
Lawrence Berkeley National Laboratory
Recent Work

Title
Data-driven prediction of battery cycle life before capacity degradation

Permalink
https://escholarship.org/uc/item/9532z8t0

Journal
Nature Energy, 4(5)

ISSN
2058-7546

Authors
Severson, KA
Attia, PM
Jin, N
et al.

Publication Date
2019-05-01

DOI
10.1038/s41560-019-0356-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9532z8t0
https://escholarship.org/uc/item/9532z8t0#author
https://escholarship.org
http://www.cdlib.org/


Title: Data-driven modeling enables cycle life prediction for lithium-ion 

batteries using early-cycle data yet to exhibit capacity degradation

Authors: Kristen A. Severson1*, Peter M. Attia2*, Norman Jin2, Zi Yang3, 

Nicholas Perkins2, Michael H. Chen4, Muratahan Aykol5, Patrick K. Herring5, 

Dimitrios Fraggedakis1, Martin Z. Bazant1, Stephen J. Harris6, William C. 

Chueh2†, Richard D. Braatz1†

* These authors contributed equally to this work

† Corresponding authors: wchueh@stanford.edu, braatz@mit.edu 

Affiliations:

1 Department of Chemical Engineering, Massachusetts Institute of 

Technology, Cambridge, MA, USA

2 Department of Materials Science and Engineering, Stanford University, 

Stanford, CA, USA

3 Department of Electrical Engineering and Computer Science, University of 

Michigan, Ann Arbor, MI, USA

4 Department of Mechanical Engineering, Stanford University, Stanford, CA, 

USA

5 Toyota Research Institute, Los Altos, CA, USA

6 Materials Science Division, Lawrence Berkeley National Lab, Berkeley, CA, 

USA 

Abstract

Accurately predicting lifetime of complex systems like lithium-ion batteries is

crucial for accelerating technology development. However, diverse aging 
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mechanisms, significant device variability, and varied operating conditions 

have remained major challenges. To study this problem, we generated a 

dataset consisting of 124 commercial lithium-iron-phosphate/graphite cells 

cycled under fast charging conditions. The cells exhibited widely varied cycle

lives spanning from 150 to 2,300 cycles, with end-of-life defined as 20% 

degradation from nominal capacity. Using discharge voltage curves from 

early cycles yet to exhibit capacity degradation, we apply machine learning 

tools to predict cycle life with less than 15% error on average, which is 

improved to ~8% error by incorporating additional data. Our work represents

a significant improvement over previous predictions that generally required 

data corresponding to >5% capacity degradation, without needing 

specialized diagnostics. Additionally, it highlights the promise of combining 

data generation with data-driven modeling to predict the behavior of 

complex and variable systems. 

Main

Lithium-ion batteries are deployed in a wide range of applications due 

to their low and falling costs, high energy densities, and long cycle lives.1–3 

However, as is the case with many chemical, mechanical, and electronics 

systems, long battery cycle life implies delayed feedback of performance 

during development and manufacture, often many months to years. 

Accurately predicting cycle life using early-cycle data would accelerate this 

feedback loop as well as enable estimation of battery life expectancy for use 

in consumer electronics, electric vehicles, and second-life applications.4–6 
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However, the task of predicting capacity fade and/or cycle life for lithium-ion 

batteries is challenging because of nonlinear degradation with cycling and 

wide variability, even when controlling for operating conditions.7–11 

Many studies have modeled cycle life in lithium-ion batteries. Bloom et

al.12 and Broussely et al.13 performed early work that fit semi-empirical 

models to predict power and capacity loss. Since then, many authors have 

proposed physical and semi-empirical battery degradation models that 

account for diverse mechanisms such as growth of the solid-electrolyte 

interphase14–17, lithium plating18,19, active material loss20,21, and impedance 

increase22–24. Predictions of remaining useful life in battery management 

systems, summarized in these reviews5,6, often rely on these mechanistic 

and semi-empirical models. Specialized diagnostic measurements such as 

coulombic efficiency25,26 and impedance spectroscopy27–29 can also estimate 

cycle life. While these chemistry and/or mechanism-specific models have 

shown predictive success, developing models that describe full cells cycled 

under relevant conditions (e.g., fast charging) remains challenging, given the

many degradation modes and their coupling to the thermal30,31 and 

mechanical30,32 heterogeneities within a cell32–34.

Approaches using statistical and machine learning techniques to 

predict cycle life are attractive, mechanism-agnostic alternatives. Recently, 

advances in computational power and data generation have enabled these 

techniques to accelerate progress in a variety of fields, including materials 

discovery for energy storage35–37 and catalysis38, and prediction of material 

3



properties39,40. A growing body of literature6,41,42 applies machine learning 

techniques for predicting remaining useful life using data collected in 

controlled laboratory environments and during real world operation. 

Generally, predictions are made after accumulating data corresponding to 

>5% of degradation from the initial capacity43–49 or using specialized 

measurements at the beginning of life11. Accurate early prediction of cycle 

life with significantly less degradation is challenging because of the typically 

nonlinear degradation process (with negligible capacity degradation in early 

cycles) as well as the relatively small datasets used to date that span a 

limited range of degradation rates48. For example, Harris et al.10 correlated 

capacity values at cycle 80 to capacity values at cycle 500 for 24 cells 

exhibiting nonlinear degradation profiles, identifying only a weak correlation 

(ρ=0.1). In short, opportunities for improving upon state-of-the-art prediction

models include higher accuracy, earlier prediction, interpretability, and 

validation over a wider range of lifetimes. 

In this work, we develop data-driven models that accurately predict the

cycle life of commercial lithium-iron-phosphate (LFP)/graphite cells using 

early-cycle data, with no prior knowledge or assumption of degradation 

mechanisms. Here, cycle life (or equivalently, end-of-life) is defined as the 

number of cycles until 80% of nominal capacity. We generated a dataset 

consisting of 124 cells with cycle lives ranging from 150 to 2,300 by using 72

different fast-charging conditions. Utilizing information from early cycles yet 

to exhibit capacity degradation, our feature-based models achieve prediction
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errors of 15% using discharge voltage curves using the 10th and 100th cycles. 

The error further reduces to ~8% by incorporating data from additional 

cycles and data streams. These results illustrate the power of combining 

data generation with data-driven modeling to predict the behavior of 

complex systems far into the future.

Data generation

Because of the large number of capacity fade mechanisms and 

manufacturing variability of lithium-ion batteries, we expect the space that 

parameterizes capacity fade to be high dimensional. To probe this space, 

commercial LFP/graphite cells (A123 Systems, model APR18650M1A, 1.1 Ah 

nominal capacity) were cycled in a temperature-controlled environmental 

chamber (30 C) under different fast charging conditions but identical 

discharging conditions (4C to 2.0V, where 1C is 1.1A; see Methods for 

details). By deliberately varying the charging conditions, we generate a 

dataset that captures a wide range of cycle lives, from approximately 150 to 

2,300 cycles (average cycle life of 806 with a standard deviation of 377). 

Voltage, current, cell casing temperature, and internal resistance are 

measured during cycling. A full description of the experimental details can be

found in the Methods section. The dataset contains approximately 96,700 

cycles; to the best of the authors’ knowledge, our dataset constitutes the 

largest publicly available one consisting of nominally identical commercial 

lithium-ion batteries cycled under controlled yet varied conditions (see data 

availability section for access information). 
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Figure 1 shows the discharge capacity as a function of cycle number 

for the first 1,000 cycles, where the color denotes the cycle life. The capacity

fade is negligible in the first one hundred cycles and accelerates near the 

end of life, as is often observed in lithium-ion batteries.8,10,11 The fact that the

capacity fade trajectories cross each other illustrates the weak relationship 

between initial capacity and lifetime. Indeed, we find weak correlations 

between the log of cycle life and the discharge capacity at the 2nd cycle (=-

0.06, Figure 1d) and the 100th cycle (=0.27, Figure 1e), as well as between 

the log of cycle life and the capacity fade rate near cycle 100 (=0.47, Figure

1f). These weak correlations are expected because capacity degradation in 

these early cycles is negligible; in fact, the capacities at cycle 100 increased 

from the initial values for 81% of cells in our dataset (Figure 1c). Given the 

limited predictive power of these correlations based on the capacity fade 

curves, we employ an alternative data-driven approach that considers a 

larger set of cycling data which includes the full voltage curves of each cycle,

as well as additional measurements including cell internal resistance and 

temperature. 

Machine learning approach 

We develop a feature-based approach for building an early prediction 

model. In this paradigm, features, which are transformations of the raw data,

are generated and used in a regularization framework. The final model uses 

a linear combination of a subset of the proposed features to predict the 

logarithm of cycle life. This subset is identified using the elastic net51. A 
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description of the computational framework can be found in the Methods 

section.

We propose features (Table 1) based on domain knowledge of lithium-

ion batteries (though agnostic to chemistry and degradation mechanisms), 

such as initial discharge capacity, charge time, and cell can temperature. To 

capture the electrochemical evolution of individual cells during cycling, 

several features are calculated based on the discharge voltage curve (Figure 

2a). Specifically, we consider the cycle-to-cycle evolution of Q(V), the 

discharge voltage curve as a function of voltage for a given cycle. As the 

voltage range is identical with every cycle, we consider capacity as a 

function of voltage, as opposed to voltage as a function of capacity, in order 

to maintain a uniform basis for comparing cycles. For instance, we can 

consider the change in discharge voltage curve between cycles 20 and 30, 

denoted ΔQ30-20(V) = Q30(V) – Q20(V), where the subscripts indicate the cycle 

number. This data transformation, ΔQ(V),  is of particular interest because 

voltage curves and their derivatives are a rich data source that have been 

effective in degradation diagnosis52–58. 

The ΔQ(V) curves for our dataset are shown in Figure 2b using the 

100th and 10th cycles, i.e., ΔQ100-10(V). Summary statistics, e.g. minimum, 

mean, and variance, were then calculated for the ΔQ100-10(V) curves of each 

cell. Each summary statistic is a scalar quantity that captures the change in 

the voltage curves between two given two cycles. In our data-driven 

approach, these summary statistics are selected based on their predictive 
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ability, not their physical meaning. Immediately, a clear trend emerges 

between the cycle life of a cell and a summary statistic, specifically variance,

applied to ΔQ100-10(V) (Figure 2c). 

Because of the high predictive power of features based on ΔQ100-10(V), 

we investigate models (1) using only the variance of ΔQ100-10(V), (2) 

considering additional candidate features obtained during discharge, and (3) 

considering features including both charging and discharging. In all cases, 

data were taken from the first 100 cycles. These three models, each with 

progressively more features, were chosen to evaluate both the cost-benefit 

of acquiring additional data streams such as temperature and the limits of 

prediction accuracy.  The complete set of 20 candidate features is shown in 

Table 1 and is described in detail in the Supplemental Information. The 

training data (41 cells) is used to select the model form and set the values of

the coefficients, and the primary testing data (43 cells) is used to evaluate 

the model performance. We then evaluate the model on a secondary, unseen

testing dataset of 40 cells generated after model development. Two metrics, 

defined in the Computational Methods section, are used to evaluate 

performance of the cycle life prediction: root-mean-squared error (RMSE), 

with units of cycles, and average percent error. 

Results

We present three models to predict cycle life using increasing 

candidate feature set sizes. The first model, denoted as the “variance” 

model, does not consider subset selection and uses only the log variance of 
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ΔQ100-10(V) for prediction. Surprisingly, using only this single feature results in 

a model that has approximately 15% average percent error on the primary 

test dataset and approximately 11% average percent error on the secondary

test dataset. We stress the error metrics of the secondary test dataset, as 

these data had not been generated at the time of model development and 

are thus a rigorous test of model generalizability. The second, “discharge” 

model, considers additional information derived from measurements of 

voltage and current during discharge in the first 100 cycles (row blocks 1 and

2 of Table 1). Six out of thirteen features were selected. Finally, the third, 

“full” model, considers all available features (all rows blocks of Table 1). In 

this model, nine out of twenty features were selected. As expected, by 

adding additional features, the test average percent error decreases to 7.5% 

and the additional test average percent error decreases slightly to 10.7%. In 

all cases, the average percent error is less than 15% and reduces to as low 

as ~8% in the full model, excluding an anomalous cell. Table 2 and Figure 3 

display the performance of the “variance”, “discharge”, and “full” models 

applied to the train, primary test, and secondary test datasets, and the 

specific features and model coefficients used in the full model are displayed 

in Figure 4.

We benchmark the performance of our cycle life prediction using early-

cycle data against both prior literature and naïve models. A relevant metric 

is the extent of degradation that has to occur before an accurate prediction 

can be made. In our work, accurate prediction was achieved using voltage 
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curves from early cycles corresponding to capacity increase of 0.2% 

(median) relative to initial values (with the first and third quartile percentiles 

being 0.06% and 0.34%, respectively). We are not aware of previous early 

prediction demonstrations that do not require degradation in the battery 

capacity nor specialized measurements. In fact, published models generally 

require data corresponding to at least 5% capacity degradation before 

making a prediction at an accuracy comparable to this work43–49. We also 

benchmark our model performance using naïve models, e.g. univariate 

models and/or models that only utilize information from the capacity fade 

curve (see Supplementary Information, Benchmarking models section). 

Notably, if the average cycle life of the training data is used for prediction, 

the average percent error is approximately 30% and 36% for the primary 

and secondary test data, respectively. The best benchmark model has errors 

of 25% and 34% for the primary and secondary test data, respectively.

While models that include features based on additional data streams 

such as internal resistance and casing temperature generally have the 

lowest errors, the primary predictive ability comes from the variance of 

ΔQ100-10(V) feature, as evidenced by the performance of the single-feature 

“variance” model. This feature is consistently selected in both models with 

feature selection (“discharge” and “full”). Other transformations of this 

trajectory can also be used to predict cycle life, alone or in combination with 

variance. For example, the full model selects the minimum and variance of 

the ΔQ100-10(V) features. The physical meaning of the variance feature is 
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associated with the dependence of the discharged energy dissipation on 

voltage, which is indicated by the green region between the voltage curves 

in Fig. 2a. The integral of this region is the total change in energy dissipation 

between cycles under galvanostatic conditions and is linearly related to the 

mean of ΔQ(V). Zero variance would indicate energy dissipations that do not 

depend on voltage. Thus, the variance of ΔQ(V) reflects the extent of non-

uniformity in the energy dissipation with voltage, due to either open-circuit 

or kinetic processes, a point that we return to later.

Discussion

We observe that features derived using early-cycle discharge voltage 

curve have excellent predictive performance, even before the onset of 

capacity fade. We rationalize this observation by investigating degradation 

modes that do not immediately result in capacity fade yet still manifest in 

the discharge voltage curve, and are also linked to rapid capacity fade near 

the end-of-life.

While our data-driven approach has successfully revealed predictive 

features of cycle life from early cycle discharge curves, identification of the 

degradation modes using only high rate data is challenging because of the 

convolution of kinetics with open-circuit behavior. Dubarry et al.55 used low-

rate diagnostic cycles to remove these kinetic effects and mapped 

degradation modes in LFP/graphite cells to their resultant shift in dQ/dV and 

dV/dQ derivatives for diagnostic cycles at C/20. One degradation mode – loss

of active material of the delithiated negative electrode (LAMdeNE) – results in a
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shift in discharge voltage with no change in capacity. This behavior is 

observed when the negative electrode is oversized relative to the positive 

electrode, as is the case in the LFP/graphite cells examined in this work. 

Thus, a loss of delithiated negative electrode material changes the potentials

at which lithium ions are stored without changing the overall capacity.55,56 As 

proposed by Anséan et al.56, at high rates of LAMdeNE, the negative electrode 

capacity will eventually fall below the lithium-ion inventory remaining in the 

cell. At this point, the negative electrode will not have enough sites to 

accommodate lithium ions during charging, inducing lithium plating.56 Since 

plating is an additional source of irreversibility, the capacity loss accelerates.

Thus, in early cycles, LAMdeNE shifts the voltage curve without affecting the 

capacity fade curve and induces rapid capacity fade at high cycle number. 

This degradation mode, in conjunction with loss of lithium inventory (LLI), is 

widely observed in commercial LFP/graphite cells operated under similar 

conditions.34,54,56,57,59,60

To investigate the contribution of LAMdeNE to degradation in our 

experiments, additional experiments were performed for cells cycled with 

varied charging rates (4C, 6C, and 8C) and a constant discharge rate (4C), 

incorporating slow cycling at the 1st, 100th, and end of life cycles. Derivatives 

of diagnostic discharge curves at C/10 (Figure 5, rows 1 and 2) are compared

to those, and ΔQ(V), at 4C at the 10th, 101st, and end of life cycles (rows 3 

and 4). The shifts in dQ/dV and dV/dQ observed in diagnostic cycling 

correspond to a shift of the potentials at which lithium is stored in graphite 
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during charging and are consistent with LAMdeNE and LLI operating 

concurrently.55–57 The magnitude of these shifts increases with charging rate. 

These observations rationalize why models using features based on 

discharge curves have lower errors than models using only features based 

on capacity fade curves, since LAMdeNE does not manifest in capacity fade in 

early cycles. Other degradation modes that do not initially manifest in 

capacity fade have been reported, such as high-voltage cathode materials 

undergoing voltage fade.61,62 We also note that LAMdeNE alters a fraction of, 

rather than the entire, discharge voltage curve, consistent with the observed

correlation between the variance of ΔQ100-10(V) and cycle life. 

We recognize that the above rationalization uses low-rate diagnostic 

cycling, which is largely not affected by kinetics. However, our predictions 

were developed using high-rate discharge data. As such, these discharge 

voltage curves can reflect kinetic degradation modes that are not observed 

in dQ/dV and dV/dQ derivatives at C/10. Because we perform a constant-

voltage hold at the end of both charge and discharge, kinetic degradation 

modes may manifest in the discharge voltage curve but not in the capacity 

fade curve. We note that the change in the discharge energy between the 

diagnostic cycles (1st and 100th cycles) is 53% to 66% of the change between

the 10th and 101st high-rate cycles, indicating the degradation is influenced 

by both low-rate and high-rate degradation modes (see Supplemental 

Information, Kinetic degradation section). These kinetic contributions during 

early cycles may also be linked to cycle life, especially nonlinearities in 
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reaction kinetics that could skew the voltage curves non-uniformly63, and are

part of an ongoing investigation. 

As noted above, differential methods like dQ/dV and dV/dQ are used 

extensively to pinpoint degradation mechanisms52–57.  These approaches 

require low-rate diagnostic cycles, as higher rates smear out features due to 

overpotential, as seen by comparing row 1 to row 3 in Figure 5. These 

diagnostic cycles often induce a temporary capacity recovery that interrupts 

the trajectory of capacity fade (see Supplemental Information, Diagnostic 

cycling section), complicating the history of the battery64,65. Therefore, by 

applying summary statistics to ΔQ(V) collected at high rates, we 

simultaneously avoid both low-rate diagnostic cycles and numerical 

differentiation, which decreases the signal-to-noise ratio66. 

Finally, additional analysis during model development was performed 

to understand the impact of the cycle indices chosen for ΔQ(V) features. 

Linear models using only the variance of the difference Qi(V) – Qj(V) for the 

training and testing datasets were investigated and are displayed in Figure 

6. We find that the model is relatively insensitive to the indexing scheme for 

i > 80. This trend is further validated by the model coefficients shown in 

Figure S8. We hypothesize that the insensitivity of the model to the indexing 

scheme implies linear degradation with respect to cycle number, which is 

often assumed for LAM modes55,56. Relative indexing schemes based on 

cycles in which a specified capacity fade was achieved were also 

investigated and did not result in improved predictions. Furthermore, 
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because the discharge capacity initially increases, specified decreases in 

capacity take longer to develop in terms of cycles than fixed indexing (see 

Supplemental Information, Relative indexing schemes section).

Conclusion

Data-driven modeling is critical in diagnostics and prognostics of 

lithium-ion batteries cycled under relevant conditions. We develop cycle life 

prediction models using early-cycle discharge data yet to exhibit 

degradation, generated from commercial LFP/graphite batteries cycled under

fast charging conditions. The models achieve prediction errors of 15% using 

data from only the 10th and 100th cycles and errors as low as 8% using the 

first 100 cycles for batteries with lifetimes ranging from 150 to 2,300 cycles. 

This level of accuracy is achieved by extracting features from high-rate 

discharge voltage curves as opposed to only from the capacity fade curves, 

and without using data from slow diagnostic cycles nor assuming prior 

knowledge of  cell chemistry and degradation mechanisms. The success of 

the model is rationalized by demonstrating consistency with degradation 

modes that do not manifest in capacity fade during early cycles but do 

impact the voltage profiles. In general, we expect our early prediction 

models to be especially effective for degradation modes that do not initially 

contribute to capacity fade, such as voltage fade in high-voltage cathode 

materials. Our approach can complement approaches based on physical and 

semi-empirical models and on specialized diagnostics. Broadly speaking, this

work highlights the promise of combining data generation and data-driven 
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modeling for understanding and developing complex systems such as 

lithium-ion batteries. 

Methods:

Experimental

Commercial high-power LFP/graphite A123 APR18650M1A cells were 

used in this work. The cells have a nominal capacity of 1.1 Ah and a nominal 

voltage of 3.3V. The manufacturer’s recommended fast-charging protocol is 

3.6C CC-CV. Rate capability of these cells is shown in Figure S9.

All cells were tested in cylindrical fixtures with 4-point contacts on a 

48-channel Arbin LBT battery testing cycler. The tests were performed at a 

constant temperature of 30°C in an environmental chamber (Amerex 

Instruments). Cell can temperatures were recorded by stripping a small 

section of the plastic insulation and contacting a Type T thermocouple to the 

bare metal casing using thermal epoxy (OMEGATHERM 201) and Kapton 

tape.

The cells were cycled with various charging policies but identically 

discharged. Cells were charged from 0% to 80% SOC with various single-step

and two-step charging policies. The charging time from 0% to 80% SOC 

ranged from 9 to 13.3 minutes. An internal resistance measurement was 

obtained during charging at 80% SOC by averaging 10 pulses of ±3.6C with 

a pulse width of 30 ms, where 1C is 1.1 A, or the current required to fully 

(dis)charge the nominal capacity (1.1 Ah) in 1 hour. All cells then charged 
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from 80% to 100% SOC with a uniform 1C CC-CV charging step to 3.6V and a

current cutoff of C/50. All cells were subsequently discharged with a CC-CV 

discharge at 4C to 2.0V with a current cutoff of C/50. The voltage cutoffs 

used in this work follow those recommended by the manufacturer.

To standardize the voltage-capacity data across cells and cycles, all 4C

discharge curves were fit to a spline function and linearly interpolated (see 

Figure S10). Capacity was fit as a function of voltage and evaluated at 1000 

linearly-spaced voltage points from 3.5V to 2.0V. These uniformly-sized 

vectors enabled straightforward data manipulations such as subtraction.

Computational

This study involved both model fitting, selection of the coefficient 

values, and model selection (selection of the model structure). To perform 

both of these tasks simultaneously, a regularization technique was 

employed. A linear model of the form

ŷ i=ŵT xi (1)

was proposed, where ŷ i is the predicted number of cycles for battery i, x i is a

p-dimensional feature vector for battery i, and ŵ is a p-dimensional model 

coefficient vector. When applying regularization techniques, a penalty term 

is added to the least-squares optimization formulation to avoid over-fitting. 

Two regularization techniques, the lasso67 and the elastic net51, 

simultaneously perform model fitting and selection by finding sparse 

coefficient vectors. The formulation is 
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ŵ=argmin
w

‖y−Xw‖2
2
+λPP (w ) (2)

where y is the n-dimensional vector of observed battery lifetimes, X  is the n 

x p matrix of features, λP is a non-negative scalar. The term

‖y−Xw‖2
2 (3)

is found in ordinary least squares and is also referred to as squared loss 

because the optimization is minimizing the squared error. The formulation of 

the second term, P (w ), depends on the regularization technique being 

employed. For the lasso, 

P (w )=‖w‖1 , (4)

and

P (w )=
1−α

2
‖w‖2

2
+α‖w‖

1
(5)

for the elastic net. Both formulations will result in sparse models. The elastic 

net has been shown to perform better when p >> n,51 as is often the case in 

feature engineering applications, but it requires fitting an additional hyper-

parameter (α and λP, as opposed to only λP in the lasso). The elastic net is also

preferred when there are high correlations between the features, as is the 

case in this application. To choose the value(s) of the hyper-parameter(s), we

apply 4-fold cross validation and Monte Carlo sampling.

The model development dataset is divided into two equal sections, 

referred to as the training and primary testing data. The training data is used

to choose the hyper-parameters α and λ and determine the values of the 
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coefficients, w. The training data is further subdivided into calibration and 

validation sets for cross-validation. The testing data is then used as a 

measure of generalizability because this data has not been used to learn the 

model coefficients or form. 

Root-mean-squared error (RMSE) and average percent error are 

chosen to evaluate model performance. RMSE is defined as

RMSE=√1
n
∑
i=1

n

(y i−ŷ i )
2 (6)

where y i is the observed cycle life, ŷ i is the predicted cycle life, and n is the 

total number of samples. Average percent error is defined as

%err=1
n
∑
i=1

n |y i− ŷi|
y i

×100 (7)

where all variables are defined as above. 
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Figure 1 | a, Discharge capacity for the first 1,000 cycles of LFP/graphite 
cells. The color of each curve is scaled based on the battery’s cycle life, as is
done throughout the manuscript. b, A detailed view of a, showing only the 
first 100 cycles. A clear ranking of cycle life has not emerged by cycle 100. 
c, Histogram of the state of health at cycle 100. The cell will the largest 
degradation (90%) is excluded to show the detail of the rest of the 
distribution. d, Cycle life as a function of discharge capacity at cycle 2. The 
correlation coefficient of capacity at cycle 2 and log cycle life is -0.06. e, 
Cycle life as a function of discharge capacity at cycle 100. The correlation 
coefficient of capacity at cycle 100 and log cycle life is 0.27. f, Cycle life as a
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function of the slope of the discharge capacity curve for cycles 95 through 
100. The correlation coefficient of this slope and log cycle life is 0.47.

Figure 2 | a, Discharge capacity curves for 100th and 10th cycles for a 
representative cell. b, Difference of the discharge capacity curves as a 
function of voltage between the 100th and 10th cycles, ΔQ100-10(V), for 124 
cells. c, Cycle life plotted as a function of the variance of ΔQ100-10(V) on a log-
log axis, with a correlation coefficient of -0.93. In all plots, the colors are 
determined based on the final cycle lifetime. In c, the color is redundant with
the y-axis.  
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Table 1 | Features considered for the various model implementations. The 
simplest model uses only the log variance of ΔQQ100-10(V) and does not 
consider model selection. More complex models are considered using only 
discharge information (first two sections) as well as additional 
measurements (all sections). 

Features “Varianc
e”

“Dischar
ge”

“Full”

ΔQQ100-10(V)
features

Minimum ✓ ✓
Mean
Variance ✓ ✓ ✓
Skewness ✓
Kurtosis ✓
Value at 2V

Discharge
capacity

fade curve
features

Slope of the linear fit to 
the capacity fade curve, 
cycles 2 to 100

✓

Intercept of the linear fit
to capacity fade curve, 
cycles 2 to 100

✓

Slope of the linear fit to 
the capacity fade curve, 
cycles 91 to 100
Intercept of the linear fit
to capacity fade curve, 
cycles 91 to 100
Discharge capacity, 
cycle 2

✓ ✓

Difference between max
discharge capacity and 
cycle 2

✓

discharge capacity, 
cycle 100

Other
features

Average charge time, 
first 5 cycles

✓

Maximum temperature, 
cycles 2 to 100
Minimum temperature, 
cycles 2 to 100
Integral of temperature 
over time, cycles 2 to 
100

✓

Internal resistance, 
cycle 2
Minimum internal ✓
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resistance, cycles 2 to 
100
Internal resistance, 
difference between 
cycle 100 and cycle 2

✓

Table 2 | Model metrics for the results shown in Figure 3. Train and test refer
to the data used to learn the model and evaluate model performance, 
respectively. One battery in the test set reaches 80% SOH rapidly and does 
not match other observed patterns. Therefore, the parenthetical primary test
results correspond to the exclusion of this battery.

RMSE (cycles) Mean Percent Error
Train Primary

Test
Secondar

y Test
Train Primary

Test
Secondar

y Test
“Variance
” model

103 138 (138) 196 14.1
%

14.7%
(13.2%

)

11.4%

“Discharg
e” model

76 91 (86) 173 9.8% 13.0%
(10.1%

)

8.6%

“Full” 
model

51 118 (100) 214 5.6% 14.1%
(7.5%)

10.7%
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Figure 3 | Observed and predicted cycles to 80% SOH for several 
implementations of the feature-based model. The training data are used to 
learn the model structure and coefficient values. The testing data are used 
to assess generalizability of the model. We differentiate the primary test and
secondary test datasets because the latter was generated after model 
development. The vertical dotted line indicates when the prediction is made 
in relation to the observed cycle life. The inset shows the histogram of 
residuals (predicted – observed) for the primary and secondary test data. a, 
“variance” model using only the log variance of ΔQQ100-10(V). b, “discharge” 
model using six features based only on discharge cycle information, 
described in Table 1. c, “full” model using the nine features described in 
Table 1. Because some temperature probes lost contact during 
experimentation, four cells are excluded from the full model analysis.
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Figure 4 | Nine features used in the full model described in Table 1. The 
coefficient value for the feature in the linear model is in the title of plot. The 
train, primary test, and secondary test cells are represented by blue circles, 
red squares, and orange triangles, respectively. Each of the features has 
been z-scored based on the training data.
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Figure 5 | Results of three cells that were tested with periodic slow 
diagnostic cycles. From top to bottom, the plots are dQ/dV using slow 
cycling, dV/dQ using slow cycling, dQ/dV using fast cycling, and ΔQQ(V) using 
fast cycling. The solid black line is the first cycle (cycle 10 for fast cycling), 
the dotted grey line is cycle 101 or 100 (fast and slow, respectively), and the
colored thick line is the end of life cycle (80% SOH). For ΔQQ(V), a thin dotted 
grey line is added every 100 cycles. The patterns observed using slow 
cycling are consistent with LAMdeNE and LLI. The features are smeared during 
fast charging. The log variance ΔQQ(V) model trained using the high-
throughput dataset is able to predict lifetime within 15%. 
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Figure 6 | RMSE error, in cycles, for training and testing datasets using only 
the log variance of ΔQQi-j(V), where the discharge cycles that are used in 
analysis are varied. These errors are averaged over 20 random partitions of 
the data into equal training and testing datasets. The errors are relatively 
flat after cycle 80. The increases in error around cycles j = 55 and i = 70 are 
due to temperature fluctuations of the chamber (see Figure S6 for 
information on experimental temperature).
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