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Abstract

In ERP and other large multidimensional neuroscience data sets, researchers often select regions of interest (ROIs) for

analysis. The method of ROI selection can critically affect the conclusions of a study by causing the researcher to miss

effects in the data or to detect spurious effects. In practice, to avoid inflating Type I error rate (i.e., false positives),

ROIs are often based on a priori hypotheses or independent information. However, this can be insensitive to

experiment-specific variations in effect location (e.g., latency shifts) reducing power to detect effects. Data-driven

ROI selection, in contrast, is nonindependent and uses the data under analysis to determine ROI positions. Therefore, it

has potential to select ROIs based on experiment-specific information and increase power for detecting effects.

However, data-driven methods have been criticized because they can substantially inflate Type I error rate. Here, we

demonstrate, using simulations of simple ERP experiments, that data-driven ROI selection can indeed be more

powerful than a priori hypotheses or independent information. Furthermore, we show that data-driven ROI selection

using the aggregate grand average from trials (AGAT), despite being based on the data at hand, can be safely used for

ROI selection under many circumstances. However, when there is a noise difference between conditions, using the

AGAT can inflate Type I error and should be avoided. We identify critical assumptions for use of the AGAT and

provide a basis for researchers to use, and reviewers to assess, data-driven methods of ROI localization in ERP and

other studies.

Descriptors: ERPs, EEG, Analysis/statistical methods

Analysis of neuroimaging data (e.g., EEG, magnetoencephalogra-

phy [MEG], MRI) can involve hundreds or thousands of statistical

tests. A significant challenge in analysis of such data is how, with

high power, to detect effects without increasing the Type I error

(false positive) rate. Given that experiments typically show effects

only for a small subset of the recorded data, one common approach

is to select a region of interest (ROI) across one or more dimen-

sions in the data. Correct identification of the ROI is often critical

to the results of the study. If it is chosen incorrectly, then relevant

effects may be missed, inflating the Type II error rate. On the other

hand, if many locations are tested simultaneously (mass univariate)

without proper correction or biased procedures are used for ROI

selection (Kilner, 2013; Kriegeskorte, Simmons, Bellgowan, &

Baker, 2009), then this can inflate the Type I error rate (i.e., false

positives). Inflation of Type I error rate, along with low power

(Button et al., 2013) and publication bias (Easterbrook, Gopalan,

Berlin, & Matthews, 1991; Rosenthal, 1979), are serious issues that

have significant knock-on consequences for the reliability of the

scientific literature (Colquhoun, 2014).

ROIs are commonly selected using a priori hypotheses or based

on independent data (Kilner, 2013; Luck, 2014). For instance,

boundaries of an ROI for an ERP study of the face-sensitive N170

component (e.g., 150–190 ms., electrodes P7/P8) may be based on

the ROI used in or location of significant effects in a previous study

(e.g., Towler & Eimer, 2014). This approach makes no reference to

features of the data under analysis, and it is safe and unbiased (i.e.,

does not inflate Type I errors) because ROI selection cannot be

driven by noise fluctuations in the data (Kilner, 2013; Luck, 2014).

This approach is widely used in ERP and event-related field (ERF

in MEG) research.

However, there can be significant variation in the temporal or

spatial location of effects between experiments due to differences
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Figure 1. Examples of simulated data and calculation of AGAT and AGAGA waveforms. A: Example of an EEG pure noise waveform for an individ-

ual trial. B: Some simulations contained both noise and ERP deflections. The arrow below each waveform indicates a point of difference between (A)

and (B) caused by the addition of the N170 ERP to the signal in (B). C: Power spectrum of EEG data used to scale the amplitudes of sinusoids in the

creation of EEG noise. D: Pure ERP signal waveforms (without noise) for the N170 (black) and P300 (gray), which were added to single trials in

Continued.
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in design, stimulus characteristics (e.g., Flevaris, Robertson, &

Bentin, 2008; Zhang & Luck, 2009), and unknown noise factors.

For example, the attention-related ERP component, N2pc (Luck &

Hillyard, 1994), appears later in time for weaker stimuli than for

stronger stimuli (e.g., Brisson, Robitaille, & Jolicoeur, 2007).

Although precedents for such stimulus-based effect shifts may be

available in some cases, this will often not be the case, especially

because the point of many experiments is to study an ERP compo-

nent under novel conditions. Furthermore, even when precedents

are available, there can be several different options (especially for

well-studied effects), often with no clear rationale for choosing

among them. This provides opportunities for post hoc “fishing”

and, without correction, can inflate Type I error rates (Simmons,

Nelson, & Simonsohn, 2011). ROI selection based on hypotheses

or independent data cannot usually account for interexperiment

variation, and this may reduce the probability of detecting an

effect.

For optimal detection of effects, the ROI selection process

should be sensitive to experiment-specific features of the data,

that is, data driven. A data-driven approach would use features

of the data under analysis to position the ROI. In the N170

example above, data-driven ROI selection may, for instance,

search through the observed data in space and time and position

the ROI at the largest negative peak within a predetermined time

period (e.g., Caharel et al., 2013), for example, 120–240 ms (de

Gelder & Stekelenburg, 2005), and spatial window on the scalp.

This would allow the ROI selection process to account for the

experiment-specific location of the N170-associated peak. This

may or may not overlap with the locations of previous findings.

Although peaks are common and easily quantifiable features of

interest in ERP studies, this is by no means the only relevant, or

even appropriate, feature for data-driven analysis (Luck, 2005,

2014). Other more sophisticated features have been used

(Koenig, Stein, Grieder, & Kottlow, 2014; Ten Caat, Lorist,

Bezdan, Roerdink, & Maurits, 2008). The appropriate feature

should be determined by hypothesis, theory, or a priori assump-

tions. We focus on peaks here because they are commonly used

and easily quantifiable.

Data-driven approaches to ROI localization, especially but not

only in ERP research, have faced criticism that they can inflate

Type I error rates (Kilner, 2013; Kriegeskorte et al., 2009; Luck,

2014; Vul, Harris, Winkielman, & Pashler, 2009). Publication

guidelines (Keil et al., 2014) and methods books (Luck, 2014) spe-

cifically warn about the dangers of this type of ROI localization.

This is because the data features used for selection (e.g., a peak)

can be affected by random noise. If this noise is not independent of

the contrast of interest (e.g., difference between conditions), then

using it for ROI selection will inflate Type I errors. Similar issues

have arisen and garnered significant attention in fMRI (e.g.,

Kriegeskorte et al., 2009; Vul et al., 2009) and exploratory behav-

ioral research (e.g., Simmons et al., 2011; Wagenmakers, Wetzels,

Borsboom, & van der Maas, 2011). Nonetheless, we believe that

some researchers already employ some form of data-driven

approach despite the fact that there are few, if any, published and

empirically validated data-driven ROI selection procedures for

ERP data. For instance, some researchers select peaks on what we

will call the aggregate grand average of grand averages (AGAGA).

In a simple experiment with two conditions, this is simply the

average of the two condition grand-averaged waveforms (Figure

1E). However, whether, and under which conditions, this wave-

form is unbiased is not completely clear. This leaves room for

incorrect use, which will inflate false positive rates. Thus, to

avoid criticism, many researchers may avoid using data-driven

methods altogether. This has the consequence of missing oppor-

tunities to increase power.

Our goal is to demonstrate empirically that data-driven ROI

selection can be used safely in ERP (and, by extension, other)

experiments and thereby take advantage of study-specific informa-

tion to reduce Type II errors, while still maintaining Type I error

rate at 5%. We will focus on ERP data because ROIs are routinely

used in ERP analysis, ERP work forms a large body of cognitive

neuroscience research, and because recent criticism suggests that

data-driven approaches used in this area may be biased or at least

poorly reported (Kilner, 2013, 2014). However, the basic issues

apply in principle to other types of data in which ROIs are used,

and similar issues can arise, for example, MEG ERFs, psycho-

physiology, eye tracking (e.g., von der Malsburg & Angele, 2015).

To perform ROI selection, we will compute what we call the

aggregate grand average from trials (AGAT), which is similar to

the use of orthogonal contrasts for ROI selection in fMRI research

(Kriegeskorte et al., 2009), and demonstrate that selection of ROIs

based on this waveform is unbiased and does not inflate Type I

error rates. In the simplest case, the AGAT is computed by aggre-

gating all of the individual trial waveforms/time series from all par-

ticipants and conditions and averaging across them to form a single

time series (Figure 1F), the AGAT. It is important to notice that the

AGAT is, in some circumstances (see Simulation 2), distinct from

the AGAGA, described above, which is more naturally derived

from the typical ERP processing pipeline (Figure 1E). In this study,

we will show that AGAT-based ROI selection is safe for both bal-

anced (Simulation 1) and unbalanced designs (i.e., different

amounts of data between conditions, Simulation 2), demonstrate

conditions under which it can fail (Simulation 3), and establish its

power relative to widely used ROI selection based on independent

data (Simulation 4). Importantly, we will also examine some of the

assumptions that are critical for proper use of the AGAT method

and which are also likely relevant to other ROI selection methods.

In particular, use of the AGAT may not be effective if the wave-

form morphology or latency of ERP features of interest (e.g.,

peaks) differ substantially between the conditions (see Discussion

for more detail). The results and interpretation of these simulations

will empower researchers and reviewers to make educated deci-

sions about data-driven ROI selection and, hopefully, prompt fur-

ther discussion and method development in this domain. To

simulations containing ERP deflections. Note the different scale from (A) and (B). E: The aggregate grand average from grand averages (AGAGA)

was computed by averaging the individual trials separately within each condition (Condition A in black boxes, Condition B in white boxes) for each

participant into an ERP waveform for each participant. Then, these participant ERPs were averaged within each condition to form a grand-averaged

ERP for each condition. The AGAGA waveform was created by averaging the condition grand-averaged ERPs. Arrows indicate an averaging process.

Note that (E) represents an experiment with a condition trial number asymmetry as in Simulation 2. However, most experiments will have approxi-

mately the same number of trials in each condition. F: The aggregate grand average from trials (AGAT) was created by aggregating all of the individ-

ual trials, from all participants and both conditions, into one group and then averaging them. An example of the AGAT waveform (dashed gray line)

is plotted along with grand averages for the two conditions (thick black line and thin gray line). Note that the amplitude difference between conditions

here is for illustration purposes only and was not present in null hypothesis simulations (Simulations 1–3).
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support our claims, we will conduct null hypothesis data simula-

tions, under various conditions, to assess the Type I error rate

and also power simulations associated with using the AGAT for

ROI selection in an ERP experiment with realistic EEG noise

and two ERP deflections of different polarity (to show

generalizability).

Simulation 1: AGAT Type I Error Rate

Simulation 1 focused on estimating the Type I error rate associated

with using data-driven ROIs selected using the data-driven AGAT

waveform. It compared this to other data-driven ROIs including the

already discredited difference wave (Kilner, 2013) and the

AGAGA. To test generality across different types of data, Simula-

tion 1 used three different ERP signal types. One contained noise-

only data (Simulation 1A). The other two had realistic ERP deflec-

tions (P300, Simulation 1B; and N170, Simulation 1C) added to

the noise in individual trials so that the grand averages contained

ERP-like waveform morphology. It is not practically possible to

simulate all possible ERP waveform types. However, by using

these three different types of ERP data (noise-only, negative polar-

ity ERP, and positive polarity ERP), including two widely used

ERP components, we aimed to test whether our conclusions about

the safety of the AGAT are significantly affected by the exact mor-

phology and polarity of the ERP waveform. We expected that the

AGAT-based ROIs will maintain Type I error rates at 5%, whereas

selecting ROIs based on the difference wave will substantially

inflate Type I error rates.

Method

We performed 12 versions of Simulation 1 in R (R Development

Core Team, 2014), version 3.1.0. These 12 versions arose from

varying two orthogonal factors. First, we varied the signal con-

tent of the data: (Simulation 1A) EEG noise-only, (Simulation

1B) noise1P300, and (Simulation 1C) noise1N170. Within

each of these three versions, we also created four variations with

different numbers of channels in the data (1, 8, 16, or 32). The

label Simulation 1A refers to the class of all simulations contain-

ing noise-only data. The label 1A-16Ch refers to the single sim-

ulation involving noise-only data with 16 channels. For each

individual simulation, we generated data for 10,000 experi-

ments, each having two conditions with 16 participants, 50 trials

per condition, and either 1, 8, 16, or 32 channels of data. Each

trial comprised 900 sample points with a sampling rate of 1000

Hz and time points 2100 to 800 ms. The EEG noise time series

(e.g., Figure 1A) for each individual trial was generated by sum-

ming 50 sinusoids with randomly (without replacement) chosen

frequencies (integer values 1–125 Hz) and random phases (with

replacement, different across frequencies and trials), 0–2 p
(Yeung, Bogacz, Holroyd, & Cohen, 2004). Each sinusoid

was scaled according to its frequency’s power in the human

EEG power spectrum (Figure 1C) and normalized to the 1 Hz

amplitude. The resulting noise waveform was multiplied by

20 mV to increase its overall amplitude. The noise in each chan-

nel was created independently without spatial or temporal

autocorrelation.

For Simulations 1B and 1C with ERP signals, we added one of

the ERP signal waveforms (Figure 1D) to the EEG noise (produced

as above) on each trial (e.g., Figure 1B), equivalently in both condi-

tions. ERP waveforms were derived from grand averages in previ-

ous studies in our group: P300 (fake condition in Bowman et al.,

2013) and N170 (unpublished data).1 The ERP peak amplitudes

were scaled such that the maximum for P300 was at 8 and the mini-

mum for N170 was at 28. This was done to ensure that signal-to-

noise ratio of the two signals was equivalent.

For each of the 10,000 experiments within a simulation, we

derived three waveforms to be used in ROI selection: the difference

wave, the AGAGA, and the AGAT. The difference wave was cal-

culated by, within each Condition A and B, creating participant

ERPs (i.e., averaging across trials within each condition for each

participant, see Figure 1E) and then averaging these participant

ERPs into a grand average for each condition, GAA and GAB. The

difference wave was the subtraction of the two grand-averaged

waves, GAA 2 GAB. The AGAGA was calculated by averaging

the two grand-averaged waveforms. The AGAT waveform was cal-

culated by aggregating all of the individual trial waveforms from

all participants and both conditions into a single group (i.e., 2 Con-

ditions 3 50 Trials 3 16 Participants 5 1,600 trials) and averaging

the waveforms (Figure 1F). In Simulation 1, the AGAGA and

AGAT were equivalent.

The ROIs on the difference, AGAGA, and AGAT waves in

each experiment were positioned for detecting the relevant peak:

Simulation 1A (noise-only), minimum value (arbitrarily chosen);

Simulation 1B (Noise1P300), maximum value to detect P300

peak; Simulation 1C (Noise1N170), minimum value to detect

N170 peak. For data with ERP signals, the rule was chosen to iden-

tify the feature of interest in the AGAGA/AGAT (e.g., N170 peak

is a minimum). For noise-only data, the rule was arbitrarily set to

locate a minimum. Results were equivalent when we used a maxi-

mum rule for noise-only data. An unsigned rule was also imple-

mented for noise-only data and produced equivalent results for the

AGAT but further inflated the Type I error rate for difference

wave-based ROIs. For data with more than one channel, the ROI

was selected as the maximum or minimum across the two-

dimensional Time 3 Channel Space and the ROI was centered at a

channel-time coordinate.

We conducted an unpaired-samples t test between conditions at

each ROI location. This used individual participants’ ERP ampli-

tudes at the ROI location (e.g., two groups of 16 amplitudes). We

also conducted these t tests using four integration windows of dif-

ferent sizes (10, 20, 50, 100 samples) to understand their effect and

to account for common practice of averaging over intervals/win-

dows around an ROI center point. In these tests, voltage in each

participant’s ERP was averaged (across time) within the window

centered at the ROI position. For each simulation, we estimated the

Type I error rate for each combination of ROI type and integration

window as the percentage of experiments with a significant differ-

ence between conditions. We computed 95% CIs of the Type I

error rate in each simulation with the bootstrapping function in R

using 5,000 bootstrap replicates and the “basic” bootstrap method.

This involved resampling the original distribution of 10,000

p values and recalculating the Type I error rate for each replicate.

1. The data for the N170 waveform was derived from an experiment
in which an ambiguous Rubin faces—vase stimulus was shown for 150
ms on each trial (followed by a white noise mask for 100 ms), and par-
ticipants responded about whether they saw the face regions as figure or
the vase region as figural. The N170 waveform was from data collapsed
over the two response options and averaged across electrodes P10, P8,
PO8, P9, P7, and PO7. There were 17 participants and 300 trials per
participant. Data were recorded with a BioSemi ActiveTwo active elec-
trode system and sampled at 1024 Hz with an average reference of the
64 scalp channels.
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Results and Discussion

In Simulation 1, we estimated the Type I error rate associated with

AGAT-based ROIs. As expected from previous work (Kilner,

2013), the Type I error rate for difference wave-based ROIs in all

simulations consistently exceeded the desired 5% level with

approximately 75% errors when using the smallest integration win-

dow (1 sample width). Type I error rate decreased as the integration

window size increased (Figure 2A, light gray bars). In contrast,

AGAT-based ROIs were associated with an approximate 5% error

rate regardless of the integration window size and regardless of

whether the data were pure noise (Figure 2A, dark gray bars) or

contained ERP deflections (Figure 2B,C, dark gray bars). The

AGAGA produced identical results to the AGAT and thus is not

plotted separately. Figures 2A–C show results from simulations of

one channel data. The AGAT results for multichannel data were

equivalent. Figure 2D shows that, as the number of channels

increased in Simulation 1C (N170 data), using an AGAT ROI

maintained Type I error rate at 5%. In contrast, Type I error rate

for the difference wave reached 100% as the number of channels

increased. The multiple channel results were equivalent for Simula-

tions 1A and 1B. We also conducted simulations where we varied

the number of samples across time (i.e., increased sampling rate

but with same length of time) and found that the AGAT maintained

Type I error rate whereas the difference wave did not. Overall, our

results suggest that the AGAT is safe regardless of the size of the

data (number of Channels 3 number of Samples).

These results clearly demonstrate that using data-driven AGAT-

based ROIs does not inflate Type I error rate above 5%. This is

because the AGAT time series is independent of the contrast of

interest (i.e., the difference between conditions here). The average

cross-correlation (zero-lag) coefficient between the AGAT and dif-

ference wave was not different from zero (one-sample t test) for

any of the simulations: rNoise-Only 5 .003, t(9999) 5 1.66, p 5 .09;

rP300 5 .0003, t(9999) 5 20.16, p 5 .87; rN170 5 .001,

t(9999) 5 0.60, p 5 .54. Thus, the AGAT provides an unbiased,

data-driven basis for ROI selection in ERP studies.

Simulation 2: Condition Trial Number Asymmetry

Unbiased performance of the AGAT ROI-selection procedure

depends critically on it being independent of condition differences.

Independence could be violated if the ROI-selection waveform

were generated with unequal contributions of data from the two

conditions, for example, mismatch negativity ERP component

(e.g., N€a€at€anen, Gaillard, & M€antysalo, 1978). In this situation, the

noise from one condition may be weighted more heavily in the

AGAT than noise from the other condition, rendering the wave-

form nonindependent of condition differences. Using the same

parameters as Simulations 1A–C, except now in the presence of a

trial number asymmetry between conditions (and with only 1,500

experiments per simulation for computational efficiency), we esti-

mated Type I error rates for ROIs based on the AGAT, the

AGAGA, and the difference wave to test their performance under

condition trial number asymmetry.

Figure 2. Simulation 1 results. The percentage of Type I errors is plot-

ted as a function of the size of the integration window (in sample

points) used for difference wave-based ROIs (light gray bars) and

AGAT-based ROIs (dark gray bars). The horizontal dashed red line

indicates the target 5% Type I error rate level. Error bars represent 95%

CIs (see Method). A: Results for Simulation 1A-1Ch (single channel),

noise-only show that AGAT-based ROIs maintain Type I error rate at

5% whereas the difference wave does not. B: Results for 1B-1Ch,

Noise1P300 ERP. C: Results for 1C-1Ch, Noise1N170 ERP. Numbers

above the AGAT-based dark bars indicate the percentage of Type I

errors for those ROIs. D: Type I error rate results are plotted as a func-

tion of the number of channels in Simulation 1C (N170 data) for AGAT

and difference wave ROIs. Results were similar for P300 and noise-only

data (not shown here). Note that the maximum of the scale in (D) goes

to 105% (100% in other panels).
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Method

We generated data for Simulation 2 with the parameters used in

Simulations 1A–C (noise-only; noise1P300, noise1N170) except

that we varied the ratio of the number of trials in the two condi-

tions: TMore (number of trials in the condition with more trials) and

TFewer (number in the condition with fewer trials). The resulting

condition trial number asymmetry was expressed as a condition

trial number asymmetry ratio, TMore/TFewer. For computational effi-

ciency, we reduced the base number of trials from 50 per condition

(as in Simulation 1) to 10. Thus, for the ratio TMore/TFewer 5 1, the

simulation contained 10 trials per condition. For the other trial

asymmetries, TFewer was always 10 trials whereas TMore took val-

ues of TFewer 3 2i with i 5 0 to 8. This resulted in condition trial

number asymmetry ratios, TMore/TFewer, of 1, 2, 4, 8, 16, 32, 64,

128, and 256 (i.e., TMore was 20, 40, 80, 160, 320, 640, 1,280,

2,560 trials, respectively). To test whether the ratio of trial numbers

in the two conditions is the determining factor, rather than the abso-

lute number of trials, we also repeated all of these simulations with

half the number of trials (TFewer 5 5), but with the same trial asym-

metry ratio values (see Figure 3A–C, black and dark blue bars).

The number of experiments per simulation was reduced to 1,500

for computational efficiency. Thus, for each level of trial number

asymmetry within each simulation, there were 1,500 experiments

conducted.

As in Simulations 1A–C, we chose ROI positions on the differ-

ence wave, the AGAGA, and the AGAT wave, separately. ROIs

were chosen as the minimum for Simulation 2A, maximum for 2B

(noise-only simulations and P300) and the minimum for Simulation

2C (N170). For all of these ROIs, we calculated the Type I error

rate as the percentage of experiments with a significant difference

between conditions. Only results for the peak (integration window

size 5 1) are shown to reduce figure complexity because results for

the AGAT were equivalent across integration window sizes.

Cross-correlations between the difference wave and the AGAT

and AGAGA, separately, were computed to assess the independ-

ence of AGAGA and AGAT from the difference wave. All cross-

correlations were assessed at zero-lag. A distribution of cross-

correlation r values was determined separately for AGAGA and

AGAT. The mean r value was computed for each simulation, and

95% CIs for the correlations were generated based on the standard

deviation and the sample size: 6 1.96 * (SD/�n).

Figure 3. Simulation 2 results. For Panels A–C, the horizontal dashed red line indicates the target 5% Type I error rate level and error bars represent

95% CIs (same method as Simulation 1 methods but with 1,000 replicates). A: Simulation 2A Type I error rates are plotted as a function of trial num-

ber asymmetry ratio, TMore/TFewer, when using either the AGAGA (blue bars) or the AGAT (black and gray bars) for ROI selection in noise-only

data. Dark blue and black bars represent simulations with TFewer 5 5, whereas the light blue and gray bars represent simulations with TFewer 5 10. The

results show that the AGAT remains unbiased for ROI selection across all condition trial number asymmetries tested, whereas the nonindependent

AGAGA becomes increasingly biased as trial asymmetry increases. The results do not depend on the absolute number of trials as different values of

TFewer produce the same results (cf. dark and light bars). The difference wave ROI produced approximately 70% errors regardless of TMore/TFewer level

and is not plotted. B: Simulation 2B Type I error rates as a function of trial number asymmetry ratio for data containing noise plus P300 ERP signal.

C: Simulation 2C Type I error rates as a function of trial number asymmetry ratio for data containing noise plus N170 ERP signal. D: Average

cross-correlation r values between the difference wave and the AGAGA for Simulations 2A–C are plotted as a function of condition trial number asym-

metry ratio, TMore/TFewer, for noise-only data (2A, dotted line), P300 data (2B, dashed line), and N170 data (2C, solid line). These show higher cross-

correlation between AGAGA and difference wave with increasing trial number asymmetry ratio. Error bars represent 95% CIs of each distribution.
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Results and Discussion

As the condition trial number asymmetry ratio, TMore/TFewer (ratio

of condition with more trials to condition with fewer trials),

increased, the cross-correlation of the AGAGA with the difference

wave also increased (Figure 3D). This nonindependence was stron-

ger for noise-only data (Figure 3D, dotted line) than for data con-

taining ERP signals (Figure 3D, dashed and solid lines)

presumably because the ERP signals introduced variance that was

not different between conditions. As would be expected from using

a nonindependent waveform for selection, Type I error rate for

AGAGA-based ROIs increased with trial number asymmetry ratio

(Figure 3A–C, blue bars) for all three simulations. However, these

increases were substantially attenuated by the presence of ERP

deflections in the data (Figure 3B,C) compared to pure noise data

(Figure 3A). All of the results in Figure 3 represent data with one

channel. Results for multichannel data show a similar increase but

with higher overall error rates (Table 1, N170, but results were

equivalent for P300 and noise-only data).

In contrast, the AGAT was not correlated with the difference

wave at any of the trial number asymmetries that we tested (aver-

age cross-correlation for all data types, r 5 .002) and regardless of

whether the data contained ERP deflections or pure EEG noise.

Furthermore, the Type I error rate remained at 5% when using the

AGAT for ROI selection (Figure 3A–C, black and gray bars) for

all of the condition trial number asymmetry ratios, TMore/TFewer.

This was also true for multichannel data N170 data (Table 1), and

there were equivalent results for P300 and noise-only data.

Simulations involving different numbers of trials, but having

the same trial number asymmetry ratios, showed exactly the same

results (Figure 3A–C, compare black and gray bars). This indicates

that the trial asymmetry ratio, rather than the total number of trials,

drove the bias within the AGAGA results and that the AGAT is

robustly safe in the presence of trial number asymmetries regard-

less of the total number of trials.

The results of Simulation 2 demonstrate that the AGAT is

robust to between-conditions trial number asymmetries for all of

the asymmetry ratios that we tested. We anticipate that these ratios

far exceed those that would be encountered in actual experiments,

and thus the AGAT can be treated as essentially unbiased for all

practical purposes. It is important to note that the AGAGA was not

independent of condition differences when between-condition trial

number asymmetries were present.

Simulation 3: Condition Noise Asymmetry

Although AGAT-based ROI selection is robust to condition trial

number asymmetries, an asymmetry of noise between conditions

could render the AGAT nonindependent (Kilner, 2014) under the

null hypothesis (i.e., no mean difference). To systematically test

this, we generated simulations with the same parameters as in Sim-

ulations 1A–C (including equal trial numbers in the conditions)

except that we varied the ratio of the noise in the two conditions

(i.e., condition noise asymmetry ratio, NoiseHigher/NoiseLower).

Method

The parameters for these simulations were exactly the same as

those for Simulations 1A–C except that we varied the ratio of the

noise amplitude in the two conditions. To generalize our findings

beyond the total noise levels, we expressed the noise asymmetry as

a ratio of condition noises, NHigher and NLower, and called this the

condition noise asymmetry ratio, NHigher/NLower. In the case of

NHigher/NLower 5 1 (equal noise), the simulations were replications

of Simulations 1A–C. For the other simulations, NoiseHigher took

values of NoiseLower 3 2i with i 5 0 to 11. This resulted in condi-

tion noise asymmetry ratios, NHigher/NLower, of 1, 2, 4, 8, 16, 32,

64, 128, 256, 1,024, and 2,048 (see horizontal axes in Figure 4).

ROIs were selected on the difference wave and AGAT as in Simu-

lations 1A–C and additionally on the AGAGA. Simulation 3A con-

tained noise-only, 3B was noise1P300, and 3C was noise1N170.

Only results for the peak (integration window size 5 1) are shown

to reduce figure complexity. As integration window increased, the

pattern was similar to the peak results but with lower overall Type

I error rates. To reduce computing time, we reduced the number of

experiments used to generate each data point to 1,500 rather than

the 10,000 used in Simulation 1.

In an additional Simulation 3D (Figure 4D), to examine the

effect of ERP signal amplitude on Type I errors for the AGAT/

AGAGA, we varied the amplitude of the ERP signal within the

data for noise1N170 data only. At 100% amplitude, the N170 neg-

ative polarity peak reached 28 and the simulation was equivalent

to Simulation 3C. At 0% amplitude, there was no ERP signal pres-

ent in the data, and the simulation was equivalent to Simulation

3A. The N170 signal was scaled in increments of 20% between

these values and the Type I error rate estimated across the different

condition noise asymmetries.

Results and Discussion

In Simulation 3A (noise-only), Type I error rates for AGAT-based

ROIs increased with condition noise asymmetry (Figure 4A, black

line). At asymmetry ratios above approximately NHigher/NLower 5 8,

error rates for AGAT-based ROIs were equivalent to rates for dif-

ference wave ROIs (Figure 4A, gray line). A similar pattern of

results was seen for Simulation 3B and 3C (containing P300 and

N170 ERP signals, respectively), except that AGAT error rates

Table 1. Simulation 2C (N170) Multichannel Type I Error Rates

Number of channels

Trial number asymmetry ratio, TMore/TFewer

1 2 4 8 16 32 64 128 256

AGAGA
8 5.1% 9.7% 23.1% 36.4% 58.5% 72.1% 91.2% 100% 100%
16 4.8% 12.9% 30.2% 48.4% 68.4% 85.4% 100% 100% 100%
32 4.6% 21.5% 55.7% 85.4% 99.9% 100% 100% 100% 100%

AGAT
8 5.0% 4.8% 5.3% 4.5% 4.2% 5.1% 4.5% 4.6% 5.0%
16 5.3% 4.9% 5.1% 4.7% 3.8% 4.8% 4.7% 3.9% 3.9%
32 3.8% 4.7% 5.1% 4.5% 4.5% 4.6% 5.1% 4.7% 3.9%
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(Figure 4B,C, black lines) were lower than those for noise-only

data and approached the difference wave level (Figure 4A,B, gray

lines) at higher asymmetry ratios (above NHigher/NLower 5 32).

AGAGA and AGAT produced exactly the same results, and thus

only one line was plotted for these.

Results for simulations with multiple channels in the N170 sim-

ulation show that, in the presence of a condition noise asymmetry,

Type I error rates increased for AGAT-based ROIs as the number

of channels increased (Figure 4C, colored lines vs. 1-channel black

line). The impact of multiple channels was similar for N170, P300

and noise-only data. Thus, to reduce figure complexity, we plotted

multichannel data only for the N170.

The results of Simulation 3 place an important constraint on the

use of the AGAT. In cases of asymmetric condition noise, the

AGAT can be biased to the exact same extent as the AGAGA. This

is different than with condition trial number asymmetries (Simula-

tion 2) where only the AGAGA was biased. The amount of bias

depends on the signal-to-noise ratio of the ERP feature of interest

(i.e., N170 or P300 peak, in this case). This was shown in a series

of further simulations (with N170 ERP). As the ERP peak ampli-

tude was increased from 0 to the full intensity (8 mV max), the

absolute levels of bias decreased (Figure 4D). Thus higher signal-

to-noise ratio ERP peaks were more shielded, though not com-

pletely, from the bias than lower signal-to-noise ratio peaks.

Although the peak amplitudes were the same for the N170 and the

P300, it is clear that there were some small differences in suscepti-

bility to bias across the condition noise asymmetry range (cf. shape

of black lines, Figure 4B,C). These could signal that the AGAT’s

bias depends slightly on the type of ERP peak or feature of interest

even when they have the same signal-to-noise ratio. However, fur-

ther work will need to be done to determine exactly which factors

affect this. Finally, the absolute level of bias increased with the

number of channels in the data across which the search for the

AGAT peak was conducted (Figure 4C).

In Simulation 3, we found that the average zero-lag cross-corre-

lation between the AGAT and the difference wave increased as a

Figure 4. Simulation 3 results. Simulations 3A–D examined the effect of a condition noise amplitude asymmetry on Type I error rates and compared

three ROI selection methods. Type I error rate is plotted as a function of the condition noise asymmetry ratio, NoiseHigher/NoiseLower. Higher values

mean a larger asymmetry. Error bars represent 95% CIs (same method as Simulation 1 methods but with 1,000 replicates). A: The results for Simula-

tion 3A (noise-only data) showed that Type I error rates were high for ROIs based on the difference wave (gray line) regardless of noise asymmetry

level. ROIs based on the AGAT and AGAGA produced identical results and thus only one line is plotted for these (black line). Type I error rates for

AGAT and AGAGA ROIs increased with condition noise asymmetry. B: Simulation results for Simulation 3B, condition noise asymmetry with

noise1P300 data. The addition of ERP signal reduced Type I error inflation but bias remained and increased with noise asymmetry. C: Simulation

results for Simulation 3C, condition noise asymmetry with noise1N170 single-channel data (black line). Searching for the ROI across time and space

in multichannel data further increases the Type I error rates (8 channels, yellow; 16 channels, green; 32 channels, pink). D: In Simulation 3D (single-

channel data), the amplitude of the N170 ERP signal was varied from 20% (green line) to 100% (black line), equivalent to panel C (black line) of the

8 mV used in the other simulations in increments of 20% (other colored lines, see legend). Resistance to inflation of Type I error rate increased with

increasing amplitude of the ERP signal (i.e., increasing signal-to-noise ratio of the feature of interest).

Table 2. Simulation 3C (N170) Average Cross-Correlation
Between AGAT and Difference Wave for Amplitude 5 100%

Noise
asymmetry 1 2 4 8 16 32 64 128 256 512 1,024 2,048

r value .006 .151 .392 .679 .886 .968 .993 .996 .997 .998 .998 .998
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function of the noise asymmetry (Table 2) in a manner similar to

that seen for trial number asymmetry in Simulation 2. Eventually,

this correlation approached r 5 1 at higher asymmetry values. This

means that the AGAT, at high noise asymmetry, comes to almost

perfectly match the difference wave. Using an AGAT that closely

reflects the differences wave inflates Type I error rate substantially

because the difference wave is not independent of the contrast of

interest.

Overall, the results of Simulation 3 suggest that the AGAT is

not safe to use when the amplitude of the individual trial EEG noise

differs between conditions. Even at our lowest noise asymmetry of

2 (double noise in one condition compared to the other), we could

find Type I error rates of up to 30% when selecting the AGAT

among multiple channels in a high amplitude component (32-chan-

nel N170 data). Although some protection against Type I errors

seems to be afforded by using high signal-to-noise ratio ERP fea-

tures/peaks, further work is needed to determine the full range of

parameters that need to be considered. We advise against using the

AGAT when condition noise asymmetry is greater than 1.5, espe-

cially in multichannel data or when considering ERP features with

lower signal-to-noise ratios than used in our simulations (approxi-

mate signal-to-noise ratio 5 0.4 in our 100% case, see methods for

noise and signal amplitudes).

Simulation 4: AGAT Power

It is clear from Simulations 1–3 that AGAT-based ROI selection

can avoid inflating Type I error rate. However, does using the

AGAT to position ROIs actually adapt to the features of the data,

and thus potentially increase power, as we suggested above? In

order to evaluate this, we conducted power simulations and com-

pared AGAT-based ROI selection with the commonly used method

of selecting an ROI based on a priori or independent information.

We hypothesized that using the AGAT would be advantageous

because, assuming that the location of effects varies between

experiments, the AGAT, being data driven, should take account of

experiment-specific data features whereas a priori/independent

information cannot.

Figure 5. Simulation 4: Raw power and AGAT power advantage. Error bars represent 95% CIs (same method as Simulation 1 methods but with

1,000 replicates). A: Raw power is plotted as a function of effect size (Cohen’s d) for detecting effects located at a P300 peak using either an AGAT-

based ROI selection (dashed line) or an ROI positioned at a static a priori position (solid line). AGAT-based ROIs outperformed a priori ROIs. Power

increased with effect size but the increase was larger for AGAT-based ROIs than for a priori ROIs. This is for the simulation in which the latency of

the effect varied (across experiments) with a SD of 30 ms. B: For simulations with P300 ERP signals, the power advantage of using an AGAT-based

ROI (calculated as AGAT-ROI power minus a priori ROI power) is plotted as a function of effect size (Cohen’s d) and latency variation of the effect

(SD of latency in ms). Color represents the power advantage (%) as indicated in the legend (e.g., light purple 5 25–5% advantage for AGAT). Higher

positive values indicate a greater advantage of AGAT. The advantage of AGAT-based ROIs increased with both latency variation and effect size.

This plot includes the data from (A), which is a horizontal slice at the latency 5 30-ms level representing the difference between the lines plotted in

(A). C: Raw power is plotted as in (A) but for data containing an N170 ERP signal with the effect located near the N170 peak. The results are the

same as for P300 data. D: AGAT power advantage is plotted as in (B) but for data containing an N170 ERP signal and show the same advantage of

using AGAT-based ROIs as for P300 data.
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To assess power, we generated data as in Simulations 1B and

1C (noise1ERP) but with two differences. First, we varied the

latency of the ERP (P300 and N170) peaks across experiments

within each simulation to simulate experiment-to-experiment varia-

tion of ERP peak latencies. If this variation is large, then we

expected a priori/independent ROIs to regularly miss effects

because they cannot take this variation into consideration. In con-

trast, the AGAT should detect the relevant peak in each experiment

regardless of the variation across experiments, giving it an advant-

age at higher levels of variation.

Second, at the relevant peak (N170 or P300), we inserted a dif-

ference between conditions. The size of this effect varied across

simulations. In each experiment within a simulation, we then con-

ducted hypothesis tests at two ROIs. One ROI was an a priori/inde-

pendent ROI that was the same for all experiments within a

simulation (i.e., the middle of the latency distribution for the ERP

peak of interest). The other ROI was selected by using the AGAT

to find the N170 or P300 peak. We then estimated the power, that

is, the percentage of correctly detected effects for each ROI. For

simplicity, Simulation 4 was conducted with a single channel of

data.

Method

Data were generated as in the single-channel versions of Simula-

tions 1B and 1C (noise1P300, noise1N170, respectively) except

that we varied two things. First, at the ERP peak location (maxi-

mum for P300, 200 ms; minimum for N170, 477 ms), we added a

boxcar effect (difference between conditions) lasting 21 samples

(21 ms) and centered on the peak. This was added to one condition.

The other condition was unchanged relative to Simulation 1. Due

to the different peak polarities for the two ERP components, for the

P300 simulation (Simulation 4A), positive effect values were

added; whereas for the N170 simulation (Simulation 4B), a nega-

tive effect was added. This simulated an amplitude increase of the

peak in one condition compared to the other. Although not realistic,

a boxcar effect allowed us to have uniform effect size across the

effect interval. This was important in giving validity to our manipu-

lation of effect size across simulations. Otherwise, effect size

would have varied across time within each experiment within the

simulation.

Across simulations, we varied the amplitude of this effect

across 16 levels: 0.03125, 0.06250, 0.09375, 0.12500, 0.15625,

0.18750, 0.21875, 0.25000, 0.28125, 0.31250, 0.34375, 0.37500,

0.40625, 0.43750, 0.46875, and 0.50000 mV. These effect ampli-

tudes were chosen to correspond to a particular set of effect sizes

(Cohen’s d) ranging from 0.1–1.6 in increments of 0.1. For each

effect amplitude, we calculated the corresponding effect size

(Cohen’s d) by dividing the effect amplitude by the average within-

condition noise. The within-condition noise was estimated from the

simulated data. Within one condition (without added effect) of

each simulated experiment, we calculated the standard deviation of

the participant ERP amplitudes at the selected ROI (peak only, one

sample window). The average within-condition noise across all

experiments was approximately 2.5 mV. Effect size values are used

as the x axes in Figure 5to provide generality of the results across

experiments with different absolute levels of noise and effect

amplitudes.

The second change from Simulations 1B, C involved addition

of latency variation of the ERP peaks. This was achieved by shift-

ing the entire ERP waveform left or right and padding with zeros.

Latency varied according to a normal distribution centered on the

original peak location (N170 5 200 ms; P300 5 477 ms). Across

simulations, we varied the standard deviation of the latencies from

0 (no variation, as in Simulations 1–3) to 60 ms (in 5-ms steps).

Thus, we conducted 208 simulations (16 Effect Sizes 3 13 Latency

SDs) each for the two ERP components. To reduce total processing

time, each simulation included 1,500 experiments (instead of

10,000 in Simulation 1). For each experiment within a simulation,

we conducted a hypothesis test at each ROI and then counted the

percentage of experiments in which an effect was significantly

detected within the time range of the inserted effect (i.e., power).

Results and Discussion

Figure 5A,C show the raw power for AGAT (dashed line) and a

priori (solid line) ROIs as a function of effect size when the aver-

age latency variation of the peak was 30 ms. The AGAT consis-

tently had higher power than the a priori ROI, especially at higher

effect sizes. Because we were primarily interested in the difference

in power between AGAT and a priori ROIs, we calculated the dif-

ference in power between them (AGAT minus a priori) for each

simulation and plotted this difference, the AGAT power advantage,

as a function of effect size and latency variation (Figure 5B,D).

Higher positive values indicate that AGAT had greater power than

a priori ROIs, and negative values would indicate the reverse. Val-

ues of zero indicate equivalent power. In data with low latency var-

iation (below 5–10 ms, on average), AGAT and a priori methods

had approximately equal power (Figure 5B,D). However, when

latency variation was 15 ms or greater, the AGAT became substan-

tially more powerful than a priori methods at effect amplitudes

above 0.3 (Figure 5B,D). It is important to note that this simulation

was carried out, for simplicity of design, with single-channel data.

Thus, strictly speaking, we cannot generalize the exact size of the

AGAT benefit to situations when one may also be identifying an

ROI position on a multichannel AGAT. However, we expect that

the benefit of AGAT over the independent ROI will hold across

multichannel data because the AGAT should allow adaptation to

changes in the location of the peak in space/channel in addition to

changes in latency (as we have shown in Simulation 4). This is

because the feature of interest (peak here) can be detected across

space as well as in time. In contrast, an a priori/independent ROI

cannot, by definition, show this adaptability and thus should have

less power to detect the effect. However, further work will be

required to confirm and quantify this benefit.

Table 3. Steps for Selecting an AGAT-Based ROI Position

Step Instructions

Step 1 Aggregate all trials from all conditions and all participants into
one set. Do not use subject ERPs or condition grand
averages.

Step 2 Average waveforms/maps across this set of trials to generate
the aggregate grand average from trials (AGAT) waveform.

Step 3 Select a peak (or other feature) of interest on this waveform
(e.g., for the N170 this may be a minimum between
150–200 ms). This must be selected a priori and should
not be changed based on statistical testing of the difference
between conditions.

Step 4 Apply your integration window, or other quantification
method, of choice (based on a priori information) and
perform statistical analysis, as usual, at this location on
original data.
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General Discussion

We have demonstrated empirically that ROIs can be selected in a

data-driven manner without inflating Type I error rates by selecting

peaks of the AGAT. This method is safe even in the presence of an

asymmetry in the number of trials between the conditions.2 How-

ever, this is subject to two conditions. First, the AGAT must be

computed by averaging the aggregate of all individual trials from

both conditions rather than averaging over grand averages

(AGAGA). Secondly, using the AGAT with large condition noise

asymmetries can inflate Type I error rates. This could occur, for

instance, when comparing data from a patient group with control

participants. Our results show that, even with relatively small noise

asymmetries (e.g., 3 2), Type I error rates can inflate to 6.1%

(N170, Figure 4C) and (9.8%, Figure 4B) in single-channel data

and further in multichannel data. It is clear that higher signal-to-

noise ratio/amplitude of the ERP peak of interest can partially pro-

tect against this at low noise asymmetries (Figure 4D). However, a

more detailed exploration of this will be needed to identify all of

the relevant factors. Finally, our power simulations showed that,

subject to certain assumptions (see following), using the AGAT for

ROI selection can be more powerful than a common method of

selecting ROIs based on a priori/independent information. Thus,

we believe that using the data-driven AGAT for ROI selection is a

safe and effective method when one is looking for ERP features,

such as peaks, at which to position an ROI for testing. It allows one

to take advantage of more information in the data to customize

ROIs to its features. Table 3 provides an outline of the steps that

should be used to calculate the AGAT for use in studies.

The AGAT is not appropriate for all data and analyses. Our

results have already highlighted that differences in noise amplitude

between the conditions can introduce bias. Additionally, using the

AGAT depends on two key assumptions: (1) the effect of interest

will have approximately the same latency across all of the aggre-

gated conditions, and (2) the morphology of the ERP waveform is

approximately the same across all conditions. If this is not the case,

then the power of the AGAT will likely be significantly reduced or

the results could be misleading. This arises because when there are

significant latency or ERP morphology differences between condi-

tions, then aggregating across them may create an AGAT wave-

form with peaks or other features that are not present in all, or any,

of the individual conditions. Thus, the ROI would miss the effect.

However, it is worth pointing out that this assumption applies

equally to ROI selection based on a priori/independent information

unless it explicitly takes into account latency/morphology differen-

ces between conditions. Finally, the AGAT will be of no use in

analysis if there is no a priori hypothesis about which peak/feature

of the AGAT is relevant. The researcher must provide a rule for

choosing the peak, or other feature, on the AGAT. In cases where

there is no or little information about the location of effects,

Table 4. AGAT Usage Guidelines and Assumptions

Assumptions/criteria to check Detail For more detail

Noise equivalence The single-trial EEG noise must be approximately
equivalent across your conditions. As a rule of
thumb, if the noise amplitude is more than 1.5
times greater in one condition than others, then
avoid using the AGAT. Note that having unequal
numbers of trials in the two conditions does not
create this problem (see Simulation 2).

Simulation 3 & Figure 4

AGAT method of computation The AGAT must be computed from the individual
trials of all participants and not from the partici-
pant ERPs.

Simulation 1 methods

Latency equivalence The latency of your ERP feature of interest (usually
a peak) must be approximately equivalent across
your conditions. If you expect or see significant
latency differences, AGAT may not be
appropriate

General discussion, paragraph 2

Waveform morphology equivalence The morphology of the ERP waveform must be
approximately equivalent across conditions. A
failure of this assumption could reduce power or
produce misleading results.

General discussion, paragraph 2

ERP feature of interest is known You must have an a priori hypothesis about which
ERP feature you intend to locate and have a priori
criteria for detecting it on the AGAT. For
instance, this may be a particular peak and you
must specify the polarity and other criteria (e.g.,
negative polarity peak/minimum between 150 and
220 ms.) If little or no information is known, then
mass univariate methods may be more
appropriate.

Simulation 1 methods & general
discussion, paragraph 2

Expected latency variation The AGAT confers the biggest advantage over a
priori/independent ROI selection when the
variation in latency of the ERP feature across
experiments is higher. Features with less latency
variability benefit less.

Simulation 4 & Figure 5

2. The following is one observation about why the AGAT is unbiased
under trial number asymmetry. Assume, X trials for Condition A and Y
trials for Condition B, with X>Y. The peak (or peak interval) selected
in the AGAT is (in a statistical sense) biased more toward Condition
A’s actual peak than Condition B’s. However, this disparity in bias is
counteracted by the disparity in ERP amplitude due to averaging (i.e.,
amplitudes in Condition A ERP are, in a statistical sense, lower, or less
extreme, than in Condition B, since A involves averaging more trials).
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researchers may want to consider mass univariate (Blair & Kar-

niski, 1993; Groppe, Urbach, & Kutas, 2011; Kilner, Kiebel, &

Friston, 2005; Maris & Oostenveld, 2007) and multivariate (Hem-

melmann et al., 2004; McIntosh & Lobaugh, 2004) approaches

where one can analyze across large portions of a data set (with

appropriate correction). Although the ability of mass univariate

approaches to detect unexpected effects while controlling Type I

errors is an incredibly useful complementary tool to ROI-based

analysis, many of these methods require substantial experience,

specification of a number of parameters for analysis, and some cost

to power. Furthermore, we expect that, when an effect is typically

known to occur near a localizable AGAT data feature (e.g., peak)

and it is of low to medium effect size, AGAT-based ROI methods

will be more powerful than mass univariate methods. However, a

more detailed comparison between the power of AGAT and mass

univariate methods will require further work across the range of

different mass univariate methods to confirm this. When there is a

clear prediction about which peak/feature along the AGAT will be

associated with the effect, we believe that AGAT-based ROI

approach should be preferred. Table 4 provides a summary of the

factors that researchers should check to determine whether using

the AGAT is likely to be safe and powerful for their data.

Assuming that ERP features of interest (peaks here) vary from

one experiment to the next, as we simulated, and that the effect is

colocated with that feature, our results suggest that using AGAT-

based ROIs can be more powerful than a priori ROIs. This is because,

unlike an a priori ROI, the AGAT contains experiment-specific infor-

mation about the latency of ERP features and can be used to position

tests at that location. Importantly, in our results, the AGAT never per-

formed worse than the a priori method. Use of the AGAT does

assume that the effect of interest is colocated with a feature of interest

on the AGAT waveform. If this is not the case, then use of the AGAT

will not be an effective way of localizing the ROI. However, we

believe that, in many cases, researchers already assume that this is the

case and do aim to position ROIs at a particular peak or other feature.

Other researchers have previously suggested something like the

AGAT for ROI selection in other domains (Keil et al., 2014;

Kilner, 2013, 2014; Kriegeskorte et al., 2009; Luck, 2014), and our

informal discussions with ERP researchers suggest that some

already use data-driven methods such as the AGAGA. In reviewing

the method sections of 20 randomly selected N170 ERP papers, it

is clear that some researchers localize peaks on grand-averaged

data for quantification. However, it is often not clear from the

reported methods how they aggregated their data (i.e., AGAT,

AGAGA, or otherwise) and whether independence was established.

We hope that our results and further discussion of this issue will

prompt researchers to more clearly report their ROI-selection pro-

cedures and reviewers to request this information.

In our work, we have focused on identifying peaks on the

AGAT because these are ERP features that, in our reading of the

literature, are commonly used for analysis, and they are easily iden-

tified. However, as others have pointed out (Luck, 2005), voltage

peaks in the ERP waveform are not equivalent to ERP components

and do not necessarily reflect the underlying latent ERP compo-

nents in which researchers are interested. We acknowledge this and

encourage researchers to consider alternative methods of quantifi-

cation (Luck, 2014). However, our goal is not to provide an analy-

sis of these issues here. Given that researchers can and do

commonly use peaks to localize and quantify ERP components,

our goal was to analyze how to do this with high power and with-

out inflating Type I errors. Furthermore, we believe that, in princi-

ple, other features (e.g., largest area under the curve, zero

crossings) of the AGAT may be valid for unbiased ROI localiza-

tion. Additionally, in our work, we have always selected the abso-

lute maximum and minimum peaks across the waveform.

However, we see no reason, in principle, why selecting a lower

amplitude, local (within a search window) peak within the AGAT

waveform, which may be more appropriate for other ERP compo-

nents (e.g., P1, P2), should be any different as long as the AGAT is

used for selection and the assumptions of use are met (see second

paragraph of General Discussion above and Table 4). However,

this will need to be confirmed with further work. In particular, the

power of AGAT when selecting nonpeak or lower amplitude fea-

tures will need to be assessed in greater detail and compared to

ROIs based on independent data and other methods.

Although we have focused on using the AGAT in ERP studies,

this approach can be applied more widely. In principle, one can

also use AGAT-based ROI selection in EEG/MEG time-frequency

studies, eye tracking fixation probability maps (Caldara & Miellet,

2011), psychophysiological measures, and other types of multidi-

mensional data. There is no reason, in principle, to believe that add-

ing further dimensions to the data should render the AGAT biased.

In fact, fMRI researchers often use orthogonal comparisons in 3D

data sets (or independent data) to generate ROIs for analysis, and

there has been substantial discussion of this practice (Friston,

Rotshtein, Geng, Sterzer, & Henson, 2006; Kriegeskorte et al.,

2009; Nieto-Casta~n�on & Fedorenko, 2012; Poldrack, 2007; Saxe,

Brett, & Kanwisher, 2006; Vul et al., 2009). In our analysis, we

selected ROIs in the time dimension but the AGAT can also be

computed across spatiotemporal ERP data as well.

In practical terms, nearly all ERP analysis software should

allow calculation of the AGAT. However, this may depart signifi-

cantly from the typical ERP processing pipeline and be cumber-

some in some software. One barrier will be that ERP analysis

software does not typically involve averaging individual trials

across participants. This is because it is common first to compute

the ERP average for each participant separately and, only then,

compute the grand average of participants’ ERPs (i.e., steps toward

computing the AGAGA but not the AGAT). For instance,

MATLAB-based FieldTrip (Oostenveld, Fries, Maris, & Schoffelen,

2011) and ERPLAB (Lopez-Calderon & Luck, 2014), to our

knowledge, do not automatically allow segments from different

participants to be averaged together without first creating an

ERP3 (a step which is prohibited in calculation of the AGAT).

BrainVision Analyzer (Brain Products, GmbH; http://www.brain-

products.com/) does allow computation of the AGAT, but only

using the weighted average option within its grand average func-

tion.4 For other software, researchers should check carefully

exactly how their existing averaging functions work to determine

whether they support the AGAT. With some programming skill,

it is possible to add one’s own functions to these packages to

overcome this. However, one simple and immediately available

way around this constraint in all three software packages above is

3. The compute average ERPs (pop_averager) function in ERPLAB
allows more than one data set/participant to be selected when computing
an ERP. However, based on a personal communication (April 2016)
with the ERPLAB developers, this function first computes the ERP for
each participant and then computes the grand average of these ERPs.
Thus, it does not meet the requirements for computing the AGAT.

4. Based on a personal communication with Brain Products technical
support (support@brainproducts.com), using the grand average function
with the “calculate weighted average” box ticked will compute the
AGAT as a weighted average of all of the individual trials from
participants.

Safe data-driven ROI selection 111

http://www.brainproducts.com
http://www.brainproducts.com


to append all of the participant data files together into one long

file (e.g., ft_appenddata function in FieldTrip; Append File option

in BrainVision Analyzer) and then do segmentation (combining

data from all trial types into one condition label) and averaging

across segments/epochs within this multiparticipant file (which

contains all participants’ individual trials). Once the AGAT wave-

form has been computed, the time/location of the feature of inter-

est (a peak in our examples) can then be found either by visual

inspection of the AGAT (with clear a priori criteria) or by using,

for instance, a peak detection function (with appropriate polarity and

approximate time/location criteria). The result can then be used as

the exact position of the ROI, and quantification of the data can go

forward as with any other ROI analysis in the original data set.

Although some data-driven methods for data analysis have been

shown to be biased, not all are problematic. Our results demon-

strate a simple, unbiased, data-driven method for ROI localization

for ERP data that can likely be generalized more broadly. Using

data-driven methods such as the AGAT may also increase power to

detect effects when effect latencies vary from experiment to experi-

ment avoiding Type II errors. In avoiding Type I errors associated

with some data-driven ROI techniques, researchers may be ignor-

ing useful information in data and unnecessarily inflating Type II

errors. Most importantly, our results expand our understanding of

the conditions under which this particular method of ROI localiza-

tion can fail and indicate how it needs to be computed in order to

minimize bias.
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