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S
leep apnea is a multifactorial disease with a complex 
underlying physiology, which includes the chemo-
reflex feedback loop controlling ventilation. The 
instability of this feedback loop is one of the 
key factors contributing to a number of sleep 
disorders, including Cheyne–Stokes respira-

tion and obstructive sleep apnea (OSA). A major 
limitation of the conventional characterization 
of this feedback loop is the need for labor-inten-
sive and technically challenging experiments. 
In recent years, a number of techniques that 
bring together concepts from signal process-
ing, control theory, and machine learning 
have proven effective for estimating the over-
all loop gain of the respiratory control system 
(see Figure 1) and its major components, che-
moreflex gain and plant gain, from noninva-
sive time-series measurements of ventilation 
and blood gases. The purpose of this article is 
to review the existing model-based techniques 
for phenotyping of sleep apnea, and some of the 
emerging methodologies, under a unified mod-
eling framework known as graphical models. The 
hope is that the graphical model perspective pro-
vides insight into the future development of tech-
niques for model-based phenotyping. Ultimately, such 
approaches have major clinical relevance since strate-
gies to manipulate physiological parameters may improve 
sleep apnea severity. For example, oxygen therapy or drugs 
such as acetazolamide may be used to reduce chemoreflex gain, 
which may improve sleep apnea in selected patients.
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The Chemoreflex Feedback loop
A simplified model of the interaction among spontaneous fluc-
tuations in breath-to-breath values of ventilation ( ),VEo  partial 
pressure of arterial ( ),PCO2 CO2  and ( )PO2 O2  can be repre-
sented by the following matrix equation:

 ( ) ,y A k y wk n k n
k

p

1

= +-
=
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Gaussian distributed zero-mean noise terms with 
covariance ,Q  and ( )kA  is an appropriately con-
strained coefficient matrix, representing the rela-
tionships among the modeled variables at the 
kth  time lags. The above equation is a structured 
vector autoregressive (VAR) model and arises 
as a result of discretizing a continuous differen-
tial equation model of the gas exchange process, 
under small-signal theory approximations [1]. We 
showed in a previous work [2] that the parameters 
of this model can be used to describe the pairwise 
interactions among the model components (i.e., the controller 
and plant gains), and to derive the frequency-domain stability 
characteristics (i.e., the loop gain) of the underlying system.

Graphical Models for Time series
The directed graphical model formalism provides 
a unifying framework for modeling complex 
evolving interactions among random variables. 
Graphical model representations of three time-
series models are shown in Figure 2. The random 
variables are typically represented as the nodes 
of a graph, and their conditional dependencies 
are captured by directed arrows. In general, 
the encoded relationships can be nonlinear and 
may include latent variables of both discrete and 
continuous type. In the following sections, we 

discuss how classical time-series models, such as the VAR, time-
varying VAR, switching VAR, and many other time-series mod-
eling techniques can be represented as graphical models, thus 
yielding themselves to standard inference and learning algo-
rithms designed for learning on graphs [3].

Vector Autoregressive Modeling
The application of autoregressive modeling to the identification of 
the respiratory feedback loop goes back to the pioneering work of 
Khoo et al. [1] in the 1990s. More recently, we showed that the 
technique could be generalized to identify transfer path function 
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FIGURE 1 A schematic diagram of the closed-loop respiratory control 
system. the plant represents the gas-exchange system. the input to 
the plant is level of ventilation ( )VEo  and the partial pressure of blood 
gasses in venus blood (taken as constant),  and the output is the 
arterial gas tension (PvCO2  and ) .PvO2  the delay term represents 
the circulatory time delay between the lungs and chemoreceptors 
and the delay associated with the mixing of co2 and o2 with the 
existing level in the heart and arteries. the controller represents the 
aggregate response of the respiratory pattern generator to its inputs 
(including chemoreceptor outputs, higher congnitive inputs, wake-
fulness/sleep-stage-related drives, etc.). the (frequency-dependent) 
product of the various components around the loop (plant, delay, 
and controller) is known as the loop gain of the system. A high loop 
gain describes a system that is intrinsically unstable, whereas a low 
loop gain describes a more stable system.
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FIGURE 2 A graphical model representation of the time-series 
models: (a) a first-order VAr model with static parameters ,i   
(b) a tVAr with dynamic patameters ,N1fi i  and (c) an sVAr 
model, which includes a collection of J VAr models, with the mar-
kov transition matrix Z. each node represents a random variable, 
and the lack of an edge represents the conditional independence 
relationship among the variables. the time-series samples 

, ,y yN1 f  are observed, and the remaining variables are latent.

The graphical  
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feedback loop.
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and to assess the stability properties of a system 
involving multiple interacting variables in a feed-
back loop [2]. Figure 2(a)  depicts the graphical 
model representation of a first-order VAR model 
of a sequence of N  observations from a time se-
ries { , , },y y y:N N1 1 f=  with the set of VAR co-
efficients lumped into the parameter .i  Given a 
p-order VAR mode, one may exploit Bayes’ rule 
[Bayes’ rule states that the probability of A is condi-
tioned on knowing , ( | ) ( , )/ ( )]B p B p A B p BA =  
to write the joint probability of the observations  
as ( ) ( , ) ( )p y p y y p y: : :n n n n1 1 1 1 1; ; ;i i i= =- -  
( , ) ( ) .p y y p y: :n n n n1 1 1p; ;i i- - -  Recursive application of Bayes’ 

rule yields the joint probability of the N time-series samples
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A point-estimate of the model parameters can now be made by 
maximizing (2) with respect to .i  Although, in the case of the 
Gaussian likelihood model, this optimization problem simplifies 
to a set of least-square equations, the graphical model formalism 
allows for inference and learning of model parameters under more 
general distributions. Moreover, graphical models provide a natu-
ral and intuitive tool for formulating variations on the classic meth-
ods as well as constructing more complex time-series models.

Time-Varying Vector Autoregressive
It is known that the ventilatory feedback loop 
parameters can vary over time due to factors such 
as sleep-state-related changes in the chemical con-
trol system, upper-airway mechanics, and other 
behavioral factors [1]. Assuming that the system 
parameters change at a sufficiently slower rate 
than the dynamics of the time series, we may use a 
time-varying VAR (TVAR) to model a nonstation-
ary ventilatory time series, and the associated loop 
gains (and its components, controller and plant 
gains). Figure 2(b) depicts the graphical model rep-

resentation of a TVAR model. The model also belongs to the class of 
linear dynamical systems (LDSs), and the celebrated Kalman filter 
and Rauch–Tung–Striebel (RTS) smoother can be used to learn the 
time-varying parameters of this model. The forward and backward 
recursions of the Kalman filter are a subset of a broader class of 
belief propagation (or message-passing) algorithms on the directed 
graphical models [4]. Moreover, one may use the expectation-
maximization technique to learn the optimal learning rate of the 
TVAR [7].

Notably, the stability analysis of such time-varying systems has 
been a subject of extensive research within the control theory lit-
erature. Briefly, the traditional linear time-invariant Lyapunov 
asymptotic stability (LAS) analyses for linear time-invariant systems 
have been replaced by a more refined concept of finite-time stability 
(FTS). While LAS deals with the behavior of a system within a suf-
ficiently long (in principle, infinite) time interval, FTS has been used 
to study the system behavior within a finite (possibly short) inter-
val and, therefore, is more applicable to the study of systems with 
threshold mechanisms (for instance, the chemoreflex feedback loop, 
which includes an apneic threshold for arterial )PCO2  [5].

switching Vector Autoregressive
An alternative approach to modeling sleep-dependent changes 
in the chemoreflex system variables is to utilize a switching 
VAR (SVAR) model. Figure 2(c) is a graphical model represen-
tation of the SVAR, which includes N discrete latent switch-
ing variables ,Sn  modeling the probability of belonging to any 
one of the J models at the nth time step. Physiologically, these 
latent variables could be driven by changes in sleep stage, body 

FIGURE 3 the dynamic neural network (DNN) analog representa-
tion of an sVAr model, with an added neural network classifier 
layer (in purple). the DNN is constructed by unrolling the graphi-
cal model representation of Figure 2(c), both in time and in 
inference step (superscripts f and s denote the inferred filtered 
and smoothed state variables, respectively). A two-pass efficient 
algorithm allows for learning time-series (phenotypic) dynam-
ics that are most predictive of outcomes of interest (e.g., normal 
versus apneic). A total of J dynamical behaviors (or chemoreflex 
models) can be learned on a cohort of patients’ time series 
(indexed by i) from an overnight polysomnography study.
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position, sensor fallouts, etc. However, in the 
absence of this side information, inference in 
graphical models allows for the identification 
of the most likely setting of these latent causes 
across time.

The models discussed so far are only a subset 
of a rich class of time-series models. Other impor-
tant information, such as the quality of measured 
signals, and the influence of latent and observed 
variables (such as arousals and the concept of 
wakefulness drive) can be conveniently incorpo-
rated into the graphical model of ventilatory time series. Other 
latent switching models include the hidden Markov models, the 
switching LDSs, and their nonparametric analogs, where the 
dimension of the hidden state or the number of modes are also 
defined as a part of inference and learning [6].

Maximum-likelihood learning Versus Outcome 
Discriminative learning
There are a number of exact and approximate algorithms for 
inference and learning in graphical models, with the objective of 
maximizing the data likelihood. These approaches may include 
methods of expectation propagation, sequential Markov chain 
Monte Carlo methods, and variational Bayesian inference, which 
provide full marginal distributions over the model parameters 
[3], [4]. More recently, Nemati et al. introduced a new class of 
outcome-discriminative (supervised) algorithms for learning 
“phenotypic” patterns in multivariate time series [8]. Figure 3 
presents a schematic diagram of a dynamic neural-network rep-
resentation of the SVAR model of Figure 2(c), augmented with a 
neural-network-based classification layer. Given the representa-
tion of Figure 3, one may learn the marginal distributions over the 
switching variables and the model parameters using the standard 
error backpropagation technique for neural networks. In contrast 
to the standard maximum- likelihood techniques, here the objec-
tive is to find time-series patterns that maximally separate two 
patient cohorts and, therefore, define cohort-specific phenotypic 
time-series dynamics.

Conclusions and perspective
The graphical model formalism provides a flexible framework for 
development of time-series models of the chemoreflex feedback 
loop. Additionally, complex interaction among ventilatory vari-
ables and the sleep-arousal dynamics as well as sensor noise and 
artifacts can be encoded into the structure of the graph. Stability 
analysis of the time-varying and switching models of the chemo-
reflex control system [5] provides unique opportunities for future 
research, with applications to noninvasive assessment of ventila-
tory instability in patients with congestive heart failure or OSA. 
More importantly, identification of the mechanisms responsible 
for system instability in such patients would enable clinicians to 
target particular therapies on a personalized basis. For example, 
interventions that specifically target the individual components of 
loop gain (e.g., supplemental oxygen or acetazolamide to adjust 
chemosensitivity) may provide selected patients with attrac-
tive treatment alternatives to currently available treatments. 

Phenotyping these patients in an efficient and 
 reliable manner is requisite and can be facilitated 
by the use of graphical models in sleep apnea.
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