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Abstract—To meet the dramatically increasing demands for ve-
hicular communications, cognitive vehicular networks have been
proposed to broaden the vehicular communication bandwidth
by using cognitive radio technology. Meanwhile, the nationwide
Super Wi-Fi project that allows the TV white space frequencies
to be used for free, makes the concept of cognitive vehicular
networks realistic. Recently, lots of technical issues of cognitive
vehicular networks have been studied from the network design-
ers’ perspective, e.g., vehicular spectrum sensing and access,
applications with different vehicular QoS, etc. Different from
the existing works, in this paper, we consider from the vehicular
users’ perspective by optimizing throughput via route selection in
cognitive vehicular networks using TV white space. By employing
the attainable data rate as route selection metric, we propose
two schemes: instantaneous route selection and long-term route
selection. To evaluate the expected data rate on the route,
we analyze the cognitive vehicular network throughput under
two spectrum sharing models: spectrum overlay and spectrum
underlay. In the experiments, we use Google spectrum dataset
to estimate the intensity of TV base stations in the United
States and evaluate the cognitive vehicular network throughput
performance, which shows that the spectrum overlay model
is more suitable for most of states in current United States,
except New Jersey, Delaware and Utah. Moreover, we conduct
a case study regarding the route I-88E and I-90E selection
between Cortland and Schenectady in New York State. The
traffic intensities and traffic intensity transition probabilities
of these two routes are estimated using the real-world traffic
volume dataset of New York State. Based on the estimated traffic
information, we calculate the attainable instantaneous and long-
term data rates of each vehicular user, which shows that route
I-88E is preferable to route I-90E in most cases.

Index Terms—Cognitive radio, cognitive vehicular networks,
Point Poisson Process, route selection, spectrum underlay and
overlay, TV white space, vehicular communication.

I. INTRODUCTION

W ITH the rapid development of new wireless applica-

tions and devices, the last decade has witnessed a dra-

matic increase in the demand for electromagnetic radio spec-

trums. Traditional static spectrum allocation policy has leaded

to more and more crowded available spectrum resources [1].

Under such circumstance, cognitive radio (CR) technology

is becoming a promising communication paradigm, which

can greatly enhance the utilization efficiency of the existing
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spectrum resources [2]. In CR, cognitive devices, called as

Secondary Users (SUs) are allowed to dynamically access the

licensed spectrum of Primary Users (PUs) [3]. CR has been

applied in various new wireless technologies, e.g., in WiFi [4],

tactical networks [5], cooperative communications [6], etc.

Recently, one prominent application of CR is in the ve-

hicular communication systems, called as cognitive vehicular

networks [7]. Vehicular communications were originally pro-

posed for the guarantee of public safety and avoidance of traf-

fic collisions, which aims to provide reliable and short-distance

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications [8]. Nowadays, with the development of

automobile technology, people’s mobility grows exponentially,

e.g., Americans ride 224 miles or more per week either as a

driver or passenger and the total time spent traveling in a vehi-

cle per week is about 18 hours and 31 minutes [9]. Meanwhile,

the vehicular users’ demands for in-car communication are

also increasing dramatically, e.g., lots of value-added services

emerge such as safety messages dissemination [10] and in-car

entertainment service [11]. However, IEEE 802.11p standard

only allows the vehicular communication to use the 5.9GHz

band (5.850 – 5.925 GHz) with 75MHz bandwidth, which

apparently may not satisfy people’s exponentially increasing

demands for vehicular communication in the near future

[12]. This problem can be solved by deploying the vehicular

networks in the TV white space using CR technology, which

can broaden the vehicular communication bandwidth to a

large extent. Such a cognitive vehicular network solution

over TV white space is emerging since the United States

Federal Communications Commission (FCC) has launched the

nationwide Super Wi-Fi project that allows the TV white space

frequencies to be used for free [13].

In this paper, we consider the route selection problem in

cognitive vehicular networks using TV white space. Nowa-

days, by using the online map services, e.g., Google maps

and Apple maps, people can be suggested with several routes

from one location to a desired destination, where the route

recommendations are usually either distance-aware or time-

aware. Considering the increasing demands for vehicular

communications, we propose to add another route selection

metric: the network throughput on the route, which is closely

related with the number and locations of TV base stations

along the route, as well as the traffic intensity and traffic

intensity transitions. In this paper, we will study how to

incorporate these factors into the route selection problem. The

contributions of this paper can be summarized as follows.

1) We consider the route selection problem in cognitive

vehicular networks with the concept of network through-

put metric. Two route selection schemes are proposed:
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Fig. 1. System model.

instantaneous route selection and long-term route selec-

tion. For the instantaneous scheme, the vehicular users

make route selection only according to the immediate

traffic conditions; while for the long-term scheme, they

also take into account the traffic condition transitions

in the near future by calculating the long-term expected

data rate on the route.

2) We analyze the cognitive vehicular network throughput

under two spectrum sharing models: spectrum overlay

and spectrum underlay. By modeling the locations of

TV base stations as Point Poisson Process distribution,

we analyze the interference of vehicular user to the TV

users, and derive the vehicular users’ optimal transmis-

sion power and achievable downlink throughput.

3) We use Google spectrum dataset [14] to estimate the

intensity of TV base stations in the United States,

and evaluate the cognitive vehicular network throughput

under both spectrum overlay and underlay models. The

experiment results shows that for current United States,

the spectrum overlay model is more suitable, except

three states: New Jersey, Delaware and Utah.

4) We study the route I-88E and I-90E selection between

Cortland and Schenectady in New York State. By using

the real-world traffic volume dataset, we first estimate

the traffic intensities and traffic intensity transition prob-

abilities of these two routes. Then, the instantaneous and

long-term data rates obtained by each vehicular user are

evaluated, which shows that route I-88E is preferable to

route I-90E in most cases.

The rest of this paper is organized as follows. The related

works are presented in Section II. Then, we discuss the pro-

posed instantaneous and long-term route selection schemes in

Section III. The vehicular network throughput under spectrum

overlay and underlay models are analyzed in Section IV. In

Section V, we conduct real-world data-driven experiment to

evaluate the route selection performance. Finally, the conclu-

sions are drawn in Section VI.

II. RELATED WORKS

In the literature, the cognitive vehicular networks have

been studied in several aspects, including spectrum sensing,

spectrum access, spectrum management and applications. In

[15]-[19], the cooperative spectrum sensing for cognitive ve-

hicular networks were studied, including sensing coordination

method [15], belief propagation method [16], location based

method [17] and database integration methods [18][19]. In

addition to channel sensing, the channel access for cognitive

vehicular networks were investigated in [20]-[24], including

distributed channel coordination [20], cognitive MAC-layer

protocol design [21], spatially-aware channel selection [22],

QoS-aware channel access management [23] and game the-

oretic analysis [24]. Moreover, the spectrum management

related issues were analyzed [25]-[27], where Felice et al.

proposed a cooperative spectrum management scheme in [25],

Ghandour et al. focused on the scenario of congested vehicular

Ad hoc networks in [26] and Doost et al. designed the database

assisted solution in [27]. Meanwhile, some applications based

on the cognitive vehicular networks were also discussed [28]-

[31], including the safety and reliability guarantee in [28][31],

cognitive emergency network in [29] and enhance broadcast

vehicular communication in [30]. Furthermore, some practical

experiments and evaluations were also conducted in [32]-

[33], including channel modeling [32] and a demonstration

of cognitive vehicular network in TV white space [33].
The aforementioned prior works mainly focused on the

technical design of cognitive vehicular networks from the

network designers’ perspective, such as cooperative spectrum

sensing scheme design, primary channel access and coor-

dination scheme design, applications design with different

QoS standards, etc. Different from these existing works, in

this paper, we consider from the vehicular users’ perspective

by optimizing throughput via route selection in cognitive

vehicular networks using TV white space. In the literature, the

throughput of cognitive networks in TV while space has also

been investigated, e.g., mobile terminal’s achievable data rate

with channel query constraint [34], LTE-advance downlink

throughput evaluation [35] and the capacity analysis of Wi-

Fi system in TV white space [36]. In addition, power control

of cognitive networks in TV white space has also been studied,

e.g., database-driven transmission power allocation scheme

design in [37] and uplink power control for TD-LTE in TV

white space in [38]. Those existing works only considered

the TV white space in terms of time and frequency domains.

However, the locations and distributions of TV base stations

have not been taken into account, which, however, also affect

the vehicular users’ throughput to a large extent. In this paper,

by modeling the locations of TV base stations as Point Poisson

Process distribution, we analyze the interference of vehicular

user to the TV users, and derive the vehicular users’ optimal

transmission power and achievable downlink throughput.

III. ROUTE SELECTION IN COGNITIVE VEHICULAR

NETWORKS

We consider a heterogenous network with licensed digital

TV base stations (BSs) and TV users regarded as PUs, as

well as unlicensed vehicular network (VN) BSs and VN users

regarded as SUs, as shown in the zoom-in sub-figure of

Fig. 1. The cognitive VN BSs and VN users are allowed to

opportunistically utilize the TV spectrums under the condition

that the TV users’ communication QoS is guaranteed. Suppose

one VN user intends to travel from City A to City B as

shown in Fig. 1, where he/she is suggested with two possible

routes by the online map service providers, e.g., Google maps.

Nowadays, travel distance and time are the only two metrics
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Fig. 2. Distribution of TV BSs in the United States abstracted from Google
spectrum database [14].

that considered by the map providers, i.e., the recommended

routes are either with shorter distance or shorter travel time

calculated based on current traffic condition. For example, in

Fig. 1, Route 1 would be recommended if shorter distance is

preferred, while Route 2 would be recommended if lighter

traffic condition is preferred.

As we discussed in the introduction, considering the fast-

growing demands for vehicular communications, we propose

the attainable data rate as another principal metric that consid-

ered by a cognitive VN user when making route selections.

Firstly, due to the fact that the cognitive VN BSs can only

utilize the unoccupied TV channels, the more TV BSs are

located along a certain route, the less spectrum opportunity

can be obtained by the cognitive VN users. As illustrated in

Fig. 1, the density of TV BSs along Route 1 is obviously larger

than that along Route 2. In such a case, the available spectrum

is less and the vehicular network throughput on Route 1

would be lower than that on Route 2. Secondly, the traffic

intensity also plays an important role in route selection since

the nearby cognitive VNs have to share the same vehicular

network base station. In such a case, the higher traffic intensity

would lead to the more vehicular users simultaneously sharing

the same channel resources, which would inevitably impair

each VN user’s data rate. Therefore, both the TV BSs along

the route and traffic conditions on the route can influence a

VN user’s expected data rate, which, in turn, affects the VN

user’s route selection result. In the following, we summarize

the fundamental factors that influence the VN users’ route

selection.

1) TV BSs: In general, the VN users prefer to the route

in the area with less intensity of TV BSs and more TV

white spaces. In Google spectrum database, the information

of all the TV stations in the United States can be accessed,

as well as the auxiliary infrastructures including the TV

translators, the Broadcast Auxiliary Service (BAS) links, the

PLMRS/CMRS (Private Land/Commercial Mobile Radio Ser-

vices) base station operations and the Low Power Auxiliary

Devices [14]. The information of these TV BSs contains the

occupied channel frequency, the antenna information and the

location information, i.e., the latitude and longitude. As shown

in Fig. 2, we abstract the location information of all kinds of

TV BSs and depict it on the map of the United States except

Alaska and Hawaii. From the figure, we can see that different

states have different intensities of TV BSs, and TV stations in

the northeast areas are denser than other areas. In this paper,

we will use those real-world TV BSs data traces to estimate

the intensity of TV BSs in different states and evaluate the

Fig. 3. Traffic volume of route I-88E and I-90E.

vehicular network throughput based on the estimated intensity

information.

2) Traffic Intensity: Similar to the traditional time met-

ric, the traffic intensity also influences the cognitive VN

user’s expected data rate on the route. The vehicular network

throughput is in terms of one VN user; while when it comes

to multiple VN users, the characteristic of negative network

externality should be considered [39], i.e., the more users

access the same VN BS, the less data rate can be obtained

by each individual VN user. For example, let us consider

two recommended routes between Cortland and Schenectady

in New York State of the United States: route I-88E and I-

90E. Based on the traffic volume dataset provided by the the

Department of Transportation of New York State [40], we

show the number of vehicles on these two routes in Fig. 3,

which shows that the traffic on route I-90E is averagely heavier

than that on route I-88E. In this paper, we will use those real-

world traffic data traces to evaluate the VN user’s expected

data rate and the route selection result.

3) Dynamic Traffic: As we know, the real-time traffic

intensity is not static but keeps changing with time, as shown

in Fig. 3 where the traffics in the rush hours would be much

heavier than that in the regular hours. In addition, different

routes may have different traffic intensity transitions. In such

a case, when making a route selection, a cognitive VN user

should not only consider the current traffic intensity, but also

needs to take into account the traffic intensity changes in the

near future. Therefore, the dynamic traffic intensity should

also be involved for a VN user to determine the expected

communication data rate and route selection result.

Considering these influencing factors, we propose two route

selection schemes: the instantaneous scheme and long-term

scheme. In the instantaneous scheme, when making a route

selection, the cognitive VN user only considers the immedi-

ate traffic intensity to calculate the expected data rate as a

comparison metric among different routes. While in the long-

term route selection scheme, the dynamic traffic intensity is

considered and the long-term expected data rate is derived as

the route selection metric. We can see that the instantaneous

scheme is more suitable for the VN users who only take

a short-distance travel, while the long-term scheme is more

appropriate for the VN users who would take a relatively

long-distance trip. Note that during the route selection analysis

in this section, the cognitive vehicular network throughput is

assumed to be known, which will be explicitly analyzed in the

next section.
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Fig. 4. Coverage radius of VN BSs.

A. Instantaneous Route Selection

In the instantaneous route selection scheme, when con-

fronted with multiple routes from current position to the de-

sired destination, the VN users first evaluate the expected data

rate that can be obtained on each route according to the current

route conditions. Based on the performance evaluations, they

further select the route that can provide highest expected data

rate. Suppose there are M routes for selection from position

A to position B. Let us denote Ri as the vehicular network

throughput on route i, which is determined by the number and

locations of TV BSs along route i. The network throughput Ri

will be analyzed in the next section. Here, we assume that the

VN users who are simultaneously served by the same VN BS

share the network resources through Time Division Multiple

Access (TDMA) in a centralized way. In such a case, when

there are totally Θ VN users sharing the same VN BS, the

data rate of each VN user on route i can be simply calculated

by

Ui(Θ) =
Ri

Θ
. (1)

Note that all three parameters in (1) should be function of the

route index i and the VN BS index. To simplify the notations,

we do not use the VN BS index.

Then, let us see how the traffic intensity affects a VN user’s

data rate performance. The coverage area of a VN BS is deter-

mined by its transmission power and the channel conditions.

Here, we use protocol interference model to analyze the VN

BS’s coverage area. In this model, a transmission is considered

successful if and only if the receiving node is within the

transmission range of the corresponding transmitting node

and is outside the interference range of all non-intended

transmitting nodes [41]. Usually, the transmission/interference

ranges are assumed as circles, the radius of which depend

on the power of transmission/interference node, as well as

the channel attenuation. By using the protocol interference

model, a data transmission from a VN BS to a VN user is

considered successful only if the received power at the VN

user exceeds θ (θ ≥ 1) times of the noise power σ2. As

shown in Fig. 4, when the transmission power control factor

of a VN BS is Pv(0 ≤ Pv ≤ 1) and the channel realization is

hv, the coverage radius of the VN BS, dc, can be calculated

by

Pvhv

dαc
= θσ2 ⇒ dc =

(

Pvhv

θσ2

)1/α

, (2)

where hv is the attenuation in power due to fading on the

link, the effect of transmission power, antenna gain, etc, σ2

is the variance of a zero-mean circularly symmetric complex

Gaussian noise and α is the path loss exponent. We consider

equal power allocation in this paper, which means that the VN

BSs equally distribute the transmission power among all the

accessible channels. Moreover, we assume that the channel

gain hv are i.i.d over all BSs and obey Rayleigh distribution

with mean ǫv, i.e.,

fhv
(x) =

1

ǫv
e−x/ǫv . (3)

Denote {ǫv,k} as the set of channel gain, where ǫv,k rep-

resent the channel gains from VN BS sv to the user; and

k corresponds to the number of walls that the signal goes

through. Here, we consider the vehicle body penetration as

once penetration and adopt ǫv,1 as the mean channel gain.

Thus, considering the channel statistics, we have the average

coverage radius of the VN BS, d̄c, as follows

d̄c =

∫ +∞

x=0

(

Pvx

θσ2

)1/α
1

ǫv,1
e−x/ǫv,1dx. (4)

Since it is assumed that the VN BSs are all deployed just

on the roadside to better support vehicular communications,

the coverage area of each VN BS can be approximated as

2d̄c. Note that the VN users are served by the nearest VN BS.

Thus, within the coverage area of a VN BS, the VN users

would be served by the same VN BS and the number of them

is determined by the traffic intensity. Here, we assume that

the traffics on the route i follow the Poisson process with

intensity µi (the number of vehicles per m), i.e., the distances

between two adjacent vehicles are independent and identically

distributed with exponential distribution of expectation µ−1
i .

Note that µi satisfies 0 < µi < 1 since there cannot be

two vehicles within one meter on the road. In this paper,

we quantize the traffic intensity into L discrete levels for

practical purpose, e.g., Google map also uses different colors

to represent different levels of traffic intensity. In such a case,

we have

µi ∈ Ψ =

{

1

L
,
2

L
, ...,

L− 1

L

}

. (5)

Based on the current traffic intensity µi, we can have the

average number of VN users that simultaneously share the

same VN BS on route i as

Θi = 2ρµid̄c, (6)

where 2d̄c is the covered road length of one VN BS and 2d̄cµi

is the total number of users in the coverage of one VN BS, ρ
represents the percentage of VN users among all vehicles and

we assume that on average there is at most one VN user in

each vehicle. In such a case, the average data rate that can be

obtained by each VN user can be calculated as follows

Ui(µi) =
Ri

2ρµid̄c
. (7)

Thus, the VN user can first calculate and compare the

average data rates of all M routes through (7) using the

TV BSs intensity and current traffic intensity of each route

{µi}, and then select the route with highest data rate, i.e.,

argmax1≤i≤M Ui(µi).
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B. Long-term Route Selection

Once a VN user selects a route, he/she would drive on

the route for a short period of time, during which the traffic

situation may change. Considering such a circumstance, we

propose the long-term route selection scheme. In this scheme,

when evaluating the expected data rates of different routes,

the VN users not only consider the route conditions in current

time instant, but also take into account the dynamic changes

of route conditions in the near future. As aforementioned, the

route conditions include both TV BSs intensity along the route

and the traffic intensity of the route. Since the locations of

TV BSs are static, we only consider the dynamic changes

of traffic intensity. Considering that the traffic intensity in

current time instant is only related with that in the last time

instant, we can regard the dynamic traffic intensity on route

i, {µ
(1)
i , µ

(2)
i , ..., µ

(t)
i , ...}, as a Markov process, where the

superscript (t) represents the time instant. As discussed in the

previous subsetion, the traffic intensity µi is quantized into

L levels. In such a case, we can define the discrete traffic

intensity µi ∈ Ψ =
{

1
L ,

2
L , ...,

L−1
L

}

as the traffic state of

route i and model the state transition probability as follows

P

(

µ
(t+1)
i =

j − 1

L

∣

∣

∣

∣

µ
(t)
i =

j

L

)

= φ−
j , (8)

P

(

µ
(t+1)
i =

j + 1

L

∣

∣

∣

∣

µ
(t)
i =

j

L

)

= φ+
j , (9)

P

(

µ
(t+1)
i =

j

L

∣

∣

∣

∣

µ
(t)
i =

j

L

)

= 1− φ−
j − φ+

j . (10)

where we only consider that the transitions between the

adjacent states since the dynamic changing of traffic intensity

on a road should be a gradual process.

When a VN user is determining the route selection and

evaluating the expected data rate of each route, he/she only has

the knowledge of current traffic states of all possible routes,

{µ
(0)
1 , µ

(0)
2 , ..., µ

(0)
M }. The question is how to incorporate the

traffic state changes in the near future into the data rate

evaluation of each route. We find that this is quite similar

to a Markov Decision Process (MDP) problem [42], where

a user’s optimal decision can be obtained by maximizing the

user’s long-term expected utility described by the concept of

“Bellman equation”. The difference is that, in a MDP model,

the user can re-optimize his/her decision when the system state

changes; while in the route selection problem, once the VN

user selects and drives on a route, changing the route may

not be cost-effective, especially on the inter-city highway.

In the MDP model, Bellman equation is used to describe

a user’s long-term expected utility, which contains both the

immediate utility of current state and the expected utilities

in the near future. Considering the special characteristic of

the route selection problem and according to the fundamental

concept of Bellman equation, we can define a VN user’s

expected data rate on route i when the initial traffic state is

µi by

Vi(µi) = Ui(µi) + β
∑

µ′

i
∈Ψ

P(µ′
i|µi)Vi(µ

′
i), (11)

where Vi(µi) represents the long-term expected data rate of

route i with initial traffic state µi, Ui(µi) as defined in (7) and

P(µ′
i|µi) is defined in (8-10), β is a discounting factor which

ensures the summation is bounded, which can be constant

value or a function of travel distance. Note that (10) considers

the infinite time with discounting factor and the long-term

expected data rate Vi(µi) is not related with the travelling

time. Since µi is discrete and µi ∈ Ψ =
{

1
L ,

2
L , ...,

L−1
L

}

,

we can define a long-term data rate vector of route i that

includes the long-term expected data rates associated with all

the possible initial traffic states as follows

Vi =

[

Vi

(

1

L

)

, Vi

(

2

L

)

, ..., Vi

(

L− 1

L

)]

. (12)

Meanwhile, we can define a immediate data rate vector

of route i that includes the immediate expected data rates

associated with all the possible initial traffic states as follows

Ui =

[

Ui

(

1

L

)

, Ui

(

2

L

)

, ..., Ui

(

L− 1

L

)]

. (13)

Thus, we can re-write (11) as

Vi = Ui + βViP, (14)

where P is the state transition matrix that can be calculated

by (8-10). By solving (14), we have

Vi = Ui(I− βP)−1, (15)

where I is the identity matrix. Therefore, we can obtain the

long-term expected data rates of all possible routes with all

possible initial traffic states, i.e., {V1,V2, ...,VM}. Suppose

the current traffic states of all routes are {µ1, µ2, ..., µM}, the

optimal route should be the one with highest long-term ex-

pected data rate, i.e., argmax{V1(µ1), V2(µ2), ..., VM (µM )}.

Note the optimal route may attract a lot of users, which leads

to the change of the traffic intensity of different route and thus

has impact on the throughput. This problem can be resolved

by combining the real time traffic intensity into the dynamic

traffic intensity prediction model.

IV. VEHICULAR NETWORK THROUGHPUT ANALYSIS

In this section, we analyze the vehicular network throughput

on each route, Ri, with the system model shown in Fig. 1.

The TV users and VN users are served by the nearest TV BS

and VN BS, respectively. Suppose there are N independent

licensed TV channels with bandwidth B for each channel.

For example, in the United States, there are 50 TV channels

numbered 2 through 51, each with 6 MHz bandwidth, ap-

proximately lying between 54 and 700 MHz within VHF and

UHF bands [43]. In this section, we study two widely accepted

spectrum sharing models: overlay model and underlay model

[44]. In the spectrum overlay model, the VN BSs can only

utilize the channels that are not occupied by the nearby TV

BSs. While in the spectrum underlay model, the VN can

operate on all N primary channels simultaneously but under

strict transmission power constraints. In this paper, we assume

that the hand-over process between VN BSs has been handled

by the existing works as in [45].

The TV BSs includes various kinds of entities, e.g., terres-

trial TV stations and TV translators, Broadcast Auxiliary Ser-

vice (BAS) links, PLMRS/CMRS (Private Land/Commercial
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Mobile Radio Services) base station operations, etc [14].

Overall, the locations of those TV BSs tend to be random,

especially when it comes to the consumer deployed PLMRS

base stations. In this paper, we assume that the locations of

the TV BSs follow a Poisson Point Process (PPP) on the plane

with intensity λ (the number of TV BSs per m2). Note that λ
satisfies 0 < λ < 1 since there cannot be two TV BSs within

one square meter. The PPP has been widely adopted to model

the distribution of fully random placements, e.g., the femtocell

BSs [46]. Based on the PPP model, the number of TV BSs

in any finite region r, Mr, is Poisson distributed with mean

λAr, i.e.,

P (Mr = m) =
e−λAr(λAr)

m

m!
, (16)

where Ar is the area of the region r. Note that the intensities

(densities) of the TV BSs in different regions can be different,

e.g., the intensity in downtown regions would be much higher

than that in suburb regions. In the VN application scenario, the

intensity of TV BSs around the local street would be much

higher than that around the highway. For the VN BSs, we

assume that they are deployed near the road in order to better

support the vehicular communications, as shown in the zoom-

in subfigure of Fig. 1.

In our model, both TV and vehicular networks are based on

the single antenna system. The received power per channel at

a user located at a distance of dt from a TV BS st is given

by,

yt =
ht

dαt
+ σ2, (17)

where ht is the realization of the channel. Meanwhile, the

receiver power per channel at a user located dv from a VN

BS sv is given by,

yv =
Pvhv

dαv
+ σ2, (18)

where Pv is the power control factor. Note that the power

control is fulfilled by VN BS. In the spectrum overlay model,

since the VN BSs only utilize the vacant primary channels,

they can adopt high transmission power as long as the inter-

cell interference is moderate, while in the spectrum underlay

model, to maintain the QoS of the TV network, the VN BSs

should carefully control the transmission power to meet the

interference requirement. We assume that the channel gain

{ht} are i.i.d over all BSs and obey Rayleigh distribution with

mean ǫt, i.e.,

fht
(x) =

1

ǫt
e−x/ǫt. (19)

Denote {ǫt,k} as the set of channel gain, where ǫt,k represent

the channel gains from TV BS st to the user; and k corre-

sponds to the number of walls that the signal goes through.

In the following, we will theoretically analyze the vehicular

network throughput under two spectrum sharing models based

on the aforementioned system model. On one hand, for the

spectrum overlay model, since the VN BSs can only utilize the

unoccupied channels, the total accessible bandwidth is limited,

but the transmission power is not strictly constrained. On the

other hand, for the spectrum underlay model, although the

transmission power should be strictly controlled to guarantee

the TV network performance, the VN BSs can access the

whole TV bands simultaneously. Therefore, we can see that

there are both advantages and disadvantages for these two

models and we will compare the performances of them in the

experiment. Note that in the following network throughput

analysis, we only focus on the downlink throughput for a

single VN user.

A. Spectrum Overlay Model

In the spectrum overlay model, the vehicular network

can only access the channels that are not occupied by the

nearby TV BSs. The unoccupied channels information can be

obtained by spectrum sensing function or querying Google

white space database [14], where Google maintains the real-

time unoccupied channels information of all the locations in

the United States. Since the VN BSs can only utilize the

unoccupied channels, we need to first study the maximum

number of channels that a VN BS can utilize in order

to analyze the vehicular network throughput. According to

Google TV station database [14], each TV BS only constantly

occupies one TV channel and adjacent TV BSs utilize different

channels to avoid interference. In such a case, the number of

unoccupied channels is determined by the number of nearby

TV BSs that could be interfered by a VN BS, which is

closely related by the TV BS’s keep-out radius and the VN

BS’s interference radius. The keep-out radius dk, defined in

the IEEE 802.22 standard, is used to protect the PUs in the

spatial domain, within which the secondary network cannot be

deployed [47]. The interference radius df of a VN BS depends

on the VN BS’s transmission power. In such a case, according

to the PPP model, the expected number of nearby TV BSs can

be calculated by λπ(dk + df )
2, and the expected number of

channels that can be utilized by the VN BS can be calculated

as follow

Na = N − λπ(dk + df )
2, (20)

where N is the total number of TV channels, dk is a constant

predetermined by the specifications of TV networks and df
will be analyzed in the following.

Suppose the interference range of a VN BS is with radius

df . Then, the interference area should be πd2f , which means

that the VN BS cannot utilize the channels that are occupied by

the TV BSs inside the interference area. Here, we have a trade-

off problem in terms of configuring the VN BS’s transmission

power. On one hand, the higher transmission power adopted

by the VN BS, the higher achievable throughput of each

accessible channel can be obtained by the VN BS. On the other

hand, the higher transmission power can also lead to a wider

interference range, which increases the number of protected

TV BSs and decreases the number of accessible primary

channels. Therefore, the VN BS’s transmission power should

be appropriately configured in order to maximize the vehicular

network throughput. As aforementioned, the interference range

of a VN BS is proportional to its transmission power control

factor Pv . According to the protocol interference model [41],

an interference power from a VN BS is considered non-

negligible for the TV users only if it exceeds 1/θ (θ ≥ 1)

times of the noise power σ2 on the link. Thus, similar to the
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calculation of coverage radius in (2), when the transmission

power of a VN BS is Pv , the interference radius df can be

calculated by

Pvhv

dαf
=

σ2

θ
⇒ df =

(

θPvhv

σ2

)1/α

. (21)

In such a case, according to (20), we can have the expected

number of channels that can be utilized by the VN BS as

follows

Na = N − λπ

[

dk +

(

θPvhv

σ2

)1/α
]2

. (22)

Since the VN BSs only utilize the vacant channels, there

is no interference power from the TV BSs for the VN users.

Moreover, since the VN BSs are just deployed near the road

with limited coverage area, the inter-cell interference among

VN BSs is negligible and not considered. In such a case,

the signal-noise-ratio (SNR) of the VN user is Pvhv

dα
v,vσ

2 , and

thus, the achievable downlink throughput per channel of one

channel realization can be given by

Rvp = B log

(

1 +
Pvhv

dαv,vσ
2

)

. (23)

Combining (22) and (23), we can have the total expected

downlink throughput of the vehicular network under spectrum

overlay model as follows

ROL

v = B

∫ +∞

x=0

⎛

⎝N − λπ

[

dk +

(

θPvx

σ2

)1/α
]2

⎞

⎠

log

(

1 +
Pvx

dαv,vσ
2

)

fhv
(x)dx. (24)

In such a case, the optimal transmission power control factor

can be found by solving the following maximization problem

argmax
Pv

B

∫ +∞

x=0

⎛

⎝N − λπ

[

dk +

(

θPvx

σ2

)1/α
]2

⎞

⎠

log

(

1 +
Pvx

dαv,vσ
2

)

1

ǫv,1
e−x/ǫv,1dx, (25)

s.t. 0 ≤ Pv ≤ 1.

The gradient descent method can be used to solve the above

optimization problem in (25). Then, by substituting the opti-

mal transmission power control factor Pv back into (23), we

can have the optimal vehicular network throughput under the

spectrum overlay model.

B. Spectrum Underlay Model

In the spectrum underlay model, the vehicular network can

access all N primary channels simultaneously as long as the

QoS of the TV network is guaranteed. The advantage of this

model is that the VN BSs and users do not need to perform

spectrum sensing or querying the white space database as in

the spectrum overlay model, while the disadvantage is that

they need to strictly control their transmission power. In this

paper, we regard the converge probability as the metric of TV

VN BS 1

VN BS 3

VN BS 4

VN BS 2

Interference

hv, dv,t

ht, dt,t

Dominant 
Interference

Fig. 5. Coverage radius of VN BSs.

network’s QoS, which is the probability that the signal-to-

interference-plus-noise (SINR) at any network user is higher

than an outage threshold. The coverage probability is also the

complementary cumulative distribution function (CCDF) of

SINR. In the following, we will first analyze the coverage

probability of TV network users and then derive the optimal

transmission power control factor for the VN BSs.

1) Coverage Probability of TV Users: As shown in Fig. 5,

let us denote dt,t and ht as the distance and channel gain

between the TV user and the nearest TV BS (the serving

TV BS), respectively; denote dvi,t and hvi as the distance

and channel gain between the TV user and the VN BS bvi ,
respectively; denote Φv = {bvi} as the set of all VN BSs near

the TV user. Thus, the received TV signal power of the TV

user is htd
−α
t,t , and its SINR can be given by

γt =
htd

−α
t,t

Λ
, (26)

where Λ represents the interference from nearby VN BSs plus

channel noise. Note that there is no inter-cell interference

among the TV BSs since each TV BS only occupies one

TV channel and adjacent TV BSs utilize different channels to

avoid interference according to Google TV station database

[14]. For the TV user, there exists a dominant interfering VN

BS, i.e., the nearest VN BS bv0 located dv0 from the TV user.

In such a case, the interference plus noise Λ can be calculated

as follows

Λ = Pv0hv0d
−α
v0,t +

∑

bvi∈Φv\bv0

Pvihvid
−α
vi,t + σ2, (27)

where the first term in the RHS of (27) is the dominant

interference from the nearest VN BS bv0 , the second term

represents the interference from all other VN BSs except bv0 ,

σ2 stands for the variance of channel noise and Pvi is the

transmission power control factor of the VN BS bvi . In such

a case, we can have the SINR of the TV user as

γt =
htd

−α
t,t

Pv0hv0d
−α
v0,t +

∑

bvi∈Φv\bv0
Pvihvid

−α
vi,t + σ2

. (28)

Suppose the SINR of the TV user should be at least larger than

a threshold Γ, i.e., the target SINR, the coverage probability
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of the TV network can be defined by

Pc = P [SINR is larger than Γ] = E [P (γt ≥ Γ)] . (29)

The following theorem gives the expression of the coverage

probability of the TV network.

Theorem 1: In a heterogenous network with a primary

TV network and cognitive vehicular network, the coverage

probability of a TV user is

Pc = 2πλ

∫ +∞

dt,t=0

exp
(

−
dα
t,tσ

2Γ

ǫt

)

1 +
dα
t,tǫvd

−α
v0,tPv0

Γ

ǫt
∏

bvi∈Φv\bv0

1

1 +
dα
t,tǫvd

−α
vi,t

Pvi
Γ

ǫt

dt,te
−λπd2

t,tddt,t. (30)

Proof: Since the TV user is served by the nearest TV BS,

no BS can be closer than dt,t. Thus, according to (16), the

cumulative distribution function (CDF) of dt can be derived

as follows

P(dt,t ≤ D) = 1− P(dt,t > D)

= 1− P[No TV BS in the area πD2]

= 1− e−λπD2

, (31)

and the probability density function (PDF) can be written as

fdt,t
(dt,t) =

d
(

1− e−λπd2

t,t

)

ddt,t
= 2πλdt,te

−λπd2

t,t (32)

Suppose the SINR of the TV user should be at least larger than

a threshold Γ, the coverage probability of it can be calculated

by

Pc =

∫ +∞

dt,t=0

P [γt ≥ Γ] fdt,t
(dt,t)ddt,t

=

∫ +∞

0

P

[

htd
−α
t,t

Λ
≥ Γ

]

2πλdt,te
−λπd2

t,tddt,t

=

∫ +∞

dt,t=0

P
[

ht ≥ dαt,tΓΛ
]

2πλdt,te
−λπd2

t,tddt,t. (33)

Note that the channel gain ht obeys Rayleigh distribution, thus

we have

P
[

ht ≥ dαt,tΓΛ
]

= EΛ

[

∫ +∞

dα
t,tΓΛ

1

ǫt
e−x/ǫtdx

]

= EΛ

[

exp

(

−
dαt,tΓ

ǫt
Λ

)]

= LΛ

(

dαt,tΓ

ǫt

)

, (34)

where LΛ(.) represents the Laplace transform of the interfer-

ence plus noise of the TV user, Λ; and ǫt can be ǫt,0 for

outdoor TV user or ǫt,1 for indoor TV user. The Laplace

transform of Λ can be calculated as follows

LΛ(s) = EΛ

[

e−sΛ
]

= EΛ

⎡

⎣e−sσ2

e−sPv0
hv0

d−α
v0,t

∏

bvi∈Φv\bv0

e−sPvi
hvi

d−α
vi,t

⎤

⎦ .

(35)

Since all the channel gains {hvi} obey the Raleigh distribution

and are independent of each other, the (35) can be re-written

as

LΛ(s) = e−sσ2

Ehv0

[

e−sPv0
hv0

d−α
v0,t

]

·
∏

bvi∈Φv\bv0

Ehvi

[

e−sPvi
hvi

d−α
vi,t

]

=
e−sσ2

1 + sPv0ǫvd
−α
v0,t

∏

bvi∈Φv\bv0

1

1 + sPviǫvd
−α
vi,t

, (36)

where ǫv can be ǫv,0 for outdoor TV user or ǫv,1 for indoor

TV user.

Thus, by substituting s =
dα
t Γ
ǫt

into (34) and then substitute

(34) into (33), we have

Pc =

∫ +∞

dt,t=0

LΛ

(

dαt,tΓ

ǫt

)

2πλdt,te
−λπd2

t,tddt,t

= 2πλ

∫ +∞

dt,t=0

exp
(

−
dα
t,tσ

2Γ

ǫt

)

1 +
dα
t,tǫvd

−α
v0,t

Pv0
Γ

ǫt
∏

bvi∈Φv\bv0

1

1 +
dα
t,tǫvd

−α
vi,t

Pvi
Γ

ǫt

dt,te
−λπd2

t,tddt,t, (37)

which complete the proof of the theorem.

Remark: From the expression of the coverage probabil-

ity in (37), we can see that there are three main terms:

exp
(

−
dα
t,tσ

2Γ

ǫt

)

is corresponding to the channel noise, 1 +

dα
t,tǫvd

−α
v0,tPv0

Γ

ǫt
is corresponding to the dominant interfer-

ence from the nearest VN BS, and the
∏

term with 1 +
dα
t,tǫvd

−α
vi,t

Pvi
Γ

ǫt
is corresponding to the interference from all

other VN BSs. As discussed in the system model, the VN

BSs are assumed to be deployed near the road in order to

better support the vehicular communication performance, and

a VN BS is supposed to only serve the vehicles on the road

instead of covering a wide area. In such a case, for the TV user,

compared with the dominant interference from the nearest VN

BS, the interference from other VN BSs can be negligible.

Furthermore, considering that the noise is also much smaller

than the interference, the coverage probability in (37) can be

approximated by

Pc ≈ 2πλ

∫ +∞

dt,t=0

dt,te
−λπd2

t,t

1 +
dα
t,tǫvd

−α
v0,t

Pv0
Γ

ǫt

ddt,t

= πλ

∫ +∞

x=0

ǫtx
−2/αe−λπx

ǫtx−2/α + ǫvd̄
−α
v,t ΓPv

dx, (38)

where the second equality is obtained by substituting x for

d2t,t, replacing Pv0 with Pv as the general transmission power

control factor of the VN BSs and replacing dv0,t with d̄v,t as

the average distance between the TV users and the nearest VN

BS. Based on the coverage probability analysis, we can further

study how to control the VN BS’s downlink transmission

power Pv . Note that in the following power control analysis,

we will use the approximated coverage probability in (38) for

simplicity and verify the difference due to the approximation

in the simulation subsection.
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2) Power Control of VN BSs: In the spectrum underlay

model, although the vehicular network can access all N
primary channels, they may also suffer from the interference

from the TV BSs. In such a case, the SINR of the VN users

can be written by

γv =
Pvhvd

−α
v,v

It + σ2
, (39)

where dv,v denotes the distance between the VN user and the

nearest VN BS, and It represents the interference from the TV

BSs in one primary channel. Similarly to the approximation

of the coverage probability in the previous subsection, we

only consider the dominant interference from the nearest TV

BSs. Since each TV BS only occupies one primary channel

[14], the interference from each primary channel is considered

from the nearest TV BS that occupies the dedicated channel.

Thus, It represents the dedicated channel interference, which

is considered as the same for all primary channels due to

the independence and homogeneity of the primary channels.

Suppose that in a dedicated channel, the distance between the

nearest TV BS occupying that channel and the VN user is

dt,v, according to (32), the PDF of dt,v can be given as

fdt,v
(dt,v) = 2π

λ

N
dt,ve

− λ
N

πd2

t,v , (40)

where the intensity of the TV BSs occupying some dedi-

cated channel is regarded as λ
N since the total intensity is

λ and the number of channels is N . This is based on the

assumption that the primary channels are uniformly occupied

by the TV BSs, which is reasonable since the neighboring TV

BSs are configured to operate on different channels to avoid

inter-cell interference and all the channels are occupied with

approximately equal probability. Thus, the dedicated channel

interference It can be calculated as follows

It =

∫ +∞

x=0

∫ +∞

dt,v=dk

x

dαt,v
fdt,v

(dt,v)fht
(x)ddt,vdx

=
2πλ

ǫt,1N

∫ +∞

x=0

xe−x/ǫt,1dx

∫ +∞

dt,v=dk

1

dαt,v
dt,ve

− λ
N

πd2

t,vddt,v

=
2πλǫt,1

N

∫ +∞

dt,v=dk

1

dα−1
t,v

e−
λ
N

πd2

t,vddt,v, (41)

where dk is the keep-out radius.
By substituting (41) into (39), we can calculate the SINR of

the VN users. Based on the SINR, we can further obtain the

expected downlink throughput of the vehicular network under

the spectrum underlay model as follows

RUL

v = BN

∫ +∞

x=0

log

(

1 +
Pvxd

−α
v,v

It + σ2

)

fhv
(x)dx. (42)

Denoting Pth as the threshold coverage probability, we can

have the following optimization problem for finding the VN

BS’s optimal power control factor Pv ,

argmax
Pv

BN

∫ +∞

x=0

log

(

1 +
Pvxd

−α
v,v

It + σ2

)

1

ǫv,1
e−x/ǫv,1dx,

(43)

s.t. Pc = πλ

∫ +∞

x=0

ǫtx
−2/αe−λπx

ǫtx−2/α + ǫvd̄
−α
v,t ΓPv

dx ≥ Pth,

0 ≤ Pv ≤ 1.

TABLE I
NUMERICAL PARAMETERS FOR PERFORMANCE EVALUATION.

Parameter Value
Max Tx Power 50 dBm (TV BS), 30 dBm (VN BS)

Antennas 1Tx, 1Rx (both TV network and VN)
Antennas gains 20 dB (TV BS), 5 dB (VN BS)

Path loss exponent α = 3
Path 10 dB + 10α log10(r), r in meter

Penetration loss 5 dB

Noise power σ2 = 0.1 dB
Protocol interference parameter θ = 10

Target SINR Γ = 3 dB
Minimum coverage probability Pth = 0.9

where the objective function is the VN users’ expected

downlink throughput RUL

v and the constraint is the TV users’

coverage probability requirement, i.e., the interference control.

We can see that the objective function is an increasing function

in terms of the VN BS’s transmission power Pv , i.e., the

higher transmission power can lead to the higher SINR,

as well as the higher throughput. On the other hand, the

constraint in (43) is a decreasing function in terms of the

VN BS’s transmission power Pv, i.e., the higher transmission

power of the VN BS leads to the higher interference and

lower coverage probability of TV users. Therefore, given the

minimum coverage probability required by the TV users, the

maximum acceptable transmission power of the VN BS can

be easily found.

V. EXPERIMENT RESULTS

A. Network Throughput Evaluation

In this subsection, we evaluate the network throughput

performance for both spectrum overlay and underlay models

with the simulation setting described as follows. The number

of TV channels N is set to be 50 since there are 50 TV

channels numbered 2 to 51 according to the United States

frequency allocation chart [43]. While the Federal Communi-

cations Commission (FCC) defines that the keep-out radius of

each TV BS ranges from 28.3 km to 91.8 km [48], we set

the keep-out radius dk to be 40 km in our simulations. The

number of TV BSs is randomly generated according to Poisson

distribution with a certain intensity which will be specified in

the simulations, and the locations of these BSs are assumed

to be uniformly distributed in the observed area. The average

distance between the TV user and the nearest VN BS, d̄v,t, is

set as 10 meters and the distances between the TV user and

other VN BSs, dvi,t, are set randomly between 50 meters to

100 meters. The related parameters for the channel model are

listed in Table I, where the transmission power and the path

loss model are set according to [49].

We first illustrate the VN’s expected downlink throughput

performance of the spectrum overlay model in Fig. 6, which

is obtained by solving the maximization problem in (25). The

throughput performance is evaluated under different distances

dv,v between the VN BS and the VN user, as well as different

intensities λ of the TV BSs. From Fig. 6, we can see that the

expected downlink throughput ROL

v decreases with the increase

of dv,v due to the large-scale path loss. Meanwhile, RUL

v also

decreases with the increase of the TV BSs’ intensity λ. This
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Fig. 6. VN network performance under spectrum overlay model.

Fig. 7. VN network coverage probability under spectrum underlay model.

is because the more TV BSs are located nearby the VN BS,

the fewer unoccupied channels that can be utilized by the

VN BS, which leads to the less available bandwidth and less

throughput for the vehicular network.

We then illustrate the VN’s expected downlink throughput

performance of the spectrum underlay model. Fig. 7 shows

the coverage probability performance under different target

SINRs and different transmission power control factors Pv of

the VN BS, where all the VN BSs adopt the same Pv . In

the figure, the Theorem 1 results are obtained by (30), while

the approximated results are obtained by (38). We can see

that both results are close to each other since the interference

from other VN BSs are negligible compared with that from the

nearest VN BS due to the VN BS’s low transmission power

and long-distance path loss. Since the coverage probability Pc

is the complementary CDF of SINR, we can see that when the

target SINR increases, Pc decreases. In addition, as the VN

BS’s transmission power increases, the interference to the TV

users increases, which leads to the decrease of the coverage

probability. Based on the coverage probability analysis, we

calculate the VN’s expected downlink throughput by solving

the maximization problem in (43) and show the performance

in Fig. 8. Similar to Fig. 6, the throughput performance under

underlay spectrum model is also evaluated under different VN

BS-VN users distances dv,v and different TV BSs intensities

Fig. 8. VN network performance under spectrum underlay model.

Fig. 9. Performance comparison between spectrum overlay and underlay.

λ. We can see that the phenomenon is also similar to that

of the overlay spectrum model, i.e., RUL

v is also a decreasing

function in terms of both dv,v and λ.

To compare the performances of the spectrum overlay and

underlay models, we also illustrate the expected downlink

throughput under different TV BSs’ intensities λ in Fig. 9,

where the average distance between the VN user and the

nearest VN BS is set as dv,v = 20 meters. As discussed

above, both of them decrease as the increase of intensity λ
due to the decrease of the TV white space opportunities. We

can see from the figure that when the TV BSs’ intensity λ
is relatively small, the performance of the spectrum overlay

is better than that of the spectrum underlay. This is because

when the intensity λ is small, there are many unoccupied

TV channels that can be fully utilized by the overlay model

with relatively higher transmission power. For the underlay

model, since the occupied and unoccupied channels cannot be

distinguished, only limited transmission power can be used,

which leads to worse throughput performance. When the TV

BSs’ intensity λ becomes larger, we can see that the spectrum

underlay outperforms spectrum overlay. Since the VN BSs can

only utilize the unoccupied channels under the overlay model,

there exists a threshold λth = 0.008 above which no channel

is available and thus no throughput can be obtained.

Which model is more appropriate for the current situations
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Fig. 10. Number and intensity of TV BSs in each state.

Fig. 11. Google map between Cortland and Schenectady in New York State.

in the Unites States, the spectrum overlay model or the spec-

trum underlay model? To answer this question, we conduct

a case study regarding the current situation of TV BSs in

the United States. As shown in Fig. 2, the locations of all

TV BSs in the United States are highlighted. Based on these

location information, we can estimate the TV BSs’ intensity

by first calculating and recording the number of TV BSs per

103 km2 which are a series of samples supposed to follow the

Poisson distribution, and then estimating the λ according to

the distribution in (16) with the maximum likelihood method.

The number and intensity of TV BSs in each state of the

United States are shown in Fig. 10, where we can see that

Utah has the largest number of TV BSs and CA ranks the

second. For the intensity, New Jersey ranks the first with

λ = 0.01582, followed by Delaware with λ = 0.01186.

This is also consistent with our observation from Fig. 2, i.e.,

the northeast areas have densest TV BSs. According to the

performance comparison in Fig. 9, we can infer that New

Jersey, Delaware and Utah should adopt the spectrum underlay

model, while other states should adopt the spectrum overlay

model. Overall, the results in Fig. 10 reveal that the TV BSs

are still relatively sparse, and the spectrum overlay model is

more preferable than the spectrum underlay model for most

areas of current United States.

B. Route Selection Evaluation

In this subsection, we evaluate the proposed route selection

schemes by investigating a case study on the routes between

Cortland and Schenectady in New York State. As shown in

New York

Cortland Schenectady

TV BSs

I−90E

I−88E

Fig. 12. TV BSs in New York State and route I-88E and I-90E.

Fig. 13. Average data rate of each VN user on route I-88E and I-90E.

Fig. 11, Google map suggests two routes from Cortland to

Schenectady, I-88E and I-90E with similar distance and travel

time. In Fig. 12, we show the locations of TV BSs in New

York State with the highlight of these two routes, from which

we can see that the intensity of TV BSs around route I-88E

appears to be less than that around route I-90E. By using the

similar intensity estimation method in the previous subsection,

we can estimate the TV BSs’ intensities around route I-88E

and I-90E as λ88 = 0.00133 and λ90 = 0.00325, respectively.

In such a case, the expected downlink throughput of the

vehicular network in those two routes under spectrum overlay

and underlay models can be obtained in Table II, where the

average distance between the VN user and the nearest VN

BS is given as dv,v = 20 meters. Based on the downlink

throughput calculation, we can plot the instantaneous average

data rate that can be obtained by each VN user under different

traffic intensities in Fig. 13, where the quantization level is set

as L = 10 within [0, 1] and the percentage of VN users among

all vehicles is considered as ρ = 0.1. From the figure, we can

see that the network performance in route I-88E is better that

that in route I-90E under both spectrum overlay and underlay

models due to the less intensity of TV BSs around route I-88E.

This is consistent with our analysis that the more TV BSs are

located near the route, the less data rate can be obtained by

the VN users.
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TABLE II
EXPECTED DOWNLINK THROUGHPUT.

Spectrum overlay Spectrum underlay
I-88E ROL

88
= 33.91 Mb/s RUL

88
= 26.26 Mb/s

I-90E ROL
90

= 24.07 Mb/s RUL
90

= 16.84 Mb/s

TABLE III
INSTANTANEOUS ROUTE SELECTION RESULTS FOR SPECTRUM OVERLAY

MODEL.

❳❳❳❳❳µ88

µ90 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1 1 1 1 1 1 1 1 1 1

0.2 0 1 1 1 1 1 1 1 1 1

0.3 0 0 1 1 1 1 1 1 1 1

0.4 0 0 1 1 1 1 1 1 1 1

0.5 0 0 0 1 1 1 1 1 1 1

0.6 0 0 0 0 1 1 1 1 1 1

0.7 0 0 0 0 1 1 1 1 1 1

0.8 0 0 0 0 0 1 1 1 1 1

0.9 0 0 0 0 0 0 1 1 1 1

1.0 0 0 0 0 0 0 0 1 1 1

We first evaluate the instantaneous route selection scheme,

where the VN users make route selection based on the

immediate traffic intensity information. In our case study,

according to the average data rate per user in Fig. 13, the

VN user can easily select the route with higher data rate

according to the current traffic intensities of route I-88E

and I-90E, i.e., the instantaneous route selection scheme:

argmax{U(µ88), U(µ90)}. We summarize the instantaneous

route selection results of both spectrum overlay and underlay

models in Table III and Table IV, where “1” means selecting

I-88E and “0” means selecting I-90E. For example, when

the traffic intensity on route I-88E is µ88 = 0.1 vehicle/m

(the average distance between two vehicles is 10 m) and that

on route I-90E is µ90 = 0.2 vehicle/m, the VN user should

select I-88E; while when µ88 = 0.2 vehicle/m and µ90 = 0.1
vehicle/m, the VN user should selecte I-90E. Note that there

exists the threshold structure in each row and column of the

selection results matrix and the thresholds of the spectrum

overlay and underlay models are different. In the practical

scenario, those route selection results can be calculated off-

line and stored in a table for the VN users. In addition, due

to the threshold structure, the VN users only need to store the

threshold point on each row or column for the sake of storage

saving.

We then evaluate the long-term route selection scheme,

where the VN users make route selection based on not only

the immediate traffic intensity but also the traffic intensity

transitions in the near future. The traffic intensity transition

probabilities can be estimated using the 2011 traffic volume

dataset provided by the Department of Transportation of New

York State [40]. This traffic volume dataset contains both short

count data and continuous count data, where the continuous

count data comes from equipment built permanently on the

road that are intended to operate 365 days a year, while

the short count data comes from portable equipment that

take counts lasting from 2 days to 7 days. There are five

elements in the dataset, the road ID (all roads in New York

State are broken into segments and assigned a unique ID),

the date and time (the ending time of the record interval

in military time), the direction (northbound or eastbound),

the lane number (left lane, middle lanes or right lane) and

TABLE IV
INSTANTANEOUS ROUTE SELECTION RESULTS FOR SPECTRUM UNDERLAY

MODEL.

❳❳❳❳❳µ88

µ90 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1 1 1 1 1 1 1 1 1 1

0.2 0 1 1 1 1 1 1 1 1 1

0.3 0 1 1 1 1 1 1 1 1 1

0.4 0 1 1 1 1 1 1 1 1 1

0.5 0 0 1 1 1 1 1 1 1 1

0.6 0 0 0 1 1 1 1 1 1 1

0.7 0 0 0 0 1 1 1 1 1 1

0.8 0 0 0 0 0 1 1 1 1 1

0.9 0 0 0 0 0 1 1 1 1 1

1.0 0 0 0 0 0 0 1 1 1 1

Fig. 14. Traffic intensity of route I-88E and I-90E between Cortland and
Schenectady in New York State from 06/20/2011 to 06/24/2011 with sampling
interval 15 minutes.

the accumulated number of passing vehicles. The sampling

interval in the dataset is typically one hour, while for some

location, data is also collected in smaller sampling intervals

(15 minute, 10 minute, 5 minute, etc.). An example of the

dataset can be seen in Fig. 3 in Section II. Note that the

traffic volume c should be converted to the traffic intensity

µ. Suppose the sampling interval is s = 0.25 hour and the

average vehicle speed is v = 100 km/h, the traffic intensity can

be calculated by µ = c
1000sv . In Fig. 14, we show the estimated

traffic intensity of route I-88E and I-90E between Cortland and

Schenectady from 06/20/2011 to 06/24/2011 with sampling

interval s = 0.25 hour. From the figure, we can see that the

traffic intensity exhibits the periodical phenomenon for every

24 hours, reaching the peak value at about 18:00 everyday and

the valley value at about 3:00 everyday. Moreover, we can also

see that the traffic on route I-90E is averagely heavier than that

on route I-88E.

According to the traffic intensity data, we can further

estimate the traffic intensity transition probabilities P of route

I-88E and I-90E between Cortland and Schenectady, where the

quantization level is set as L = 5 within [0, 0.03]. To verify the

estimation of transition probabilities is accurate, we divide the

whole-year dataset regarding route I-88E and I-90E into two

halfs, where the first half year is used to train the transitions

probabilities and the second half year is used for testing. In

Fig. 15, we show the differences between the estimated Pe

(from Jan. to Jun.) and the testing data Pt of each month

(from Jul. to Dec.), i.e., the y-axis is ||Pe − Pt||2. We can

see that the estimated transition probabilities match well with

the testing ones, which means that the estimated results can

well predict the route intensity transitions in the future. Fig. 16

shows the long-term expected data rate of each VN user under

different traffic intensity levels calculated by (15). Similar to

the instantaneous scheme, the VN user’s data rate performance
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Fig. 15. Accuracy verification of traffic intensity estimation.

Fig. 16. Long-term expected data rate of each VN user on route I-88E and
I-90E.

on route I-88E is better than that on route I-90E due to the

lower traffic intensity. Since the maximum traffic intensity on

route I-88E is less than 0.024 vehicle/m, there is no physical

meaning for the long-term data rate on route I-88E when the

traffic intensity level is 0.024 vehicle/m and 0.03 vehicle/m,

which are denoted as 0 in Fig. 16. Based on the long-term data

rate evaluation, we can further calculate the VN users’ long-

term route selection results when confronting with different

traffic intensities of route I-88E and I-90E, which are listed

in Table V for both spectrum overlay and underlay models

since the selection restuls of these two models are same with

each other in this case. Similar to the instantaneous scheme,

there also exists threshold structure in the long-term selection

matrix. Since both the intensity of TV BSs around route I-88E

and the average traffic intensity of route I-88E are all less than

those of route I-90E, we can see that route I-88E is preferable

for the VN users in most cases as shown in Table V.

VI. CONCLUSION

In this paper, we considered the route selection problem

in the cognitive vehicular networks from a novel throughput

optimization point of view by using TV white space. By

considering the TV BSs as PPP distributed, we analyzed the

vehicular network throughput under both spectrum overlay

and underlay models. The case study on current United States

showed that spectrum overlay model is more suitable for most

of states, except New Jersey, Delaware and Utah. Based on the

vehicular network performance analysis, we further proposed

TABLE V
LONG-TERM ROUTE SELECTION RESULTS FOR SPECTRUM OVERLAY AND

UNDERLAY MODELS.

❍
❍
❍
❍

µ88

µ90 0.006 0.012 0.018 0.024 0.03

0.006 1 1 1 1 1
0.012 0 1 1 1 1
0.018 0 1 1 1 1

two route selection schemes: instantaneous scheme and long-

term scheme. Another case study was conducted regarding

the route I-88E and I-90E selection between Cortland and

Schenectady in New York State, which showed that I-88E

can provide higher average data rate for each individual VN

user. In summary, the work in this paper provides a set

of comprehensive and effective solutions for analyzing the

cognitive vehicular networks from both theoretic and practical

perspectives.
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