the variance of the measured WFS
response y(k) can be explained by the identified model. The identified transfer
function provides therefore an accurate description of the true system.

The wavefront fitting error, in the experimental setup, is rather dominant. The
DM has only 37 actuators and can only compensate the lowest spatial frequen-
cies of the wavefront. Besides the small number of actuators, also the limited
dynamic range and the applied input regularization contribute to a large fitting
error. As a result, optimal control can only be expected to achieve a performance
improvement at large Greenwood to sample frequency rations. Both control algo-
rithms have been tested for Greenwood to sample frequency ratios in the range
fG/f ∈ [0.015 0.43]. The upper-bound on this range is rather large as a fG/f = 0.5
implies that the characteristic frequency of the turbulence is equal to the Nyquist
frequency. To verify if the residual wavefront error indeed depends only on the
ratio of fG and f , and not on their respective values, the fG/f ratios have been
obtained by considering different Greenwood and sample frequency combina-
tions. Some of these combinations give rise to the same or approximately the
same f/fG ratio. The sample rates used to obtain the different f/fG ratios include
f ∈ {4.44, 6.44, 8.33, 10.41, 12.5, 14.29, 16.67, 20.0}Hz.

At each Greenwood to sample frequency ratio, the performance of the com-
mon control approach is determined using the same value for c1 and c2. The
control parameters have been tuned to minimize σ̂2

ǫ at a fG/f ratio of 0.043. This
resulted in the values c1 = 0.48 and c2 = 0.98. In evaluating the reconstruc-
tion matrix R, the covariance matrix Cϕ is computed theoretically assuming a
perfect Kolmogorov spatial distribution (see Wallner 1983). Furthermore, it is as-
sumed that the measurement noise has a covariance matrix of the form Cν = σ2

νI ,
where the variance of the noise σ2

ν is estimated from open-loop WFS data y(k)
from a static distortion. For a fair comparison, the same input regularization ma-
trix Q has been used in both control approaches. The regularization matrix is
chosen diagonal, i.e. Q = diag{q1, q2, . . . , qmu

}, and the control effort weighting
qi, i ∈ {1, 2, . . . , mu} on each of the actuators is tuned to avoid actuator satura-
tion and to ensure that the mirrors stay within a linear range. This results in an
additional weight on the actuators with a small dynamic range, like the actuators
near the edge of the DM. The TT-mirror, on the other hand, does not require reg-
ularization. In the optimal control approach, the atmospheric disturbance model
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S is identified on the basis of Ns = 5500 samples of open-loop WFS data y(k).
The number of block-rows of past and future measurement data, as used in the
subspace algorithm, is 20 and the model order is chosen equal to nd = 256.

The estimated mean-square residual phase error σ̂2
ǫ obtained in the different

experiments is depicted in Figure 4.7. Each circle and each cross is the result of an
experiment at a specified Greenwood to sample frequency ratio using the optimal
and common control approach, respectively. As expected from the discussion in
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Figure 4.7: Mean-square phase error as a function of the Greenwood to sample
frequency ratio fG/f .

Section 4.5, the performance improvement increases with the Greenwood to sam-
ple frequency ratio. Whereas the improvement is rather low at low Greenwood to
sample frequency ratios, a considerable improvement is observed at high ratios.
The dashed line in Figure 4.7 represents the fit of the error model (4.25) to the
residual phase error σ̂2

ε obtained with the common control approach. The corre-
sponding fit for the optimal control approach is depicted by the solid line. Since
the mean-square residual phase error for the optimal control approach shows a
rather weak dependence on the Greenwood to sample frequency ratio, the esti-
mate of the parameters a1 and a2 is quite sensitive to a slight variation in a0. For
this reason, optimization over a0 is omitted and its value is fixed to the value of a0

found for the common control approach. This is a reasonable assumption, since
the fitting error in both approaches should be the same. The fitted error model
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obtained for both control approaches is given by

(common) σ̂2
ε ≈ 0.1833 + 44.21

(
fG

f

)1.6616

(optimal) σ̂2
ε ≈ 0.1833 + 0.3853

(
fG

f

)0.7642

Figure 4.7 shows that the above relations provide an accurate fit to the mean-
square residual phase error observed in the experiments. Furthermore, the fitted
exponent a2 for the common control approach is in close agreement with the the-
oretical value 5/3 (≈ 1.667). These observations support the error model (4.25),
and show that optimal control is indeed effective in reducing the temporal error.
Since at low Greenwood to sample frequency ratios the fitting error becomes the
limiting factor, only little can be gained by optimal control in this regime.

To prove that the performance at low Greenwood to sample frequency ratios
is indeed limited by the fitting error, it is useful to estimate the error on the ba-
sis of the available open-loop data y(k). This is achieved by first reconstructing
the uncorrected wavefront as ϕ̂(k) = Σ−1

1 y(k). Since the operator H†
Q can be in-

terpreted as the projection of the open-loop wavefront estimate on the actuator
space, the actuator commands corresponding to this wavefront estimate can be
computed as û(k) = H†

Qu(k). The computed actuator commands û(k) are then
used to determine the applied wavefront correction ϕ̂m(k) = Hû(k). Neglect-
ing all dynamics, the fitting error can now estimated as the mean-square error of
ε̂(k) = ϕ̂(k) − ϕ̂m(k). To demonstrate the effect of the input regularization, û(k)
has been computed both with and without input regularization. Furthermore, the
effect actuator saturation has been investigated by chopping off the signals that
are out off range. The averaged estimated mean-square fitting error as well as the
standard deviation over the different data sets are shown in Table 4.1.

regularization saturation σ̂2
f std

no no 0.087 0.003

no yes 0.170 0.009

yes yes 0.197 0.007

Table 4.1: Estimate of DM fitting error

The table shows that when accounting for both the input regularization and
the actuator saturation the estimated fitting error is in close agreement with the
constant offset a0 obtained from the error model. The fitting error estimated on
the basis of the open-loop WFS data is within 2 standard deviations of the es-
timated value of a0. Furthermore, the Table 4.1 shows that actuator saturation
almost doubles the observed fitting error. The additional increase of the fitting
error by accounting for both regularization and saturation, is rather small since
both error contributions are strongly correlated in the sense that the regulariza-
tion parameter Q has tuned to avoid actuator saturation. Finally, it is clear that in
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AO systems where actuator saturation is no issue, the fitting error is smaller, and
optimal control may already become favorable at lower Greenwood to sample
frequency ratios.

As pointed out in the previous section, the relative improvement in cost func-
tion Ĵc/Ĵo, the FWHM of the corrected image and Strehl have been used as addi-
tional measures to compare the performance of both control algorithms. The per-
formance measures have been computed for the Greenwood to sample frequency
ratios indicated by the vertical dashed lines in Figure 4.7 and are summarized in
Table 4.2. Furthermore, also the mismatch error Ψ(p0, g1, g2, g3) × 100%, obtained
by fitting the observed intensity to the Airy pattern is included in the table. The
averaged or long exposure images Ī(p) used in computing the FWHM and the
Strehl ratio are depicted in Figure 4.8. Since the science object in the setup resem-
bles a point source, the averaged image can be interpreted as the point spread
function (PSF) obtained with AO wavefront correction.

Optimal control Common approach Relative

fG/f FWHM Ψ Strehl FWHM Ψ Strehl Ĵc/Ĵo

(×10−1) [px] [%] [ ] [px] [%] [ ] [ ]

0.43 14.5 0.32 0.85 14.5 0.33 0.79 1.70

1.1 14.5 0.26 0.85 14.5 6.14 0.57 4.66

2.1 14.5 0.28 0.81 27.6 12.5 0.20 11.7

4.3 14.6 0.29 0.78 45.1 6.18 0.12 19.3

Table 4.2: Performance comparison control algorithms

The results in Table 4.2 and Figure 4.8 are consistent with the previous obser-
vations. They show that optimal control is able to achieve a considerable per-
formance improvement at large Greenwood to sample frequency ratios, while the
performance improvement at low Greenwood to sample frequency ratios is rather
modest. When considering the different performance measures, especially the rel-
ative improvement in cost function Ĵc/Ĵo is large. This is to be expected as the H2-
optimal controller is especially designed to minimize this criterion. Moreover, this
suggests that the performance gain with respect to the other criteria may be even
larger if no input regularization is needed. The table shows that the optimal con-
trol is also able to achieve a performance improvement with respect to the optical
performance criteria. Especially at large Greenwood to sample frequency ratios,
optimal control gives rise to a considerable improvement of the observed long ex-
posure image. The observed image has a much smaller FWHM, a higher Strehl
and smaller mismatch error with the theoretical Airy pattern. This is confirmed
by the images depicted in Figure 4.8.

Figure 4.9 shows the normalized encircled energy achieved with both the op-
timal and the common AO control approach for different Greenwood to sample
frequency ratios. Also this figure shows that optimal control is able to improve
the science image and that the gain in performance increases with the Greenwood



146 Chapter 4 Experimental results: Exploiting the Spatio-Temporal Correlation

Figure 4.8: The averaged image Ī(p) obtained from the science camera when using
AO, recorded at different Greenwood to sample frequency rations fG/f . The left
column shows the images obtained with the classical AO control approach, while
the images in the right column correspond to the optimal control approach. Since
the science object in the setup resembles a point source, the averaged image can be
interpreted as the point spread function obtained with AO wavefront correction.
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Figure 4.9: Normalized encircled energy for different Greenwood to sample fre-
quency ratios.

to sample frequency ratio. Whereas the encircled energy curves obtained with
the common control approach indicate at a rather spread out intensity pattern,
optimal control gives rise to a science image in which a larger fraction of the inci-
dent energy is concentrated in the central core. Finally note that both the FWHM
and the normalized encircled energy, obtained with the optimal control approach,
are hardly influenced by Greenwood to sample frequency ratio. This is in close
agreement with the observation that the mean-square residual phase error shows
a weaker dependence on the Greenwood to sample frequency ratio for the opti-
mal than the for the common control approach. Optimal control is therefore also
attractive from the viewpoint of performance robustness to variations in atmo-
spheric turbulence conditions.

4.7 Conclusions

In this paper, we have demonstrated a recently proposed data-driven H2-optimal
control approach (Hinnen et al. 2006) on an experimental setup. In contrast to
existing AO control approaches, this approach does not assume any form of de-
coupling and has the potential to exploit the spatio-temporal correlation imposed
by the Taylor hypothesis. Computing the optimal controller requires an accurate
model of the transfer function from actuator inputs to WFS outputs. By analyzing
the dynamic behavior of the WFS, it has been shown that if the wavefront correc-
tion device can be considered to be static, the scalar-dynamics of the discrete-time
transfer function from actuator inputs to WFS output can be modeled as an integer
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number of samples delay followed by a two taps impulse response. This model
structure fits perfectly in the proposed H2-optimal control strategy as it allows
the optimal controller to be computed analytically. A data-driven identification
approach, based on separable least squares optimization, has been developed to
identify a transfer function of the desired structure from input-output data.

The performance of the data-driven H2-optimal control approach has been
compared with a commonly applied AO control law. In this comparison different
performance criteria based on measurements from both the science camera and
WFS have been used. The considered performance criteria include an estimate of
the mean-square residual wavefront error, the FWHM, the Strehl and normalized
maximum encircled energy. The experiments show that optimal control is able to
achieve a performance improvement, with respect to each of these criteria, and
that the gain in performance increases with the Greenwood to sample frequency
ratio. A careful analysis of the dominant error source in the setup reveals that the
gain in performance can be attributed to a reduction of the temporal error. The
total mean-square wavefront error can be decomposed in a wavefront fitting error
and a temporal error. The wavefront fitting error depends on the turbulence con-
ditions and the applied wavefront correction device and cannot be influenced by
the controller. The temporal error, on the other hand, is strongly influenced by the
controller. By exploiting the spatio-temporal correlation, the optimal controller is
able to reduce the effect of temporal error. Since the temporal error is an expo-
nentially increasing function of the Greenwood to sample frequency ratio, there
is a lot to be gained at high ratios. At low ratios the performance is almost com-
pletely determined by the fitting error. Even though the measurement noise in the
experimental setup is almost negligible, it may be an error source of considerable
importance in real-life telescope systems. Since exploiting the spatio-temporal
correlation is expected to reduce the effect of measurement noise, optimal control
may also be beneficial in low signal to noise situations. The gain in performance
under these conditions remains a point of further investigation.
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5 CHAPTER

Conclusions and Recommendations

T
his final chapter consists of two sections. In the first section we will
briefly summarize the main conclusions that can be drawn from the

research presented in this thesis. This discussion gives rise to a number
of suggestions and recommendations for further research, which will be
elaborated in the subsequent section.

5.1 Conclusions

In this thesis we have developed an optimal control strategy for adaptive optics
(AO). The AO control design problem has been approached as multi-variable dis-
turbance rejection problem, using general concepts from the field of systems and
control. More specifically, the followed control strategy is one of identifying dy-
namic models for the atmospheric wavefront distortions and the AO system, fol-
lowed by an minimum-variance optimal control design. It has been shown, that
such an optimal control strategy can be used to improve the wavefront correction
performance of current AO systems. Since the applied strategy is very general,
many of the developed concepts can also be applied outside the field of AO.

The problem of finding a disturbance model that accurately describes the tur-
bulence dynamics is the most fundamental step in determining the optimal con-
troller. From a theoretical point of view, the atmospheric distortions can be de-
scribed in terms of frozen layers with a Kolmogorov spatial distribution. Consid-
ering a single point in the aperture, this implies that the power spectrum of the
temporal evolution of the wavefront distortions follows a −11/3 power law. Since
the theoretical model provides a description in terms of power spectra, a subspace
based algorithm for estimating the minimum-phase spectral factor from spectral
data has been derived. The proposed spectral factor approximation algorithm has
been successfully applied to approximate the non-rational Kolmogorov spectrum
over a certain frequency region of interest, specified by a set of equidistantly spec-
tral samples. Such a finite-dimensional approximation of the Kolmogorov spec-
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trum could be useful in replacing the conventional design procedure of the par-
allel feedback loops in classical AO control with a model based approach that ex-
plicitly accounts for the temporal dynamics in the wavefront. A full multi-variable
optimal control design procedure, however, requires an atmospheric disturbance
model that also describes the mutual relation between the WFS channels. Even
though the proposed spectral factor approximation algorithm is suitable for ma-
trix valued power spectra, its computational complexity prohibits one to consider
more than five to ten independent channels using a general purpose PC. The main
complication in this approach is to guarantee the preservation of the positive re-
alness property which is necessary to perform the spectral factorization step. De-
spite the improved efficiency achieved by using conic linear programming, the
spectral factorization remains too time consuming to scale the algorithm to the
number of channels used in a typical AO system.

To avoid the problem of spectral factorization, a dedicated subspace identifi-
cation algorithm that estimates the atmospheric disturbance model directly from
open-loop WFS data, has been developed. The use of data-driven identification is
attractive as it yields a good match with the prevalent turbulence conditions with-
out the need for accurate estimates of physical parameters, such as the wind speed
and wind direction. One of the key features of the proposed algorithm is that it
provides a direct estimate of the system matrices of the one-step ahead predictor
model that corresponds to the minimum-phase spectral factor. In this approach
the minimum-phase requirement on the atmospheric disturbance model is trans-
lated into a stability requirement on the system matrices of the identified Kalman
predictor model. This requirement can be easily checked and if necessary enforced
by using Schur re-stabilization.

Before modeling the WFS signal it is represented in an reduced basis, which
parametrizes only the observable part of the wavefront. This re-parametrization
of the sensor space has the advantage that it reduces the dimension of the identifi-
cation problem and improves the numerical conditioning. To arrive at an efficient
implementation, both in terms of the number of flops and the memory require-
ments, the different steps of the algorithm have been expressed in terms of the R-
factor of a single RQ factorization used for data-compression. A further efficiency
improvement is achieved by exploiting the displacement structure of the block-
Hankel matrix in computing the R-factor. The resulting subspace identification
algorithm is sufficiently efficient to identify a full multi-variable ARMA distur-
bance model for AO systems with up to a few hundred degrees of freedom on a
general purpose PC with a 3 GHz Intel Pentium IV processor and 512 Mb of inter-
nal memory. The spatio-temporal correlation imposed by atmospheric wavefront
distortions that satisfy the Taylor hypothesis can be described as a special case of
a such general multi-variable disturbance model. The proposed subspace identifi-
cation algorithm has been successfully demonstrated on both open-loop WFS data
obtained from an experimental setup as well as on real turbulence measurements
obtained from the JOSE seeing-monitor at the William Herschel Telescope.

Besides an atmospheric disturbance model, the optimal control design strat-
egy also requires an accurate model of the transfer function from actuator inputs
to WFS outputs. By analyzing the dynamic behavior caused by the integrating
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action of the WFS camera, it has been shown that if the deformable mirror (DM)
has a time constant that is short compared to the WFS exposure time, the scalar
dynamics of this transfer function reduces to an integer number of samples delay
followed by a two taps impulse response. A data-driven identification algorithm,
based on separable least squares optimization, has been developed for identify-
ing the model parameters of the derived model structure. In the case that the DM
dynamics cannot be neglected, more general identification tools have be used to
identify the AO system dynamics.

Given the identified model for the wavefront distortions and the AO system
dynamics, the AO control problem has been expressed in an H2-optimal control
framework. By making a clear distinction between performance and measure-
ment outputs, H2-optimal control provides an attractive framework to account
for the fact that the WFS is not able to directly measure the phase, while it is
the mean-square residual phase error which needs to be minimized. Computing
the H2-optimal controller generally involves the numerical solution of two Riccati
equations. By using the Youla parametrization to open the control loop, it has
been shown that as a result of the minimum-phase property of the identified dis-
turbance model at least one of the Riccati equations can be eliminated. Also the
second Riccati equation can be eliminated if the model of the AO system dynamics
has a known inner-outer factorization. It has been shown that this is in particular
the case for the previously derived model structure of an AO system in which the
only dynamics can be traced back to the WFS camera. The so obtained analyti-
cal expressions, provide a straightforward way to compute the optimal controller
from the atmospheric disturbance model.

Furthermore, by comparing the optimal controller with the equivalent optimal
feedforward controller, it has been shown that the controller can be interpreted as
wavefront predictor followed by a dynamic filter. The task of the wavefront pre-
dictor is to compensate for pure time delays, while the dynamic filter projects
the estimate on the actuator space and makes a trade off between the objective of
minimizing the fitting error and the control effort. This interpretation of the op-
timal controller is in particular useful as it shows that optimal control approach
basically reduces to a modeling and identification problem for wavefront predic-
tion. Hence, from a theoretical point of view, the wavefront prediction step on
the basis of the identified atmospheric disturbance model could be in principle
replaced by any other suitable wavefront prediction scheme. The proposed sub-
space identification algorithm, together with the analytical expression for the op-
timal controller, provides a non-iterative way to go from open-loop WFS data to
closed-loop controller design.

The proposed data-driven H2-optimal control design approach has been de-
monstrated on an AO laboratory setup with a single layer Kolmogorov type of
turbulence simulator. In this validation study the performance of the optimal con-
troller has been compared with a classical control law consisting of a minimum-
variance wavefront reconstructor followed by a first-order lag filter as a temporal
compensator. The validation experiments demonstrate that optimal control is ef-
fective in reducing the temporal error, which is the error caused by both pure time
delays and bandwidth limitations in the control system. Both control strategies
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have been compared over a wide range for Greenwood to sample frequency ra-
tios, by estimating the mean-square residual phase error. The experiments show a
considerable performance improvement at large Greenwood to sample frequency
ratios, while the gain at low ratios is modest.

This behavior has been explained by decomposing the residual wavefront er-
ror in the setup in two main contributions, i.e. the wavefront fitting error and the
temporal error. Since the spatial distribution of the phase distortions of the turbu-
lence simulator are fixed, the wavefront fitting error can be considered constant.
The temporal error on the other hand, is an exponentially increasing function of
the Greenwood to sample frequency. At low Greenwood to sample frequency ra-
tios, the fitting error is the dominant error source so that there is only little room
for improvement by control. When the sample frequency is sufficiently high and
measurement noise is no issue, the change in wavefront from sample to sample is
small, which renders the classical control law close to optimal. However, since for
large Greenwood to sample frequency ratios the temporal error becomes the dom-
inant error source there is a lot to be gained by optimal control. By exploiting the
spatio-temporal correlation in the wavefront, optimal control is able to anticipate
future wavefront distortions and to reduce the temporal error. Optimal control
does not only achieve an performance improvement with respect to the mean-
square residual phase error, but also with respect to optical performance criteria
such as the Strehl ratio, the FWHM and the encircled energy of the corrected spot.
Also with respect to these criteria, the benefit of optimal control becomes more
and more apparent at higher Greenwood to sample frequency ratios.

In conclusion, the validation experiments have demonstrated that optimal con-
trol is especially effective in reducing the temporal error, which becomes the dom-
inant error at high Greenwood to sample frequency ratios. From a practical point
of view, this implies that there is potentially a lot to gain in heavy turbulence
conditions including high wind speeds and small Fried parameters, and under
low light level conditions where measurement noise prohibits the use of a high
sampling frequency. Even though the effect of measurement noise has not explic-
itly been considered in the validation experiments, it is clear that optimal control
may also be beneficial in reducing this error source. Since optimal control includes
the spatio-temporal correlation, past and neighboring WFS measurements may all
contribute to improve the prediction of the wavefront distortion. The Greenwood
to sample frequency ratios considered in the validation experiments are relatively
high compared to those encountered in real telescopes. Considering typical val-
ues for the wind speed, Fried parameter and sample frequency of respectively
v̄ = 10m/s, r0 = 0.2 m, and f = 500 Hz, gives rise to a Greenwood to sample fre-
quency ratio of fG/f = 0.04. This is indeed at the lower end of the considered
Greenwood to sample frequency range.

The reason for considering these high ratios is twofold. First and foremost,
since the experimental setup uses a DM with only a small number of actuators the
fitting error is relatively large. Also the input regularization used to avoid actua-
tor saturation contributes to a higher fitting error. The relatively large fitting error
implies that it takes higher Greenwood to sample frequency ratios before the effect
of the temporal error becomes noticeable. To demonstrate the benefit of optimal
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control it is therefore necessary to consider higher ratios. Since most real tele-
scopes have more actuators and actuator saturation is usually not a problem, the
contribution of the fitting error will be smaller, and optimal control is expected to
become already favorable at lower and hence more realistic Greenwood to sample
frequency ratios. The temporal error is indeed one of the dominant error sources
in for instance the Keck telescope (van Dam et al. 2004). Furthermore, note that
even on the experimental setup the reduction in mean-square residual wavefront
error achieved by optimal control at fG/f = 0.04 is still in the order 45%.

The second reason to compare both algorithms over a wide range of ratios is
that it is interesting to consider the possible increase in Greenwood to sample fre-
quency ratio for achieving a certain level of performance. On the experimental
setup, optimal control achieves the same level of performance at a Greenwood
to sample frequency ratio of fG/f = 0.45 as the classical approach at a ratio of
fG/f = 0.04. This implies that, at least in this particular case, optimal control
is able to achieve the same performance at less than one tenth of the sample fre-
quency. Lowering the sample frequency is especially attractive as this enables
longer WFS exposure times, which will reduce the measuring noise. By reducing
the effect of measurement noise, optimal control is very promising in raising the
limiting magnitude of the guide star needed for closing the control loop. In this
way, control may help to improve the sky coverage of current AO systems.

Finally, it is interesting to note that the performance achieved with the optimal
control approach shows a much weaker dependence on the Greenwood to sample
frequency ratio. Optimal control may therefore also be used to improve the per-
formance robustness of the AO system with respect to fluctuations in turbulence
conditions. It is very difficult to predict how these results precisely translate to
real telescopes, however the experiments have clearly demonstrated the benefit
of using optimal control.

5.2 Recommendations

Even though the results presented in this thesis have clearly demonstrated the
opportunities and advantages of improved control for AO, the research within
this area is far from finished. In view of experience and insights gained over the
course of time, the following suggestions are made for future research:

• The data-driven H2-optimal control approach presented in this thesis uses
a reduced representation of the WFS signal space that parametrizes only
the observable part of the wavefront. To achieve a further reduction in the
computational complexity, it may be useful to follow a similar procedure to
remove the uncontrollable part of the wavefront. For a static mirror, this can
be achieved in a completely analogous way by deriving a projection matrix
from the SVD of the influence matrix. Introducing a minimal representa-
tion for the WFS signal in the intersection of the observable and controllable
part of the wavefront may lead to a considerable reduction in the number of
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WFS signals that has to be modeled. Note that after removing the uncontrol-
lable modes, the dimension of the WFS is always smaller than the number of
control inputs and the number of reconstructed wavefront points. Since the
AO system is not able to influence the uncontrollable part of the wavefront,
this part of the wavefront does not need to be predicted and can hence be
disregarded without any loss of performance.

• Another interesting extension of the proposed H2-optimal control strategy
is related to the analytical expression for the closed-loop optimal controller.
This expression has been derived for the case that the AO system can be
characterized by a scalar dynamic transfer function consisting of an integer
number of samples delay and a two taps impulse response. This model
structure has shown to be valid for AO systems where the DM dynamics
can be neglected and the only dynamics derives from the integrating action
of the WFS camera. However, in deriving the analytical expression for the
optimal controller the only property required to avoid the second Riccati
equation is that the transfer function from control input to WFS output has
a known inner-outer factorization. This implies that the class of AO systems
for which the optimal controller can be computed analytically is larger than
that of AO systems with a static DM. In particular, all AO systems with a
transfer function that is minimum-phase can be considered in this way. Also
for all AO systems with a scalar dynamic transfer function with known zeros
it is possible to derive an analytical expression for the optimal controller, and
if the zeros are unknown, the large scale Riccati equation can be replaced
by a Riccati equation for a SISO system to yield an semi-analytical solution.
Note that this is particular useful for AO systems of which the DM dynamics
can be described by a common transfer function for each of the actuators.

• For the practical application of the proposed control approach it would be
interesting to make the subspace algorithm suitable for closed-loop identifi-
cation. In its current configuration the algorithm uses open-loop WFS data
to identify the atmospheric disturbance model. A first important reason for
considering closed-loop identification might be the limited dynamic range
of the WFS. In many AO systems, the WFS has been optimized for sensitiv-
ity rather than for a large linear dynamic range. This implies that for these
systems it is impossible to collect open-loop WFS without being distorted.
Since the WFS excursions during closed-loop operation are much smaller,
closed-loop identification may provide a way out to resolve this issue. In
this approach one could think of using the classical AO control as initializa-
tion for collecting closed-loop data. The closed-loop data are then used to
identify an atmospheric disturbance model and to update the controller.

A second reason for considering closed-loop identification is that it provides
a way to deal with slow variations in the turbulence conditions. As pointed
out before, the turbulence statistics may change on a time-scale of a few min-
utes. To guarantee close to optimal performance over longer time scales, it
becomes necessary to update the atmospheric disturbance model on a reg-
ular basis. A closed-loop identification scheme may enable a regular model
update without interrupting the observations. In this perspective, it would
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also be interesting to compare the algorithm with the adaptive control strate-
gies discussed in Section 1.4.5. A quasi-adaptive scheme based on the offline
methods developed in this thesis might be attractive as it uses a more gen-
eral model structure and is not sensitive to convergence problems. Adaptive
control schemes on the other hand might be more suitable for tracking fast
changes in the turbulence conditions.

• From an implementational point of view, the proposed control strategy con-
sists of an off-line part concerned with the control design and an on-line part
that implements the designed controller. Especially the computational com-
plexity of the off-line part increases rapidly with the number of degrees of
freedom of the AO system, i.e. the number of WFS and DM channels. An
important point for further research is therefore to increase the number of
channels that can be handled by the optimal control approach. The intro-
duction of the reduced basis as discussed in the first item of this list, may
well lead to an efficiency improvement but is certainly not be able to resolve
the issue. As explained before, the problem of identifying an suitable at-
mospheric disturbance model is currently the most computational intensive
step. For this reason most of the research effort in scaling up the control
strategy should be devoted to the modeling and identification part.

Even though the proposed subspace algorithm provides very satisfying re-
sults for the considered size of AO systems, it is not very suitable for deal-
ing with very large systems. Like any subspace identification algorithm,
the algorithm is based on standard matrix operations performed on a block-
Hankel matrix filled with measurement data. Under the assumption that the
choice for the number of block-rows of past and future data, p and f , scales
linearly with the number of channels ms, both dimensions of the block-
Hankel matrix grow quadratically in ms. With the efficient RQ-factorization,
this gives rise to a total computational complexity that scales as the fifth
power of the number of channels, i.e. O(m5

s). Furthermore, note that under
these assumptions also the number of time samples for filling the block-
Hankel matrix increases quadratically with ms. This implies that more and
more data are needed for identifying the atmospheric disturbance model
which may eventually lead to a contradiction with the stationarity assump-
tion. The above arguments demonstrate that, even though there might be
still some room for improvement, it is not very likely that subspace algo-
rithms can be scaled to AO systems with hundreds to thousands of degrees
of freedom. For such a system, the identification of a central atmospheric
disturbance model is no longer feasible and a fundamentally different strat-
egy has to be used. For large AO systems and high sample frequencies
also the on-line computational complexity will become an issue. The on-
line computational complexity is that of implementing a state-space system
and scales therefore in the same way as the classical AO control approach
when implemented as a matrix-vector multiply.

One interesting approach to deal with both the on-line as well as the off-line
increase in computational complexity might be the development of algo-
rithms to identifying structured models that can be used in a decentralized
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or distributed control design approach. Important research questions are
then to quantify the loss in performance compared to the central solution
and to find out if there is still any room for improvement over the classical
control approach using an advanced minimum-variance wavefront recon-
structor based on sparse matrix techniques.

• Apart from the simulations on the William Herschel telescope WFS data,
all simulations and experiments have been performed on the basis of an at-
mospheric turbulence simulator which behaves as perfectly frozen. Since
the proposed control strategy does not depend on the Taylor hypothesis, it
would be interesting to gain more insight in its performance when the tur-
bulence deviates from being frozen. Here one could think of simulations
or experiments with multiple layers of frozen turbulence, moving with dif-
ferent wind speeds in different directions. More generally speaking, the AO
control community may benefit from a generally available and well accepted
simulation toolbox for testing control algorithms. Such a toolbox should
contain well validated dynamic models of both the AO system components
and the atmospheric wavefront distortions as well as tools for performance
analysis. By defining a number of realistic and relevant simulation scenarios
it becomes possible to compare the performance of different new developed
control algorithms.

• The proof of the pudding in the eating. The research results presented in
this thesis have demonstrated the opportunities and possible advantages of
a control strategy that is able to account for the spatio-temporal correlation
in the wavefront. Now the proposed data-driven H2-optimal control strat-
egy has been successfully demonstrated on an AO laboratory setup, the ul-
timate test is to apply it on a real telescope. Even though the above research
suggestions might be useful to improve different aspects of the developed
techniques, in the end the only way to find out if advanced control can live
up to the expectations is to demonstrate it in reality.



A APPENDIX

H2-Optimal Control with a
Quasi-Static Mirror

T
he goal of this appendix is to formalize the proof of Theorem 3.3. In
Chapter 3 we have provided a brief outline of the line of reasoning

used to arrive at Theorem 3.3. This outline was mainly intended to pro-
vide insight and can be seen as a sketch of the proof. In this appendix
we will actually elaborate the intermediate steps used in deriving the an-
alytical expressions for the optimal feedforward and feedback controller.
To simplify the derivation, we will rely on a mixture of state-space and
transfer function representations.

The remainder of this appendix is organized as follows. In Section A.1,
we will first provide an overview of the different ways used to represent
a linear time invariant (LTI) system. Furthermore, this section provides a
review of a number of useful operations on state-space realizations. These
operations will be used in Section A.2 to derive a state-space realization
for the optimal feedforward controller W(z). Finally, in Section A.3, the
derived expression for W(z) is used to compute the optimal feedback con-
troller C(z).

A.1 Useful operations on state-space realizations

Before defining some operations useful in deriving the analytical expressions for
the optimal feedforward and feedback controller, we will first introduce some ad-
ditional notation. Let P denote a LTI system with state-space representation

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k),

(A.1)

then the following notation will be used to characterize its input-output behavior.
First of all, we will use the quadruple (A, B, C, D) to compactly refer to the state-
space realization in (A.1). Furthermore, the transfer function corresponding to P

159
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is given by P (z) = D + C(zI − A)−1B, where z denotes the unit shift-forward
operator in the time-domain and the complex indeterminate in the z-domain. For
notational convenience, this transfer function will also be denoted as

P =

[
A B

C D

]
. (A.2)

Note that since (A.2) is defined as an alternative representation of the transfer
function P (z), the different entries are not restricted to pure rational matrices but
are allowed to be rational functions of z themselves. For the interpretation of such
a transfer function, one should resort to the definition of P (z). Using the above
definitions, the basic operation useful in deriving the state-space expressions for
the optimal controller have been summarized in the list below. An more exten-
sive overview of basic operations on state-space realization linear systems is given
in Fraanje (2004). The first three operations can be proved quite straightforwardly
by performing basic algebraic manipulations on the state-space equations (A.1) of
the respective systems. The last operation, on the other hand, is a special case of
the causal anti-causal split in Verhaegen (1997).

Similarity transformation: Consider a LTI system P with state-space realization
(A, B, C, D) and let the system P ′ be defined as

P ′ =

[
TAT−1 TB
CT−1 D

]
, (A.3)

with T a non-singular matrix. Then P and P ′ have the same input-output
behavior and are said to be equal up to the similarity transformation T .

Pseudo-inverse of system: Consider a LTI system P with state-space realization
(A, B, C, D) and let the system P † be defined as

P † =

[
A − BD†C BD†

− D†C D†

]
, (A.4)

then the following cases can be distinguished:

1. The direct feed-trough matrix D is non-singular. In this case, D† = D−1

and P † = P−1 is the inverse of P , i.e. PP−1 = P−1P = I .
2. The matrix DT D is non-singular. In this case D† = (DT D)−1DT and P †

is the left pseudo-inverse of P , i.e. P †P = I .
3. The matrix DDT is non-singular. In this case D† = DT (DDT )−1 and P †

is the right pseudo-inverse of P , i.e. PP † = I .

Cascade of two systems: Consider two LTI systems, P1 and P2, with state-space
realizations (A1, B1, C1, D1) and (A2, B2, C2, D2), respectively. Furthermore,
let the number of inputs to P1 be equal to the number of outputs of P2, then
the cascade connection P1P2 has a state-space realization

P1P2 =

⎡
⎣

A2 0 B2

B1C2 A1 B1D2

D1C2 C1 D1D2.

⎤
⎦ (A.5)



A.1 Useful operations on state-space realizations 161

Causality operator for system products: Let P1 and P2 be two strictly stable LTI
systems with state-space realization (A1, B1, C1, D1) and (A2, B2, C2, D2),
i.e. all eigenvalues of A1 and A2 are located inside the unit-disk. Then causal
part of the cascade of P1 and the adjoint P ∗

2 is given by

[P ∗
2 P1]+ =

[
A1 B1

DT
2 C1 + BT

2 XA1 DT
2 D1 + BT

2 XB1

]
(A.6)

where, [·]+ denotes the causality operator and where X is the solution to the
Sylvester equation X − A1XAT

2 = B1B
T
2 .

The above operations in principle suffice to derive the analytical expressions
for the optimal feedforward and feedback controller. This, however, would re-
quire the state-space realization of all relevant transfer function, i.e. of both H(z),
Pew(z) and the inner-outer and outer-inner factorizations of Peu(z) and Pyw(z),
respectively. Since the transfer matrix Pew(z) and the outer-inner factorization
Pyw(z) = Pyw,o(z)Pyw,i(z) as derived in Chapter 3 are in the form P (z) = D +
C(zI − A)−1B, their respective state-space realization can be easily read off. Also
in deriving a state-space realization for the transfer functions H(z) and Peu(z),
there is no fundamental problem. However, since these transfer functions both
depend on an undetermined delay z−d (i.e. d is fixed, but still unknown), this
would lead to a very cumbersome notation as well as a substantial increase in
the order of systems used in the intermediate steps of the computation. For this
reason, it would be attractive if the need for an explicit state-space realization of
z−d could be avoided. Indeed, this can be achieved by using a mixture of transfer
function and state-space notation. The following Lemma provides a convenient
expression for the causal part of a strictly stable LTI system P of which the out-
puts are advanced d samples in time. This result can be seen as a special case of
the causality rule for system products (A.6) with P2 = z−d, but avoids the need
for a state-space realization of z−d.

Lemma A.1 (Causal part of time-shifted system) Let P be a strictly stable LTI sys-
tem with state-space realization (A, B, C, D). Then the causal part of the system obtained
by shifting the system output d ∈ �, d > 0 steps forward in time is given by

[
zdP

]
+

=

[
A B

CAd CAd−1B

]
. (A.7)

Proof: Even though the lemma could be proved via the causality rule for system
products (A.6), we will not pursuit this approach for the reasons explained above.
Instead, the lemma is proved in a transfer function setting. Since the system P is
strictly stable, (zI − A) is boundedly invertible for |z| ≥ 1. Hence, the transfer
function zdP can be expanded into an infinite Neumann series as

zdP = zd
(
D + C(zI − A)−1B

)

= zdD + zd−1C(I − z−1A)−1B

= zdD + zd−1C

∞∑

i=0

z−iAiB
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Considering this expansion, applying the causality operator is equivalent to col-
lecting the causal terms with zi, i ≤ 0. By selecting the proper terms and factoring
out the common factor, we can write

[
zdP

]
+

= C

∞∑

i=d−1

AiB

= CAd−1B + C
∞∑

i=0

z−iAd+iB

= CAd−1B + CAd(zI − A)−1B

Expressing this transfer function in the form (A.2) finally gives desired result. �

A.2 Optimal feedforward controller or Wiener filter

In outlining the procedure used to arrive at Theorem 3.3, we have explicitly de-
rived expressions for the transfer function Pew(z), the inner-outer factorization
of Peu(z) and the outer-inner factorization of Pyw(z). In this section, these ex-
pressions will be used to compute the optimal feedforward controller W(z). By
applying the operations introduced in the previous section, the different terms in
the expression for the Causal Wiener filter in Lemma 3.1, i.e. equation (3.30), will
be elaborated one by one to arrive at the state-space expression of W(z).

First consider the pseudo-inverse of the outer factor Pyw,o, i.e. P†
yw,o. In Chap-

ter 3 it has been argued that since Pyw(z) is minimum-phase, it has the follow-
ing valid inner-outer factorization Pyw = Pyw,oPyw,i, where Pyw,o = Pyw and
Pyw,i = I . Hence, computing P†

yw,o is equivalent to computing P†
yw. By trans-

forming the transfer function (3.31) into the form (A.2) and applying the rule for
inverting a system (A.4), P†

yw,o can be expressed as

P†
yw,o =

⎡
⎣

Ad − KdΣ1Cd Kd

R
−1/2
v Σ1Cd R

−1/2
v

0 0

⎤
⎦ . (A.8)

Let us now consider the causal factor [Peu,iPewPyw,i]+. From the previous
discussion it is clear that Pyw,i = I . Furthermore, the outer-inner factorization
of Peu as provided in equation (3.34) shows that two separate cases have to be
considered, i.e. |α| ≤ 1 and |α| > 1. Assume for the moment that |α| ≤ 1. In
this case the adjoint inner-factor P∗

eu,i = zd and therefore
[
P∗

eu,iPewP∗
yw,i

]
+

=[
zdPew

]
+

. By transforming the transfer function (3.32) into the form (A.2) and
applying Lemma A.1, we can hence write

[
P∗

eu,iPewP∗
yw,i

]
+

=

⎡
⎢⎣

Ad KdR
1/2
v 0

CdA
d
d CdA

d−1
d KdR

1/2
v 0

0 0 0

⎤
⎥⎦ . (A.9)
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In the case that |α| > 1, computing the causal factor [Peu,iPewPyw,i]+ is a bit more
involved. To avoid the notational problems in representing Peu,i(z) in state-space
form, the pure delay z−d is split off and considered separately. In this way, we
obtain

Peu,i(z) =
z + α

zd(αz + 1)
I =

1

zd

(
1/α +

1 − α2

z + 1/α

)
I (A.10)

= z−d

[
−(1/α)I I

(1 − 1/α2)I (1/α)I

]
(A.11)

Since
[
P∗

eu,iPewP∗
yw,i

]
+

= [zd[z−dP∗
eu,iPewP∗

yw,i]+]+, the causal factor can be com-
puted by first neglecting the delay and then applying Lemma A.1 to account for
it afterwards. Applying the causality operator for system products (A.9) to the
delay free part of (A.11) it gives rise to the following expression

[(
z + α

αz + 1

)∗

Pew

]

+

=

⎡
⎣

Ad KdR
1/2
v 0

1/α Cd + XAd ∗ 0
0 0 0

⎤
⎦ , (A.12)

where X denotes the solution to the Sylvester equation (1 + 1/α)XAd = (1 −
1/α2)Cd and ∗ denotes a matrix irrelevant for the remainder of the derivation as it
drops out in accounting for the delay. By solving for XAd and accounting for the
delay, the state-space realization of

[
P∗

eu,iPewP∗
yw,i

]
+

appears to be precisely equal
to the result obtained before, i.e. for all α ∈ � the causal factor is given by (A.9).

Finally consider the pseudo-inverse of the outer factor Peu,o, i.e. P†
eu,o. Also

in this case we have to distinguish between the conditions |α| ≤ 1 and |α| > 1.
Like P†

yw,o, the transfer function P†
eu,o is computed by first finding a state-space

realization for the outer factor Peu,o given in equation (3.34) and then applying
the rule for system inversion (A.4). For |α| ≤ 1 this gives rise to

P†
eu,o =

⎡
⎣

0 I
−αH −H

0 Q1/2

⎤
⎦
†

(A.13)

=

[
−G −H†

Q ∗
−G −H†

Q ∗

]
, (A.14)

where H†
Q

.
= (HTH + Q)−1HT and G

.
= −αH†

QH . Like before, the asterisks ∗ are
used to denote matrices that do not influence the final solution. Here, knowledge
about these matrices is not required since the second part of the output equation
of (A.9) is zero and we are only interested in the product of P†

eu,o and the causal
factor. In a similar way, P†

eu,o for |α| > 1 can be expressed as

P†
eu,o(z) =

⎡
⎣

0 I
−H −αH
0 Q1/2

⎤
⎦
†

. (A.15)
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By introducing the definitions β
.
= 1/α and H̄

.
= αH it is clear that equations (A.14)

and (A.15) have precisely the same structure. As a result, it is possible to ex-
press the pseudo-inverse of Peu,o for both |α| ≤ 1 and |α| > 1 in the same way.
More specifically, by extending the above definition of H†

Q as in (3.36), the pseudo-
inverse of Peu,o for all α ∈ � is given by (A.14).

After having derived the state-space realizations (A.8), (A.9) and (A.14) for
P†

yw,i,
[
P∗

eu,iPewPyw,i

]
+

and P†
eu,o, respectively, Lemma 3.1 can now be used to

derive the state-space realization for the optimal feedforward controller W(z). By
applying the cascade rule for two systems (A.5), the optimal feedforward con-
troller W(z) can be expressed as

W(z) = −P†
eo,o

⎡
⎢⎣

Ã Kd

CdA
d−1
d Ã CdA

d−1
d Kd

0 0

⎤
⎥⎦ = −

⎡
⎢⎣

Ã 0 Kd

FÃ −G FKd

FÃ −G FKd

⎤
⎥⎦ , (A.16)

where the matrix F is defined as F
.
= H†

QCdA
d−1
d . The derived expression for the

optimal feedforward controller W(z) is in agreement with Theorem 3.3.

A.3 State-space realization feedback controller

In the previous section we have derived a state-space realization for the optimal
feedforward controller W(z). As explained in Chapter 3, this can be used together
with the Youla parametrization

C(z) = W(z)(I − Σ1H(z)W(z))−1, (A.17)

to derive a state-space realization for the optimal feedback controller C(z). To
elaborate equation (A.17) it is useful to consider the system obtained by delay-
ing the output of W(z) by one sample. Since the second part of the state-update
equation and the output equation in (A.16) are equal, the one sample delay can be
introduced by choosing the output equal to second part of the state, i.e.

z−1W(z) =

⎡
⎣

Ã 0 Kd

FÃ −G FKd

0 I 0

⎤
⎦ . (A.18)

Note that this way of incorporating the one sample delay has the advantage that it
does not increase the system order. Using the above expression for z−1W(z) and
applying the cascade rule for two systems (A.5), we can write

I − Σ1H(z)W(z) = I − z−d+1

[
0 I

αΣ1H Σ1H

]
W(z) (A.19)

=

⎡
⎢⎢⎣

Ã 0 0 Kd

FÃ −G 0 FKd

0 I 0 0
0 −z−d+1Σ1H −z−d+1αΣ1H I

⎤
⎥⎥⎦ ,(A.20)
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where the d − 1 samples delay have been included in operator form in the output
equation of the system. The above state-space realization for I − Σ1H(z)W(z) is
however not minimal as can be seen by explicitly writing out the state update and
output equations. To this end let x1(k), x2(k) and x3(k) denote the three compo-
nents of the state-vector which is partitioned in accordance with the partitioning
of the state-space matrices in equation (A.20). Using this notation, we infer from
the third state update equation that x3(k + 1) = x2(k). By introducing a time-
shifted version of the state x2, i.e. x̄2(k + 1)

.
= x2(k), it is now possible to express

the output y(k) of the state-space equations as

y(k) = −z−d+1Σ1Hx2(k) − z−d+1αΣ1Hx2(k − 1) + u(k) (A.21)
= −z−d+1Σ1H (x̄2(k + 1) + αx̄2(k)) + u(k), (A.22)

where u(k) is used to denote the input to the state-space system. Furthermore,
by comparing the first and second state update equation it is clear that x1(k) and
x2(k) are related as x2(k) = Fx1(k) − Gx2(k − 1). This in combination with the
definition x̄2(k + 1)

.
= x2(k) gives rise to the following state update equation for

the time shifted state

x̄2(k + 1) = Fx1(k) − Gx̄2(k).

Both the above state-update equation and output equation (A.22) do no longer
depend on the state x3(k), which can hence be disregarded. This in combination
with the state update equation for x1(k) gives rise to the following result

I − Σ1H(z)W(z) =

⎡
⎣

Ã 0 Kd

F −G 0

−z−d+1Σ1HF −z−d+1Σ1H(αI − G) I

⎤
⎦

By applying the rule for system inversion (A.4), it is possible to derive a state-
space realization for (I − Σ1H(z)W(z))−1. The optimal feedback controller C(z)
can now be computed by substituting the obtained state-space realizations for
W(z) and (I − Σ1H(z)W(z)−1 in (A.17)

C(z) =

⎡
⎢⎣

Ã 0 Kd

FÃ −G FKd

FÃ −G FKd

⎤
⎥⎦

⎡
⎢⎣

M L Kd

F −G 0

z−d+1Σ1HF z−d+1Σ1H(αI − G) I

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

M L 0 0 Kd

F −G 0 0 0

z−d+1KdΣ1HF L Ã 0 Kd

z−d+1FKdΣ1HF FL FÃ −G FKd

z−d+1FKdΣ1HF FL FÃ −G FKd

⎤
⎥⎥⎥⎥⎥⎦

,

where the matrices L and M are defined as L
.
= z−d+1KdΣ1H(αI − G) and M

.
=

Ã + z−d+1KdΣ1HF . Even though this is already a state-space realization for the
optimal feedback controller C(z), the above expression can still be simplified since
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the above state-space realization is not minimal. To make this clear consider the
similarity transformation

T =

⎡
⎢⎢⎣

I 0 −I 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ . (A.23)

By applying this transformation on the state-space realization (A.23), it is possible
to single out one of the states that cannot be controlled from the input. Removing
this state gives rise to the following reduced state-space realization for C(z)

C(z) =

⎡
⎢⎢⎣

−G F 0 0
L M 0 Kd

FL FM −G FKd

FL FM −G FKd

⎤
⎥⎥⎦ .

A further reduction of the state dimension can be obtained by following a similar
approach as used to reduce the order of equation (A.20). Let x1, x2 and x3 again
denote the three components of the state vector which is partitioned in accordance
with the partitioning of the state-space matrices, and let u(k) and y(k) denote the
input and output signals to the system. Then by comparing the second and third
state component the state update equations can be expressed as

x1(k + 1) = −Gx1(k) + Fx2(k)
x2(k + 1) = Lx1(k) + Mx2(k) + Kdu(k)
x3(k + 1) = −Gx3(k) + Fx2(k + 1)

. (A.24)

From the above expression it is clear that the states x1 and x3 are equal except for
a one sample delay, i.e. x3(k) = x1(k+1). It is hence possible to eliminate the state
x3(k) from the state-space equations. By noting that y(k) = x3(k + 1), the output
of the system can be written as

y(k) = Fx2(k + 1) − Gx1(k + 1)

= (FL + G2)x1(k) + (FM − GF )x2(k) + FKdu(k),

where in the last step we have substituted the state update equations (A.24) for x1

and x2. The output equation and state update for x1 and x2 do no longer depend
on x3 and hence the optimal feedback controller has a state-space representation

C(z) =

⎡
⎣

−G F 0
L M Kd

(FL + G2) (FM − GF ) FKd

⎤
⎦ , (A.25)

which completes the formal proof of Theorem 3.3.
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