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Abstract

This paper investigates the use of a data-driven method to model the dynamics of the chaotic Lorenz
system. An architecture based on a recurrent neural network with long and short term dependencies
predicts multiple time steps ahead the position and velocity of a particle using a sequence of past
states as input. To account for modeling errors and make a continuous forecast, a dense artificial
neural network assimilates online data to detect and update wrong predictions such as non-relevant
switchings between lobes. The data-driven strategy leads to good prediction scores and does not require
statistics of errors to be known, thus providing significant benefits compared to a simple Kalman filter
update.

Keywords: data-driven modeling, data assimilation, chaotic system, neural networks

1. Introduction

Chaotic dynamical systems exhibit character-
istics (nonlinearities, boundedness, initial condi-
tion sensitivity) [1] encountered in real-world prob-
lems such as meteorology [2] and oceanography
[3]. The multiple time steps ahead prediction
of such a system is challenging because govern-
ing equations may be unknown or too costly to
evaluate. For instance, the Navier Stokes equa-
tions require prohibitive computational resources
to predict with great accuracy the velocity field
of a turbulent flow [4].

Data-driven modeling of dynamical systems is
an active research field whose objective is to in-
fer dynamics from data [5]. Regressive methods
in machine learning [6] are particularly suitable
for such tasks and have proven to reliably recon-
struct the state of a given system [7]. If param-
eters are not overfitted to training examples, the
data-driven model can also be used for predictive

∗Corresponding author: pierre.dubois@onera.fr

tasks, providing the input lies in the input domain
used for training. Main techniques in the litera-
ture include autoregressive techniques [8], dynam-
ical mode decomposition (DMD) [9], Hankel al-
ternative view of Koopman (HAVOK) [10] or un-
supervised methods such as CROM [11]. Neural
networks are also of increasing interest since they
can perform nonlinear regressions that are fast to
evaluate. Architectures with recurrent units are
recommended for time-series predictions because
memory is incorporated in the prediction process.
Neural networks can then learn chaotic dynamics
[12] and predict with great accuracy the future
state [13].

However, errors in modeling can lead to bad
multiple time steps ahead predictions of chaotic
dynamical systems: a tiny change in the initial
condition results in a big change in the output
[12]. To overcome the propagation of uncertain-
ties from the dynamical model (bad regression
choice in a data-driven approach or bad turbu-
lence modeling in CFD for instance) data assimi-
lation (DA) techniques have been developed [14].
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They combine the predicted state of a system with
online measurements to get an updated state. Such
methods have successfully been applied in fluid
mechanics to obtain a better description of initial
or boundary conditions by finding the best com-
promise between experimental measurements and
CFD predictions [15]. Nevertheless, the dynam-
ical model can be slow to evaluate (limiting the
use to offline assimilations) and errors (initial con-
dition, dynamical model, measurements and un-
certainties) can be hard to estimate in real-world
applications.

In this paper, a data-driven approach is used
to discover a dynamical model for the Lorenz sys-
tem. To handle the chaotic nature of the system,
a recurrent neural network (RNN) dealing with
long and short term dependencies (LSTM) is con-
sidered [16]. To correct modeling errors, a dense
neural network (denoted hereafter DAN) whose
design is based on Kalman filtering techniques
is developed. Results are promising for predict-
ing multiple steps ahead the position and velocity
of a particle on the Lorenz attractor, using only
the initial sequence and real-time measurements
of the complete acceleration, the complete veloc-
ity or a single component of the velocity.

The paper is organized as follows. In Sec-
tion 2, the overall strategy is presented with a
quick understanding of how neural networks work.
In Section 3, results about the low dimensional
Lorenz system are shown, with a particular inter-
est in the impact of forecast horizon and noise.
A discussion is given in Section 4 before giving
concluding remarks.

2. Strategy

2.1. Proposed methodology

This paper investigates the use of neural net-
works to continuously predict a chaotic system
using a data-driven dynamical model and online
measurements. The method is summarized in Fig-
ure 1 and contains the following steps:

⊲ Consider m temporal states of the system.
The sequence is denoted [s]tt−m−1 where s is

the state of the system and whose dimension
is nf .

⊲ Predict n future states using a RNN with
long and short-term memory (LSTM). This
gives a predicted sequence [sb]t+n

t+1 where su-
perscript b indicates a prediction.

⊲ Predict the measured sequence. This gives
[yb]t+n

t+1 where yb is the predicted measure of
the state. The mapping between the state
space and the measurement space is per-
formed by a dense neural network called the
shallow encoder (SE).

⊲ Assimilate the exact sequence of measure-
ments [y]t+n

t+1 and update the predicted se-
quence of states. This work is performed
by a dense neural network which gives an
updated sequence [sa]t+n

t+1 where superscript
a stands for ”analyzed”. The network is
called the data assimilation network (DAN).

⊲ Construct [sa]t+n
t+n−m+1 by adding m− n up-

dated states from the previous iteration. This
gives a new input that can be used to cycle
and continue the forecasting process.

In this section, we give a quick overview of
neural networks and explain architectures behind
the dynamical model (RNN-LSTM), the measure-
ment operator (SE) and the data assimilation pro-
cess (DAN).

2.2. Quick overview of neural networks

A neuron is a unit passing a sum of weighted
inputs through an activation function that intro-
duce nonlinearities. These functions are classi-

cally a sigmoid σ(x) =
1

1 + e−x
, a hyperbolic tan-

gent tanh(x) or a rectified linear unit relu(x) =
max(0, x). When neurons are organized in fully
connected layers, the resulting network is called
a dense neural network. The universal approxi-
mation theorem [17] states that any function can
be approximated by a sufficiently large network
i.e. one hidden layer with a large number of neu-
rons. Just like a linear regression y = ax+ b aims
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[s]tt−m−1 RNN - LSTM [sb]t+n
t+1

SE

[yb]t+n
t+1

[y]t+n
t+1

DAN

[sa]t+n
t+1 [sa]t+n

t+n−m+1

Figure 1: Summary of the data-driven method to make predictions of a chaotic system. A data-driven dynamical model
(RNN-LSTM) predicts n future states of the system and the predicted sequence is updated according to a real sequence
of measurements.

at learning the best a and b parameters, a neu-
ral network regression y = NN(x) aims at learn-
ing the best weights and biases in the network by
optimizing a loss function evaluated on a set of
training data.

Although they are universal approximators,
dense neural networks face some limitations: they
may suffer from vanishing or exploding gradient
(arising from derivatives of activation functions,
see [18]), are prone to overfitting (fitting that cor-
responds too much to training data) and inputs
are not individually processed. Other architec-
tures of artificial neural networks have then been
developed, including convolutional networks (CNN,
for image recognition) or recurrent neural net-
works (RNN, inputs are taken sequentially). Re-
current networks use their internal state (denoted
h) to process each input from the sequence of in-
puts. This internal state is computed using an
activation function but to avoid limitations from
dense networks, its form is more elaborate. For
example, Long Short-Term Memory (LSTM) cells
[19] are combinations of classical activation func-
tions (sigmoids and tanh) that incorparate a long
and short term memory mechanism through the
cell state (see Figure 2).

Several techniques exist to learn parameters in
neural networks. The most common is the gradi-
ent descent, which iteratively update parameters

according to the gradient of the cost function with
respect to weights and biases. The computation
of gradients is made by backpropagating errors
in the network, using backpropagation for dense
neural networks or backpropagation through time
for RNN [6]. The equations can be found in [20]
for the curious reader. In this paper, all neural
networks are implemented using the Keras library
[21].

In this paper, hyperparameters are not tuned.
No grid search or genetic optimization is intended
and number of neurons, number of hidden lay-
ers and activation functions are found by succes-
sive trials. Defined architectures must not then
be considered as a rule of thumb.

2.3. Novelty of the work

This paper proposes a regressive framework
for assimilating data as opposed to standard data
assimilation techniques whose architecture does
not depend on the problem. Besides, the present
paper considers time marching of an entire se-
quence of the state while the most standard ap-
proaches involve a time marching of the predicted
state at regular time units. More details about
existing works are given in Section 4.

2.4. Dynamical model

The first step is to establish a dynamical model
mapping m previous states s(t) to n future states.
The chosen architecture is summarized in Figure
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s(j)

tanh

h(j)

(a) RNN

s(j)

LSTM

h(j) and C(j)

(b) RNN - LSTM

σ σ tanh σ

× +

× ×

tanh

C(j − 1)

h(j − 1)

s(j)

C(j)

h(j)

FG

IG OG

(c) LSTM cell. The recurrent unit is composed of a cell state and
gating mechanisms. The cell state C is modified when fed with a
new time step from the input sequence, forgetting past information
(via Forget Gate FG), storing new information (via Input Gate IG)
and creating a short-memory (via Output Gate OG). Mathematical
details are given in the appendix.

Figure 2: Two types of recurrent neural networks: simple RNN handling short-term depedencies via a hidden state h

(subfigure a) and RNN-LSTM handling short and long-term depedencies via a hidden state h, a cell state C and gating
mechanisms (subfigures b and c). Each time step s(j) from the input sequence is combined with h(j − 1) (and C(j − 1)
for LSTM-RNN) which was (were) computed at previous time step.

3. In the recurent layer, 2m LSTM cells (making
the cell state a 2m dimensional vector) processes
the input sequence [s]tt−m+1. This results in a final
output o(t) = h(t) summarizing all relevant infor-
mation from the input sequence. In dense layers,
the final output from the recurent layer is used to
predict n future states [sb]t+n

t+1 Concerning the the
number of recurent units, it has been chosen to
echo results of Faqih et al. [1] where best scores
were obtained by considering twice as many neu-
rons than the history window. Authors made this

conclusion after trying to predict multiple steps
ahead the state of the Lorenz 63 system using a
dense neural network with radial basis functions.
About the training of the model, the procedure is
as follows:

1. Simulate the system to get data t → s(t).
For the considered Lorenz system, only one
trajectory is simulated but it covers a good
region of the phase space.

2. Split data into training and testing sets. In
this work, 2/3 of the data is used for the
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training and 1/3 is used for the testing. To
detect possible overfitting, cross validation
is first performed by considering 20% of train-
ing data as validation data. Depending on
the evolution of both training and validation
errors, dropout layers can be added to neu-
ral networks. The model is then trained on
the whole training data set and errors are
computed on the yet unseen testing data
set. This step is necessary to ensure that
test errors are representative of generaliza-
tion errors.

3. Define supervised problems by writing data
as [s]tt−m+1 → [s]t+n

t+1 . The number of train-
ing examples is increased by considering a
sliding window of one time step i.e. train-
ing set is composed of [s]m−1

0 → [s]m+n−1
m ,

[s]m1 → [s]m+n
m+1 , etc. For the testing set, a

sliding window of n time steps is used.

4. Find optimal weights and biases in the net-
work by minimizing the mean square error
evaluated on batches of training data. The
chosen optimization algorithm is ADAM [22].
They are numerous parameters to find, in-
cluding all weights and biases for each LSTM
cell in the reccurent architecture and all pa-
rameters in dense layers. During the op-
timization process, the mean square error
is also computed on the validation set. To
avoid overfitting and ensure that weights
and biases learned during training are rel-
evant for future use on test set, errors eval-
uated on training and validation sets should
be close.

5. Evaluate the performance of the final model
using test data. Test 1 uses exact input se-
quences [s]tt−m+1 to compute [sb]t+n

t+1 . Test 2
uses the first exact sequence [s]m−1

0 to com-
pute [sb]m+n−1

m which is used as a new input
and so on. The metric to quantify errors is
the normalized mean square error which in-
dicates how far predictions are from expec-
tations on average. It is computed at the
end of the process, using temporal testing
states as a reference. Its formula is based
on all predicted states sb and corresponding
true states s:

NMSE =
1

ntest

ntest
∑

i=1

||s(ti)− sb(ti)||
2

||s(ti)||2

Where ntest is the total number of test states
and ||.|| is the l2 operator to compute the
norm of the considered vector (dimension
nf ).

2.5. Data assimilation

To make a continuous forecast of the state us-
ing a data-driven dynamical model, it is neces-
sary to limit the accumulation of prediction errors
[23] by incorporating online data in the prediction
process. Consider y(t) an exact measurement of
the state at t. The mapping between the state
space and the measurement space is done using
the measurement operator H. In Kalman filter-
ing techniques, a predicted state sb(t) is updated
according to sa(t) = sb(t) + Kt[y(t) − H(sb(t))]
where the Kalman gain Kt blends errors from the
prediction and the measurement. Such a method
is based on the Bayes theorem which helps to com-
pute the density probability function of the state
conditioned by the measurement. However, these
techniques require statistics of errors to explic-
itly be known and work on a sequence of states
only when considering the sequence as the state.
The objective here is to adapt the strategy to di-
rectly update, in a regressive manner, a sequence
of states using a sequence of measurements.

The first stage is to establish a relationship be-
tween the state and its measurement i.e. find an
approximation of H operator. This task is per-
formed by a shallow encoder which nonlinearly
explains a measurement by its state. Figure 4
summarizes the retained architecture, with nf de-
scribing the number of features in the state and p
being the number of observed variables. For sim-
ple and known mappings, this step is not neces-
sary. However, to develop a complete data-driven
framework, we choose to keep the shallow encoder
despite the simplicity of the true measurement op-
erator for the considered Lorenz system.
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Step 1: get h(t)

s(t− j)
with j = m− 1 to j = 0

LSTM1
... LSTM2m

2m LSTM cells

h(t− j)
C(t− j)

Step 2: get [sb]t+n
t+1

h(t)

σ ... σ

2m neurons

σ ... σ

m neurons

[sb]t+n
t+1

Figure 3: Architecture of the dynamical model, a network composed of a recurrent layers and dense layers. Idea behind
the design: 2m cells are used to echo the results obtained in [1] where best prediction scores were obtained when
considering two times the history window.

The training and testing of the shallow en-
coder is performed using data s(t) → y(t). The
determination coefficient R2 is used as a metric to
assess the quality of the regression. It is defined
by:

R2 = 1−

∑ns

i=1 ||y(ti)− yb(ti)||
2

∑ns

i=1 ||y(ti)− ȳ||2

Where ns is the number of samples (ntrain for
assessing quality of the fit, ntest for assessing the
quality of prediction) and ȳ is the temporal mean
measurement vector.

The second stage is to blend a predicted se-
quence [sb]t+n

t+1 with its associated sequence of mea-
surements [yb]t+n

t+1 and the real sequence of mea-
surements [y]t+n

t+1 to produce the updated sequence
[sa]t+n

t+1 . This job is done by a dense neural net-
work whose architecture is summarized in Figure
5. The training process is as follows:

1. Simulate the system to get t → s(t),y(t).
Measurements are supposed to be exact and
no noise is applied yet.

2. Split temporal states and measurements into
training and testing sets. The procedure

is the same than for the dynamical model
training preparation.

3. Get supervised formulation of training data.
The sliding window is supposed to be n.
Outputs sequences are [s,y]

(j+1)n+m−1
jn where

index j describe the j-th output.

4. Perform test 1 (see subsection 2.4) and shal-
low encoder on defined outputs. This leads
to possible predicted states and measure-
ments [sb,yb]

(j+1)n+m−1
jn .

5. Each training measurement sequence [y]t+n
t+1

is associated to 20% random pairs from the
set defined in step 4. In doing so, a real
sequence of measurement is associated to
randomly selected 20% of all possible pre-
dictions in order to produce sequence [s]t+n

t+1 .
All possible predictions could be used but
this would increase the computational time
to prepare the training set.

6. Perform gradient descent to optimize weights
and biases.

7. Evaluate the performance of the final model
using test data. This is denoted as Test 3
which is summarized in Figure 6. Like in
Test 2, inputs are fed back in recursively
to assess the continuous prediction of test

6



sb(t)
nf neurons

input layer

2nf neurons

tanh layer

nf neurons

tanh layer
yb(t)

p neurons

linear layer

Figure 4: Shallow artificial neural network to map a state to its measurement i.e. approximation of H operator.

data. The metric is still the normalized
mean square error.

The assimilation technique proposed here is
a nonlinear regression learned on training data.
This is different from Kalman filtering techniques
where the Kalman gain only relies on statistics of
errors and whose formula does not depend on the
considered case.

3. Results

3.1. Lorenz system

The Lorenz system of equations is a simplified
model for atmospheric convection [2] [24]. Close
initial conditions lead to very different trajecto-
ries, making the Lorenz system a choatic dynam-
ical system. The system is defined by:











ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

Parameters σ, ρ and β are respectively set to
10, 28 and 8/3. The trajectory of a particle lies
in an attractor whose shape resembles a butter-
fly. In [10], Brunton proposed a method to write
a chaotic system as a forced linear system. Fol-
lowing this method, forcing statistics appear non-
gaussian, with long tails corresponding to rare in-
termitting forcing preceding switching events (see
Figures 7a and 7c). The system is simulated using
a Runge Kutta 4 method, a random initial condi-
tion and a time step of 0.005s, for a total of 15000
samples. The chosen state is s = (x, y, z, ẋ, ẏ, ż)
which is the position and velocity of the particle
on the attractor. The state is normalized using
statistics from training data. The time-series of
x, plotted in Figure 7b, clearly shows the lobe

switching process (positive values when the parti-
cle travels on the right wing and negative values
when it travels on the left wing). The objective
is to extract from the simulated data a dynamical
model mapping m past states to n future states.
To account for modeling error, predictions are
enforced using sequences of measurements. Our
choice of observed variables is y = (ẍ, ÿ, z̈) or
y = (ẋ, ẏ, ż) or y = ẋ. Measurements are di-
rectly linked to the state and data-driven models
should automatically detect these relations.

Before training models and specify the pre-
diction window n, the impact of n on the global
error is investigated. Considering that wrong pre-
dictions are more likely to appear when predicting
lobe switchings, two sources of errors, quantified
on training data, can be found:

⊲ Source 1, denoted e1 → the ratio between
the mean position of switching in a switch-
ing sequence and the prediction horizon n.
The smaller the ratio, the bigger the impact
on the global error.

⊲ Source 2, denoted e2 → the ratio between
the number of sequences with switchings and
the number of training sequences. The big-
ger the ratio, the bigger the impact on the
global error.

Figure 7d shows the impact of global error for
n ∈ [10, 90]. As expected, increasing the forecast
window leads to a bigger impact on the global
score (e2/e1 increasing) because prediction errors
accumulate on longer sequences. However, the
impact is not strictly monotone, indicating a de-
pendance on the initial position of the particle.
For the considered starting point, a forecast hori-
zon n = 80 has a bigger impact on NMSE than

7



[sb]t+n
t+1

nf × n neurons

[yb]t+n
t+1

p× n neurons

[y]t+n
t+1

p× n neurons

[sa]t+n
t+1

nf × n neurons

Hidden 1
tanh

Hidden 2
relu

Output
linear

Input
linear

0.1m× (nf + 2p) neurons

0.1m× (nf + p) neurons

Figure 5: Data assimilation network. The nonlinear regression correct predicted sequences of states by assimilating
sequences of real measurements. Hyperparameters must not be considered as a rule of thumb and are well tailored for
the Lorenz 63 system.

Input Output
RNN

Prediction

UpdateDAN

New input

Figure 6: Procedure to test the data assimilation network.
The dynamical model is used to predict n future states
of the system using a history of m states. The predicted
sequence is updated using the data assimilation network
and next input is formed. All predicted sequences are then
compared to all expected sequences using the normalized
mean square error as a metric.

for n = 90, indicating that lobe switchings (so
possibly wrong predictions) are more likely to ap-
pear at the beginning of a new sequence to pre-
dict for n = 80 and in the middle of the sequence
for n = 90. In next sections, a history window
m = 100 to capture one lobe switching or zero.

3.2. Testing the dynamical model

Nine dynamical models are established with
m = 100 and n ∈ [10, 90]. Learning is stopped
when the validation mean square error do not de-
crease for 3 epochs in a row. All learning curves

show converged and close training and validation
errors. The use of dropout layers or regularization
techniques is then not necessary since no overfit-
ting is noted. With models trained on the whole
training data set, errors calculated on testing data
are less than 1% for Test 1 but always exceeds
100% for Test 2 (see step 5 in Section 2.4 for the
definition of tests). It means that the dynami-
cal model alone has a great performance only for
small term predictions. The Figure 8 shows pre-
dictions of x feature for both tests with a forecast
horizon of 50-time steps. It is worth noting that
despite the global score for Test 2, the dynami-
cal model successfully recovers the region of phase
space it was learnt on.

3.3. Testing the data assimilation network

Concerning the shallow encoder (to map a state
to its measurement), training is extremely fast
and accurate with a training and testing deter-
mination coefficient close to 1. It means that the
nonlinear regression performed by the neural net-
work recovers nearly all the variance observed in
training and testing data. This is not a surprise
since the relationship between sn and yb is simple
(derivation for the acceleration or selecting fea-
tures for velocity). Concerning the data assimi-
lation network, quantitative results of Test 3 are
shown in Figure 9. Qualitative results for x and vx
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Figure 7: Analysis of training data. The attractor (Figure a) can be seen as a forced linear system with a non-gaussian
distribution for the forcing signal (Figure c, method from [10]). Lobe switchings are visible in time-series of x feature
(Figure b) where the blue signal corresponds to training data and the orange signal corresponds to testing data. The
forecast horizon n has an impact on the global score as shown in subfigure d.

predictions using acceleration are shown in Figure
10. Several comments can be made:

1. Qualitatively, most of bad predictions are
followed by good predictions: wrong pre-
dictions are detected and corrected by the
DAN given online measurements.

2. Using the complete velocity leads to slightly
better results than using the complete accel-
eration which seems reasonable because giv-
ing the velocity means giving three features
out of six in the sequence to update.

3. Using only vx leads to bad results for small
sequences. To understand this behavior, the
mean linear correlation coefficient between

sequences of vx and sequences of the state
has been studied. It is defined by:

r̄(vx, sk) =
1

nstrain

nstrain
∑

i=1

r([vx]i, [sk]i)

with r(X, Y ) =
cov(X, Y )

σXσY

Where nstrain is the number of output train-
ing sequences of size n, [vx]i is the i-th train-
ing sequence of vx (size n) and [sk]i is the
i-th training sequence of the k-th feature
of the state. Results are shown in Figure
11. It appears that small sequences of vx
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Figure 8: Test of the dynamical model for n = 50. Dots indicate the start of a new prediction, using m past exact states
(Test 1) or m past predicted states (Test 2) as input.

are linearly correlated to all features in the
state (linear correlation coefficient close to
1), which is no longer the case for medium
and large sequences where nonlinearities arise
(linear correlation coefficient between 0.6 and
0.7). Therefore, the data assimilation net-
work has a too complex architecture for up-
dating small sequences: a lot of unecessary
parameters must be calculated during learn-

ing because the state could entirely be re-
covered by a linear regression on online vx.
This is a form overfitting and hyperparame-
ters should be optimized but this is not the
scope here.

4. Worst results are obtained for n = 80 which
is linked to the dependance on the initial
state to generate training data ( Figure 7d).

We now suppose that the initial sequence is

10



20 40 60 80

0

10

20

30

40

n (time steps)

N
M

S
E

te
s
t
(%

)

Test errors for test 3

ax, ay, az
vx, vy, vz
vx
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complete acceleration, the complete velocity or vx alone to
update predictions.

noisy (Gaussian noise with standard deviation σ0 =
0.3) just like online measurements (Gaussian noise
with standard deviation σy = 0.2). The objective
is to compare the proposed strategy with a simple
Kalman filter update. Tests are restricted:

1. The simplest Kalman filtering technique re-
quires the mapping between the state and
its measurement to be linear (i.e. the H op-
erator is simply a matrix). Tests will then
concern vx or the complete velocity as online
measurements.

2. A Kalman filter requires the covariance of
the prediction error to be advanced in time.
In this paper, the covariance of the predic-
tion error is supposed to be known at each
new prediction and the predicted sequences
are updated as a whole state.

Quantitative results are shown in Figure 12.
We can observe that the DAN performs better for
medium and large sequences but has poor perfor-
mance on small sequences compared to the Kalman
filter. This result was expected: the limited size of
the noisy input sequence makes it harder to detect
and learn regularity, resulting in sub-optimal per-
formance. This effect is not noticeable for large
sequences because a pattern can still be detected
in the noisy sequence. It is also worth noting that

the noise applied to a small initial sequence has
no influence on performance since no weights are
attributed to predicted sequences in the DAN ar-
chitecture. When considering the complete veloc-
ity, results obtained from the DAN are close to
those obtained by Kalman filter (which requires
the error to be known while the DAN does not).
The influence of noise on small sequences is not as
important as when using vx alone since the cor-
rection does not rely on a single neuron.

4. Discussions

The data-assimilation framework proposed in
this paper is based on regressive methods. Its suc-
cess is then tailored to the good choice/design of
the method and the relevance of training data. If
the trajectory to predict lies in the learned phase
space’s region, one can expected the DAN to have
great performance. Otherwise, Kalman filtering
techniques which do not depend on the problem
should be prefered. The reader is referred to Mons
et al. [14] for an overview about existing tech-
niques.

Concerning the combination of neural networks
with kalman filtering techniques, some works have
already been done in the litterature. Most innova-
tions concern the estimation of uncertainties. For
instance, Coskun et al. [25] use LSTM cells to pre-
dict the internals of the Kalman filter. In doing so,
the authors implicitely learn a dynamical model
and covariance errors to use for a kalman update.
In Loh et al. [23], authors update LSTM predic-
tions of flow rates in gaz wells using an ensemble
kalman filter, thus estimating errors via the co-
variance of an ensemble of predictions. In Becker
et al. [26], a new architecture called reccurent
kalman network is developped: using an encodeur
- decodeur network, authors are able to estimate
uncertainties in the features. Finally, Vashista
[27] directly train a RNN - LSTM network to
simulate ensemble kalman filter data assimilation
using the differentiable architecture search frame-
work. In this paper, we proposed a framework
to directly work on sequences of data, separat-
ing the dynamical model from the data assimila-
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Figure 10: Test of the data assimilation network for n = 70. Dots indicate the start of a new prediction, using m past
reconstructed states as input (test 3).

tion process. Future investigations could include
the explicit estimation of uncertainties using for
instance bootstraping methods or gaussian pro-
cesses [28]

Before applying the proposed strategy to a
higher dimensional system, several challenges need
to be adressed. First, the relevant phase region
where to learn regressive models may be hard to

detect as more features are involved. Second, op-
timal hyperparameters may not be easily guess-
able, thus requiring the need to grid search or
genetic algorithm. Third, the dimensionality of
the system could be reduced (by projecting it on
a well defined basis) but some information would
be sacrifcied, thus raising the problem of what
relevant features should be kept. Vlachas et al.
[29] adresses some of the problems by establish-
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ing RNN - LSTM to forecast the Lorenz 96 system
but no data assimilation coupled to their dynam-
ical model has been yet intended.

Finally, we are enthousiastic to use this frame-
work for simple fluid mechanics problems: after
reducing the state to estimate (using POD tech-
nique, see [30]), we aim to use data assimilation
to continuously predict a simple flow. Neural net-
works involved in the dynamical or the data as-
similation process will be improved by incorpo-
rating physics. For instance, a physics neural net-
work is proposed by Ling [31] to establish a deep
learning Reynolds Average Navier Stokes model
embedding the invariance of the anisotropy stress
tensor.

5. Conclusion

In this paper, we investigated the use of neu-
ral networks to predict multiple steps ahead the
state of the Lorenz system. The first stage con-
sisted in establishing a dynamical model map-
ping previous states to future states. A recur-
rent neural network handling long and short-term
dependencies was used for this purpose. Sup-

posing the input sequence was exact, the out-
put proved to be accurate with less than 1% er-
ror. However, when running the dynamical model
with predicted states as new inputs, errors ac-
cumulated at each new prediction, leading to a
bad prediction the time-series: the system being
chaotic with extreme events, a small error in the
initial condition leads to a radically different out-
put. To overcome this accumulation of errors and
make a continuous forecast of the Lorenz system,
a data assimilation strategy based on sequential
techniques was developed. This consisted in a
nonlinear network mapping between a predicted
sequence of states and a corresponding sequence
of online measurements. This strategy proved to
be effective when starting with the exact initial
sequence and feeding the system with exact on-
line measurements, notably when using the com-
plete acceleration or the complete velocity. A
deeper analysis of the DAN structure showed that
this strategy was less relevant when using a single
measurement or when working with small forecast
windows. Besides, the DAN proved to be sensi-
tive (at least for small forecast windows) to noise
in measurements but not to noise in the initial
condition. The DAN remains a good alternative
to a simple Kalman filter where the estimation of
errors may be a difficult task, especially when up-
dating sequences. It nonetheless must be noted
that the success of the DAN is mainly due to the
quality of training data and extra care must be
taken when learning regression parameters. All
in all, the global strategy developed here seems
promising to continuously forecast other chaotic
systems evolving on an attractor. Future works
could include the tuning of hyperparameters (to
have an optimal design for each neural networks)
and the application to a high dimensional attrac-
tor where, similarly to Lorenz system, extreme
events could be encountered.

6. Acknowledgments

The authours wish to thank ONERA and Hauts-
De-France region for their funding.

13



20 40 60 80
0

50

100

150

200

250

n (time steps)

N
M

S
E

te
s
t
(%

)

Using vx measurements

n = 50/60/70/80/90
NMSE = 12/16/20/43/23

(a) Using noisy vx as online measurement

20 40 60 80

5

10

15

20

n (time steps)

N
M

S
E

te
s
t
(%

)

Using v measurements

DAN
Kalman

(b) Using noisy velocity as online measurement

Figure 12: Results from Test 3 using a Kalman filter update or the data assimilation network. Noise was incorporoted
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Appendix A. LSTM cell

Long-Short Term Memory cells are recurrent
units deploying a cell state and gating mecha-

nisms. Equations of forget (ft), input (it), output
(ot) and activation (at) gates are as follows:



















ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

at = tanh(Waxt + Uaht−1 + ba)

Where W are weights associated to the input
xt, U are weights associated to the hidden input
ht−1 and b are biases. Outputs are the cell state
ct and the hidden state ht, computed according
to:

{

ct = ct−1 ⊙ ft + at ⊙ it

ht = ot ⊙ tanh(ct)

Where ⊙ is the pointwise product. Given a
new information [xt, ht−1], the long-term memory
ct forgets information (via ft ⊙ ct−1) and stores a
part of new information (via at ⊙ it). The short-
term memory ht depends on the long-term mem-
ory (via tanh(ct)) and the activation of the cell
(via ot) given new information.
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