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Abstract

We address the problem of formally verifying quantitative
properties of driver models. We first propose a novel stochas-
tic model of the driver behavior based on Convex Markov
Chains, i.e., Markov chains in which the transition probabili-
ties are only known to lie in convex uncertainty sets. This for-
malism captures the intrinsic uncertainty in estimating transi-
tion probabilities starting from experimentally-collected data.
We then formally verify properties of the model expressed
in probabilistic computation tree logic (PCTL). Results show
that our approach can correctly predict quantitative infor-
mation about driver behavior depending on her state, e.g.,
whether he or she is attentive or distracted.

1 Introduction

The problem of modeling driver behavior in cars has long
been studied, due to its relevance to applications rang-
ing from teaching techniques for safer driving and de-
veloping more effective driving regulations and norms to,
more recently, the development of autonomous and semi-
autonomous control techniques to reduce the number of car
fatalities (Cacciabue 2007). In particular, one of the major
focuses of the research community has been on address-
ing the problem of driver distraction (Vasudevan and oth-
ers 2012; Anderson and others 2010; Coelingh and others
2007). This includes distraction caused by cell phone calls,
which accounts for 22−50% of all accidents (Klauer 2006).
Potential solutions to the driver distraction problem rely
on semi-autonomous or “human-in-the-loop” control tech-
niques, some of which try to predict the car trajectory based
on estimations of the driver behavior and actively take con-
trol of the car. For instance, existing techniques perform a
braking maneuvers if a collision is predicted (Coelingh and
others 2007). To correctly take human actions into consid-
eration before intervention, modeling the driver behavior is
thus of crucial importance.

Since it would be hard to create a single and deterministic
model of the driver behavior, due to the unpredictability of
human behavior under varying environments and levels of
distraction, stochastic techniques using Markov Chain (MC)
models have been proposed (Lin and others 2004). As a first
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contribution, in this paper we develop a novel probabilis-
tic driver model that predicts the driver trajectories using a
Convex-MC (CMC) model, i.e., a Markov Chain in which
the transition probabilities are only known to lie in convex
uncertainty sets. The prediction is based on the future en-
vironment surrounding the car, the state of the driver (i.e.
attentive or distracted), and the history of steering maneu-
vers for a given individual, which we collected using a car
simulator 1. For each environment and state of the driver,
the model predicts a set of trajectories for the subsequent
time interval based on empirical observations of past behav-
ior. These predictions are then used as transition probabili-
ties within the driver model. Due to the ambiguity that in-
herently affects the observed driving data used to estimate
the transition probabilities, we allow probabilities to be ex-
pressed in terms of uncertainty sets, which can be precisely
defined based on statistical techniques. This framework al-
lows a more conservative prediction of the driver behavior
and gives guidelines to the model developer to determine
when the collected data are statistically relevant to correctly
infer properties of the system.

Due to the criticality of the system under consideration,
formal techniques to verify properties of the constructed
model are required to rigorously assess the validity of the
model and give guarantees of its safety and liveness. As
a second contribution of this paper, we show how to ver-
ify logical properties of the CMC model of the driver ex-
pressed in Probabilistic Computation Tree Logic (PCTL),
using recently-proposed polynomial-time verification algo-
rithms (Puggelli and others 2013). Our main focus is to
quantify the effects of different attention levels on the qual-
ity of driving by formally analyzing the driver behaviors
while they are either attentive or distracted. PCTL is a suit-
able choice because it allows to express quantitative prop-
erties of a system, as opposed to other logics, e.g. Linear
Temporal Logic (LTL), which only allow qualitative prop-
erties. For example, we aim to determine whether “the max-
imum probability of exiting the road for a distracted driver
is higher than 90%”, while LTL would only allow to inquire
whether “eventually a distracted driver will exit the road”, a
property that would trivially be always true for some of the
executions of the model, without giving insight about how

1http://www.carsim.com
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likely the event would actually take place.
The structure of the paper is as follows. In Section 2, we

summarize the main theoretical results about the verification
of PCTL properties of CMCs. In Section 3, we give details
on how to construct the proposed stochastic model of the
driver behavior, and in Section 4 we present results on the
verification of its properties. We conclude and discuss future
research directions in Section 5.

2 Background

In the area of formal methods, the “model checking” prob-
lem can be formalized as a decision problem. Given a struc-
ture M and property φ, the “model checking” problem an-
swers whether M satisfies property φ starting from state s,
written as M, s |= φ. This formal verification technique is a
rigorous mathematical approach to prove the correctness of
a system (Clarke and others 1999).

The first model checking techniques targeted determin-
istic systems, e.g. finite state machines, in which the same
input stream always produces the same output stream for
a fixed initial state. On the other hand, in many applica-
tions, noticeably those involving hybrid systems in which
continuous and discrete dynamics coexist, the system model
M is probabilistic (Kwiatkowska and others 2011). Since
classic model checking approaches cannot be used to prove
the correctness of these systems, probabilistic models and
model checking techniques were developed. In this project,
we chose M to be a discrete time CMC, formally defined as
follows.

Definition. A labeled finite CMC, MC is a tuple: MC =
(S, S0,Ω,F , X, L), where S is a finite set of states of car-
dinality N = |S|; S0 is the set of initial states; Ω is a finite
set of atomic propositions; F is a finite set of convex sets of
transition probability distributions; S : S → F is a function
that associates a state, s to probability distributions, denoted
Fs ∈ F; L : S → 2Ω is a labeling function that associates
state, s, to the corresponding atomic propositions.

Intuitively, given any state s ∈ S, we do not constrain the
Discrete Transition Probability Distribution (DTPD) to the
next states to be unique, but we allow to specify a convex
set Fs ∈ F of DTPDs, to model the uncertainty in estimat-
ing the transition probabilities when they are derived from
statistical data. Each point in the set represents an observed
DTPD fs ∈ Fs. We interpret the N -dimensional point fs as
a vector, with fs ∈ Fs ⊆ R

N . We then collect the vectors
fs, ∀s ∈ S into an observed transition matrix F ∈ R

N×N ,
where fss′ is the observed probability of transitioning from
state s to state s′. A transition between state s to state s′ in a
CMC occurs in two steps. First, an observed DTPD fs ∈ Fs

is chosen. Second, a successor state s′ is chosen randomly,
according to the DTPD fs.

A path π in MC is a finite or infinite sequence of the

form s0
fs0s1−−−→ s1

fs1s2−−−→, · · · , where si ∈ S and fsi,si+1
>

0 ∀i ≥ 0. π[i] is the ith state along the path and Πs = {π |
π[0] = s} is the set of paths starting in state s.

The shape of the convex uncertainty set is based on the
selected uncertainty model. In our project, we used both the
interval and the likelihood models of uncertainty (Nilim and

others 2005). Intervals commonly describe uncertainty in
transition matrices:

Fs = {fs ∈ R
N | 0 ≤ fs ≤ fs ≤ fs ≤ 1,1T

fs = 1}

where fs, fs ∈ R
N are the element-wise lower and upper

bounds of fs. While intuitive to understand, intervals often
result in over-conservative predictions of the effects of un-
certainty. Thus, we will use the interval model as a baseline
for our experiments, and further use the likelihood model of
uncertainty, which is more statistically accurate when data
are derived from empirical measurements. For the likelihood
model, we first collect for each state s ∈ S the vector hs of
measured transition frequencies to all next states s′. The un-
certainty set of DTPD is then defined as:

Fs = {fs ∈ R
N | fs≥ 0,1T

fs = 1,
∑

s′
hss′ log(fss′) ≥ βs}

(1)
where βs < βs,max =

∑
s′ hss′ log(hss′) represents how

uncertain the estimation is (a smaller value of β represents
more uncertainty). In Section 3, the choice of β in the con-
text of modeling the behavior of driver is explained in detail.

After creating the CMC models, we aim to verify their
logical properties. We use PCTL to express properties of in-
terest in the probabilistic framework we have defined. PCTL
is a probabilistic logic derived from Computation Tree Logic
(CTL) which includes a probabilistic operator P . (Hansson
and others 1994) The syntax of this logic is as follows:

φ ::= True |ω |¬φ |φ1 ∧ φ2 |P⊲⊳p[ψ] state formulas

ψ ::= Xφ |φ1U
≤kφ2 |φ1Uφ2 path formulas

where ω ∈ Ω is an atomic proposition, ⊲⊳∈ {≤, <,≥, >},
p ∈ [0, 1], and k ∈ N. Here X is the Next operator, U is the
Unbounded Until operator and U≤k is the Bounded Until

operator.
Probabilistic statements about MCs typically involve

computing the probability of taking a path π ∈ Πs that
satisfies ψ. With uncertain transition probabilities, we will
need to universally quantify across all possible resolutions
of uncertainty to compute the worst case condition within
the uncertainty set Fs. This choice is suitable in a veri-
fication setting to determine the most conservative behav-

ior of the model under analysis. We define Ps(F )[ψ]
△

=
Prob ({π ∈ Πs(F ) | π |= ψ}) the probability of taking a
path π ∈ Πs that satisfies ψ when using the DTPDs
collected in the observed transition matrix F . Pmax

s [ψ]
(Pmin

s [ψ]) denote the maximum (minimum) probability
Ps(F )[ψ] across all possible observed transition matrices F .

The PCTL semantics for CMC is then defined as:
s |= P⊳p[ψ] iff Pmax

s ({π ∈ Πs|π |= ψ}) ⊳ p
s |= P⊲p[ψ] iff Pmin

s ({π ∈ Πs |= ψ}) ⊲ p
π |= Xφ iff π[1] |= φ

π |=φ1U
≤kφ2 iff ∃i≤k|π[i] |= φ2 ∧ ∀j<i π[j] |=φ1

π |= φ1Uφ2 iff ∃k ≥ 0|π |= φ1U
≤kφ2

Details on the polynomial-time algorithms used to verify
PCTL properties of CMCs, together with a more rigorous
exposition of the material presented in this section, can be
found in (Puggelli and others 2013). The source code of the
implemented verification tool can be found on our website 2.

2http://www.eecs.berkeley.edu/∼puggelli/
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3 Modeling of the Driver Behavior

In this section, we show how to create a probabilistic model
of the human driving behavior. The primary goal is to give an
accurate prediction of the future trajectories of the car over
a long-time horizon. This also allows the analysis of com-
plex maneuvers, e.g., a sequence of a right and a left turn,
and the study of how decisions made early in the maneuver
can affect later decisions. Our approach postulates that the
driver state, e.g., attentive or distracted, must be considered
to increase the accuracy of the prediction. By examining the
driver in this way, we are able to carefully assess the threat
the driver faces, which is becoming increasingly important
in the development of advanced control algorithms (Vasude-
van and others 2012).

As will be described in the following sections, data is
gathered from multiple drivers, in order to create individ-
ualized driver models that are generated from empirical ob-
servations collected in a simulation environment. Once the
predictive model is created, time and space are discretized
to form a discrete time Convex Markov Chain (CMC) and to
quantitatively analyze the properties of the model. An arbi-
trary level of accuracy in the model can be obtained by ap-
propriately choosing the discretization step, at the expense
of longer runtime of the verification algorithm. The follow-
ing section describes the experimental setup and methods
used to develop the driver model.

3.1 Methods and Experimental Setup

In order to learn the model of an individual driver, we
use the approach described in (Vasudevan and others 2012)
and (Shia and others 2014). According to this method, the
driver behavior is dependent on particular modes or scenar-
ios, which are determined by the future external environ-
ment, e.g., a turn in the road, and by the driver state, e.g., at-
tentive or distracted. We start by collecting data representing
the observed steering angle input of the driver, sampled ev-
ery 30ms. In order to recover these unknown modes without
making any unnecessary assumptions, the data is clustered
using the k-means algorithm (Hartigan and others 1979),
which allows for flexibility in determining the modes in
an unsupervised manner. This also allows the driver model
to predict the driver behavior in any scenario in which the
model is effectively trained. In the setup presented in this
paper, these clusters or modes are created from the follow-
ing data sets:

1. Driver Pose: This contains the past two seconds of skele-
ton data, specifically the positions of the wrist, elbow, and
shoulder joints.

2. Environment Estimation: This contains a feature vector
for the future four seconds of the outside environment,
including road bounds and curvature, obstacle locations,
and the car’s deviation from the lane center.

The model uses a tiered structure by first clustering the en-
vironment vector, and then the driver pose. This allows us
to compare driver behaviors in a matching environment for
different driver states. Empirical considerations suggested us
to use 150 clusters, k1 = 50 environment clusters at the first
tier and k2 = 3 pose clusters at the second tier, to achieve

the desired level of accuracy in the model (Shia and others
2014).

Once the data has been clustered into modes, the future
1.2 seconds (a time frame comparable to the human reac-
tion time) of the driver steering angle inputs associated with
each mode become the prediction for that scenario. The pre-
dicted steering angle inputs can then be passed to a vehicle
model to generate the future vehicle trajectories and thereby
infer the driver’s intentions. This creates a driver model that
is able to continuously predict the future behavior of the
driver and, by extension, of the vehicle trajectory, as it moves
through a given environment.

For simplicity, a linearized vehicle model is used to gen-
erate the trajectory set (Vasudevan and others 2012). In our
setup, we assume that the driver is driving at approximately
60 miles per hour. This assumption does not limit our ap-
proach and is appropriate in a highway scenario. A sam-
ple trajectory set is shown in Fig. 1. This graph shows the
change of lateral direction of each trajectory in meters from
a given initial condition for the future 1.2s. As it is apparent
from the figure, some of the trajectories stay within the lane,
some drift outside of the lane and some others diverge to the
left lane.

Figure 1: Example of an observed set of trajectories showing the
change in lateral and longitudinal directions with respect to the cen-
ter of the car at ∆y = 0.

To implement this model, we used CarSim, a standard
car simulation software used by industry 3, as simulation
environment, and the Microsoft Kinect 4 to observe the
driver pose in real-time. Multiple subjects were asked to
drive through four courses to collect over an hour of train-
ing data, to observe individual driving habits in different
environments and driver attention levels. To simulate dis-
tracted driving, an application was installed on a cell phone
to prompt the driver to answer the call or text while continu-
ing to drive. For more details about the formulation and im-
plementation of the driver model, we refer the reader to (Shia
and others 2014).

In conclusion, the driver model developed so far answers
the question: “Given the mode the driver is currently in,
how will he or she drive in the next 1.2s?” By identifying
the modes using observations of the environment and of the

3http://www.carsim.com
4http://www.xbox.com/en-US/KINECT
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driver state, the associated future steering angle inputs can
be used as a prediction of the driver behavior.

3.2 Stochastic Modeling

In this section, we show how to create a stochastic model
of the driver behavior capable of representing complex ma-
neuvers. We start by collecting the clusters generated as de-
scribed in Section 3.1 into a library. Each cluster is annotated
with labels describing the environmental and driver states
associated to it. We then instantiate these to form the model
of the car driver along the road to be analyzed. Transition be-
tween cluster instances are defined in a probabilistic fashion
by considering the predicted behavior within the cluster.

To illustrate our methodology, we explain how to convert
the trajectory data in Figure 1 to the model in Figure 2. We
start by associating to the cluster under analysis the state
S0. We then assume that the trajectory starts in the center of
the right lane of a two-lane road. Using standard values for
the car and lane widths, we classify the trajectories within
the clusters in three subsets, lane changing, lane keeping,
or drifting, depending of the final y−coordinate. In the ex-
ample, the trajectories that exit the safe region of the road
toward the curb are identified as “Unsafe”, those that remain
in the middle of the road are marked “Right Lane”, while
those that tend towards the left lane are identified as “Left
Lane”. We can now associate a new state to each maneu-
ver, S1, S2, S3, representing the three locations where the
car may be in the next time step.

Finally, the empirical probabilities to perform each ma-
neuver are calculated by examining the percentage of trajec-
tories within the cluster that terminate in the corresponding
region (see labels in Fig. 1). The table in Fig. 2 illustrates
the assigned probabilities for the example under analysis.

Since the computed transition probabilities are based on
empirical driving data, we introduce uncertainty sets around
the derived probabilities to accommodate for estimation er-
rors. The size of the set depends on the level of confidence
in the collected measures. We use both the interval and like-
lihood uncertainty models. The interval model is intuitive to
understand and will be used as a baseline for our quantita-
tive analysis. Given a confidence level 0 ≤ CL ≤ 1 in the
measurements and an empirical probability p0, we compute
the transition probability interval [CL × p0, (2−CL)× p0].
We also use the likelihood model of uncertainty, because it
is less conservative and it is largely used for representing
uncertainties on empirical data. Using classical results from
statistics (Nilim and others 2005), we can compute the value
of parameter β from set Fs corresponding to a confidence
level CL. In particular, CL = 1 − cdfχ2

d

(2 ∗ (βmax − β)),

where cdfχ2
d

is the cumulative density function of the Chi-

squared distribution with d degrees of freedom (d = 3 in
this example because there are three possible next states).

Because the driver model is defined by the driver state,
the procedure described here can be applied to both attentive
and distracted drivers. This allows us to determine changes
in behavior for a specific driver depending on the driver
state. The modeling technique described can be iterated to
create a stochastic model of the car driver behavior on a

Figure 2: Example of creating transition probability intervals
from a trajectory set. We used CL = 95%.

road of arbitrary shape-assuming the driver model is appro-
priately trained. We describe a more elaborated example in
Section 3.3.

We are now ready to formally describe the created
stochastic model using the formalism of CMCs, as intro-
duced in Section 2.

In the CMC corresponding to our models, MC =
(S, S0,Ω,F , X, L), we let S represent the set of instanti-
ated clusters with associated trajectory sets, and S0 repre-
sent the initial state. We assign a set of atomic labels Ω to
each cluster encoding the environmental and driver states.
For example, labels can mark clusters on the right or left
lane, and clusters used during a right or left turn or during a
straight segment of road. Labels are also used to mark Safe
(Unsafe) states if they are within (outside) the road bound-
aries. We also label a state as Accelerating or Braking, if the
value of acceleration is above or below a chosen threshold,
and Swerving if the number of swerving trajectories is above
a threshold (swerving marks potentially dangerous driving).
We label the goal set of states as Final, to mark the end of
the complex maneuver. Finally, we use the labels Attentive
and Distracted to mark the corresponding data sets.

Ω = {Right Turn, Left Turn, Straight, Right Lane,

Left Lane, Safe, Unsafe, Braking, Accelerating,

Swerving, Final, Attentive, Distracted}

The set F collects all the convex sets of transition prob-
ability distributions each encoding the chosen confidence
level and uncertainty model, while mapping X : S → F
associates each state with the corresponding convex uncer-
tainty set of probability distributions to the next states. Fi-
nally, the labeling function L maps each state to the corre-
sponding set of labels in Ω.

3.3 Model of a Complex Maneuver

As a more elaborated example of our modeling approach, we
created a CMC model of the road segment shown in Fig. 3.
The road consists of the sequence of sections: straight, right
turn, left turn and another straight for both lanes. States
are assigned to different locations on the road. Each state
is a cluster that is chosen from the library of clusters for
a specific driver. We let {S0, · · · , S15} represent the set
of states. S0 is the initial state, and Si = {Di, Ai} for
i ∈ {0, 1, 2, 7, 8, 11, 12} represent a set of two different
states, one for distracted driving and one for attentive driving
as shown in Fig. 3.

We labeled as Attentive the states where the human
driver’s pose suggests that both hands of the driver are on
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the steering wheel. States are labeled as Distracted if the
human pose suggests that the driver is holding a phone or
sending a text message.

We created two different models to represent scenarios
with (without) an obstacle on the road right before the right
turn (Fig. 3 on the left and right, respectively). In the sce-
nario with the obstacle, some trajectories in S0 terminate
on the left lane, represented by state S1. With no obstacle,
trajectories in S0 instead either keep the right lane or drift
outside of the boundaries.

States {S3, S4, S5, S6, S9, S10, S13} correspond to Un-
safe states since they are all out of the boundaries of
the road; the rest of the states are Safe states. States
{S14, S15} are marked as Final states. The Right Lane and
Left Lane labels correspond to states {S0, S2, S8, S12, S15}
and {S1, S7, S11, S14}, respectively. The rest of the labels
in Ω depend on the specific driving style of each subject.
Probability distributions for transitions between states are
assigned as we discussed in Sec. 3.2. In fact, Fig. 2 shows
the transition probability distribution from S0 to S1, S2 and
S3 in Fig. 3. The comparison and analysis of the two models
in Fig. 3 are discussed in Sec. 4.

S3

S5

S4
S9

S6

S10

S13

S14 S15

D2, A2D1, A1

D0, A0

D8, A8

D7, A7

D12, A12
D11, A11

S3

S5

S9

S6

S10

S13

S14 S15

D2, A2

D0, A0

D8, A8

D7, A7

D12, A12
D11, A11

With Obstacle in the Lane No Obstacle in the Lane 

Figure 3: Convex Markov Chain of the road segment. States
{Di, Ai} represent a set of two states one labeled Distracted and
the other Attentive.

.

4 Formal Verification of the Driver Model

In this section, we verify quantitative properties of the be-
havior of car drivers for the two road models introduced
in Section 3.3. We use PRISM (Kwiatkowska and others
2011), a probabilistic model checker, as our front-end tool,
and the Python back-end verification algorithm developed
by Puggelli et al. (Puggelli and others 2013) to incorporate
the likelihood and interval uncertainty models.

We verify the PCTL properties in Table 1. For each prop-
erty, we consider both attention levels, attentive and dis-
tracted, and compute both the maximum and minimum sat-
isfaction probabilities, to give the range of predictions ob-
tainable from the model. Property P1 computes the proba-

Table 1: Verified Properties
P1 Pmax/Pmin [Attention U Unsafe]
P2 Pmax/Pmin [(Attention ∧ ¬Swerving) U Final]
P3 Pmax/Pmin [(Attention ∧ Right Lane) U Final]
P4 Pmax/Pmin [(Attention ∧ ¬Braking) U Final]
Attention is a placeholder for either Attentive or Distracted

bility of reaching an Unsafe state. Properties P2 - P3 - P4
compute the probabilities of reaching a final state without
swerving, by always staying on the right lane, and without
braking, respectively. Overall, these properties allow captur-
ing different driving styles among subjects and assess possi-
ble threats.

First, we compare in Fig. 4 verification results when using
no uncertainty model, the interval model and the likelihood
model of uncertainty. We assume 95% confidence level for
both the interval and likelihood models. For ease of com-
parison, we only report results for one subject and only for
maximum probability of P1 (top) and minimum probability
of P3 (bottom). The results for the other subjects and prop-
erties follow a similar trend. As expected, the probability of
reaching an unsafe (safe) state is higher when the driver is
distracted (attentive) and in the presence (absence) of an ob-
stacle along the road. Further, we note that: 1) probabilities
computed for models with no uncertainty are significantly
lower (higher), which implies that this method is potentially
too optimistic for an appropriate threat assessment; 2) even
a low value of CL causes the computed probabilities to in-
crease (decrease) substantially for the interval model, which
might thus result in overly-conservative estimations; and 3)
the likelihood model appears to be a good trade-off between
the other two models. In the following analysis, the likeli-
hood model is used, which is often used when probabilities
are estimated from experimental data.

Figure 4: Comparison of the verification results of P1 and P3 for
different models of uncertainty.

.

To examine the effects of different confidence levels on
the probabilities, we compare the results from attentive ver-
sus distracted driving. Fig. 5 shows the verification results
for P1 for values of CL ranging from 60% to 99% for one
driver. The probability of reaching an unsafe state is always
lower in the case of attentive driving. The probability also
decreases as we increase the confidence level. The model
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developer can use this plot to determine when the collected
measurements are statistically relevant to estimate the driver
behavior. The trend shown in Fig. 5 repeats for all the other
subjects. However, the disparity between the results for at-
tentive and distracted driving varies for each driver.

Figure 5: Comparison of distracted and attentive driving for dif-
ferent values of confidence level CL for Property P1.
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Figure 6: Verification results. The vertical bar marks the range
between minimum and maximum satisfaction probability.

Finally, we report the collected verification results for
three subjects (S) and for all four properties (P) in Fig. 6.
Results capture different driving styles among subjects and
help assessing possible threats. For example, results for P3
show that S2 often ended up on the left lane while perform-
ing the maneuver, while S1 and S3 managed to keep the right
lane in most cases. Further, results for P4 show that S1 and
S2 tended to brake often when performing the maneuver,
while S3 travelled along the road braking rarely. For all sub-
jects, the presence of the obstacle increased the probability
of reaching an unsafe state.

5 Conclusion

In conclusion, we showed how to create a stochastic model
of a car driver behavior starting from experimental data. Our
modeling approach is suitable to represent complex maneu-
vers, and to take the uncertainty intrinsic to the measure-
ments into account. We analyzed quantitative properties of

the created models. Results show that the developed frame-
work is suitable to discern particular characteristics of the
driving pattern of each driver and give insight about the
presence of threats while driving. Finally, we note that the
modeling and verification techniques introduced in this pa-
per apply also to human-machine systems in a broader set of
domains, including avionics and medicine.

As future work, we intend to extend the model to account
for choices made by the driver, e.g., an attentive driver dur-
ing the turn can become distracted on a straight segment of
road, and analyze how these choices affect the verification
result. We also would like to extend this work to the control
domain, where the model is used to give on-line feedback to
the driver or even compose with the model of a controller in
a real-time semiautonomous framework.
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