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Abstract— Stem cell expansion culture aims to generate
sufficient number of clinical-grade cells for cell-based therapies.
One challenge for ex vivo expansion is to decide the appropriate
time to perform subculture. Traditionally, this decision has been
reliant on human estimation of cell confluency and predicting
when confluency will approach a desired threshold. However,
the use of human operators results in highly subjective decision-
making and is prone to inter- and intra-operator variability.
Using a real-time cell image analysis system, we propose a data-
driven approach to model the cell growth process and predict
the cell confluency levels, signaling times to subculture. This
approach has great potential as a tool for adaptive real-time
control of subculturing, and it can be integrated with robotic
cell culture systems to achieve complete automation.

I. INTRODUCTION

Stem cell engineering promises to revolutionize regener-

ative medicine by helping to repair diseased or damaged

tissues and organs. Starting with the relatively small number

of primary stem cells available in isolates from the body, one

of the critical bioprocessing steps required by successful cell-

based therapies is to generate a sufficient number of clinical-

grade stem cells through ex vivo cell culture expansions [4].

However, tight control of the expansion process remains a

challenge. In particular, determining the appropriate time to

perform cell subculturing is important. Delayed subculturing

of cells can result in cell overgrowth, which leads to loss

of stem cell differentiative potential (stemness); whereas

premature subculturing can lead to longer production time

to achieve targeted cell yields, with associated added costs.

Traditionally, the decision to subculture is based on cell

confluency which is related to the cell packing densities in

the culture vessel. However, estimation of cell confluency

by human operators is a highly subjective task and prone

to inter- and intra-operator variability [5]. Furthermore, it

is not practical or cost-effective for human operators to

manually observe and monitor cell cultures 24/7. Automating

the decision on when to subculture cells will result in more
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consistent outcomes and reduce variability, leading to more

efficient and reliable stem cell culture systems.

Time-lapse microscopy imaging has been used to mon-

itor the cell growth process [3] where the degree of cell

confluency level in images is used as a metric to assess

the cell culture process. To augment human monitoring, we

propose a data-driven approach to model the cell growth

process and predict the optimal confluency for a real-time

adaptive subculture system. First, time-lapse images of cells

under the same culture condition are acquired to monitor

the cell growth process, and to compute the cell confluency

over time. These experiments are terminated without further

subculture when the computed confluency exceeds a pre-

determined cell confluency level. These pre-recorded images

with computed time series of confluency metrics serve as

training data for subsequent real-time adaptive control ex-

periments. We then build a linear subspace using princi-

ple component analysis (PCA) on the training data. When

performing a new cell culture experiment with the same

culture conditions as our training experiments, we project the

observed confluency data onto the linear subspace to model

the cell growth process and predict the future confluency.

One application of our prediction approach is to notify a

human operator in advance when to perform a subculture.

For example, 4 hours prior to exceeding a pre-determined

confluency level (e.g. 50%), the image analysis and predic-

tion system alerts a human operator via text messaging and/or

email to prepare for subculture. The goal is to help human

operators expand a population of stem cells to reach a target

number in an efficient manner without exceeding or being

far away from the pre-determined optimal confluency level

(i.e., avoiding delayed or premature subculture).

In this paper, we first introduce in Section II how we com-

pute confluency metrics to monitor cell growth processes.

Then, in Section III we present our data-driven model. The

dynamic prediction on cell confluency levels is described in

Section IV. In Section V we quantitatively compare our data-

driven approach with other parametric models and introduce

the application of our prediction system.

II. MONITORING CELL GROWTH PROCESS

During the cell culture experiment, we capture real-time

phase contrast microscopy images to monitor the degree of

confluency inside the field of view. The confluency metric is

defined as the number of pixels occupied by cells divided

by the total number of pixels in the image. For a given

phase contrast image (Fig. 1a), we restore its corresponding

artifact-free image without the halo or shade-off effects [6],

as shown in Fig. 1b. In the restored image, cell pixels

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 3577

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



Fig. 1. Compute confluency. (a) A phase contrast microscopy image; (b)
Restored image without halo or shade-off artifacts; (c) The segmented cell
masks by globally thresholding the restored image; (d) Segmentation results
(red) overlaid on the original image.

Fig. 2. The confluency increases during the culture process. Five sample
images overlaid with segmented cell masks (red) show the confluency level
at five time instants.

have positive values while background pixels have near-zero

values, which is amenable to image segmentation by thresh-

olding. The thresholded binary mask is shown in Fig. 1c. The

resultant cell mask overlaid on top of the original image is

shown in Fig. 1d, which proves to be a good estimation of

the confluency metric.

Given a time-lapse microscopy image sequence, we com-

pute the confluency metric for each individual image. This

produces time series data on confluency. As shown in Fig. 2,

while stem cells keep dividing (mitosis), the confluency

of the culture process increases accordingly. The small

“dips” observed in the confluency curve correspond to minor

changes in cell shapes over a period time.

III. MODELING CELL GROWTH PROCESS

Monitoring cell growth with time-lapse microscopy imag-

ing generates time series confluency data (e.g Fig. 2). Para-

metric models on the cell growth process can be obtained

by data-fitting. For example, we can fit the second-order

polynomial model on the observed confluency data by

Fig. 3. Align time series confluency curves. (a) The original confluency
metrics of N time-lapse image sequences; (b) Aligned curves such that their
cell culture processes start from the same initial confluency.

x(t) = p2t
2 + p1t+ p0 (1)

where x = [x(0), · · · ,x(t), · · · ,x(T )]T is a vector storing

the observed confluency metrics from time t = 0 to time

t = T , and p = [p1,p2,p3]
T is the parameter vector. Or,

we can fit exponential model onto the data by

x(t) = ekt + c (2)

where k and c are the scalar parameters. All the parameters

(p, k, c) are computed using the least square technique [1].

However, these parametric models that depend on specific

cell types and culture experiments might lack practical

or biological meanings. Instead, we propose a data-driven

approach that models the growth process based on observed

training data without assuming any specific model. We

ran N cell culture experiments on the same type of cells

using the same culture condition to obtain the training data.

Images of the cell culture experiments were captured every 5

minutes using a phase contrast microscopy imaging system,

which generated N time-lapse image sequences for training

purposes. We computed confluency metrics for all the N

sequences (Fig. 3a). Since the first image of each sequence

may have different degrees of confluency (i.e., the number of

seed cells may be different for the N sequences), we search

the largest initial confluency of the N curves in Fig. 3a, and

then align all the N curves such that they start from the same

initial condition (Fig. 3b).

Then, we apply PCA [2] onto the training data using

Singular Value Decomposition (SVD)

X = USVT (3)

where data matrix X = [x1, · · · ,xN ] stores the vectors of

the confluency metrics of the N image sequences, U and

V are two orthogonal matrices, and S is a diagonal matrix

with rank-ordered singular values (Fig. 4). We choose the

column vectors of V that correspond to the first K (e.g.

K = 2) largest singular values to span a linear subspace for

our data-driven modeling.

For a new cell culture experiment having the same type

of cells and the same culture condition as our training

experiments, we monitor its culture process and compute the

observed confluency, z. The culture process can be modeled

in our trained linear subspace by

y =

K∑

k=1

akvk (4)
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Fig. 4. The variance (singular value) of each principle component.

Fig. 5. Modeling cell growth by three methods: (a) Data-driven; (b)
Polynomial, and (c) Exponential. The data-driven model fits the observed
data with the least error on the culture process.

where vk denotes the kth principle vector in V, the coeffi-

cient ak is computed by

ak = vT

k
z. (5)

The performance of the modeling is evaluated by the sum of

absolute difference between the modeled culture process, y,

and the observed culture process, z,

Err =

T∑

t=0

|y(t)− z(t)|. (6)

Compared to the two parametric models (polynomial and

exponential), the data-driven model fits the observed data

with the least error on the culture process in Fig. 5.

IV. PREDICTING CELL CONFLUENCY

Our goal is to accurately predict the cell confluency at a

future time t+L based on the observed confluency data from

time 0 till time t, where L is the prediction time lag. When

L = 1, we predict the confluency at the next frame. When

L = 48, we predict the confluency 4 hours later (images are

captured every 5 minutes, and the time unit is represented

by the image index.) In this section, the data-driven model

(Eq. 4) is further extended to dynamic prediction. Denote

time-dependent data matrix X(t) = [x
(t)
1 , · · · ,x

(t)
N
] where

x
(t)
i

= [xi(0), · · · ,xi(t)]
T (i.e., x

(t)
i

is the observed time

series confluency of sequence i from time 0 till time t), we

perform SVD

X(t) = U(t)S(t)V(t)T (7)

on all the t’s (t = 0, · · · , T ). Thus, for any time index t, we

get a set of K principle components , {v
(t)
1 , · · · ,v

(t)
K
}.

When predicting the confluency level for a new cell culture

experiment, we first compute the coefficients based on the

current observed time series data, z(t) = [z(0), · · · , z(t)]T ,

a
(t)
k

= v
(t)
k

T

z(t) (8)

then the confluency at time t+ L is predicted by

z(t+L)(t+ L) =

K∑

k=1

a
(t)
k
v
(t+L)
k

(t+ L) (9)

Fig. 6. Predicting the confluency in the next image using three prediction
methods: (a) Data-driven; (b) Polynomial, and (c) Exponential. The data-
driven model has the least prediction error on the culture process.

Fig. 7. Predicting the confluency 4 hours later using three prediction
methods: (a) Data-driven; (b) Polynomial, and (c) Exponential. The data-
driven model is more stable compared to the parametric models and it has
the least prediction error on the culture process.

Fig. 8. The prediction error of three methods regarding to different
prediction time lags. The data-driven prediction is stable and it outperforms
the other two parametric methods consistently with the least prediction error.

Using the evaluation criterion in Eq. 6, we compare the

data-driven prediction method to the other two predictions

using parametric models. As shown in Fig. 6, when predict-

ing the confluency in the temporal domain with a small time

lag, all three prediction methods work reasonably well and

the data-driven prediction achieves the least prediction error.

When the prediction time lag (L) increases, the error of all

the prediction methods increase (Fig. 7). In particular, the

prediction by a polynomial model is quite unstable at the

beginning when there is not enough data for model fitting

(Fig. 7b). The data-driven prediction still achieves the least

prediction error for the larger prediction lag.

We further quantitatively evaluate how well the three pre-

diction methods can predict future confluency by changing

the time lag from L = 1 (5 minutes) to L = 96 (8 hours).

As shown in Fig. 8, the data-driven prediction outperforms

the other two methods consistently with the least prediction

error, and the prediction by data-driven or exponential model

is much more stable than the prediction by polynomial model

as the time lag increases.

V. EXPERIMENTS

We recorded a total of 48 image sequences under four

different cell culture conditions with sample images shown

in Fig. 9. The images were captured every 5 minutes and

each sequence consists of 1000 images at the resolution of

1392*1040 pixels. Under each culture condition, we have
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Fig. 9. Sample images from four cell culture conditions. (a) Control; (b)
With FGF2; (c) With BMP2; (d) With FGF2+BMP2.

TABLE I

THE PREDICTION ERROR OF THREE METHODS WITH L = 24.

Control FGF2 BMP2 FGF2+BMP2

Data driven 122.2 68.7 154.0 137.6

Polynomial 146.2 105.3 179.6 168.2

Exponential 148.9 97.4 309.0 211.2

TABLE II

THE PREDICTION ERROR OF THREE METHODS WITH L = 48.

Control FGF2 BMP2 FGF2+BMP2

Data driven 136.0 74.4 169.6 157.8

Polynomial 259.5 222.7 304.8 315.6

Exponential 164.7 112.6 340.9 235.3

TABLE III

THE PREDICTION ERROR OF THREE METHODS WITH L = 96.

Control FGF2 BMP2 FGF2+BMP2

Data driven 153.4 78.4 192.6 178.9

Polynomial 631.7 628.9 714.8 809.7

Exponential 188.4 136.3 400.5 278.7

12 image sequences. We use the “leave-one-out” strategy to

evaluate the prediction performance. After selecting one out

of the 12 sequences, the remaining 11 sequences undergo

PCA analysis to obtain the principle components (Eq. 7).

Then, we run the prediction (Eq. 9) on the selected sequence

and compare the prediction with the observation using Eq. 6.

We repeat the “leave-one-out” evaluation for each of the

12 sequences and use the summation of all the prediction

errors as the final evaluation criterion on the 12 sequences.

As shown in Tables 1, 2 and 3, the data-driven prediction

achieves the least error at confluency prediction over all the

four culture conditions for different prediction time lags.

The data-driven prediction on cell culture process is useful

for automating the decision process for determining when

to perform subculture. A human operator first runs several

experiments to culture the cells until they reach a pre-

determined cell confluency level for subculture. The recorded

image sequences corresponding to these experiments will be

used to build the data-driven model in Eq. 4 and compute

the time series principle components in Eq. 7. Using the

same type of cells and under the same culture condition, the

Fig. 10. Advance notification for cell culture. (a) A human operator
was notified by text message and email 4 hours prior to exceeding a pre-
determined cell confluency level; (b) Confirmation text message and email
were sent when the cell confluency level approached the pre-determined
threshold.

human operator starts the recursive cell culture/subculture

process whose goal is to culture a sufficient number of cells.

In the meantime, the human operator sets up the image

analysis and prediction system such that it can notify him/her

h (e.g. h = 4) hours prior to exceeding a pre-determined

cell confluency level, to prepare for subculture. Fig. 10

shows a successful cell culture experiment by the advance

notification.

VI. CONCLUSION

Determining the appropriate time to perform subculture is

important to optimize the process of stem cell expansion. We

monitor the process of cell growth by computing the degree

of cell confluency in phase-contrast microscopy images.

Based on the cell confluency measurements, we propose a

data-driven approach to model the cell growth process and

predict when a pre-determined cell confluency threshold will

be exceeded, requiring cells to be subcultured. Compared to

the typical parametric models for predicting cell growth, our

data-driven approach learns the cell growth model from a

training set of cell culture experiments and achieves higher

prediction accuracy on cell culture experiments that have the

same culture condition as training experiments. This data-

driven prediction has great potential as a tool for adaptive

realtime control of subculturing, and it can be integrated with

robotic cell culture systems to achieve complete automation.
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