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Data-Driven Prediction with Stochastic Data: Confidence Regions and

Minimum Mean-Squared Error Estimates

Mingzhou Yin, Andrea Iannelli, and Roy S. Smith

Abstract— Recently, direct data-driven prediction has found
important applications for controlling unknown systems, par-
ticularly in predictive control. Such an approach provides
exact prediction using behavioral system theory when noise-free
data are available. For stochastic data, although approximate
predictors exist based on different statistical criteria, they fail
to provide statistical guarantees of prediction accuracy. In this
paper, confidence regions are provided for these stochastic pre-
dictors based on the prediction error distribution. Leveraging
this, an optimal predictor which achieves minimum mean-
squared prediction error is also proposed to enhance prediction
accuracy. These results depend on some true model parameters,
but they can also be replaced with an approximate data-
driven formulation in practice. Numerical results show that the
derived confidence region is valid and smaller prediction errors
are observed for the proposed minimum mean-squared error
estimate, even with the approximate data-driven formulation.

I. INTRODUCTION

In dynamical system analysis, one of the fundamental

problems is to predict system responses from given inputs

and initial conditions. Conventionally, this is done by sim-

ulating a model of the system, derived from first principles

and/or experimental data. However, increasing complexity of

systems poses challenges to the modeling process. Direct

approaches have therefore been widely pursued to obtain

reliable predictions of system responses without an explicit

model [1]. In what follows, the term ‘data-driven’ refers to

such direct approaches.

A seminal result, known as the Willems’ fundamen-

tal lemma [2], shows that data-driven prediction can be

conducted by linearly combining historical trajectory data

with persistently exciting inputs for linear systems. A more

general version of the lemma was recently given in [3].

This result enables model-based control design techniques

to be adopted with direct data-driven formulations. This

framework is especially suitable for predictive control, where

multiple data-driven algorithms have been developed, includ-

ing subspace predictive control [4], data-enabled predictive

control [5], and behavioral input-output parametrization [6].

Successful applications have been described in [7], [8].

Recently, the extension of the fundamental lemma to

stochastic data from a system identification point of view
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has been drawing increasing interest [9]. Such work in-

cludes model predictive control based on the prediction error

method [10], maximum likelihood signal matrix model [11],

[12], and a Wasserstein distance minimization approach [7].

With stochastic data, both the historical trajectories and

the prediction conditions are uncertain, which makes it

difficult to obtain statistical guarantees of the predictors. This

limits the application of data-driven predictors to control

design, particularly when robustness requirements and safety

constraints exist. As a result, to the best of our knowledge,

existing work on robust data-driven control [13], [14], [15]

is restricted to bounded noise models with often loose

prediction error bounds.

In this paper, a statistical framework on the accuracy of

the predicted response is established under the assumption

of Gaussian output noise. With this framework, confidence

regions are available for a general form of stochastic data-

driven predictors. The confidence region depends on the

extended observability matrix of the system, but it can also

be approximated through a data-driven formulation of model

properties without direct knowledge of model parameters.

The validity of the derived confidence regions is verified by

numerical examples.

In addition, this statistical framework allows computation

of the mean-squared error (MSE) of the predictor. In this

way, a novel stochastic data-driven predictor is designed to

be optimal for prediction accuracy in terms of minimizing

the MSE. This optimal algorithm can be obtained in practice

with a data-driven model characterization. It is shown nu-

merically that the proposed minimum MSE predictor obtains

smaller prediction errors than existing stochastic predictors.

Notation. A Gaussian distribution with mean µ and co-

variance Σ is indicated by N (µ ,Σ). The expectation and

the covariance of a random vector x are denoted by E(x)
and cov(x) respectively. For a vector x and a positive definite

matrix Q, the weighted Euclidean norm (xTQx)
1
2 is denoted

by ‖x‖Q. For a matrix X , the vectorization operator vec(X)

stacks its columns in a single vector; X† indicates the

Moore-Penrose pseudoinverse. For a sequence of matrices

X1, . . . ,Xn, we denote [XT

1 . . . XT

n ]T by col(X1, . . . ,Xn).

II. THE DATA-DRIVEN PREDICTION PROBLEM

A. Problem Statement

Consider a discrete-time linear time-invariant (LTI) system

with output noise, given by
{

xt+1 = Axt +But ,

yt = Cxt +Dut +wt ,
(1)
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where xt ∈ R
nx , ut ∈ R

nu , yt ∈ R
ny , wt ∈ R

ny are the states,

inputs, outputs, and output noise respectively. In this paper,

we assume that the system is observable with observability

index (lag) l.

In data-driven prediction, the model parameters A,B,C,D
are unknown, but M length-L input-output trajectories

zd
i = col

(

ud
ti
, · · · ,ud

ti+L−1,y
d
ti
, · · · ,yd

ti+L−1

)

∈ R
L(nu+ny), (2)

where i = 0, · · · ,M−1, have been collected. The matrix that

concatenates these trajectories

Z =
[
zd

0 · · · zd
M−1

]
∈R

L(nu+ny)×M (3)

is termed the signal matrix [11]. Depending on the construc-

tion, we can choose either ti+1 = ti +1 for a mosaic Hankel

signal matrix, or ti+1 = ti +L for a Page signal matrix [16].

The trajectories can also come from independent experiments

[17].

The problem is then to predict output trajectory y =
col(y0, · · · ,yL′−1) from any given input trajectory u =
col(u0, · · · ,uL′−1) using only the collected historical tra-

jectories. To obtain a unique output trajectory, the initial

condition is also fixed by measuring the immediate past

input-output trajectory uini = col
(
u−L0

, · · · ,u−1

)
and yini =

col
(
y−L0

, · · · ,y−1

)
, where L0 = L−L′ ≥ l. In other words, the

data-driven prediction problem aims to find an input-output

mapping in the following form:

y = FZ(u;uini,yini). (4)

B. Noise-Free Data-Driven Prediction

In the noise-free case, the following lemma provides a

condition for the existence of an exact mapping.

Lemma 1: If wt = 0, the exact mapping in the form of (4)

exists if rank(Z) = nuL+ nx.

Proof: According to Corollary 19 in [3], if rank(Z) =
nuL+nx, for all (uini,u,yini,y), there exists g∈R

M , such that

col(uini,u,yini,y) = Zg. Note that the observability index l

satisfies nyl ≥ nx. The dimension of col(uini,u,yini) then sat-

isfies nuL+nyL0 ≥ rank(Z), so y can be uniquely determined

by (uini,u,yini).
Define a partition of Z as

Z = col
(
Up,U f ,Yp,Yf

)
, (5)

where Up ∈ R
nuL0×M , U f ∈ R

nuL′×M, Yp ∈ R
nyL0×M, Yf ∈

R
nyL′×M . Following the proof of Lemma 1, the mapping can

be obtained by first solving the linear system

col
(
Up,U f ,Yp

)
g = col(uini,u,yini) , (6)

and then applying y = Yf g. Although any solution to (6)

is applicable (Proposition 1 in [18]), the pseudo-inverse

solution is the most commonly used. So the solution to the

noise-free data-driven prediction problem is,

FZ(·) = Yf gpinv, gpinv =





Up

U f

Yp





†



uini

u

yini



 . (7)

C. Data-Driven Prediction with Stochastic Data

When the output noise wt is no longer zero but a realiza-

tion of a stochastic process, Lemma 1 no longer holds and

the mapping (1) can only be estimated approximately. The

output noise leads to uncertainties in both the output signal

matrix col
(
Yp,Yf

)
and the output initial condition yini. In

this paper, the distribution of wt is assumed to be zero-mean

Gaussian. Then, the distributions of yini and col
(
Yp,Yf

)
are

also Gaussian. In what follows, the distributions are denoted

by

yini ∼ N
(
y0

ini,Σyini

)
,

vec

([
Yp

Yf

])

∼ N

(

vec

([
Y 0

p

Y 0
f

])

,ΣY

)

,
(8)

where y0
ini, Y 0

p , and Y 0
f are noise-free versions of yini, Yp, and

Yf respectively, and yini is uncorrelated with col
(
Yp,Yf

)
.

Under this assumption, for a given g, the distribution of
[
Yp

Yf

]

g =
(
gT⊗ InyL

)
vec

([
Yp

Yf

])

(9)

is thus
[
Yp

Yf

]

g

∣
∣
∣
∣
g ∼ N

([
Y 0

p

Y 0
f

]

g,

[
Σp Σp f

ΣT

p f Σ f

]

︸ ︷︷ ︸

Σg

)

, (10)

where Σg =
(
gT⊗ InyL

)
ΣY

(
g⊗ InyL

)
.

A special case of the noise model is when the noise is

i.i.d. with wt ∼N (0,σ2
Iny), and the signal matrix Z is con-

structed as a Page matrix or from independent trajectories.

In this case, we have Σyini = σ2
InyL0

, ΣY = σ2
InyLM , and thus

Σg = σ2 ‖g‖2
2 InyL.

Different algorithms have been developed under this noise

model, most of which share the following form:

FZ(·) = Yf g, (11a)




Up

U f

Yp



g =





uini

u

yini + δ



 . (11b)

The slack variable δ is introduced to compensate for the error

in both Yp and yini. The algorithms then propose different

strategies for balancing the magnitude of g and the slack

variable δ . The algorithms are summarized as follows.

Subspace predictor [10], [19]: the solution of the algo-

rithm is exactly the same as that for the noise-free case (7).

However, the interpretation here is different. It corresponds

to the least-squares estimate of a linear mapping:

FZ(·) = FZ col(uini,u,yini) , (12)

where

FZ = argmin
F

∥
∥Yf −F col

(
Up,U f ,Yp

)∥
∥2

F
. (13)

This coincides with finding the vector g that minimizes ‖g‖2
2

subject to (11b) and δ = 0.

Signal matrix model [11], [12]: this algorithm uses

maximum likelihood estimation to find the vector g that



maximizes the conditional probability of col
(
δ ,Yf g

)
given

g:

min
g,δ

logdet

(

Σg +

[
Σyini 0

0 0

])

+ δT
(
Σp +Σyini

)−1
δ , (14)

subject to (11b). When Σyini =σ2
InyL0

and Σg =σ2 ‖g‖2
2 InyL,

an approximate quadratic program of (14) has been derived

as

min
g,δ

‖δ‖2
2 + ny

(

L′σ2/
∥
∥gpinv

∥
∥2

2
+Lσ2

)

‖g‖2
2

s.t. (11b).
(15)

Wasserstein distance minimization [7]: this algorithm

finds the vector g that minimizes the Wasserstein distance

between the stochastic distribution of yini and that of Ypg:

min
g,δ

‖δ‖2
2 + tr

(

Σyini +Σp − 2
(
ΣyiniΣp

)1/2
)

, (16)

subject to (11b). When Σyini =σ2
InyL0

and Σg =σ2 ‖g‖2
2 InyL,

an approximate quadratic program of (16) has been derived

as

min
g,δ

‖δ‖2
2 + nyL0σ2 ‖g‖2

2

s.t. (11b).
(17)

It is noted that the algorithms (12), (15), and (17) can be

expressed in the following unified form:

FZ(·) = Yf argmin
g

‖δ‖2
2 +λ ‖g‖2

2

s.t. (11b),
(18)

where λ → 0 for (12), λ = ny

(

L′σ2/
∥
∥gpinv

∥
∥2

2
+Lσ2

)

for

(15), and λ = nyL0σ2 for (17). With an abuse of notation,

argming denotes the optimal solution of g for the program

depending on both g and δ . The optimization problem in (18)

is a strongly convex quadratic program with only equality

constraints. It admits a closed-form solution that is linear

with respect to col(uini,u,yini).

III. CONFIDENCE REGION ANALYSIS

In this section, confidence regions are established for

the stochastic data-driven prediction algorithms discussed in

Section II-C. The result first exploits information from the

underlying state-space model. Then, a data-driven approxi-

mation of the model information is proposed.

A. Derivation of the Confidence Region

For any stochastic data-driven predictor in the form of

(11), the output estimate (4) differs from the true output y0

due to the following two sources of error: 1) the output part

of the signal matrix Yf is noisy, 2) the predictor estimates

a trajectory whose output initial condition is Y 0
p g, which

differs from the trajectory to be predicted whose output initial

condition is y0
ini. By characterizing the distributions of these

two sources of error for a particular estimate of g and δ , we

obtain the following confidence region for stochastic data-

driven prediction.

Theorem 1: Consider a stochastic data-driven predictor

y = FZ(u;uini,yini) = Yf g satisfying (11). The true output

y0 is in the following ellipsoidal set w.p. p:

Y =
{

ỹ | (y− ỹ−Γδ )T Σ−1 (y− ỹ−Γδ )≤ µp

}

, (19)

where

Γ = col
(
CAL0 , · · · ,CAL−1

)
col
(
C, · · · ,CAL0−1

)†
, (20)

Σ =
[
−Γ InyL′

]
Σg

[
−ΓT

InyL′

]

+ΓΣyiniΓ
T, (21)

and µp satisfies Fχ2(L′)(µp) = p, where Fχ2(d)(·) is the

cumulative distribution function of the χ2-distribution with

d degrees of freedom.

Proof: Let the stochastic noise in Yp, Yf , and yini be

Ep, E f , and εini respectively, i.e.,

Ep = Yp −Y0
p , E f = Yf −Y 0

f , εini = yini − y0
ini. (22)

The estimation error can be decomposed as follows, accord-

ing to the two aforementioned sources of error

y− y0 = E f g+ y−, (23)

where y− is the error due to the discrepancy
(
Y 0

p g− y0
ini

)
in

the output initial condition. The initial condition error y− can

be seen as the free response from initial condition u−
ini = 0,

y−ini = Y 0
p g− y0

ini. From (11b) and (22), we have

Y 0
p g = yini + δ −Epg, y0

ini = yini − εini, (24)

y−ini = (yini + δ −Epg)− (yini− εini) = δ + εini −Epg. (25)

Let the state of the trajectory at time −L0 be x−. Then we

have

y−ini =






C
...

CAL0−1




x−, y− =






CAL0

...

CAL−1




x−. (26)

Since L0 ≥ l, col
(
C, · · · ,CAL0−1

)
has full column rank. Thus,

we have x− = col
(
C, · · · ,CAL0−1

)†
y−ini. This directly leads to

y− = Γy−ini. From (23)-(25), the estimation error is then

y− y0 = E f g+Γ(δ + εini −Epg) . (27)

Recall that εini ∼N
(
0,Σyini

)
, col

(
Ep,E f

)
g
∣
∣g ∼N (0,Σg),

and they are uncorrelated. The distribution of (y−y0) given

g and δ is Gaussian with

E(y− y0) = Γδ ,

cov(y− y0) = E

(
[
−Γ InyL′

]
[

Ep

E f

]

g+Γεini

)

(
[
−Γ InyL′

]
[

Ep

E f

]

g+Γεini

)
T

=
[
−Γ InyL′

]
Σg

[
−ΓT

InyL′

]

+ΓΣyiniΓ
T = Σ.

(28)

Therefore, (y− y0−Γδ )T Σ−1 (y− y0−Γδ ) is subject to the

χ2-distribution with L′ degrees of freedom. This directly

leads to (19).



Remark 1: Theorem 1 stills holds when the system is

not observable by replacing A, C, and l with those for the

observable part of the system.

Remark 2: The derivation is inspired by the prediction

error bound presented in Section IV.C of [14]. However,

the results of [14] consider a bounded non-stochastic noise

model and provide a deterministic but admittedly non-tight

bound on ‖y− y0‖.

B. Data-Driven Formulation of System Parameter Γ

The confidence region given in Theorem 1 is not available

in practice since Γ is dependent on the unknown model pa-

rameters A and C. However, this system parameter matrix can

be alternatively formulated by another data-driven prediction

scheme offline.

As can be seen from the proof of Theorem 1, the matrix

Γ can be considered as a linear data-driven predictor with

u = 0 and uini = 0. Supposing we have a noise-free signal

matrix, the following lemma gives a data-driven version of

Theorem 1 without knowledge of A and C.

Lemma 2: Let Z̄ = col
(
Ūp,Ū f ,Ȳp,Ȳf

)
be a noise-free sig-

nal matrix with rank(Z̄) = nuL+nx. If Γ is replaced by ΓZ =

Ȳf P, where P is the last nyL0 columns of col
(
Ūp,Ū f ,Ȳp

)†
,

then Theorem 1 holds.

Proof: According to Lemma 1, for any output initial

condition yini, y = ΓZ yini is the unique free response with

uini = 0. So we have y− = ΓZ y−ini. The rest of the proof of

Theorem 1 remains the same.

Remark 3: In general, ΓZ 6= Γ. This is because when

nyL0 > nx, the valid Γ in the proof of Theorem 1 is not

unique. The pseudo-inverse solution (20) gives only one

possibility.

In practice, the noisy signal matrix Z can be used to find

an approximation of the data-driven system parameter ΓZ .

Recall that the estimated mappings in the form of (18) admit

linear solutions. So they can be employed to find an estimate

of the linear mapping ΓZ by setting u = 0, uini = 0. The

closed-form solution is given by

Γ̂Z = Yf

(
F−1 −F−1UT(UF−1UT)−1UF−1

)
YT

p , (29)

where F = λ IM +YT

p Yp and U = col
(
Up,U f

)
as derived in

[11]. The hyperparameter λ can be selected as approaching 0

(subspace predictor), nyLσ2 (signal matrix model), or nyL0σ2

(Wasserstein distance minimization), and the corresponding

Γ̂Z estimates are denoted by Γ̂Sub, Γ̂SMM, and Γ̂WD respec-

tively. Note that in this estimation, the output initial condition

y−ini is known exactly without noise. This leads to a slight

change in the hyperparameter of the signal matrix model

solution. When Γ is replaced by Γ̂Z , Theorem 1 only holds

approximately. The validity of the approximation will be

investigated in Section V.

IV. MINIMUM MEAN-SQUARED ERROR ALGORITHM

In the proof of Theorem 1, the distribution of the estima-

tion error has been derived in order to quantify the confidence

region for a given estimate of g and δ with the algorithms

discussed in Section II-C. In this section, this distribution

is used to propose a novel optimal predictor in the form of

(11), which directly targets maximum prediction accuracy,

instead of the statistical properties as in Section II-C. This

algorithm finds g and δ in the mapping by minimizing the

expected estimation error subject to (28), which leads to the

following proposition.

Proposition 1: The minimum MSE estimate of the map-

ping in the form of (11) is given by

FZ(·) = Yf argmin
g

δTΓTΓδ + tr

(
[
−Γ InyL′

]
Σg

[
−ΓT

InyL′

])

s.t. (11b).
(30)

Proof: From (28), we have

MSE(y− y0) = E(y− y0)
T (y− y0)

= tr
(

cov(y− y0)+E(y− y0)E(y− y0)
T

)

= tr
(
Σ+ΓδδTΓT

)
= tr(Σ)+ δTΓTΓδ .

(31)

where the third equality comes from (28). From the definition

of Σ in (21), it is observed that since ΓΣyiniΓ
T does not

depend on the optimization variables g and δ , minimizing

the MSE is equivalent to the optimization problem in (30).

If we assume that ΣY = σ2
InyLM , (30) becomes

FZ(·) = Yf argmin
g

‖δ‖2
Q +λMSE ‖g‖2

2

s.t. (11b),
(32)

where Q = ΓTΓ and λMSE = σ2nyL′ +σ2 tr(Q). This opti-

mization problem is very similar to the unified form (18) for

existing algorithms, except that the Euclidean norm of δ is

now weighted by Q. The solution (32) is also linear with

respect to col(uini,u,yini).
The implications of Proposition 1 are twofold. On the

one hand, it provides the optimal solution to the data-

driven prediction problem with output noise in terms of

minimizing the MSE. Although the optimal solution relies

on the unknown extended observability matrix to formulate

Γ, it can be used with a preliminary model or a model set

via minimax approaches.

On the other hand, similar to establishing the confidence

region, the parameter Γ used in the minimum MSE solution

(30) can be replaced by the data-driven estimate Γ̂Z (29)

derived from the same signal matrix for an approximate solu-

tion. This leads to the minimum-MSE data-driven predictor,

denoted as Algorithm 1.

V. NUMERICAL EXAMPLES

In this section, numerical tests are conducted to illustrate

the validity of the derived confidence region and the effec-

tiveness of the proposed minimum-MSE algorithm. In the

examples, stochastic data with i.i.d. noise are collected from

one single experiment and used in Z with a Page matrix

construction. Unit Gaussian input sequences are used to

generate the data.



Algorithm 1 The minimum-MSE data-driven predictor with

stochastic data

1: Given: signal matrix Z, noise model ΣY ,Σyini, confidence

level p.

2: Input: uini,yini,u.

3: Calculate Γ̂Z by (29).

4: Find y = FZ(u;uini,yini) by solving (30) with Γ = Γ̂Z .

5: Find p-confidence region Y by (19) with Γ = Γ̂Z .

6: Output: y, Y .

First, we consider a simple two-dimensional example for

illustration purposes. The prediction problem is to find the

first two points (L′ = 2) in the step response of the following

fourth-order system

G1(z) =
0.1059(0.1z4+ z3 + 0.5z2)

z4 − 2.2z3+ 2.42z2 − 1.87z+ 0.7225
. (33)

The prediction conditions are uini = 0, yini = 0, and u =
[1 1]T. The following parameters are used: L = 10, L0 = 8,

M = 80, and noise level σ2 = 0.1. A confidence level of

p = 0.90 is used in the following figures.

Figure 1 compares the confidence regions obtained using

model-based Γ (20) (CR-MB), data-driven Γ̂Sub (CR-Sub),

Γ̂SMM (CR-SMM), and Γ̂WD (CR-WD). The confidence re-

gions are tested on the minimum-MSE predictor with data-

driven Γ̂SMM (MSE-SMM). 10 different realizations of the

stochastic data are plotted. The results show that the data-

driven formulations (CR-Sub, CR-SMM, and CR-WD) obtain

similar confidence regions, but are different from the model-

based formulation. This is because the data-driven formula-

tions with Γ̂Z estimate the noise-free ΓZ that is different from

the model-based Γ. Nevertheless, all the confidence regions

are valid for this problem, since the true trajectory lies in the

regions with high probability.

-1 -0.5 0 0.5 1
y

1

-1

-0.5

0

0.5

1

y 2

CR-MB
CR-Sub
CR-SMM
CR-WD
True traj.

Fig. 1. Comparison of different confidence region formulations (p = 0.90)
tested on the MSE-SMM predictor with 10 different realizations of the
stochastic data.

Then, the sizes of the confidence regions are analyzed

for different stochastic data-driven predictors. The following

predictors are compared: 1) subspace predictor (12) (Sub),

2) signal matrix model (15) (SMM), 3) Wasserstein distance

minimization (17) (WD), and 4) minimum-MSE predictor

(Algorithm 1) using model-based Γ (20) (MSE-MB), data-

driven Γ̂Sub (MSE-Sub), Γ̂SMM (MSE-SMM), and Γ̂WD (MSE-

WD). Figure 2 shows the confidence regions of these stochas-

tic predictors with model-based Γ (CR-MB). As can be seen

from the figure, the existing algorithms (Sub, SMM, and WD)

have larger confidence regions compared to the minimum-

MSE algorithms (MSE-MB and MSE-SMM). This illustrates

the effectiveness of the proposed algorithm in improving

prediction accuracy. In this example, the confidence regions

of MSE-Sub and MSE-WD are very close to that of MSE-

SMM, so they are omitted in Figure 2.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
y

1

-0.8

-0.4

0

0.4

0.8

y 2 Sub
SMM
WD
MSE-MB
MSE-SMM
True traj

Fig. 2. Comparison of different stochastic data-driven predictors in terms
of the confidence regions (p = 0.90) with model-based Γ (CR-MB).

To quantitatively assess the derived confidence region

and the minimum-MSE prediction algorithm, the following

campaign of 1000 Monte Carlo simulations is set up. A bank

of 1000 single-input, single-output systems are randomly

generated by the drss command in MATLAB with random

numbers of states between 3 and 8. These random systems

are normalized to have an H2-gain of 1. The prediction prob-

lem uses the following parameters: L = 20, L0 = 8, L′ = 12,

and M = 320. The input u and the initial condition (uini,yini)
are selected randomly with a unit Gaussian distribution.

Table I compares the percentage of the simulations where

the true response is in the confidence region, i.e., yi
0 ∈ Y i

for the i-th simulation, for the model-based and different

data-driven formulations. Two confidence levels p= 0.95 and

p = 0.99 are selected. The noise level is selected as σ2 =
0.1. The rows in Table I correspond to different predictors,

whereas the columns correspond to different formulations of

the confidence region. It can be seen from the table that the

empirical confidence levels match the targeted p-value well

with the model-based Γ (CR-MB) for all three predictors,

where Theorem 1 is satisfied exactly. With the data-driven

estimates Γ̂Z , the confidence regions become marginally

more conservative as the empirical confidence levels are

slightly larger in Table I. The results of the three data-driven

estimates (CR-Sub, CR-SMM, CR-WD) are similar, which

indicates that the confidence region is not very sensitive to

the choice of Γ̂Z estimation method.

Table II compares the empirical MSE of the predictors in

the Monte Carlo simulations to the MSE estimated by (31)

with the approximate data-driven confidence regions. The



TABLE I

EMPIRICAL CONFIDENCE LEVELS OF THE CONFIDENCE REGIONS

p = 0.95 CR-MB CR-Sub CR-SMM CR-WD

Sub 97.1% 98.7% 98.4% 98.7%

SMM 96.8% 97.4% 97.3% 97.3%

MSE-SMM 95.2% 96.4% 96.2% 96.4%

p = 0.99 CR-MB CR-Sub CR-SMM CR-WD

Sub 99.3% 100% 99.8% 99.9%

SMM 99.2% 99.7% 99.7% 99.7%

MSE-SMM 99.0% 99.3% 99.2% 99.3%

empirical MSE is computed as

MSEemp (y− y0) =
1

Ns

Ns

∑
i=1

∥
∥yi − yi

0

∥
∥

2

2
, (34)

where yi and yi
0 are the predicted and the true responses

of the i-th simulation respectively, and Ns = 1000. Two

different noise levels of σ2 = 0.1 and σ2 = 1 are considered.

Similar to the observation from Table I, the estimated MSE

is shown to be more conservative compared to the empirical

ones for all three predictors. It is also observed that the

region CR-SMM is the less conservative among those tested

here. However, the estimated MSE can correctly predict

the relative error magnitudes of different predictors. This

illustrates that the estimated MSE can be a good indicator of

prediction accuracy, which motivates its use as the objective

function in Algorithm 1. Only three representative predictors

are shown in Table I and Table II for clarity. The results of

the other algorithms are similar.

TABLE II

COMPARISON OF THE ESTIMATED AND THE EMPIRICAL MSE

σ2 = 0.1 Empirical CR-Sub CR-SMM CR-WD

Sub 0.115 0.153 0.149 0.152

SMM 0.099 0.142 0.137 0.140

MSE-SMM 0.096 0.136 0.131 0.134

σ2 = 1 Empirical CR-Sub CR-SMM CR-WD

Sub 1.106 1.529 1.485 1.511

SMM 0.915 1.391 1.344 1.372

MSE-SMM 0.897 1.335 1.286 1.317

Finally, we compare the prediction accuracy of the pre-

dictors by the empirical MSE, under three different noise

levels σ2 = 0.1, σ2 = 0.5, and σ2 = 1. The results are

shown in Table III. For all three noise levels, the minimum-

MSE predictor with model-based Γ (MSE-MB) achieves

the minimum empirical MSE. This is expected as MSE-

MB exactly optimizes for this objective as demonstrated in

Proposition 1. However, the model-based Γ is not available in

practice. Among the other practical algorithms, Algorithm 1

with Γ̂Z based on the signal matrix model (MSE-SMM) has

the smallest empirical MSE, with slightly better performance

than the direct signal matrix model approach (SMM). This

result shows numerically that, with approximate data-driven

formulations of Γ̂Z , the proposed minimum-MSE predictor

still obtains a more accurate prediction than the existing

algorithms.

TABLE III

COMPARISON OF THE EMPIRICAL MSE FOR DIFFERENT PREDICTORS

σ2 = 0.1 σ2 = 0.5 σ2 = 1

Sub 0.115 0.558 1.106

SMM 0.099 0.476 0.915

WD 0.113 0.548 1.091

MSE-MB 0.094 0.435 0.833

MSE-Sub 0.097 0.464 0.908

MSE-SMM 0.096 0.460 0.897

MSE-WD 0.097 0.462 0.902

VI. CONCLUSIONS

In this paper, the prediction error of data-driven predictors

with stochastic data is characterized statistically. The frame-

work provides ellipsoidal confidence regions for various pre-

dictors. It also offers a novel optimal predictor that minimizes

the mean-squared prediction error directly. In practice, both

the confidence region and the minimum-MSE predictor can

be implemented with data-driven approximations that show

good accuracy numerically.

Both the derived confidence region and the minimum-

MSE predictor can contribute to more reliable and effective

applications of stochastic data-driven predictors to predictive

control design with robustness guarantees on the satisfaction

of safety-critical constraints.
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