
Nonlin. Processes Geophys., 27, 373–389, 2020
https://doi.org/10.5194/npg-27-373-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Data-driven predictions of a multiscale Lorenz 96 chaotic system

using machine-learning methods: reservoir computing, artificial

neural network, and long short-term memory network

Ashesh Chattopadhyay1, Pedram Hassanzadeh1,2, and Devika Subramanian3,4

1Department of Mechanical Engineering, Rice University, Houston, TX, USA
2Department of Earth Environmental and Planetary Sciences, Rice University, Houston, TX, USA
3Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
4Department of Computer Science, Rice University, Houston, TX, USA

Correspondence: Pedram Hassanzadeh (pedram@rice.edu)

Received: 6 December 2019 – Discussion started: 2 January 2020
Revised: 1 May 2020 – Accepted: 27 May 2020 – Published: 2 July 2020

Abstract. In this paper, the performance of three machine-
learning methods for predicting short-term evolution and
for reproducing the long-term statistics of a multiscale spa-
tiotemporal Lorenz 96 system is examined. The methods
are an echo state network (ESN, which is a type of reser-
voir computing; hereafter RC–ESN), a deep feed-forward ar-
tificial neural network (ANN), and a recurrent neural net-
work (RNN) with long short-term memory (LSTM; here-
after RNN–LSTM). This Lorenz 96 system has three tiers
of nonlinearly interacting variables representing slow/large-
scale (X), intermediate (Y ), and fast/small-scale (Z) pro-
cesses. For training or testing, only X is available; Y and
Z are never known or used. We show that RC–ESN substan-
tially outperforms ANN and RNN–LSTM for short-term pre-
dictions, e.g., accurately forecasting the chaotic trajectories
for hundreds of numerical solver’s time steps equivalent to
several Lyapunov timescales. The RNN–LSTM outperforms
ANN, and both methods show some prediction skills too.
Furthermore, even after losing the trajectory, data predicted
by RC–ESN and RNN–LSTM have probability density func-
tions (pdf’s) that closely match the true pdf – even at the tails.
The pdf of the data predicted using ANN, however, deviates
from the true pdf. Implications, caveats, and applications to
data-driven and data-assisted surrogate modeling of complex
nonlinear dynamical systems, such as weather and climate,
are discussed.

1 Introduction

Various components of the Earth system involve multi-
scale, multiphysics processes and high-dimensional chaotic
dynamics. These processes are often modeled using sets
of strongly coupled nonlinear partial differential equations
(PDEs), which are solved numerically on supercomputers.
As we aim to simulate such systems with increasing levels of
fidelity, we need to increase the numerical resolutions and/or
incorporate more physical processes from a wide range of
spatiotemporal scales into the models. For example, in at-
mospheric modeling for predicting the weather and climate
systems, we need to account for the nonlinear interactions
across the scales of cloud microphysics processes, gravity
waves, convection, baroclinic waves, synoptic eddies, and
large-scale circulation, just to name a few (not to mention
the fast/slow processes involved in feedbacks from the ocean,
land, and cryosphere; Collins et al., 2006, 2011; Flato, 2011;
Bauer et al., 2015; Jeevanjee et al., 2017).

Solving the coupled systems of PDEs representing such
multiscale processes is computationally highly challeng-
ing for many practical applications. As a result, to make
the simulations feasible, a few strategies have been devel-
oped, which mainly involve only solving for slow/large-scale
variables and accounting for the fast/small-scale processes
through surrogate models. In weather and climate models,
for example, semiempirical physics-based parameterizations
are often used to represent the effects of processes such as
gravity waves and moist convection in the atmosphere or
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submesoscale eddies in the ocean (Stevens and Bony, 2013;
Hourdin et al., 2017; Garcia et al., 2017; Jeevanjee et al.,
2017; Schneider et al., 2017b; Chattopadhyay et al., 2020b,
a). A more advanced approach is “super-parameterization”
which, for example, involves solving the PDEs of moist con-
vection on a high-resolution grid inside each grid point of
large-scale atmospheric circulation for which the governing
PDEs (the Navier–Stokes equations) are solved on a coarse
grid (Khairoutdinov and Randall, 2001). While computa-
tionally more expensive, super-parameterized climate mod-
els have been shown to outperform parameterized models in
simulating some aspects of climate variability and extremes
(Benedict and Randall, 2009; Andersen and Kuang, 2012;
Kooperman et al., 2018).

More recently, “inexact computing” has received attention
from the weather and climate community. This approach in-
volves reducing the computational cost of each simulation by
decreasing the precision of some of the less-critical calcula-
tions (Palem, 2014; Palmer, 2014), thus allowing the saved
resources to be reinvested, for example, in more simulations
(e.g., for probabilistic predictions) and/or higher resolutions
for critical processes (Düben et al., 2014; Düben and Palmer,
2014; Thornes et al., 2017; Hatfield et al., 2018). One type
of inexact computing involves solving the PDEs of some of
the processes with single- or half-precision arithmetic, which
requires less computing power and memory compared to
the conventional double-precision calculations (Palem, 2014;
Düben et al., 2015; Leyffer et al., 2016).

In the past few years, the rapid algorithmic advances in
machine learning (ML) and in particular data-driven mod-
eling have been explored for improving the simulations and
predictions of nonlinear dynamical systems (Schneider et al.,
2017a; Kutz, 2017; Gentine et al., 2018; Moosavi et al.,
2018; Wu et al., 2019; Toms et al., 2019; Brunton and Kutz,
2019; Duraisamy et al., 2019; Reichstein et al., 2019; Lim
et al., 2019; Scher and Messori, 2019; Chattopadhyay et al.,
2020c). One appeal of the data-driven approach is that fast
and accurate data-driven surrogate models that are trained on
data of high fidelity can be used to accelerate and/or improve
the predictions and simulations of complex dynamical sys-
tems. Furthermore, for some poorly understood processes for
which observational data are available (e.g., clouds), data-
driven surrogate models built using such data might poten-
tially outperform physics-based surrogate models (Schneider
et al., 2017a; Reichstein et al., 2019). Recent studies have
shown promising results in using ML to build data-driven
parameterizations for the modeling of some atmospheric and
oceanic processes (Rasp et al., 2018; Brenowitz and Brether-
ton, 2018; Gagne et al., 2020; O’Gorman and Dwyer, 2018;
Bolton and Zanna, 2019; Dueben and Bauer, 2018; Watson,
2019; Salehipour and Peltier, 2019). In the turbulence and
dynamical systems communities, similarly encouraging out-
comes have been reported (Ling et al., 2016; McDermott and
Wikle, 2017; Pathak et al., 2018a; Rudy et al., 2018; Vlachas

et al., 2018; Mohan et al., 2019; Wu et al., 2019; Raissi et al.,
2019; Zhu et al., 2019; McDermott and Wikle, 2019).

The objective of the current study is to make progress

toward addressing the following question: which AI-based

data-driven technique(s) can best predict the spatiotempo-

ral evolution of a multiscale chaotic system, when only the

slow/large-scale variables are known (during training) and

are of interest (to predict during testing)? We emphasize that,
unlike many other studies, our focus is not on reproducing
long-term statistics of the underlying dynamical system (al-
though that will be examined too) but on predicting the short-
term trajectory from a given initial condition. Furthermore,
we emphasize that, following the problem formulation intro-
duced by Dueben and Bauer (2018), the system’s state vector
is only partially known and the fast/small-scale variables are
unknown even during training.

Our objective is more clearly demonstrated using the
canonical chaotic system that we will use as a test bed for
the data-driven methods, a multiscale Lorenz 96 system, as
follows:
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This set of coupled nonlinear ordinary differential equa-
tions (ODEs) is a three-tier extension of Lorenz’s original
model (Lorenz, 1996) and has been proposed by Thornes
et al. (2017) as a fitting prototype for multiscale chaotic
variability of the weather and climate system and a useful
test bed for novel methods. In these equations, F = 20 is
a large-scale forcing that makes the system highly chaotic,
and b = c = e = d = g = 10 and h = 1 are tuned to produce
appropriate spatiotemporal variability of the three variables
(see below). The indices are i,j,k = 1,2, . . .8; thus X has
8 elements while Y and Z have 64 and 512 elements, re-
spectively. Figure 1 shows examples of the chaotic tempo-
ral evolution of X, Y , and Z obtained from directly solving
Eqs. (1)–(3). The examples demonstrate that X has large am-
plitudes and slow variability; Y has relatively small ampli-
tudes, high-frequency variability, and intermittency; and Z

has small amplitudes and high-frequency variability. In the
context of atmospheric circulation, the slow variable X can
represent the low-frequency variability of the large-scale cir-
culation, while the intermediate variable Y and fast variable
Z can represent synoptic and baroclinic eddies and small-
scale convection, respectively. Similar analogies in the con-
text of ocean circulation and various other natural or engi-
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neering systems can be found, making this multiscale Lorenz
96 system a useful prototype to focus on.

Our objective is to predict the spatiotemporal evolution of
X(t) using a data-driven model that is trained on past ob-
servations of X(t); Fig. 2. In the conventional approach of
solving Eqs. (1)–(3) numerically, the governing equations
have to be known, initial conditions for Y (t) and Z(t) have
to be available, and the numerical resolution is dictated by
the fast/small-scale variable Z, leading to high computational
costs. In the fully data-driven approach that is our objective
here, the governing equations do not have to be known, Y (t)

and Z(t) do not have to be observed at any time, and the
evolution of X(t) is predicted just from knowledge of the
past observations of X, leading to low computational costs.
To successfully achieve this objective, a data-driven method
should be able to do the following:

1. accurately predict the evolution of a chaotic system
along a trajectory for some time

2. account for the effects of Y (t) and Z(t) on the evolution
of X(t).

Inspired by several recent studies (which will be discussed
below), we have focused on evaluating the performance of
three ML techniques in accomplishing (1) and (2). These
data-driven methods are as follows:

– RC–ESN: echo state network (ESN), a specialized type
of recurrent neural network (RNN), which belongs to
the family of reservoir computing (RC);

– ANN: a deep feed-forward artificial neural network; and

– RNN–LSTM: an RNN with long short-term memory
(LSTM).

We have focused on these three methods because they have
either shown promising performance in past studies (RC–
ESN and ANN), or they are considered to be state of the
art in learning from sequential data (RNN–LSTM). There
are a growing number of studies focused on using machine-
learning techniques for data-driven modeling of chaotic and
turbulent systems, for example, to improve weather and cli-
mate modeling and predictions. Some of these studies have
been referenced above. Below, we briefly describe three sets
of studies with the closest relevance to our objective and ap-
proach. Pathak and coworkers (Pathak et al., 2017; Pathak
et al., 2018a; Lu et al., 2017; Fan et al., 2020) have recently
shown promising results with RC–ESN for predicting short-
term spatiotemporal evolution (item 1) and in replicating at-
tractors for the Lorenz 63 and Kuramoto–Sivashinsky equa-
tions. The objective of our paper (items 1–2) and the em-
ployed multiscale Lorenz 96 system are identical to that of
Dueben and Bauer (2018), who reported their ANN to have
some skills in data-driven predictions of the spatiotempo-
ral evolution of X. Finally, Vlachas et al. (2018) found an

RNN–LSTM to have skills (though limited) for predicting
the short-term spatiotemporal evolution (item 1) of a number
of chaotic toy models such as the original Lorenz 96 system.
Here we aim to build on these pioneering studies and exam-
ine, side by side, the performance of RC–ESN, ANN, and
RNN–LSTM in achieving (1) and (2) for the chaotic multi-
scale Lorenz 96 system. We emphasize the need for a side-
by-side comparison that uses the same system as the test bed
and metrics for assessing performance.

The structure of the paper is as follows: in Sect. 2, the
multiscale Lorenz 96 system and the three ML methods are
discussed, results on how these methods predict the short-
term spatiotemporal evolution of X and reproduce the long-
term statistics of X are presented in Sect. 3, and key findings
and future work are discussed in Sect. 4.

2 Materials and methods

2.1 The multiscale Lorenz 96 system

2.1.1 Numerical solution

We have used a fourth-order Runge–Kutta solver, with time
step 1t = 0.005, to solve the system of Eqs. (1)–(3). The
system has been integrated for 100 million time steps to
generate a large dataset for training, testing, and examina-
tion of the robustness of the results. In the Results section,
we often report time in terms of model time units (MTUs),
where 1MTU = 2001t . In terms of the Lyapunov timescale,
1 MTU in this system is ≈ 4.5/λmax (Thornes et al., 2017),
where λmax is the largest positive Lyapunov exponent. In
terms of the e-folding decorrelation timescale (τ ) of the
leading principal component (PC1) of X (Khodkar et al.,
2019), we estimate 1MTU ≈ 6.9τPC1. Finally, as discussed
in Thornes et al. (2017), 1 MTU in this system corresponds
to ≈ 3.75 Earth days in the real atmosphere.

2.1.2 Training and testing datasets

To build the training and testing datasets from the numeri-
cal solution, we have sampled X ∈ ℜ8 at every 1t and then
standardized the data by subtracting the mean and divid-
ing by the standard deviation. We have constructed a train-
ing set consisting of N sequential samples and a testing set
consisting of the next 2000 sequential samples from point
N+1 to N+2000. We have randomly chosen 100 such train-
ing/testing sets, each of length (N + 2000)1t , starting from
a random point and separated from the next training/testing
set by at least 20001t . There is never any overlap between
the training and the testing sequences in any of the 100 train-
ing/testing sets.
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Figure 1. Time evolution of (a) Xk at grid point k = 1, (b) Yj,1 at grid point j = 1, and (c) Zi,1,1 at grid point i = 1. The time series show
chaotic behavior in X, which has large amplitude and slow variability; Y , which has relatively small amplitudes, high-frequency variability,
and intermittency; and Z, which has small amplitudes and high-frequency variability. The x axis is in model time units (MTUs), which are
related to the time step of the numerical solver (1t) and largest positive Lyapunov exponent (λmax) as 1MTU = 2001t ≈ 4.5/λmax (see
Sect. 2.1). Note that here we are presenting raw data which have not been standardized for predictions or testing yet.

Figure 2. The conventional approach of solving the full governing equations numerically versus our data-driven approach for predicting the
spatiotemporal evolution of the slow/large-scale variable X. For the direct numerical solution, the governing equations have to be known and
the numerical resolution is dictated by the fast and small-scale variable Z, resulting in high computational costs. In the data-driven approach,
the governing equations do not have to be known, Y and Z do not have to be known, and evolution of X is predicted just from knowing the
past observations of X, leading to low computational costs.

2.2 Reservoir computing–echo state network

(RC–ESN)

2.2.1 Architecture

The RC–ESN (Jaeger and Haas, 2004; Jaeger, 2007) is
an RNN that has a reservoir with D neurons, which are

sparsely connected in an Erdős–Rényi graph configuration
(see Fig. 3). The connectivity of the reservoir neurons is rep-
resented by the adjacency matrix A of size D × D for which
the values are drawn from a uniform random distribution on
the interval [−1,1]. The adjacency matrix A is then nor-
malized by its maximum eigenvalue (3max) and then fur-
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ther multiplied with a scalar (ρ ≤ 1) to build the Ã matrix.
The state of the reservoir, representing the activations of its
constituent neurons, is a vector r(t) ∈ ℜD . The typical reser-
voir size used in this study is D = 5000 (but we have ex-
perimented with D as large as 20000, as discussed later).
The other two components of the RC–ESN are an input-to-
reservoir layer, with a weight matrix of Win, and a reservoir-
to-output layer, with a weight matrix of Wout. The inputs for
training are N sequential samples of X(t) ∈ ℜ8. At the begin-
ning of the training phase, A and Win are chosen randomly
and are fixed; i.e., they do not change during training or test-
ing and Ã is calculated. During training, only the weights of
the output-to-reservoir layer (Wout) are updated.

Wout is the only trainable matrix in this network. This ar-
chitecture yields a simple training process that has the fol-
lowing two key advantages:

– It does not suffer from the vanishing and the exploding
gradient problem, which has been a major difficulty in
training RNNs, especially before the advent of LSTMs
(Pascanu et al., 2013).

– Wout can be computed in one shot (see below); thus this
algorithm is orders of magnitude faster than the back-
propagation through time (BPTT) algorithm (Goodfel-
low et al., 2016), which is used for training general
RNNs and RNN–LSTMs (see Sect. 2.4).

The equations governing the RC–ESN training process are
as follows:

r(t + 1t) = tanh
(

Ãr(t) + WinX(t)
)

, (4)

Wout = argmin
Wout

‖ Woutr̃(t) − X(t) ‖ +α ‖ Wout ‖ . (5)

Here ‖ · ‖ is the L2-norm of a vector and α is the L2 reg-
ularization (ridge regression) constant. Equation (4) maps
the observable X(t) ∈ ℜ8 to the higher-dimensional reser-
voir’s state r(t +1t) ∈ ℜD (reminder: D is O(1000) for this
problem). Note that Eq. (5) contains r̃(t) rather than r(t).
As observed by Pathak et al. (2018a) for the Kuramoto–
Sivashinsky equation, and observed by us in this work, the
columns of the matrix r̃ should be chosen as nonlinear com-
binations of the columns of the reservoir state matrix r (each
row of the matrix r is a snapshot r(t) of size D). For example,
following Pathak et al. (2018a), we compute r̃ as having the
same even columns as r, while its odd columns are the square
of the odd columns of r (algorithm T1 hereafter). As shown in
Appendix A, we have found that a nonlinear transformation
(between r and r̃) is essential for skillful predictions, while
several other transformation algorithms yield similar results
to T1. The choices of these transformations (T2 and T3; see
Appendix A), although not based on a rigorous mathemat-
ical analysis, are inspired from the nature of the quadratic
nonlinearity that is present in Eqs. (1)–(3).

The prediction process is governed by the following:

X(t + 1t) = Woutr̃(t + 1t), (6)

where r̃(t + 1t) in Eq. (6) is computed by applying one of
the T1, T2, or T3 algorithms on r(t +1t), which itself is cal-
culated via Eq. (4) from X(t) that is either known from the
initial condition or has been previously predicted.

See Jaeger and Haas (2004), Jaeger (2007), Lukoševičius
and Jaeger (2009), Gauthier (2018) and references therein
for further discussions on RC–ESNs, and Lu et al. (2017),
Pathak et al. (2017), McDermott and Wikle (2017), Pathak
et al. (2018a), Pathak et al. (2018b), Zimmermann and Parlitz
(2018), Lu et al. (2018), McDermott and Wikle (2019), Lim
et al. (2019) for examples of recent applications to dynamical
systems.

2.2.2 Training and predictions

During training (−T ≤ t ≤ 0), Win and A are initialized with
random numbers, which stay fixed during the training (and
testing) process. The state matrix r is initialized to 0. For all
the experiments conducted in this study, we have empirically
found that the value of ρ = 0.1 yields the best results in our
experiments. We have further found that in 0.05 ≤ ρ ≤ 0.7
the prediction horizon of RC–ESN is not sensitive to ρ;
see Appendix B. Then, the state matrix r is computed us-
ing Eq. (4) for the training set, and Wout is computed us-
ing Eq. (5). During predictions (i.e., testing) corresponding
to t > 0, the computed Wout is used to march forward in time
(Eq. 6) while as mentioned earlier, r(t) keeps being updated
using the predicted X(t); see Eq. 4. A nonlinear transforma-
tion is used to compute r̃(t) from r(t) before using Eq. (6).

Our RC–ESN architecture and training/prediction proce-
dure are similar to the ones used in Pathak et al. (2018a).
There is no overfitting in the training phase because the final
training and testing accuracies are the same. Our code is de-
veloped in Python and is made publicly available (see Code
and data availability).

2.3 Feed-forward artificial neural network (ANN)

2.3.1 Architecture

We have developed a deep ANN that has the same archi-
tecture as the one used in Dueben and Bauer (2018) (which
they employed to conduct predictions on the same multiscale
Lorenz 96 studied here). The ANN has four hidden layers
with 100 neurons each and 8 neurons in the input and output
layers (Fig. 4). It should be noted that, unlike RC–ESN (and
RNN–LSTM), this ANN is stateless, i.e., there is no hidden
variable such as r(t) that tracks temporal evolution. Further-
more, unlike RC–ESN, for which the input and output are
X(t), and X(t + 1t), following Dueben and Bauer (2018),
the ANN’s inputs/outputs are chosen to be pairs of X(t)train

and 1X(t)train = X(t + 1t)train − X(t)train (Fig. 4). During
the prediction, using X(t)test that is either known from the
initial condition or has been previously calculated, 1X(t)test

is predicted. X(t + 1t)test is then computed via the Adams–
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Figure 3. A schematic of RC–ESN. D ×D is the size of the adjacency matrix of reservoir A. X(t) (−T ≤ t ≤ 0) is the input during training.
Win and A are random matrices that are chosen at the beginning of training and fixed during training and testing. Only Wout is computed
during training. During testing (t > 0), X(t + 1t) is predicted from a given X(t) that is either known from the initial condition or has been
previously predicted.

Bashforth integration scheme as follows:

X(t + 1t)test = X(t)test +
1

2

[

31X(t)test − 1X(t − 1t)test]. (7)

More details on the ANN architecture have been reported
in Appendix C.

2.3.2 Training and predictions

Training is performed on N pairs of sequential
(X(t)train,1X(t)train) from the training set. During
training, the weights of the network are computed using
backpropagation optimized by the stochastic gradient de-
scent algorithm. During predictions, as mentioned above,
1X(t)test is predicted from X(t)test that is either known
from the initial condition or has been previously predicted,
and X(t + 1t)test is then calculated using Eq. (7).

Our ANN architecture and training/prediction procedure
are similar to the ones used in Dueben and Bauer (2018). We
have optimized, by trial and error, the hyperparameters for
this particular network. There is no overfitting in the training
phase because the final training and testing accuracies are the
same. Our code is developed in Keras and is made publicly
available (see Code and data availability).

2.4 Recurrent neural network with long short-term

memory (RNN–LSTM)

2.4.1 Architecture

The RNN–LSTM (Hochreiter and Schmidhuber, 1997) is
a deep-learning algorithm most suited for the predictions of
sequential data, such as time series, and has received a lot
of attention in recent years (Goodfellow et al., 2016). Vari-
ants of RNN–LSTMs are the best-performing models for
time series modeling in areas such as stock pricing (Chen
et al., 2015), supply chain (Carbonneau et al., 2008), natural
language processing (Cho et al., 2014), and speech recogni-
tion (Graves et al., 2013). A major improvement over reg-
ular RNNs, which have issues with the vanishing and the

exploding gradients (Pascanu et al., 2013), LSTMs have be-
come the state-of-the-art approach for training RNNs in the
deep-learning community. Unlike regular RNNs, the RNN–
LSTMs have gates that control the information flow into
the neural network from previous time steps of the time se-
ries. The RNN–LSTM used here, like the RC–ESN but un-
like the ANN, is stateful (i.e., actively maintains its state).
Our RNN–LSTM has 50 hidden layers in each RNN–LSTM
cell. More details on our RNN–LSTM are presented in Ap-
pendix D. RNN–LSTMs have many tunable parameters and
are trained with the expensive BPTT algorithm (Goodfellow
et al., 2016).

2.4.2 Training and predictions

The input to the RNN–LSTM is a time-delay-embedded ma-
trix of X(t) with embedding dimension q (also known as
lookback; Kim et al., 1999). An extensive hyperparameter
optimization (by trial and error) is performed to find the
optimal value of q for which the network has the largest
prediction horizon (exploring q = 1 − 22, we found q = 3
to yield the best performance). The RNN–LSTM predicts
X(t + 1t) from the previous q time steps of X(t). This is
in contrast with RC–ESN, which only uses X(t) and reser-
voir state r(t) to predict X(t + 1t), and ANN, which only
uses X(t) and no state to predict X(t + 1t) (via predicting
1X(t)). The weights of the LSTM layers are determined
during the training process (see Appendix D). During test-
ing, X(t + 1t) is predicted using the past q observables
[

X(t − (q − 1)1t). . .X(t − 1t),X(t)
]

that are either known
from the initial condition or have been previously predicted.
We have found the best results with a stateless LSTM (which
means that the state of the LSTM is refreshed during the be-
ginning of each batch during training; see Appendix D) that
outperforms a stateful LSTM (where the states are carried
over to the next batch during training).

The architecture of our RNN–LSTM is similar to the one
used in Vlachas et al. (2018). There is no overfitting in the
training phase because the final training and testing accura-
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Figure 4. A schematic of ANN, which has four hidden layers each with 100 neurons and an input and an output layer each with 8 neurons (for
better illustration, only a few neurons from each layer are shown). Training is performed on pairs of X(t)train and 1X(t)train, and the weights
in each layer are learned through the backpropagation algorithm. During testing (i.e., predictions) 1X(t)test is predicted for a given X(t)test

that is either known from the initial condition or that has been previously predicted. Knowing X(t)test, 1X(t)test, and 1X(t − 1t)test,
X(t + 1t)test is then computed using the Adams–Bashforth integration scheme.

cies are the same. Our code is developed in Keras and is made
publicly available (see Code and data availability).

3 Results

3.1 Short-term predictions: comparison of the

RC–ESN, ANN, and RNN–LSTM performances

The short-term prediction skills of the three ML methods
for the same training/testing sets are compared in Fig. 5.
Given the chaotic nature of the system, the performance of
the methods depends on the initial condition from which the
predictions are conducted. To give the readers a comprehen-
sive view of the performance of these methods, Fig. 5a and
b shows examples of the predicted trajectories (for one el-
ement of X(t)) versus the true trajectory for two specific
initial conditions (from the 100 initial conditions we used),
namely the one for which RC–ESN shows the best perfor-
mance (Fig. 5a), and the one for which RC–ESN shows the
worst performance (Fig. 5b).

For the initial condition in Fig. 5a, RC–ESN accurately
predicts the time series for over 2.3 MTU, which is equiva-
lent to 4601t and over 10.35 Lyapunov timescales. Closer
examination shows that the RC–RSN predictions follow the
true trajectory well even up to ≈ 4 MTU. The RNN–LSTM
has the next-best prediction performance (up to around
0.9 MTU or 1801t). The predictions from ANN are around
0.6 MTU or 1201t . For the example in Fig. 5b, all methods
have shorter prediction horizons, but RC–ESN still has the
best performance (accurate predictions up to ≈ 0.7 MTU),
followed by ANN and RNN–LSTM, with similar prediction
accuracies (≈ 0.3 MTU). Searching through all 100 initial
conditions, the best predictions with RNN–LSTM are up to
≈ 1.7 MTU (equivalent to 3401t), and the best predictions
with ANN are up to ≈ 1.2 MTU (equivalent to 2401t).

To compare the results over all 100 randomly chosen ini-
tial conditions, we have defined an averaged relative L2 error
between the true and predicted trajectories as follows:

e(t) =

[

||Xtrue(t) − Xpred(t)||

〈||Xtrue(t)||〉

]

. (8)

Here [·] and 〈·〉 indicate, respectively, averaging over 100 ini-
tial conditions and over 20001t . To be clear, Xtrue(t) refers
to the data at time t obtained from the numerical solution,
while Xpred(t) refers to the predicted value at t using one of
the machine-learning methods. Figure 5c compares e(t) for
the three methods. It is clear that RC–ESN significantly out-
performs ANN and RNN–LSTM for short-term predictions
in this multiscale chaotic test bed. Figure 6 shows an exam-
ple of the spatiotemporal evolution of Xpred (from RC–ESN),
Xtrue, and their difference, which further demonstrates the
capabilities of RC–ESN for short-term spatiotemporal pre-
dictions.

3.2 Short-term predictions: scaling of RC–ESN and

ANN performance with training size N

How the performance of ML techniques scales with the size
of the training set is of significant practical importance, as
the amount of available data is often limited in many prob-
lems. Given that there is currently no theoretical understand-
ing of such scaling for these ML techniques, we have em-
pirically examined how the quality of short-term predictions
scale with N . We have conducted the scaling analysis for
N = 104 to N = 2 × 106 for the three methods. Two metrics
for the quality of predictions are used, namely the prediction
horizon, defined as when the averaged L2 error e(t) reaches
0.3, and the prediction error E, defined as the average of e(t)

between 0 and 0.5 MTU as follows:

E =
1

1001t

i=100
∑

i=0

e(i1t). (9)
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Figure 5. Comparison of the short-term forecasting skills among the three ML methods. The lines show truth (black), RC–ESN (red), ANN
(blue), and RNN–LSTM (cyan). Panels (a) and (b) show examples (differing in initial condition) for which RC–ESN yields the longest and
shortest prediction horizons, respectively. Vertical broken lines show the approximate prediction horizon of RC–ESN. Panel (c) shows the
relative L2 error averaged over 100 randomly chosen initial conditions e(t); see Eq. 8. The broken horizontal line marks e = 0.3. Time is in
MTU, where 1MTU = 2001t ≈ 4.5/λmax. Training size is N = 500000. ρ = 0.1 is used here.

Figure 7a shows that, for all methods, the prediction hori-
zon increases monotonically, but nonlinearly, as we increase
N . The prediction horizons of RC–ESN and ANN appear
to saturate after N = 106, although the RC–ESN has a more
complex, step-like scaling curve that needs further examina-
tion in future studies. The prediction horizon of RC–ESN ex-
ceeds that of ANN by factors ranging from 3 (for high N ) to
9 (for low N ). In the case of RNN–LSTM, the factor ranges
from 1.2 (for high N ) to 2 (for low N ). Figure 7b shows that,
for all methods, the average error E decreases as N increases
(as expected), most notably for ANN when N is small.

Overall, compared to both RNN–LSTM and ANN, the
prediction horizon and accuracy of RC–ESN have a weaker
dependence on the size of the training set, which is a signif-
icant advantage for RC–ESN when the dataset available for
training is short, which is common in many practical prob-
lems.

3.3 Short-term predictions: scaling of RC–ESN

performance with reservoir size D

Given the superior performance of RC–ESN for short-term
predictions, here we focus on one concern with this method,
namely the need for large reservoirs, which can be com-
putationally demanding. This issue has been suggested as
a potential disadvantage of ESNs versus LSTMs for training
RNNs (Jaeger, 2007). Aside from the observation here that
RC–ESN significantly outperforms RNN–LSTM for short-

term predictions, the problem of reservoir size can be tack-
led in at least two ways. First, Pathak et al. (2018a) have
proposed, and shown the effectiveness of, using a set of par-
allelized reservoirs, which allow one to easily deal with high-
dimensional chaotic toy models.

Second, Fig. 8 shows that E rapidly declines by a fac-
tor of around 3 as D is increased from 500 to 5000, de-
creases slightly as D is further doubled to 10000, and then
barely changes as D is doubled again to 20000. Training
the RC–ESN with D = 20000 versus D = 5000 comes with
a higher computational cost (16 GB memory and ≈ 6 CPU
hours for D = 5000 and 64 GB memory and ≈ 18 CPU
hours for D = 20000), while little improvement in accuracy
is gained. Thus, concepts from inexact computing can be
used to choose D so that precision is traded for large savings
in computational resources, which can then be reinvested into
more simulations, higher resolutions for critical processes,
etc. (Palem, 2014; Palmer, 2014; Düben and Palmer, 2014;
Leyffer et al., 2016; Thornes et al., 2017).

3.4 Long-term statistics: comparison of RC–ESN,

ANN, and RNN–LSTM performance

All the data-driven predictions discussed earlier eventually
diverge from the true trajectory (as would even predictions
using the numerical solver). Still, it is interesting to exam-
ine whether the freely predicted spatiotemporal data have
the same long-term statistical properties as the actual dy-
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Figure 6. Performance of RC–ESN for short-term spatiotemporal predictions. We remind the readers that only the slow/large-scale variable
X has been used during training/testing, and the fast/small-scale variables Y and Z have not been used at any point during training or testing.
RC–ESN has substantial forecasting skills, providing accurate predictions up to ≈ 2 MTU, which is around 4001t or 9 Lyapunov timescales.
N = 500000, algorithm T2, D = 5000, and ρ = 0.1 are used.

Figure 7. Comparison of the short-term predictions quality for RC–ESN (blue circles), RNN–LSTM (black stars), and ANN (red squares)
as the size of the training set N is changed from N = 104 to N = 2 × 106. Panel (a) shows the prediction horizon (when e(t) reaches 0.3),
and panel (b) shows the average error E (see Eq. 9). The hyperparameters in each method are optimized for each N .

namical system (i.e., Eqs. 1–3). Reproducing the actual dy-
namical system’s long-term statistics (sometimes referred to
as the system’s climate) using a data-driven method can be
significantly useful. In some problems, a surrogate model
does not need to predict the evolution of a specific trajec-
tory but only the long-term statistics of a system. Further-
more, synthetic long datasets produced using an inexpensive
data-driven method (trained on a shorter real dataset) can be
used to examine the system’s probability density functions
(pdf’s), including its tails, which are important for studying
the statistics of rare/extreme events.

By examining return maps, Pathak et al. (2017) have al-
ready shown that RC–ESNs can reproduce the long-term
statistics of the Lorenz 63 and Kuramoto–Sivashinsky equa-

tions. Jaeger and Haas (2004) and Pathak et al. (2017) have
also shown that RC–ESNs can be used to accurately estimate
a chaotic system’s Lyapunov spectrum. Here, we focus on
comparing the performance of RC–ESN, ANN, and RNN–
LSTM in reproducing the system’s long-term statistics by
doing the following:

– examining the estimated pdf’s and in particular their
tails

– investigating whether the quality of the estimated pdf’s
degrades with time, which can negate the usefulness of
long synthetic datasets.

Figure 9 compares the estimated pdf’s obtained using the
three ML methods. The data predicted using RC–ESN and
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Figure 8. Scaling of average prediction error between 0 and
0.5 MTU (E; Eq. 9) with reservoir size D for RC–ESN. N =

500000 is used.

RNN–LSTM are found to have pdf’s closely matching the
true pdf, even at the tails. Deviations at the tails of the pdf
predicted by these methods from the true pdf are comparable
to the deviations of the pdf’s obtained from true data using
the same number of samples. The ANN-predicted data have
reasonable pdf’s at ±2 standard deviation (SD), but the tails
have substantial deviations from those of the true pdf’s. All
predicted pdf’s are robust and do not differ much (except near
the end of the tails) among the quartiles.

The results show that RC–ESN and RNN–LSTM can ac-
curately reproduce the system’s long-term statistics and can
robustly produce long synthetic datasets with pdf’s that are
close to the pdf of the true data – even near the tails. The
ability of ANN to accomplish these tasks is limited.

4 Discussion

By examining the true and predicted trajectories (Figs. 5–
6) and the prediction errors and horizons (Fig. 7), we have
shown that RC–ESN substantially outperforms ANN and
RNN–LSTM in predicting the short-term evolution of a mul-
tiscale Lorenz 96 chaotic system (Eqs. 1–3). Additionally,
RC–ESN and RNN–LSTM both work well in reproducing
the long-term statistics of this system (Fig. 9). We empha-
size that, following the problem formulation of Dueben and
Bauer (2018), and unlike most other studies, only part of
the multiscale state vector (the slow/large-scale variable X)
has been available for training the data-driven model and has
been of interest for testing. This problem design is more rel-
evant to many practical problems but is more challenging as
it requires the data-driven model to not only predict the evo-
lution of X based on its past observations but also to account
for the effects of the intermediate and fast/small-scale vari-
ables Y and Z on X.

We have also found that the prediction horizon of RC–
ESN, and even more so its prediction accuracy, to weakly de-
pend on the size of the training set (Fig. 7). This is an impor-

tant property as in many practical problems the data available
for training are limited. Furthermore, the prediction error of
RC–ESN is shown to have an asymptotic behavior for large
reservoir sizes, which suggests that reasonable accuracy can
be achieved with moderate reservoir sizes. Note that the skill-
ful predictions with RC–ESN in Figs. 5–6 have been ob-
tained with a moderate-sized training set (N = 500000) and
reservoir (D = 5000). Figures 7 and 8 suggest that slightly
better results could have been obtained using larger N and
D, although such improvements come at a higher computa-
tional cost during training.

The order we have found for the performance of the
three machine-learning methods (RC–ESN > RNN–LSTM
> ANN) is different from the order of complexity of these
methods in terms of the number of trainable parameters (RC–
ESN < ANN < RNN–LSTM). But the order of performance
is aligned with the order in terms of the learnable function
space, namely ANN < RC–ESN and RNN–LSTM. The lat-
ter methods are both RNNs and thus Turing complete, while
ANN is a stateless feed-forward network and thus not Tur-
ing complete (Siegelmann and Sontag, 1992). The Turing
completeness of RNNs, in theory, enables RNNs to com-
pute any function or implement any algorithm. Furthermore,
state augmentation of ANN is not possible because it has no
state. Whether the superior predictive performance of RC–
ESN (especially over RNN–LSTM) is due to its explicit state
representation, which is updated at every time step during
both training and testing, or its lower likelihood of overfit-
ting due to the order of magnitude having a smaller number
of trainable parameters remains to be seen. Also, whether we
have fully harnessed the power of RNN–LSTMs (see below)
is unclear at this point, particularly because a complete the-
oretical understanding of how/why these methods work (or
do not work) is currently lacking. That said, there has been
some progress in understanding the RC–ESNs, in particular
by modeling the network itself as a dynamical system (Yildiz
et al., 2012; Gauthier, 2018). Such efforts, for example those
aimed at understanding the echo states that are learned in
the RC–ESN’s reservoir, might benefit from recent advances
in dynamical systems theory, e.g., for analyzing nonlinear
spatiotemporal data (Mezić, 2005; Tu et al., 2014; Williams
et al., 2015; Arbabi and Mezic, 2017; Giannakis et al., 2017;
Khodkar and Hassanzadeh, 2018).

An important next step in our work is to determine how
generalizable our findings are. This investigation is impor-
tant for the following two reasons. First, here we have only
studied one system, which is a specially designed version
of the Lorenz 96 system. The performance of these meth-
ods should be examined in a hierarchy of chaotic dynami-
cal systems and high-dimensional turbulent flows. That said,
our findings are overall consistent with the recently reported
performance of these methods applied to chaotic toy mod-
els. It has been demonstrated that RC–ESN can predict,
for several Lyapunov timescales, the spatiotemporal evolu-
tion and can reproduce the climate of the Lorenz 63 and
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Figure 9. Estimated probability density functions (pdf’s) of long datasets freely predicted by using RC–ESN (red), ANN (blue), and RNN–
LSTM (cyan) compared to the true pdf (broken black). RC–ESN, ANN, and RNN–LSTM are first trained with N = 500000 and then predict,
from an initial condition, for 4 × 1061t . Panels Q1 − Q4 correspond to the equally divided quartiles of 106 predicted samples. The pdf’s
are approximated using kernel density estimation (Epanechnikov, 1969). The green lines show the estimated pdf’s from different sets of 106

samples that are obtained from the numerical solution of Eqs. (1)–(3). Small differences between the green lines show the uncertainties in
estimating the tails from 106 samples. The broken black lines show the true pdf estimated from 107 samples from the numerical solution.
Note that the presented pdf’s are for standardized data.

Kuramoto–Sivashinsky chaotic systems (Pathak et al., 2017;
Pathak et al., 2018a; Lu et al., 2017). Here, we have shown
that RC–ESN performs similarly well even when only the
slow/large-scale component of the multiscale state vector is
known. Our results with ANN are consistent with those of
Dueben and Bauer (2018), who showed examples of trajec-
tories predicted accurately up to 1 MTU with a large training
set (N = 2×106) and using ANN for the same Lorenz 96 sys-
tem (see their Fig. 1). While RNN–LSTM is considered to be
state of the art for sequential data modeling, and has worked
well for a number of applications involving time series to
the best of our knowledge, simple RNN–LSTMs, such as the
one used here, have not been very successful when applied to
chaotic dynamical systems. Vlachas et al. (2018) found some
prediction skills, using RNN–LSTM applied to the original
Lorenz 96 system, which does not have the multiscale cou-
pling (see their Fig. 5).

Second, we have only used a simple RNN–LSTM. There
are other variants of this architecture and more advanced
deep-learning RNNs that might potentially yield better re-
sults. For our simple RNN–LSTM, we have extensively ex-
plored the optimization of hyperparameters and tried various
formulations of the problem, e.g., predicting 1X(t) with or
without updating the state of the LSTM. We have found that
such variants do not lead to better results, which is consistent
with the findings of Vlachas et al. (2018). Our preliminary
explorations with more advanced variants of RNN–LSTM,

e.g., seq2seq and encoder-decoder LSTM (Sutskever et al.,
2014), have not resulted in any improvement either. How-
ever, just as the skillful predictions of RC–ESN and ANN
hinge on one key step (nonlinear transformation for the for-
mer and predicting 1X for the latter), it is possible that
changing/adding one step leads to major improvements in
RNN–LSTM. It is worth mentioning that similar nonlinear
transformation of the state in LSTMs is not straightforward
due to their more complex architecture; see Appendix D. We
have shared our codes publicly to help others explore such
changes to our RNN–LSTM. Furthermore, there are other,
more sophisticated RNNs that we have not yet explored. For
example, Yu et al. (2017) have introduced a tensor-train RNN
that outperformed a simple RNN–LSTM in predicting the
temporal evolution of the Lorenz 63 chaotic system. Mohan
et al. (2019) showed that a compressed convolutional LSTM
performs well in capturing the long-term statistics of a turbu-
lent flow. The performance of more advanced deep-learning
RNNs should be examined and compared, side by side, with
the performance of RC–ESNs and ANNs in future studies.
The multiscale Lorenz 96 system provides a suitable starting
point for such comparisons.

The results of our work show the promise of ML methods,
such as RC–ESNs (and to some extent RNN–LSTM), for
data-driven modeling of chaotic dynamical systems, which
have broad applications in geosciences, e.g., in weather and
climate modeling. Practical and fundamental issues such
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as interpretability; scalability to higher-dimensional systems
(Pathak et al., 2018a); presence of measurement noise in the
training data and initial conditions (Rudy et al., 2018); non-
stationarity of the time series; and dealing with data that have
two or three spatial dimensions (e.g., through integration
with convolutional neural networks, namely CNN–LSTM,
(Xingjian et al., 2015) and CNN–ESN (Ma et al., 2017)
should be studied in future work).

Here we have focused on a fully data-driven approach, as
opposed to the conventional approach of the direct numeri-
cal solutions (Fig. 2). In practice, for example, for large-scale
multiphysics, multiscale dynamical systems such as weather
and climate models, it is likely that a hybrid framework
yields the best performance. In such a framework, depend-
ing on the application and the spatiotemporal scales of the
physical processes involved (Thornes et al., 2017; Chantry
et al., 2019), some of the equations could be solved numer-
ically with double precision, some could be solved numeri-
cally with lower precisions, and some could be approximated
with a surrogate model learned via a data-driven approach,
such as the ones studied in this paper.
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Appendix A: More details on RC–ESN

Here we show a comparison of RC–ESN forecasting skills
with nonlinear transformation algorithms T1 (Pathak et al.,
2018a), T2, and T3 and without any transformation between
r and r̃. The three algorithms are (for i = 1,2,3. . .N and
j = 1,2,3. . .D) as follows:

Algorithm T1

r̃i,j = ri,j × ri,j if j is odd;

r̃i,j = ri,j if j is even,

Algorithm T2

r̃i,j = ri,j−1 × ri,j−2 if j > 1 is odd;

r̃i,j = ri,j if j is 1 or even.

Algorithm T3

r̃i,j = ri,j−1 × ri,j+1 if j > 1 is odd;

r̃i,j = ri,j if j is 1 or even.

Figure A1a shows an example of short-term predictions
from an initial condition using T1, T2, T3, and no transfor-
mation; everything else was kept the same. It is clear that the
nonlinear transformation is essential for skillful predictions,
as the predictions obtained without transformation diverge
from the truth before 0.25 MTU. The three nonlinear trans-
formation algorithms yield similar results, with accurate pre-
dictions for more than 2 MTU. Figure A1b, which shows the
relative prediction error averaged over 100 initial conditions,
further confirms this point.

Why the nonlinear transformation is needed, and the
best/optimal choice for the transformation (if it exists),
should be studied in future work. We highlight that the non-
linear transformation resembles basis function expansion,
which is commonly used to capture nonlinearity in linear re-
gression models (Bishop, 2006).

Appendix B: Dependence of RC–ESN’s prediction

horizon on ρ

We have conducted an extensive experimental analysis of the
dependence of RC–ESN’s prediction horizon on the value of
ρ and found ρ = 0.1 to produce the best prediction horizon
for any sample size, N , and reservoir size, D, for this system.
Table B1 shows part of the results obtained from the experi-
ments with N = 500000, N = 106, and with D = 5000 over
100 initial conditions. While ρ = 0.1 yields the best results,
we see that the prediction horizon is barely sensitive to the
choice of ρ within a wide range and similar overall predic-
tion horizons are obtained for 0.05 ≤ ρ ≤ 0.7.

Appendix C: More details on ANN

The ANN used in this study (and the one that yields the best
performance) is similar to that of Dueben and Bauer (2018).
The ANN has four hidden layers, each of which has 100 neu-
rons with a tanh activation function. The input to the ANN
has 8 neurons which takes (X(t))test as the input and out-
puts (1X(t))test which is also a 8-neuron layer. The obtained
(1X(t))test output during the test is then used in an Adams–
Bashforth integration scheme to obtain (X(t + 1t))test. We
found that a simpler Euler scheme yields similar results.
However, we found that training/testing on pairs of X(t) and
X(t +1t), which was used for RC–ESN, leads to no predic-
tion skill with ANN, and that following the procedure used
in Dueben and Bauer (2018) is essential for skillful predic-
tions. We speculate that this might be due to the stateless
nature of the ANN. By relating X(t) to the change in X(t) at
the next time step, rather than the raw value X(t + 1t), this
ANN training architecture implicitly contains a reference to
the previous time step. While the ANN itself is stateless, this
particular training approach essentially encodes a first-order
temporal dependence between successive states.

Note that our approach here is the same as the global ANN
of Dueben and Bauer (2018). We also tried their local ANN
approach but, consistent with their findings for the Lorenz
system, found better performance with the global approach
(results not reported for brevity).

The ANN is trained with a stochastic gradient descent
algorithm with a learning rate of 0.001, with a batch size
of 100, and mean absolute error as the loss function (mean
squared error also gives similar performance).

Appendix D: More details on RNN–LSTM

The governing equations for RNN–LSTM are as follows:

gf (t) = σf

(

Wf [h(t − 1),I (t)] + bf

)

, (D1)

gi(t) = σf (Wi [h(t − 1),I (t)] + bi) , (D2)

C̃(t) = tanh(Wc [h(t − 1),I (t)] + bh) , (D3)

C(t) = gf (t)C(t − 1) + gi(t)C̃(t), (D4)

go(t) = σh (Wh [h(t − 1),I (t)] + bh) , (D5)

h(t) = go(t) tanh(C(t)) , (D6)

8(t) = Wohh(t), (D7)

X(t + 1t) ≈ 8(t). (D8)

σf is the softmax activation function and gf (t), gi(t), and
go(t) ∈ ℜdh×(dh+di ) are the forget gate, input gate, and out-
put gate, respectively. dh is the dimension of the hidden lay-
ers (chosen as 50 in our study), and di is the dimension of
the input (8 × q). bf , bi , and bh are the biases in the forget
gate, input gate, and the hidden layers. I (t) ∈ ℜdi is the input,
which is a column of a time-delay-embedded matrix of X(t).
This matrix has the dimension of (8 × q) × N . h(t) ∈ ℜdh is
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Figure A1. Comparison of RC–ESN forecasting skills with nonlinear transformation algorithms T1, T2, and T3 (cyan, green, and blue lines,
respectively) and without any transformation (red line). Black line shows the truth. (a) Predictions from one initial condition and (b) relative
L2-norm error averaged over 100 initial condition e(t) (Eq. 8). Time is in MTU, where 1MTU = 2001t ≈ 4.5/λmax.

Table B1. Prediction horizon (MTU) over 100 initial conditions for an RC–ESN with samples sizes of N = 106, N = 500000, and D = 5000
for different ranges of ρ.

ρ 0.01–0.04 0.05–0.09 0.10 0.20 0.30 0.40 0.40–0.70 0.70–0.90
N = 106 1.01 1.18 1.30 1.28 1.26 1.20 1.19 0.83
N = 500000 0.84 0.92 1.10 1.02 1.02 1.02 1.02 0.77

the hidden state and C(t) ∈ ℜdh is the cell state (the states
track the temporal evolution). The weights Wo, Wi, Wf, Wc,
and Woh are learned through the BPTT algorithm (Goodfel-
low et al., 2016) using an Adam optimizer (Kingma and Ba,
2014). 8(t) is the output from the RNN–LSTM.

The LSTM used in this study is a stateless LSTM, in which
the two hidden states (C and h) are refreshed at the begin-
ning of each batch during training (this is not the same as the
stateless ANN, where there is no hidden state at all). Here,
the training sequences in each batch are shuffled randomly,
leading to an unbiased gradient estimator in the stochastic
gradient descent algorithm (Meng et al., 2019).
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