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ABSTRACT An increase in unplanned downtime of machines disrupts and degrades the industrial business, 
which results in substantial credibility damage and monetary loss. The cutting tool is a critical asset of the 
milling machine; the failure of the cutting tool causes a loss in industrial productivity due to unplanned 
downtime. In such cases, a proper predictive maintenance strategy by real-time health monitoring of cutting 
tools becomes essential. Accurately predicting the useful life of equipment plays a vital role in the predictive 
maintenance arena of industry 4.0. Many active research efforts have been done to estimate tool life in varied 
directions. However, the consolidated study of the implemented techniques and future pathways is still 
missing. So, the purpose of this paper is to provide a systematic and comprehensive literature survey on the 
data-driven approach of Remaining Useful Life (RUL) estimation of cutting tools during the milling process. 
The authors have summarized different monitoring techniques, feature extraction methods, decision-making 
models, and available sensors currently used in the data-driven model. The authors have also presented 
publicly available datasets related to milling under various operating conditions to compare the accuracy of 
the prediction model for tool wear estimation. Finally, the article concluded with the challenges, limitations, 
recent advancements in RUL prognostics techniques using Artificial Intelligence (AI), and future research 
scope to explore more in this area.  

INDEX TERMS Artificial Intelligence, milling process, predictive maintenance, remaining useful life, 
sensors, tool wear

I. INTRODUCTION 

In the manufacturing industry, the milling process plays a 
crucial role because of its flexibility in production [1]. The 
productivity, quality, and cost of the final product depend 
directly or indirectly on the lifespan of the cutting tool during 
the machining [2]. The failure of the cutting tool is 
responsible for productivity and monetary loss of industry. 
Tool failure causes a higher rejection rate and increased 
unscheduled downtime of the machine. According to recent 
statistical data, the cutting tool acquired $5 billion US dollars 
in value ($ 1.9 billion for milling cutting tools), around 1.5% 
of the annual  Gross Domestic Product (GDP) of the US 

market [3]. In manufacturing or any other industries, the 
plant has some fixed cost (equipment cost, land, wages, etc.) 
and variable cost (power, raw material, electricity, etc.) to 
manufacture a product that generates the profit of the 
organization after selling it into the market [4]. Figure 1(a) 
shows the graphical representation of fixed cost, the variable 
cost, and profit relation under standard working condition 
plant (without equipment failure/ downtime). Once the 
equipment or components fails, it does not contribute to 
profit, and additional unplanned maintenance costs come 
into the picture.  
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Figure 1. Effect of unplanned downtime on cost and profit of the industry (a) standard working condition 

 (b) downtime condition due to equipment failure 

As shown in Figure 1(b), equipment fails at time T1 and 
returns to normal working conditions at time T2. When 
equipment fails, fixed cost continuously accumulating, but it 
gets wasted because no production is carried out. 
Simultaneously, the overall variable cost also increases (cost 
of consumables decreases but the cost of maintenance 
increases). These losses continue until the plant gets back 
into working condition. In such a case, the cost of a severe 
outage failure cause due to unplanned downtime can be 
much more than the profit made in the same duration of time. 
In many cases, equipment gets replaced at a too early stage 
before its end of life, so one cannot utilize that useful life of 
the equipment effectively. In another case, equipment gets 
failed before replacing and causes unplanned downtime. 

 

Figure 2. Illustration of RUL of an equipment 

Proper estimation of useful life is necessary to predict the life 
of equipment cost-effectively. As shown in figure 2, 
potential failure and function failure need to be found based 
on the degradation symptoms to understand the useful life of 
the equipment. 
 
A. SIGNIFICANCE OF STUDY: 

Progress in the manufacturing domain is at a rapid pace. The 
milling machine, in particular, has seen an upward trend with 
the usage of highspeed machining tools and hard workpiece 
materials (>45 HRC) [5]. Premature tool failures are often 
costly to repair, and they ultimately result in workpiece 
damage and possible harm to the machine and its operators 
[6]. There is a need to implement research-based solutions 
that estimate the RUL of the milling tool. RUL estimation is 
considered a core and challenging aspect of the Prognostics 
and Health Management (PHM) of machines or processes. 
In the PHM of the system, RUL is the key aspect [7]. It helps 
to predict the current health status of the degrading system 
by indicating systems performance degradation and 
prevention against sudden failure [8]. RUL provides cost-
effective solutions in maintenance and provides the 
reliability of the system [9]. According to ISO 13381, using 
a prognostic approach, the industry can determine the risk 
and time of system failure [10]. The main objective of the 
prognostic is to estimate the RUL of the system by providing 
the machine's past operation status and current condition to 
predict the useful life before failure occurs. RUL estimation 
becomes essential in today’s economic climate [11]. RUL 
estimation is favorable in many critical applications such as 
machine’s essential components, aircraft, nuclear power 
plants, etc. From the conventional approach, one can 
calculate the useful life, but it considers only the static 
condition of the machine. As industries are moving towards 
the era of Industry 4.0, one can estimate the RUL of dynamic 
systems with real-time monitoring. RUL plays a vital role in 
condition-based maintenance [12], [13]. In a raw way, RUL 
is a period from the current time to the end of the functional 
life of the product [9]. RUL prediction is also helpful for 
checking the operational performance of equipment, 
inventory management, maintenance activity planning, etc.  
The forecasting from (2021-26), predictive and prescriptive 
maintenance will capture around $ 22.72 billion by 2026 
with a Compound Annual Growth Rate (CAGR) of 19.68%. 
[14]. According to a survey, machine downtime average cost 
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is around  $260,000/ hour, including all business types [15]. 
In auto industries, downtime costs are around $50,000 per 
minute, approximately $3 million per hour [16]. About 70% 
of the industrial sectors are not aware when equipment needs 
maintenance or replacement due to lacking RUL estimation 
knowledge [17]. In manufacturing industries, on average, up 
to 20% of machine downtime occurs due to the failure of the 
cutting tool.  It is necessary to select the proper maintenance 
strategy and estimate its useful life to minimize this 
unplanned downtime. The accurate system monitoring 
improves productivity from 10-40%, with cost-saving up to 
40% [18], [19].  

B. MOTIVATION:  

In milling operation, accurate tool life estimation is essential 
to maximize the functional life of the cutting tool. 
Continuous real-time monitoring of the cutting tool with 
appropriate maintenance strategies must be defined to avoid 
unplanned downtime. Advanced sensor technology and 
emerging AI techniques provide more insightful information 
about milling machine health. As shown in Figure 3, based 
on Scopus database publications over the last ten years, the 
publication trend in milling RUL estimation is rising, 
indicating that the importance of RUL estimation is 
increasing in recent years. To the best of our knowledge, very 
little exhaustive research covering the aspects of sensors, 
monitoring methods, algorithms, datasets on RUL estimation 
using a data-driven approach has been published yet. This 
study also provided the advancement in RUL, and future 
directions, which will motivate PHM researchers to explore 
data-driven strategies for RUL prediction of critical 
machinery. 

 
Figure 3. Year-wise publication trend in RUL prediction in milling (2011-
2021) Source: https://www.scopus.com (accessed on March 24, 2021) 

C. TERMS AND TERMINOLOGY:  

Following are the few terms that are frequently used in RUL 
estimation research of milling tools: 
RUL: RUL is defined as "the length from the current time to 

the end of the useful life" [20]. RUL helps estimate the 
inspection or maintenance period and minimize excessive 
inventory by reducing unplanned failure [21].  
Milling process: Milling is the machining process in which 
rotary cutters remove the material of the workpiece, which is 
machined by advancing the cutter towards the workpiece. 

Tool Wear: During the machining, the workpiece and cutting 
tool contact each other, which causes the change in tool 
morphology known as tool wear [22]. 
Flank wear: Flank wear is a type of tool wear at the flank 
face (the tool surface that comes in contact with the 
workpiece) of the cutting tool due to interaction between tool 
and workpiece.  
Tool life: Tool life is the duration of actual cutting time after 
which the tool is no longer able to perform its required 
function. In general, tool life is the time duration of 
maximum acceptable wear. 
Predictive maintenance: It is a condition-based maintenance 
process that uses data analytics to indicate the possible 
equipment failure time for scheduling maintenance. Proper 
maintenance scheduling helps to avoid unplanned or sudden 
equipment failure. 
Machine unplanned downtime: Unplanned downtime occurs 
when a machine stops its working or production due to 
failure or unexpected shutdown. 
 

 
Figure 4: Evolution of RUL Estimation 

D. EVOLUTION OF RUL ESTIMATION 

Predictive maintenance for RUL estimation has undergone 
significant evolution over the past four decades, as shown in 
figure 4. Recent advances in analytical software and remote 
sensing methods have enabled the accurate RUL estimation of 
machinery and enabled greater decision support for carrying 
out sustainable maintenance activities. Table I depicts the 
various stages of evolution in predictive maintenance 
strategies for RUL estimation [23]. During the initial phase, 
visual supervision was done, in which inspection of each 
component was done physically with the help of domain 
expert supervisors [24], [25]. Data was stored in software like 
MS office. In the next evolution phase, the instrument-based 
periodic inspection was carried out using embedded software 
with the help of trained supervisors. Real-time condition 
monitoring was done with continuous remote assessment 
using sensors with condition monitoring software in the next 
evolution phase. Now, industries are switching towards 
predictive maintenance 4.0 for RUL estimation for 
continuously remote monitoring by using sensor data. 
Automated inspection, verification, digital pattern analysis 
using simulation, advanced AI decision support are important 
source of performance measurement. In this phase of 
evolution,  AI based decision models, Big-Data, cloud services 
are used by taking help from data scientists, reliability 
engineers and domain experts. 

 

https://www.scopus.com/


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101284, IEEE Access

 

4 | P a g e  
 

TABLE I 
EVOLUTION OF RUL ESTIMATION 

Capability Procedure Features/Data Performance Measures Software Workforce References 

Visual 

Supervision 

• Scheduled 
physical 
inspection 

• Log records 
• Checklist 

• Paper-based 
data 

• Multiple 
inspection 
points 
 

• Visual verification 
• Domain expert 

supervision 
• Paper-based trend 

analysis 

• MS office 
software 

• Domain 
experts and 
machine 
supervisors 

[24], [25] 
 

Instrument-led 

supervision 

• Periodic 
instrument 
inspection 

 

• Digital records 
of condition 
data 

• Single 
inspection 
points 

• Automated verification 
• Digital pattern analysis 
• Domain expert 

supervision 

• Embedded 
software 

• Trained 
supervisors 

[26] 

Real-Time 

Condition 

Monitoring 

• Continuous 
remote 
inspection via 
sensors 

• Digital records 
 

• Digital records 
of condition 
data 

• Multiple 
inspection 
points 

• Automated verification 
• Digital pattern analysis 
• Continuous monitoring by 

condition monitoring 
software 

• Condition 
monitoring 
software 

• Reliability 
engineers 

[19], [27], 
[28], [29], 

Predictive 

Maintenance 4.0 

for RUL 

Estimation) 

• Continuous 
remote 
monitoring  

• Sensors and 
other 
maintenance 
data 

• Digital 
recording 

• Multi-modal 
data including 
sound, images, 
and numerical 
data 

• Multiple 
inspection 
points 

• Digital 
maintenance 
history 

• Automated Verification 
• Digital pattern analysis 

using simulation 

• Prediction using digital 
twins 

• Advanced decision 
support using AI 

• Artificial 
Intelligence-
based models 

• Big Data 
• Cloud 

software 
• Statistical 

software 

• Data scientists 
• Reliability 

engineers and 
domain 
experts 

[21], [30]–
[32], [33], 

[34] 

TABLE II 
RESEARCH QUESTION AND DISCUSSION FOR ACHIEVING RESEARCH GOAL 

 

Real-time condition monitoring mainly performs the diagnosis 
by uninterrupted monitoring via software with the help of 
different sensors. On the other hand, predictive maintenance 
4.0 for RUL estimation focuses on the prognostic approach 
rather than just diagnosis. Prognostic helps to predict the 
future behavior of the equipment or component to predict its 
useful functional life. 

E. RESEARCH GOAL: 

The purpose of this paper is to provide a systematic and 
comprehensive literature survey on the data-driven RUL 
estimation tool during the milling process. Table II research 
questions help achieve the research goal by doing a detailed 
survey in data-driven RUL estimation. 

F. CONTRIBUTION OF THE WORK: 

In this survey, the authors have highlighted the adverse effect 
of unplanned downtime of the machines due to tool failure 
in the milling process. The paper has listed the various 
maintenance strategies used in industries to maintain 
equipment health and RUL estimation significance during 
milling. The authors also provide the existing monitoring 
techniques for equipment health. Brief detail about different 
sensors used for data collection is provided.  Furthermore, 
the paper gives details on the different decision-making 
algorithms used in the data-driven approach. The authors 
have surveyed few papers that have used publicly available 
datasets related to milling under various operating conditions 
to compare the tool wear estimation accuracy of various 
prediction models. Finally, the authors mentioned 
challenges, limitations, recent AI advancements, and future 
scope in the area of RUL estimation. 

 Research Question Discussion 

RQ-1: How is maintenance carried out in the industry? 
The different maintenance strategies applicable in industries are 
studied. 

RQ-2: How can the dynamic nature of machining be monitored? 
Study continuous real-time monitoring process in machining by 
using sensors. 

RQ-3: 
Which sensors can be used to collect the data from the machine during 
machining? 

Different industrial sensors and their usage are discussed in the 
paper. 

RQ-4: 
How can the data be collected and integrated from the different types of 
multiple sensors? 

A study regarding the multi-sensors use for data collection and data 
fusion techniques used in literature are considered. 

RQ-5 Which algorithms are used to predict the RUL of the cutting tool? Studies about the different RUL algorithms are listed.  
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Figure 5: Paper organization 

G. PAPER ORGANIZATION 
Figure 5 shows the organization of the paper along with tools 
and techniques used in RUL estimation, which is divided 
into a total of eleven sections. Section I has addressed the 
significance of study, motivation, terms, and terminology 
used in milling, the evolution of RUL estimation, research 
goals, the contribution of work and paper organization. In 
section II, research methodology is explained with selection 
criteria, selection results, and quality assessment. Section III 
presents the background study related to the milling process 
and tool wear, along with maintenance strategies and 
proposed PdM models. In Section IV, direct and indirect 
monitoring (sensing) techniques for signal or data collection 
in a data-driven model are explained. In section V, the data-
driven model for RUL is described. In section VI, the popular 
sensors used in the in-direct monitoring technique and the 
need for multi-sensors over single sensor technique are 
explained. Section VII gives details regarding the different 
feature extraction and selection techniques. Section VIII 
shows the different data-driven algorithms used for 
monitoring and prediction. In section IX, few papers that 
have used publicly available datasets related to milling under 
various operating conditions to compare the accuracy of the 
prediction models for tool wear estimation are surveyed. 
Section X is the discussion section that represents the survey 

outcome, challenges, and limitations. Section XI is about 
RUL advancement related to AI. Section XII provides 
recommendations for future work. Finally, section XII gives 
the conclusion of this review paper. 
II. RESEARCH METHODOLOGY 

As the RUL estimation is a broader area, the authors have 
performed the literature survey using the systematic review 
process to address the research questions. The authors have 
divided methodology into three sections; selection criteria, 
selection results, and quality assessment. 

A. SELECTION CRITERIA  

Authors mainly used Scopus, Web of Science, and IEEE 
databases to retrieve related documents. A special query 
(search string) is formulated to retrieve the research article 
using multiple database searches. Table III shows the search 
string (query executed) for finding the number of documents 
by joining master, primary, and secondary keywords using 
AND Boolean operator. 

B. SELECTION RESULTS 

Table IV shows the records found out (n=91) after searching 
papers using different databases (Scopus- 46, Web of 
Science- 32, and IEEE- 13) from 2011 to 2021. Duplicate 
articles from each database are excluded (n=39).  
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TABLE III 
KEYWORDS USED IN THE SEARCH STRING (QUERY EXECUTED) 

Keywords Search String (Query Executed) 

Master Keyword ("Remaining Useful Life" OR "RUL") 

Primary Keyword ("Milling " OR "Milling process" OR "Milling Operation" OR "Milling Machine")  

Secondary Keywords 

 

("Predictive Maintenance" OR "Tool Wear" OR "Sensor" OR "Milling Dataset" OR "Dataset" OR "Decision-Making 

Models" OR "Algorithm" OR "Artificial Intelligence" OR "AI" OR "Machine Learning" OR "ML" OR "Data-Driven 

Model") 

TABLE IV 
LITERATURE DATABASE AND QUERY EXECUTED 

Database Search string (Query Executed) 
No. of 

Documents 

Scopus 

(TITLE-ABS-KEY ("Remaining Useful Life" OR "RUL") AND TITLE-ABS-KEY ("Milling Process" OR "Milling 

Operation" OR "Milling Machine" OR "Milling") AND  TITLE-ABS-KEY ( "Predictive Maintenance"  OR  "Tool 

Wear"  OR  "Sensor"  OR  "Milling Dataset" OR "Dataset" OR  "Decision-Making 

Models"  OR  "Algorithm"  OR  "Artificial Intelligence" OR "AI" OR "Machine Learning" OR "ML" OR "Data-Driven 

Model" )  

46 

Web of 

Science 

TOPIC: ("Remaining Useful Life" OR "RUL") AND ("Milling Process" OR "Milling Operation" OR "Milling 

Machine" OR "Milling") AND ( "Predictive Maintenance"  OR  "Tool Wear"  OR  "Sensor"  OR  "Milling Dataset" 
OR "Dataset"  OR  "Decision-Making Models" OR "Algorithm" OR "Artificial Intelligence" OR "AI"   OR "Machine 

Learning"  OR  "ML"  OR  "Data-Driven Model" ) )   

32 

IEEE 

( "Remaining Useful Life"  OR  "RUL" ) AND   ( "Milling Process" OR "Milling Operation" OR "Milling Machine" 
OR "Milling" ) AND   ( "Predictive Maintenance"  OR  "Tool Wear"  OR  "Sensor"  OR  "Milling Dataset" OR 
"Dataset"  OR  "Decision-Making Models"  OR  "Algorithm"  OR  "Artificial Intelligence"   OR   "AI"   OR  "Machine 

Learning"  OR  "ML"  OR  "Data-Driven Model" )   

13 

 
Figure 6: Literature review process



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101284, IEEE Access

 

7 | P a g e  
 

 
Figure 7. Network visualization diagram based on keywords 

(Source: https://www.scopus.com/ and https://www.vosviewer.com) 
 

Some more documents, such as non-English documents, 
book chapters, and conferences, are excluded (n=15). 
Finally, as shown in figure 6 total of 37 core documents 
related to milling RUL estimation are considered for study 
after excluding documents.  
Figure 7 shows the network visualization diagram based on 
author keywords analysis. The size of the circle indicates 
the level of incidence of that keyword. If the distance 
between the network of the keywords is small, it shows a 
strong correlation between the keywords and vice versa. 
The network shows that, from extracted documents, the 
“remaining useful life” keyword having a strong influence 
with other keywords like “tool wear,” “condition 
monitoring,” “machine learning,” “predictive 
maintenance, “etc. The keywords with the same colors 
show that the formation of clusters by those keywords, a 
total of 6 different major clusters, is formed from the 
network visualization diagram. 
 
C. QUALITY ASSESSMENT  

After applying selection criteria (shown in figure 6), few 
papers are short-listed. Based on research questions, a 
proper maintenance strategy need to study which is 
applicable to achieve the research goal. From shot-listed 
papers, the following points are considered for quality 
assessment in this paper. 
• Maintenance strategies:  Research emphasizes the 

different types of strategies used in the industries for 
maintenance. 

• Predictive maintenance: Research work also 
emphasizes the different predictive maintenance 
models used in industries. 

• Data-driven RUL model: Paper mainly focused on the 
data-driven technique for RUL estimation.  

• Sensors: Research work also concentrated on the 
different sensors used in the milling machine for data 
collections. 

• Decision-making algorithms: Paper also focused on the 
different decision-making algorithms used for the RUL 
estimation. 

• Advancement in RUL Prediction using AI: Research 
also provides the recent advancement in AI, which can 
be applied for accurate and robust RUL estimation. 

III. BACKGROUND STUDY 

In this paper, to perform a systematic literature review, a 
background survey is conducted on the tool wear issue of 
milling cutters. In the next stages, literature related to 
maintenance strategies, predictive maintenance models, 
monitoring (sensing) techniques, and the data-driven 
process is covered. Based on the tool wear issue of milling 
cutters, the authors first studied the different maintenance 
strategies used in the industries to understand the pros and 
cons of the individual approach for selecting a proper 
maintenance strategy. In the subsequent step, literature 
related to predictive maintenance is focused. In the final 
section, different proposed models for predictive 
maintenance are listed. And finally, based on the primary 
literature survey, our paper mainly focused on the data-
driven predictive model used for the RUL estimation.  
To fully comprehend the phenomenon of tool life 
estimation, one must first understand the milling process 
concept and the tool-wear that takes place during the 
machining. 
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A. MILLING PROCESS AND TOOL WEAR 

In the milling process, machining is performed using 
multi-point rotating cutters or tools by moving them 
against the stationary workpiece. 

 

 
Figure 8. Milling setup (a) Milling machine (b) Milling process (cutting 

tool and workpiece) 

Figure 8 shows the milling machine and arrangement of 
the milling cutting tool and workpiece during machining. 
While performing the machining operation, appropriate 
parameters such as feed, speed, and cutting depth are 
considered based on experience or parameter optimization 
techniques. The cutting tool is a crucial part of the machine 
as it is accountable for the surface finish and machining 
accuracy of the product [35]. Tool wear is caused by 
relative motion between the cutting tool and the workpiece 
[19]. The worn-out tool causes inferior surface and 
dimensional inaccuracy, responsible for shortening the life 
of the finished parts. 
 

 
Figure 9: Wear in the cutting tool (flank and crater) 

 
This tool wear due to a change in the shape of the cutting 
tool is responsible for finishing the final workpiece, 
dimensional accuracy of the final product, tool failure, etc. 
Generally, tool wear during machining takes place in two 
forms: flank wear (VB) and crater wear (KB). Figure 9 
shows the changes in the geometry of the cutting tool due 
to flank and crater wear. Flank wear occurs due to contact 
between the tool and workpiece, whereas crater wear 
occurs due to relative motion between the tool and cutting 
chips. Figure 10 shows the (a) fresh unworn, and used (b) 
worn-out cutting insert showing flank wear. Many 
researchers concentrate on flank wear monitoring for tool 
life estimation. Flank wear is mainly responsible for the 
machining quality, reliability, and dimensional accuracy of 
the workpiece [2], [36]. 

 

 
Figure 10. The cutting tool insert (a) unworn (b) worn tool (flank wear) 

 
B. MAINTENANCE STRATEGIES  

Due to the advancement in manufacturing technologies 
concerning the industry 4.0 scenario, industries move from 
conventional to intelligent manufacturing approaches [37]. 
This intelligent manufacturing approach improves the 
quality, performance, and service of the product, reducing 
resource consumption by decreasing the rejection rate [38]. 
Due to this smart approach, the maintenance strategies of 
the manufacturing industry drawing more attention in 
recent years, and various prediction and diagnostic 
methods are used for maintenance purposes [39]. Figure 11 
shows the different maintenance strategies used in 
industries such as reactive, preventive, and predictive 
maintenance [40],[41], [42]. Table V shows the 
maintenance strategies with suitable cases, unsuitable 
cases, benefits, and limitations. 

1. REACTIVE MAINTENANCE 

Reactive maintenance does not restrict unplanned 
downtime, as the reactive maintenance component is 
replaced after it fails. It may cause further damage to the 
equipment or process [43], [44],[45], [46].  

2. PREVENTIVE MAINTENANCE 

In preventive maintenance, maintenance activity is 
scheduled at an equal interval of time. The part is replaced 
at an equal interval of time, based on experience. But due 
to this strategy, the maximum life of the component is not 
utilized effectively. At the same time, it increased the 
inventory handling cost and planned downtime. So, now 
industries are trying to shift towards the PdM approach due 
to its remarkable benefits [44], [45], [47], [48].  

3. PREDICTIVE MAINTENANCE 

It gives holistic insights into the health of the equipment 
and predicts component failure time. This smart 
manufacturing approach provides interaction between 
physical and cyber environments, predicting and 
improving the real-time behavior of the system. Figure 12 
shows the maintenance approach used in reactive, 
preventive, and predictive maintenance [30]–
[32],[33],[49].
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Figure 11. Different maintenance strategies used in industries 

 
 

TABLE V 
DIFFERENT MAINTENANCE STRATEGIES USED IN INDUSTRIES 

Maintenance 

Strategies 
Strategy used Suitable cases 

Unsuitable 

cases 

Implemen

-tation 

Cost 

Benefits Limitations Study 

Reactive 

 

The 
component is 
replaced once 
it gets fails. 
(Run- to 
failure) 

• Low-cost 
component 

• Non-critical 
component 

• The high 
safety risk of 
human life.  

• Continuously 
operating 
plants 

Low 

• The maximum life of 
the component is 
utilized. 

• Maximum 
production value/ 
output. 

• No planning required 

• Unplanned 
downtime 
increases 

• Sudden failure 
may cause further 
damage to the 
process 

• High maintenance 
cost 

• Safety hazards 

[43], 
[44], 
[45], 
[46] 

Preventive 

 

The 
component 
replaced 
periodically 

• Periodic 
consumable 
equipment. 

• Failure 
occurs at 
equal 
intervals of 
time. 

• Irregular 
equipment 
failure 

• Low 
inventory 
carrying 
capacity 
plants. 

Moderate 

• Unplanned 
downtime decreases 

• Less equipment 
malfunctioning. 

• Less repair cost.  
• Less expertise 

required 

• Planned downtime 
increases 

• Need more 
inventory cost  

• Component life is 
not utilized 
effectively. 

[44], 
[45], 
[47], 
[48] 

Predictive 

It uses data 
analytics to 
predict 
component 
failure 

• Critical 
assets which 
required 
continuous 
monitoring. 

• Real-time, 
cost-
effective 
monitoring 
for 
prediction.  

Process in 
which sudden 
failure occurs 
without any 
warning. 

High 

• Give more holistic 
information about 
equipment or 
process. 

• The functional life of 
the equipment is 
utilized effectively. 

• It helps to identify 
the causes of failure. 

• Less maintenance 
cost. 

• Decision-making is 
condition-based. 

 

• Cost of analytic 
increases. 

• Good knowledge 
of data- analytics 
required. 

• System 
complexity 
increases.  

• Setup cost 
increases due to 
the use of sensors, 
data acquisition 
devices, etc.  

[30]–
[32], 
[33], 
[49], 
[50], 
[51], 
[52],  
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Figure 12. The maintenance approach used in maintenance strategies 

 
Figure 13 shows that the annual average unplanned 
downtime of the PdM strategy is lower than other 
maintenance strategies [53]. The predictive maintenance 
approach is widely used in recent years to reduce 
unplanned downtime during machining. The goals of PdM 
are to boost the quality and productivity of the industry by 
reducing the unplanned downtime and maintenance cost of 
the equipment. 

 

 

Figure 13.  Annual average unplanned downtime in each strategy  

One of the important aspects of predictive maintenance is 
the estimation of RUL [30]–[32]. According to the authors  
in [33], the prognostic approach is defined as "An 
estimation of time to failure and risk for one or more 
existing and future failure modes." Figure 14 shows the 
combined diagnostics and prognostics framework to 
determine the components' RUL. The authors in [54] 
divide the RUL prediction into four parts; fault detection 
(to detect the abnormal condition), fault isolation (to 
identify which component is failing), fault identification 
(estimating nature of fault), and RUL prediction (lead time 
to failure). 

 

Figure 14. Combined diagnostics and prognostics framework 

Predictive maintenance uses analytics to estimate the 
health of the system or equipment. Predictive maintenance 
aims to improve productivity and quality and reduce 

maintenance costs by decreasing unplanned downtime. 
Figure 15 shows the principles, goals, and leading 
application area of predictive maintenance in the scope of 
industry 4.0 [40]. The basic principle of PdM is to perform 
diagnosis, prognosis, and analyze the capture signals from 
sensors. The goal of PdM is to improve productivity, 
quality by reducing downtime and maintenance costs. The 
major application domains are smart manufacturing, 
security, robotics, health, etc. 

 
Figure 15. Principle, goals of Predictive maintenance 

C. PROPOSED MODELS FOR PDM 

Commonly used PdM methods are knowledge-based 
model (reliability statistics model), physics-based model, 
and data-driven modeling approach, as shown in figure 16 
[35][40]. Proper selection of these models is based on their 
applications and characteristics. 

1. STATISTICAL KNOWLEDGE-BASED MODEL 

The Statistical knowledge-based model mainly uses past 
equipment failure or breakdown data for statistical 
characterization and makes fault prediction [55]. It uses the 
Bayesian method, fuzzy logic, Weibull distribution, etc., 
for the prediction of fault. This method does not consider 
system degradation, environmental effects. So, prediction 
accuracy is less compared to other methods. This method 
is not suitable for complex systems like CNC machines. 

2. PHYSICS-BASED MODEL:  

In the physics-based model, mathematical models are built 
to reflect physical degradation behavior [56], [57]. This 
physics-based model includes a Gaussian mixture model 
[58],  Markov process model [59], etc. It requires real-time 
machinery information as well as expert knowledge to 
build a high-fidelity model. It is challenging to develop a 
precise fault prediction model of a complicated system 
with different domains due to ignorance or the complexity 
of degradation mechanisms [56].  

3. DATA-DRIVEN MODEL 

In the data-driven model, data is collected using sensors 
from the running devices to derive a predictive 
maintenance model [60]. Essential features are extracted 
from the raw data (signals) to get useful information.   



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101284, IEEE Access

 

11 | P a g e  
 

Figure 16. Prognostic models for predictive maintenance

 
TABLE VI 

PREDICTIVE MAINTENANCE MODELS 

Predictive 

maintenance 

models 

Approach 
Suitable 

cases 

Unsuitable 

cases 
Tools used Advantages Limitation Study 

Statistical 

Knowledge-

Based 

Based on past 
available faulty 
data. 

simple 
process or 
system 

Complex 
process or 
system 

• Fuzzy logic, 
• Weibull 

distribution 
• Bayesian etc. 

• Required less 
information  

• It does not require 
a mathematical 
model 

• Hard to implement 
without past 
statistical data. 

[35], 
[55], 
[61], 
  

Physics-

based 

Based on internal 
mechanism, a 
physical-
mathematical 
model. 

dynamic 
modeling 

Complex 
degradation 
mechanism 

• Mathematical 
models 

• Probability 
distribution 
model etc. 

• It does not require 
collecting a lot of 
data 

• Easy for 
validation 

• Extrapolation 
easily possible 

• Not suitable for 
complex processes 
or machines. 

• Required expert 
knowledge 

• Considering all 
degradation 
mechanisms is a 
tough task 

[62]–
[64], [65] 

Data-driven 

Based on data  
collected from the 
equipment 

Continuous 
monitoring 
is required 

Cost of 
analytics high 
as compare to 
the system 
(less critical 
assets or low-
cost 
equipment) 

• ANN  
• SVM 
• LSTM 
• CNN etc. 

• It does not require 
a separate 
performance 
degradation 
process 

• A required large 
amount of data 

• Accuracy depends 
on the training of 
algorithms 

[60], 
[65][66]–
[69] [70] 

Different algorithms such as SVM, Gaussian Regression, 
ANN [71], etc., are generally used to analyze the collected 
data. Sensor positioning plays a crucial part in the data-
driven system. If the sensors are not installed at the proper 
location, it causes difficulty in the data acquisition system, 
leading to an error in prediction [72]. This review mainly 
focuses on the data-driven predictive maintenance 
approach for estimating the RUL of the milling tool. Table 
VI shows the predictive maintenance models with suitable 
cases, unsuitable cases, tools used, benefits, and 
limitations. 

IV. MONITORING (SENSING) TECHNIQUES 

Commonly used tool condition monitoring techniques for 
data-driven predictive maintenance are direct monitoring 
and indirect monitoring. Direct sensing techniques mainly 
include a microscope, lasers, cameras, Charge-Coupled 
Device (CCD) cameras, laser, ultra-sonic sensors. Direct 
monitoring provides direct information about machine 
conditions. While in in-direct methods, sensors are used to 
measure cutting forces (dynamometer), vibration 
(accelerometer), temperature,  sound (microphone), 
current/ power, acoustic emissions are used, which provide 
indirect information about systems health. Figure 17 shows 
the different sensing techniques of direct and indirect 
monitoring methods with their benefits and limitations.  
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Figure 17: Benefits and limitations of direct and indirect monitoring methods

 

A. DIRECT MONITORING 

It consists of optical microscopes, direct vision, lasers, 
ultra-sonic sensors, radio-active sensors, etc. This method 
measures the actual size of the area worn on the tool. Direct 
sensors provide a more accurate tool state and measure any 
wear, such as crater, flank, notch, etc., using image 
processing algorithms. Tool conditions are obtained using 
the optical image and machine vision technique [27], [73]. 
 

 
Figure 18. Generalized direct tool condition monitoring method 

Figure 18 shows the generalized flow of the direct tool 
condition monitoring method. The disadvantages of direct 
sensors are that they are not appropriate for online 
monitoring due to the machining environment, such as 
chips and coolant, which easily disturb the accuracy [74]. 
It increases the downtime of the machine and reduces 
production time. The monitoring processing time is not 
real-time as measurements are taken in tool holders only 
and measured data processed separately [75]. 

B. INDIRECT MONITORING 

Indirect condition monitoring methods are used to monitor 
the real-time tool condition without interfering with the 
machining process. Indirect monitoring is suitable for 
diagnostic as well as prognostic purposes. Figure 19 shows 
the generalized indirect data-driven TCM process. 
  

 
Figure 19. Generalized data-driven indirect tool condition monitoring 

method 

V. DATA-DRIVEN RUL MODEL 

In the data-driven model, data is collected from the running 
devices with the help of sensors to predict the system run 
time behavior by monitoring its parameters [35]. The 
authors in [76] divided the complete RUL estimation 
process into four parts, as shown in figure 20; Data 
acquisition, Health indicator construction, Health stage 
division, and RUL prediction, respectively. The factories 
have been increasingly integrated cyber-physical systems 
and intelligent sensors to control complex machining 
environments and tooling; research is conducted on the 
data being tracked to automatically identify system and 
machining anomalies [77]. 

 
Figure 20. Stages for RUL prediction [76] 
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Data-driven algorithms have been suggested in recent 
years to improve the efficiency and precision of the 
diagnosis by combining rapid growth in smart sensors, data 
processing, and Deep Learning methods. The authors in 
[27] divide the data-driven model into two parts: an online 
monitoring model and model training. Online monitoring 
involves online monitoring by using sensors and making 
decisions. Simultaneously, the training model mainly 
consists of the configuration of the sensor, extraction of 
features, and monitoring model. Figure 21 shows the 
generalized flow of the data-driven model for RUL 

prediction, in which the first sensor data is collected from 
the milling machine by using different sensors. Collected 
raw signals need to be de-noise by removing due noise 
environment or other factors. De-noised signals are pre-
processed by doing signal conditioning, amplification, 
filtration, etc. In the subsequent stage, processed signals 
are used to extract and select important features related to 
the health of the machine tool. Selected features are used 
for the diagnosis or prognosis by using suitable decision-
making algorithms to predict the RUL of the machine tool.  

 

Figure 21. Data-Driven Model for RUL prediction 

VI. POPULAR SENSORS USED IN DATA-DRIVEN 
MODELS 

Sensor configuration provides the sensor signals for 
feature extraction and extracted features related to 
monitoring tool conditions like tip fracture and tool wear. 
Sensor monitoring can be performed by using a single 
sensor or by using the multisensor fusion technique.  

A. SINGLE SENSOR MONITORING 
In this method, analysis of signals captured from sensors is 
used to estimate tool conditions. Sensor monitoring is an 
in-direct monitoring technique of a data-driven model. 
Dynamometers, accelerometers, acoustic emission, current 
sensors are generally used in indirect monitoring methods. 

1. DYNAMOMETER 

It provides cutting forces to describe the cutting process 
state during machining [78]. It shows an excellent response 
to cutting forces due to its high reliability and sensitivity. 
With progression in tool wear, a corresponding increase in 
cutting forces takes place in machining. Cutting forces is a 
sensitive element related to tool conditions to estimate tool 
state accurately. Two different types of dynamometers are 
used in milling machines; table-based dynamometer and 
rotating type of dynamometers [79]. A table-based 
dynamometer generally places between the interface of the 
workpiece and workbench; it shows an excellent response 
to a slight change in cutting forces during machining [79]. 
In comparison, the rotating dynamometer is connected to 
the tool holder or spindle [80]. The dynamometer selection 
is based on the amount of Kg-force (Kg-f) generated 

during the machining. A dynamometer can track tool 
breakage that occurs as a peak in the signal functions. A 
neural network combined with a dynamometer offers a 
simple decision-making process for tool wear estimation 
[81].  
Drawbacks: Along with the above advantages, the 
dynamometer also shows some limitations. It is unsuitable 
for large and medium-size workpieces in milling due to its 
physical properties [82]. Dynamometer, which is mounted 
on the worktable, limits the size of the workpiece [83]. 
Installation of the dynamometer is a challenging task as it 
is placed between the workpiece and worktable interface. 
Using a commercial dynamometer and its maintenance 
Significantly increases its cost. The rotating type of 
dynamometer restricts the frequent tool change operation 
in automated Computer Numerical Control (CNC) milling 
machines[84].  

2. ACCELEROMETER  

Vibrations are caused in the machine due to friction force 
or fractured inserts between the tool and workpiece during 
matching. Growth in tool wear responsible for increased 
cutting force and vibration amplitude. The selection of the 
vibration sensor depends on the speed of the spindle, 
operating frequency bandwidth (Hz), and operating range 
in "g" (1g=9.81 m/s2) of the sensor. Vibration signal 
measurement follows ISO 10816 [22]. The accelerometer 
provides similar periodic signals as cutting force. As the 
cutting tool starts to deteriorate, vibration signal amplitude 
increasing accordingly.  
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Drawbacks: Accelerometer also shows some limitations 
like mounting position causes changes in signals. 
Machining speed should be within a specific range for 
better results. The harsh working environment like fluid 
lubrication, chip strike causes changes in generated 
signals. 

3. ACOUSTIC EMISSION (AE) 

AE signals are generated due to the transient elastic energy 
generated due to the mechanical deformation of the 
material [85]. Tool wear or stresses between tool and 
workpiece takes place due to chip fracture or friction 
between chips. The AE sensors detect such signals (noise 
comes from the machine) during machining. AE is nothing 
but the energy of the micro-level material due to 
deformation during machining [86]. The proper value of 
sensitivity (dB) and operating frequency (kHz) need to be 
considered for selecting the AE sensor. The machining 
process with dynamic bandwidth from 100 kHz to 1 MHz 
can be monitored using AE sensors [85], [87]. AE sensor 
signals do not disturb easily due to mechanical disturbance 
compared to vibration and cutting force signals and have a 
higher frequency range than environment frequency. 
Signals are easily recognized and quickly respond to the 
changing condition of the tool and the work material. AE 

sensors are much beneficial in micro-milling operations 
[88].  
Drawbacks: Along with this, AE signals are disturbed 
easily due to the noisy environment, which causes trouble 
in extracting valid signals by denoising the raw signal from 
the sensor [89].  

4. CURRENT SENSORS  
The cutting force increases with an increase in tool wear, 
the current drawn by the spindle motor increases 
accordingly [90]. Motor current sensors are found 
somewhat acceptable for manufacturing environments 
than those for cutting force sensors, owing to their 
comparatively straightforward design [91], [92]. The 
cutting tool gets blunt due to the gradual wear; current 
drawn from the spindle motor increases compared to the 
normal working condition [93]. Hall effect sensors collect 
the current signals in end milling operation to monitor the 
tool condition[83], [93]. 
Drawbacks: The motor current is highly sensitive to noise 
and significantly affected due to friction during machining 
and damping of the feed drive system. It was also found 
that at higher spindle speed, current signals are not much 
sensitive to change. Table VII shows the benefits and 
limitations of the individual sensor. 

 
TABLE VII 

SENSORS AND THEIR USE WITH BENEFITS AND LIMITATIONS 
Sensor Use to measure Benefits Limitations 

Dynamometer Cutting Force 
• It shows an excellent response to cutting 

forces due to its high reliability and 
sensitivity [94]. 

• Not much suitable for a large and medium-size 
workpiece [82]. 

• Installation of the dynamometer is a challenging task 
[95]. 

Accelerometer Vibration 
• Installation is simple and inexpensive [96]. 
• Establish a signal that is similar to the cutting 

force [97]. 

• Signals are difficult to filter [98]. 
• Mounting position changes in signal response [74]. 
•  The harsh working environment affects the signal 

[74]. 

Acoustic Emission 
Acoustic 
Emission 

• Higher frequency range[99]. 
• Signals do not disturb easily due to 

mechanical disturbance [100]. 

• Causes trouble in extracting valid signals. 
• Highly sensitive to environmental noise [89]. 

Current  Motor Current 
• Less sensitive to environmental noise [90]. 
• Easy for the installation [91] 

• High-frequency components are lost by filtering [95].  

TABLE VIII 
PAPERS RELATED TO RUL AND CM ESTIMATION BY USING A DATA-DRIVEN APPROACH IN MILLING  

Author 
Cutting 

Tool Type 

Decision-

Making 

Algorithms 

Sensors Used Workpiece 

Material 
Dynamometer Vibration 

Acoustic 

Emission 
Sound/ 

Microphone 
Current/ 

Power 

S. 
Shankar et 
al. [101] 

End mill 
cutter 

"Adaptive 
Neuro-Fuzzy 

Inference 
System 

(ANFIS)" 

√   √  

7075-T6 
Hybrid 

Aluminium 
Alloy 

Composite 

K. Javed  
et al. [102] 

3-flutes 
ball nose 
mill 

"Summation 

Wavelet-

Extreme 

Learning 
Machine" 

√ √    Inconel 718 

B. Cuka et 
al. [98] 

Flat end-
mill 

"Fuzzy 
Inference 
System" 

√ √ √  √ 
AISI 1045 

Steel 
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J. Wang et 
al. [72] 

3-flutes 
ball nose 
mill 

"Support 
Vector 

Regression" 
√ √    

Stainless 

Steelhrc52 

J. Yu et al. 
[103] 

3-flutes 
face mill 

"Weighted 
HMM" 

√ √ √   

HRC52 

Stainless Steel 

 
C. K. 
Madhusud
ana et al. 
[104] 

Face mill 
"Support 
Vector 

Machine" 
   √  

Steel Alloy 
42CrMo4 

C. Zhang 
et al. [105] 

Two-flute 
end mill 

"Neuro-
Fuzzy 

Network" 
 √    

Tempered 
Steel 

(HRC52) 

Jain et al. 
[106] 

Three-
flutes ball 
nose cutter 

"Artificial 
Neural 

Network" 
√ √ √   

Stainless Steel 
(HRC 52) 

A. Torabi 
Jahromi  et 
al. [107] 

Ball nose 
end mill 

"Sequential 

Fuzzy 

Clustering 

Dynamic" 

√ √ √   Inconel 718 

C. 
Drouillet 
et al. [108] 

Inserted 
end mill 

"Artificial 

Neural 

Network" 
    √ 

Stainless Steel 

SS403 

(Q. Ren et 
al. [88] 

Two-flute 
uncoated 
micro-
grain WC 
ball end 
mills 
(micro-
milling) 

"Type-2 

fuzzy" 
√  √   

Tool Steel, 

50HRC 

Liu et al. 
[109] 

- 

"Support 

Vector 

Machine" 
√ √    

Aluminium 

Alloy 

Madhusud
ana et 
al.[104] 

face 
milling 
cutter (6 
Carbide 
inserts 

"Support 

Vector 

Machine" 
   √  

steel alloy 

42CrMo4 

Li et al. 
[110] 

Ball nose 
cutter 

"Support 

Vector 

Machine" 
√ √ √  √ Inconel 718 

B. MULTI-SENSOR TECHNOLOGY: 
In machining, tool life prediction is a critical issue as the 
cutting process has dynamic and nonlinear behavior [111].  
Sensors collect data from the machine from a particular 
location from where they have placed and generate the 
source of information in signals. As the machining and tool 
wear condition changes, it shows different behavior. Tool 
condition becomes critical due to behavior changes while 
using a single sensor. Hence, the multisensor technique is 
preferable for gaining the confidence to predict the proper 
tool behavior [112].  Simultaneously, to avoid drawbacks 
of the individual sensor discussed above (Section VI.A), 
the multisensory concept for TCM becomes more popular. 
Different sensors strongly correlate the tool condition of 
tool wear and overcome the sensor's sensitivity loss by 
other sensors. The multisensor approach increases 
robustness and better performance by reducing uncertainty 
in tool wear due to a single sensor. Table VIII shows a few 

papers related to the RUL estimation and condition 
monitoring using a data-driven approach. 

VII. FEATURE EXTRACTION AND SELECTION: 

The raw data collected from the sensors have large number 
of dimensions and processing such high dimensional data 
may require a lot of computing resources and time. Hence 
to get more insights into the data for efficient processing, 
we need to reduce the raw data dimensions such that it 
represents the original dataset completely and accurately. 
For data analysis purposes, relevant features are extracted 
from the signal. Further, feature selection is a process that 
helps to identify the important features of equipment and 
eliminates the features that contribute less to the output or 
target variables of the model. A proper feature selection 
process significantly improves the prediction accuracy and 
performance of the model. 

A. FEATURE EXTRACTION  
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Feature extraction is performed to convert raw machinery 
data into more meaningful data which can be fed to the 
model. It aids in the reduction of the dimensions of the 
original signal information obtained across various signal 
processing domains. Signals captured by using the sensors 
need to convert from analog to digital form. For denoising 
the data, signals need to be passed through the low pass 
and high pass filters. Features that have a good correlation 
with target variables are selected, enhancing the learning 
rate during model training, and thereby improving the 
predictive performance of the model. Collected signal data 
is classified in the time, frequency, and time-frequency 
domains. Figure 22 shows the different feature extraction 
in the time, frequency, and time-frequency domain. The 
time-domain analysis mainly provides the change in 
incoming signals by identifying and determining the 
stereotype or transient information in the time series [113]. 
Graphical time-domain representation plots the change in 
signal over time while frequency-domain provides how 
much data or signal lies within a given frequency band over 
a range of frequency. The time-frequency domain provides 
the frequency band of the signal over the time interval.   

1. TIME-DOMAIN 

It extracts the features of the tool state from the acquired 
signals of the sensors using time series and different 
statistical parameters to reduce the dimension of the signal 
information.  

 
Figure 22. Feature extraction in time, frequency, and time-frequency 

domain. 

Time-domain uses other dimensional and non-dimensional 
statistical parameters. Dimensional parameters such as 
average, Standard deviation, Root-Mean-Square (RMS) 
and non-dimensional parameters such as kurtosis, 
skewness, waveform, crest factor, etc., are extracted from 
the signals [114].  

2. FREQUENCY-DOMAIN 

It extracts the signals in a frequency domain from the pre-
processed signals to relate them with the tool state. Before 
extracting the parameters of the feature in the frequency 
domain, the Fast Fourier Transform (FFT) is used to 
convert the time domain into the frequency domain. The 
frequency-domain signals are then used to extract the 
parameters such as tooth frequency, peak-to-peak 
amplitude, spectral skewness, spectral entropy, power 
spectrum, etc.[98].  

3. TIME-FREQUENCY DOMAIN:  

As the machining process is dynamic, it generates non-
stationary signals during machining. Time-frequency 
domain features are more suitable for non-stationary 
signals [27]. Generally, a wavelet transform is used to 
extract the signals in the time-frequency domain. The 
author [115] uses the wavelet packet transform method for 
richer signal analysis in the high-speed milling process to 
predict the tool wear. 

B. FEATURE SELECTION:  

Once the features are extracted into different domains, they 
are correlated with the machine health condition. For 
proper feature selection, systematic feature ranking [116] 
methods such as regression models (random forest 
regressor, decision tree regressor, linear regression, etc.), 
classification models (random forest classifier, decision 
tree classifier, etc.), and few other methods such as 
Pearson’s correlation coefficient, Principal component 
analysis (PCA), etc. are used, which helps to rank the 
important feature related with the machine health 
condition. 
Pearson's correlation coefficient (Pearson's r coefficient) is 
generally used to select the extracted feature in a milling 
operation. Pearson's r coefficient gives the correlation 
between the tool wear and extracted features [35]. 
 𝑟 = √∑ ( 𝑥−𝑥 ̅ )𝑛𝑖=1 ( 𝑦−𝑦 ̅ )√∑ ( 𝑥−𝑥 ̅ )2𝑛𝑖=1   √∑ (𝑦−𝑦 ̅)2𝑛𝑖=1          (1) 

Equation (1) shows the Pearson's r coefficient, x and y 
represent the extracted feature and tool wear condition, 
respectively.  The value of r varies from -1 to 1. Zero 
indicates no correlation, while 1 and -1 indicate a strong 
positive and strong negative correlation  [52]. The 
correlation can be classified into three groups based on the 
value of r: weak correlation (0 < r < 0.3), moderate 
correlation (0.3 < r < 0.7), and strong correlation (0.7 < r < 
1)[117]. Generally, the features which are having a 
correlation having an "r" value greater than 0.7 (r > 0.7) are 
selected. 

VIII. DATA-DRIVEN DECISION-MAKING ALGORITHMS 

Different monitoring and prediction Machine Learning 
(ML) models are available to analyze sensor data used in 
data-driven models. The author of [27] has reviewed 
different monitoring models in the milling for tool 
conditions. These models are used to monitor the tool 
condition in various machining processes for deciding tool 
conditions.  Models such as SVM, ANN, CNN, AE, 
LSTM, etc., are used to track the performance of the tool. 

A. SUPPORT VECTOR MACHINE (SVM):  

SVM is a supervised classification algorithm based on 
statistical learning theory [27]. The main advantage of 
SVM is that it shows better performance even with a large 
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magnitude of data. In this method, a hyperplane is used to 
separate the data points.  

 

Figure 23. Working principle of SVM 

Support vectors are responsible for the position and 
orientation of the hyperplane by employing the kernel 
function to construct a linear algorithm as a solution for the 
nonlinear problem. SVM maps the nonlinear input data to 
a high-dimensional feature space [118]. Figure 23 shows 
the working principle of SVM. Many researchers use the 
SVM for tool condition monitoring [6], [119]–[123]. The 
author of [124] uses a multi-sensor fusion technique to 
gather signals from the machine during machining and 
applies the SVM monitoring model using cutting 
parameters and signal features as an input vector. 

According to [125], SVM is a suitable ML technique to 
predict the RUL of equipment with time-series techniques. 
[104] use the SVM technique to classify milling tool 
conditions. Discrete wavelength transform extracts the 
feature from sound sensor signals and found that SVM is 
an efficient classifier compare to other classifiers use in 

face milling operation [104]. According to [126], the 
nonlinear feature reduction and SVM estimate the tool 
wear and calculate the RUL of the tool [126]. The authors 
in [109] use the SVM and multi-sensor fusion technique to 
monitor the tool and workpiece deformation and found that 
SVM shows a good result by considering the penalty 
coefficient.  

B. ARTIFICIAL NEURAL NETWORK (ANN) 

ANN consists of nodes or units which are connected in a 
series of the hierarchical network.  This model is inspired 
by the concept of working of the human brain. ANN 
contains the input and output layers and one or many 
hidden layers of nodes (neurons) connected. Figure 24 
shows the working principle of ANN. Determining the 
number of nodes and hidden layers are challenging based 
on the individual's knowledge and experience. The 
connection between each neuron in layers is having some 
value called weight. These weight values of neurons 
obtained through sample training are adjusting such that 

they try to minimize the errors in output to get the best 
possible solution. Many researchers have applied the ANN 
model for monitoring tools in a milling machine, which 
shows better performance in the estimation of tool wear 
[101], [127], [128]. 
 

 

Figure 24. Working principle of ANN 

The author of [106] considered the publically available 
PHM 2010 dataset  [129] for estimating the wear in high-
speed milling operation (10400 rpm) by using the ANN 
algorithm. ANN is also used in tool wear prediction in 
turning operation using the multi-sensor fusion technique 
[117].  

C. AUTO-ENCODER (AE): 

AE mainly contains the two phases, encoder, and decoder, 
which help reconstruct the input data. Figure 25 shows the 
Auto-encoder architecture.  

 

Figure 25. Architecture for Auto-Encoder 

The encoder is used to compress the input into Latent 
Space Representation (LSR), and the decoder aims to 
reconstruct the input from the LSR by using the decoding 
function. The practical application of AE is to denoise the 
raw data and perform the dimensionality reduction to 
provide more insights into raw data. AE models are 
generally used for fault diagnostic. In RUL Prediction, AE 
models typically use the extraction of degradation features. 
The author of [130] uses the Neural Network and sparse 
AE to classify very closed-bearing vibration signals. 
Stacked sparse AE is used to predict the RUL of aircraft 
engines along with Logistic Regression [131]. A 
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combination of AE and Deep Neural Network (DNN) 
predicts the RUL of bearing [132].  

D. CONVOLUTIONAL NEURAL NETWORK (CNN): 

CNN is a feedforward multilayer Artificial Neural 
Network. CNN shows better outcomes in machine fault 
diagnosis and surface integration nitration [133].  

 

Figure 26. Basic CNN architecture 

Figure 26 shows the basic CNN architecture network 
[134], [135]. The double-CNN framework is used for 
intelligent RUL prediction, offers a robust feature 
extraction ability of CNN by extracting features from the 
vibration signals [136]. New DL architecture in prognosis 
is developed for RUL estimation by using deep CNN 
[137]. CNN was used for the multi-scale feature extraction 
in the time-frequency domain for developing intelligent 
RUL prediction of bearing [138].  

E. RECURRENT NEURAL NETWORK (RNN): 

RNN is a Deep Learning architecture to process the 
dynamic information from preceding layers using 
feedback connections from hidden or output layers for the 
next layer [139].  

 
Figure 27. RNN architecture (a) Typical RNN loop (b) Unrolled RNN 

structure 

F. LONG SHORT-TERM MEMORY (LSTM):  

LSTM is proposed by Schmidhuber and Hochreiter [144], 
which is an advancement of the Recurrent Neural Network 
(RNN) to avoid the limitations of RNN by adding 
information in between the memory cells. It is made to 
avoid dependency issues by using gates to monitor 
memory cells [140]. LSTM is modeled in a chain structure 
and can store the information for an extended period. The 
figure 28 shows the LSTM architecture [140], [145], [146]. 
The sigmoidal function (σ) takes the output from the last 
cell and the current input for processing. The sigmoidal 
function also determines which part of the previous cell 

output should be eliminated from an individual cell. The 
authors of [129] consider the LSTM for extracting the in-
depth features from the multi-sensor time-series data and 
temporal features to construct the new vector input for the 
tool wear prediction by providing it to a Nonlinear 
Regression Model. 

 
Figure 28. The structure of LSTM architecture 

This validation of the models tested on PHM 2010 [129] 
and NASA milling datasets [129]. Table IX shows the 
different decision-making models with their applications, 
benefits, limitations, and percent accuracy. 

IX. MILLING DATASETS FOR MODEL ACCURACY 
PREDICTIONS 

Very few publicly available milling datasets are available 
on which RUL prediction is applied. Most of the 
researchers used NASA and PHM 2010 milling datasets 
for the RUL prediction.  These available milling datasets 
are considered for checking the accuracy of prediction 
models. 

A. NASA DATASET FOR MILLING 

NASA Dataset [147] is generated by considering various 
operating conditions on the milling machine (Matsuura 
Machining Center MC-510V). During experimentation, 
cast iron and steel material are considered workpiece 
material, and a 60 mm face mill with six KC710 inserted 
tools are used for machining. Constant cutting speed 
(200m/min) and variable depth of cut (1.5mm and 
0.75mm) and feed rate (0.5 mm/rev and 0.25 mm/rev) are 
considered. Sixteen different cases are considered for a 
different number of runs. Acoustic, vibration and current 
sensors are used to capture the signals during machining. 
Acoustic emission and vibration sensors are mounted on 
the spindle and worktable, while the current probe is 
attached to the spindle motor of the milling machine for 
capturing the signals. The authors of [129] use the LSTM 
algorithm for an available NASA dataset for milling. As 
compared to other models, LSTM shows good results for 
the prediction of tool wear. 

B. THE 2010 PHM DATA CHALLENGE DATA SET FOR 
CNC MILLING 

The authors of [129] use the PHM dataset generated under 
highspeed dry milling operation with a three-flute tungsten
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TABLE IX 
DIFFERENT DECISION-MAKING MODELS WITH THEIR APPLICATIONS, BENEFITS, LIMITATIONS, AND % ACCURACY 

Decision-

Making Models 
Applications Advantages Limitations % Accuracy Study 

SVM 
 

• Fault 
diagnosis 

• RUL 
prediction  

• Shows better 
performance for adequate 
sample size 

• Good performance with 
semi and unstructured 
data. 

• Deal with high dimension 
data quickly. 

• Performance is susceptible 
to the Penalty parameter, 
which needs to be selected 
by the trial-and-error 
method.  

• Standard kernel function 
not defined. 

• Madhusudana et al. – 
83 % [104] 

• Tran et al.-87.5 % 
[125] 

• Widodo et al- 
98.51%[148] 

• Wang, G. et al.-96% 
[123] 

• Li et al.- 85.13%  
[110] 

[6], [119]–
[123],  
[124], [125], 
[104], [126],  
[109] 

ANN 
 

• Fault 
diagnosis 

• Predicting 
RUL 

• Good adaptability, high 
tolerance for defects. 

• Better noise suppression 
• Good prediction and 

classification, and 
accuracy. 

 
 

• It is essential to collect a 
wide range of training sets. 
(It is expensive and time-
consuming). 

• Over-fits easily. 
• Need to train many weights 

parameters. 
• The standard network 

structure is not defined. 

• Salimiasl et al.- 95.2% 
[149] 

• Jain et al. -87% [150] 

[101], [127], 
[128], [106], 
[117] , [149], 
[150] 
 

AE 

• Fault 
diagnosis 

• RUL 
prediction 

• Degradatio
n process 
estimation 

• Can combine and 
compressed multi-sensor 
data 

• Not needed much 
previous knowledge. 

 

• It is essential to collect a 
wide range of training sets. 

• Unable to identify 
relevant information. 

• Yan et al.- 80% 
[151] 

[130], [131], 
[132] , [151] 

CNN 

• Fault 
diagnosis 

• RUL 
prediction: 

• Degradation 
process 
estimation  

 

• Required less storage. 
• Good auto-detection 

feature. 
• Less complex 

compares to ANN. 

• It is essential to collect a 
wide range of training sets. 
(It is expensive and time-
consuming). 

• Overfit easily 
• Computational cost is high. 

• W. Cai et al.- 77.68%  
[129] 

• Tao et al.- 87.30% 
[152] 

[136], [137], 
[138], [152], 
[153] 

RNN 

• Fault 
diagnosis 

• RUL 
prediction 

• Health 
indicator 
construction  

• Easy to process for long 
input  

• Weight can be shared 
across time-steps. 

• Model’s time-sequential 
dependencies. 

• Computation takes a longer 
time 

• Hard for training. 
• Gradient vanishing 

problem. 
• Not suitable for long 

sequences. 

• Song et al.-94% 
[154] 

[139], [142], 
[143], [155], 
[156],  

LSTM 

• Fault 
diagnosis 

• RUL 
prediction 
 

• Suitable for time series 
data. 

• Can deal with vanishing 
gradient problem. 
 

• It requires more time and 
resources for training. 

• Le et al.- 86% [140] 
• Lei Ren et al. -95% 

[157] 
• An et al. - 90%[158] 

[129], [159], 
[160], 
[161],[158], 
[157] 

TABLE X 
 AVERAGE PREDICTION ACCURACY OF DIFFERENT DECISION-MAKING MODELS 

Datasets Milling cutter Sensors Used 
Target 

Value 

Average Prediction Accuracy % 

of Different Decision-Making Models 

LSTM CNN MLP SVR LR 

NASA 

Milling 

Dataset 

[129], [147] 
 

Six flute face mill with 
KC710 insert 

• Accelerometer 
• Acoustic Emission 
• Current 

Flank 
Wear 
(Vb) 

90.06 43.36 43.49 47.53 41.98 

Three flute 
Endmill 

C1 • Accelerometer 
• Acoustic Emission 

92.54 77.68 78.68 91.36 70.41 

C4 92.04 63.26 68.47 75.39 84.60 
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PHM-2010 

Milling 

Dataset 

 [129], [162] 

(tungsten carbide 
tool) 

C6 

• Dynamometer 

89.56 72.57 80.83 80.46 52.22 

carbide tool.  During machining, the spindle runs at 10400 
rpm with a feed rate of 1555 mm/min along the x-axis with 
a depth of cut 0.125mm and 0.2 mm in y and z directions, 
respectively. For capturing tool condition signals during 
machining AE, an accelerometer and dynamometer are 
used. AE and accelerometer are mounted on the workpiece 
while the dynamometer is placed between the interface of 
the workpiece and work-table.The microscope is used to 
measure the flank wear of each flute. Seven different 
signals (vibration along (x,y,z), Cutting force along (x,y,z), 
and AE rms) are captured. Signals are captured for six 
different cutters (C1 to C6), and corresponding tool wear 
is available only for cutter C1, C4, and C6 in the dataset. 
The LSTM model leads the high precision, around 92.54%, 
92.04%, and 89.56%  for cutter 1, 4, and 6, respectively, 
for the PHM dataset. Table X shows the accuracy of 
different models for predicting tool conditions [129]. 
Few more publically available datasets like the milling 
machine tool wear dataset of NUAA_Ideahouse [163], 
"System-level Manufacturing and Automation Research 
Testbed" (SMART) at the University of Michigan [164] 
can be used for the RUL prediction in the future.  

X. DISCUSSION 

This data-driven predictive maintenance approach to 
estimate the useful life of the tool provides valuable and 
critical information about machining complex operations. 
From literature, it was found that sensors like 
accelerometer, dynamometer, current, acoustic emission 
are effective and preferable in data-driven condition 
monitoring. Even though the initial setup cost increases 
due to expensive sensors and data analytics, overall 
benefits in decreasing downtime and increased industry 
productivity are significant.  

A. THE SURVEY OUTCOME: 

This survey helps to understand the importance of data-
driven PdM for RUL estimation in milling. The RUL of a 
machine is the amount of time it will likely run before it 
has to be repaired or replaced. Accurate RUL estimation 
can enable engineers to schedule their maintenance 
activities, optimize the use of maintenance resources and 
avoid unnecessary delays due to machine downtime. As a 
result, estimating nearly accurate RUL in predictive 
maintenance plans is essential. From an extensive 
literature survey, it is found that usage of multi-sensors 
gives more promising prediction results compared to a 
single sensor technique. Decision-making AI based 
algorithms like ANN, SVM, and LSTM are showing good 
responses for prediction accuracy.    

B. CHALLENGES AND LIMITATIONS IN THE 
ESTIMATION OF RUL  

From the literature survey, the authors found some 
challenges and limitations in this area which are as follows: 
• In-depth RUL estimation needs to be done by 

considering the machine performance from multiple 
faults perspective. These faults can be analyzed by 
collecting data from different sensors. However, this 
multi-sensor data is varied in formats, size, and 
measurement units, making it difficult to investigate 
using one common analysis framework. So, the 
development of technical AI-based frameworks and 
algorithms for effective utilization of the multi-
sensors data is challenging and needs more attention 
in the future research work of RUL estimation. 

• Data captured via sensors play a major role in 
implementing the intelligent RUL estimation setup. 
However, environmental factors such as factory floor 
noise, environmental temperature, working 
conditions (flood lubrication, machining chips, etc.) 
affect the input signals of the sensors leading to the 
generation of noisy data. This noisy data affects the 
accuracy of AI-based RUL predictions. So, effective 
data pre-processing techniques, outcome validation 
metrics, and autocorrecting AI algorithms are 
required. 

• In order to develop an unbiased AI-based RUL 
estimation model, a large amount of historical data is 
required, which would have samples from various 
fault scenarios. The collection of such a large amount 
of data is sometimes unfeasible from the cost and 
time perspective. So, data augmentation techniques 
for the generation of synthetic data would be 
required. 

• It is observed that similar prediction algorithms can’t 
be applied for different fault data which is captured 
in different conditions. It would require an 
amalgamation of multiple fault prediction algorithms 
which are part of one AI system. 

• Even though multiple sensors give a high confidence 
level decision-making model, it is difficult to identify 
the redundant and noisy signals from different 
sensors while performing a data prepossessing and 
feature extraction process. 

• The results of the RUL estimation AI models must be 
more interpretable and logically understandable for 
users to comprehend why a certain RUL prediction 
was made at a certain instance of time and how the 
value is calculated. 
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Figure 29. Advancements for improvising RUL estimation strategies 

 
TABLE XI 

RECENT ADVANCEMENTS IN RUL PROGNOSTICS TECHNIQUES USING AI

Sr no. 
Challenges in current RUL 

Estimation Technique 

AI-based 

Techniques  
Solution 

Technique 
References 

1. 
Missing/incomplete data due to 
malfunctioning of machinery 
sensors 

Generative 
Adversarial 

Techniques (GAN) 

GANs can be used to solve class 
imbalance issues and replace 
missing sensor values with 
synthetically generated data 

Condition monitoring 
sensory data such as 
vibrations, temperature, 
etc., are fed to the GAN 
model to generate 
additional training data.  

[165], 
[166], 
[167] 

2. 

Lack of model interpretability to 
comprehend why a certain RUL 
prediction was made at a certain 
instant of time 

Explainable AI 
(XAI) 

Techniques such as Local 
Interpretable Model-agnostic 
Explanations (LIME) and Shapley 
additive explanation (SHAP)  from 
XAI help to decode the “black box” 
and certify RUL estimations 

XAI techniques 
interpret the pattern 
recognition to decode 
why a certain prediction 
of RUL was made at a 
certain instant of time. 
XAI can help in 
increasing the 
transparency of the 
decision-making 
models. 

[168], 
[169], 
[170] 

3.  

Varied dynamic operating 
conditions of machinery can lead 
to a lack of comprehensive data 
with similar distribution for 
machine prognostics 

Transfer Learning 

Feature-based transfer learning 
techniques can help models 
generalize from limited run-to-
failure experimentation data before 
deployment to make intelligent 
prognosis predictions for the target 
domain. 

Transfer learning is 
useful wherein labels 
are available for the 
source domain and not 
the target domain by 
capturing transferable 
features, i.e., sensor 
readings. These features 
map how particular 
source machinery is 
different in comparison 
to its peers in the target 
domain. 

[171], 
[172], 
[173] 

4. 

The incomplete feedback loop of 
RUL estimation cannot optimize 
the machinery maintenance 
schedule 

Digital Twin (DT) 

Digital twin-driven physical model-
based and virtual model-based RUL 
estimation can help machine 
supervisor complete the feedback 
loop for predictive maintenance of 
machinery 

The customized digital 
twin can identify Health 
Indicators (HI) for 
machine monitoring and 
potential alert failures. 
These alerts are 
combined with other 
condition monitoring 
data, such as 
maintenance updates 
and feedback to the 
digital twin model to 
optimize its accuracy. 

[174], 
[175], 
[176] 

5. 

AI models are susceptible to 
adversarial perturbations and can 
further reduce the 
trustworthiness of RUL 
estimations in case of critical 
machinery 

Adversarial ML 

Adversarial-based crafting 
techniques from computer vision 
can help reduce threats of 
adversarial cyber-attacks on PHM 
datasets 

Adversarial attack 
examples such as 
random noise are added 
to the PHM datasets, 
and the model is re-
trained on such crafted 
datasets to improve the 
robustness of the 
models. 

[177], 
[178], 
[179] 
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6. 

Dynamic condition monitoring 
data, including fault modes, 
operating conditions, and noise 
distribution, is ineffective in 
training data-driven models 
assuming similar distribution 
across training-testing datasets. 

Domain Adaption 
(DA) 

DA strategies consider target-
specific information when learning 
domain invariant features, thus 
achieving robustness over other 
state-of-art methods. 

Unsupervised domain 
adaption techniques 
overcome data deficits 
in prognostics by 
training on labeled data 
in the source domain 
and unlabelled data 
captured under varying 
operating conditions as 
the target domain.  

[180], 
[181], 
[182] 

7. 
Predictive maintenance 
strategies might not be efficient if 
trained on a single type of data. 

Multi-modal data 
fusion 

Multi-modal data fusion involves 
the fusion of data in the form of 
images, numeric data, historical 
records, and offline measurements. 

Data fusion can 
transform data across 
different sensors at 
different points in time 
into a single 
representation for 
intelligent decision-
making. 

[183], 
[184], 
[185] 

XI. ADVANCEMENTS IN RUL PREDICTION  

RUL prediction using Artificial Intelligence techniques 
has undergone major evolutions over the past few years 
which encompasses shallow-structure-based machine 
learning techniques to n-hidden layer-based deep learning 
techniques. In recent years, AI advancements have further 
strengthened the RUL estimation strategies. AI-led 
techniques such as generative adversarial networks, 
explainable AI, transfer learning, domain adaption, digital 
twin, adversarial machine learning, and domain adaption 
will  help to resolve some of the open challenges faced in 
RUL estimation in predictive maintenance. Figure 29 and 
Table XI highlight some of these open issues and the 
solutions provided by these techniques with references. 

1. GENERATIVE ADVERSARIAL NETWORKS (GAN): 

In the manufacturing industry, sensors mounted to collect 
condition data of machines can malfunction due to 
inconsistent power supply and various such issues. In such 
cases, there could be a data deficit. Figure 30 shows the 
working principle of the Generative Adversarial Network 
(GAN) [186]. GANs can generate synthetic data in place 
of missing sensory values due to sensor failure. Shuai 
Zheng and Chetan Gupta propose discriminant GAN for 
equipment health classification to generate more separable 
data samples belonging to different health degradation 
stages of machinery [187]. 

 
Figure 30. Working principle of GAN  

Recently many researchers have proposed the use of 
GAN’s for the generation of anomalous data or anomalous 

features [188][189]. However, most of these techniques 
involve the conversion of vibration-based signals into 
images. A potential research approach is to see how such 
methods can be applied to more complex datasets 
consisting of vibration and time-series data [190]. A more 
thorough study on the physical credibility of the generated 
samples and the impacts of these synthetically produced 
multiple faults on algorithm results is needed.  

2. EXPLAINAIBLE AI (XAI): 

Most of the current machine learning models do not 
explain the predictions made. Explainable AI (XAI) 
techniques are an efficient model prediction 
interpretability tool that helps machine supervisors better 
understand fault diagnosis and prognosis. Figure 31 shows 
the working principle of XAI [191]. The authors of [192] 
have demonstrated the power of combining Xplainable AI 
techniques such as ELI5 and LIME and domain knowledge 
for RUL estimation in industrial machinery. 

 
Figure 31. Working principle of Explainable AI (XAI)  

Explainable AI has a promising future in machine 
diagnosis, and various research directions can be 
envisioned. The XAI interpretability results need to be 
further evaluated based on the quality, utility, and 
satisfaction of the explanations and the effect of 
explanations on the model's success and the supervisor's 
confidence and reliance [193]. Several XAI evaluation 
measurement techniques have been proposed recently, 
such as explanation satisfaction scale, utility checklist, 
explanation trustworthiness, and many more [194], [195]. 
In the future, counterfactual explanations will help the 
industry take corrective measures [196]. Counterfactual 
Explanations show how to make the smallest modifications 
to the input data to get a particular outcome. Consider a 
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case wherein the model predicted an anomaly in 
machinery's working, resulting in decreased RUL of the 
machine. Counterfactual explanation in such a case would 
tell the machine supervisor what changes in the operation 
of the machinery (input) would have avoided the anomaly 
and further improved its RUL [197]. 

3. TRANSFER LEARNING (TL): 

Dynamic operating environments of the machinery can 
affect the model prediction. Transfer Learning (TL) 
algorithms can help improve model accuracy for pre and 
post-model deployment in dissimilar data distribution 
across the source and target domains. Figure 32 shows the 
working principle of TL [198].  

 
Figure 32. Working principle of Transfer Learning (TL)  

The authors of [180] propose a novel transfer learning 
technique based on multiple layer perceptron (MLP) for 
dissimilar data distribution problems in RUL prediction of 
bearing machinery. However, many scopes to use self-
supervised learning [199] and self-supervised contrastive 
learning [200] algorithms are fine-tuned on limited data. It 
is proved that self-supervised algorithms work better in 
data scarcity situations and where data labeling is time-
consuming and costly. In self-supervised learning, the 
learning model trains itself by using one portion of the data 
to predict the other and produce labels automatically. 
Contrastive learning approaches are a class of self-
supervised algorithms that learn to encode what makes two 
samples identical or different in order to construct 
representations. It is a discriminative method for grouping 
related samples together and separating diverse samples. 
These approaches are particularly useful in transfer 
learning, wherein the model trains only on the distinctive 
high-level features in the source domain, thereby reducing 
training time. 

4. DIGITAL TWIN (DT): 

Digital twin (DT) is the hybrid simulated version of the 
physical and data-driven machinery setup. It can help 
provide real-time condition monitoring of machinery over 
the cloud infrastructure. Figure 33 shows the digital twin 
approach used in milling machines [201]. Digital twins 
incorporate multi-physical, multi-probability variables 
from the various domains by using sensor technology, 
physical model, and simulation model [202]. While 

modeling DT model for milling machine, it can be divided 
into DT descriptive model which describes structural and 
mathematical equations based on parameters and 
experience, DT mapping model which helps to map the 
real-time working condition with DT system and DT 
intelligent model to identify the irregularity in the system 
to predict the fault with the help of artificially intelligent 
algorithms [203]. In the Cyber-Physical System (CPS) 
scope, a digital twin may be described as the actual 
product's digital mapping model [204]. DT is widely used 
for predictive maintenance, fault diagnosis, detecting 
anomalies present in systems, inferring quality of the 
product, real-time monitoring of the system, etc. [35], 
[201], [205]–[207]. The authors of [181] propose a deep-
learning-based digital twin model for a lithium-ion battery 
to map the relationship between various health indicators 
such as the cell voltage and the cell state-of-charge (SOC) 
on RUL estimation. The authors of [206] use a physical-
based simulation model and digital twin concept to 
calculate the RUL to enable predictive maintenance of the 
machine.  
Digital Twin is the model and data carrier that can carry 
out physical mapping in digital or virtual space and then 
bridge the digital and real world. Along with a predictive 
maintenance approach, one can develop a Digital Twin  
(DT) for the milling machine or critical part of the milling 
machine. DT can simulate the whole machining process 
using real-time process parameters along with 
consideration of machine degradation. In the context of 
RUL estimation, a twin model can be used to predict the 
useful functional life of the critical parts of the system by 
doing real-time simulation. 

 
Figure 33. Digital Twin (DT) framework for milling machine  

As in the digital twin, data exchange occurs between the 
physical and digital systems in a bi-directional way. DT 
can provide a more accurate RUL estimation with higher 
reliability. The DT-based approach provides more 
insightful information about the system by providing 
feedback between the real and digital world at every stage. 
If there is an anomaly in the machining process, the digital 
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twin provides feedback to the controller for making 
necessary changes. DT approach can also help to increase 
the functional RUL of equipment by taking action against 
identified abnormalities in the system or by doing 
parameter optimization at an early stage. So, digital twin-
assisted predictive maintenance with the hybrid modeling 
approach can be used to predict the RUL of the system 
more accurately.  

5. ADVERSARIAL MACHINE LEARNING(AML): 

Some machine learning models are efficient in making 
predictions but might not be effective against illegal 
intrusions. Adversarial Machine Learning (AML) models 
secure the model structure against any adversarial attacks 
that can jeopardize the robustness of the predictive 
maintenance framework.  

 
Figure 34. Working principle of Adversarial Machine Learning (AML)  

 
Figure 34 shows the working principle of Adversarial 
Machine Learning (AML) [208][209]. Gautam Raj Mode 
and Khaza Anuarul Hoque have used the Fast Gradient 
Sign Method (FGSM) and Basic Iterative Method (BIM) 
for training adversarial examples on NASA’s turbofan 
engine dataset. The results show that the current PHM 
models are vulnerable to adversarial attacks and can 
hamper RUL estimation to a large extent [172]. Leveraging 
the benefits of Blockchain technology can be one of the 
future research directions for building a trustworthy XAI 
model against adversarial attacks. Decentralized AI 
systems are enhanced by blockchain, which provides an 
open-source and freely available digital ledger distributed 
among AI agents through peer-to-peer networks [210]. 
 
Since blockchain makes AI decisions transparent and 
visible to all AI nodes on the network, it becomes more 
difficult for AI agents to change or reject them[211]. 
Blockchain-enabled RUL estimation models can be 
resilient against security attacks as the RUL data can be 
made decentralized, and the integrity of the data can be 
maintained on the blockchain network. 

6. DOMAIN ADAPTION (DA): 

RUL models are built considering a particular machinery 
setup, but a scenario might occur when they need to be 
applied to another machinery setup. This new machinery 

setup is generally different from the previous one, and the 
model prediction accuracy might get hampered. Domain 
Adaption (DA) can help in efficient feature extraction in 
unlabeled machinery data, a common challenge faced by 
most real-time industries. Figure 35 shows the working 
principle of Domain Adaption (DA)[212]. The author 
[175] proposes a contrastive adversarial domain adaptation 
(CADA) method for cross-domain RUL prediction, and 
such techniques can help the model being robust against 
varying setups. 
 

 
Figure 35. Working principle of Domain Adaption (DA)  

Domain adaptation analysis has mostly focused on 
homogeneous cases in which the source and target input 
spaces share the same characteristic feature set. However, 
real-time complex industrial applications are 
heterogeneous, consisting of varied condition monitoring 
scenarios. Sensor setups are also heterogeneous in nature, 
with variations in the type, location, and number of sensors 
deployed. The research on heterogeneous unsupervised 
domain adaptation, particularly when applied to complex 
physical structures, is still at a nascent stage, but it has a lot 
of potentials, especially for industrial applications. 
Another prospective research direction would be the use of 
simulation technology for the creation of the source 
domain and adapting it to the real-life target domain.  

7. MULTI-MODAL/MULTI-SENSOR DATA FUSION 

Different types of sensors, instruments, measuring 
methods, experimental setups, and other sources are used 
to collect information about a phenomenon, such as 
predicting RUL. Multi-modal data fusion provides 
numerous benefits such as achieving a more coherent 
image and global view of the system in question, 
enhancing decision making, analyzing specific scenarios 
about the system through different modalities or time, 
extracting information from data for varied purposes. 
Figure 36 shows the multi-sensor data collection using 
Multi-Modal Data Fusion (MMDF) [213].  Anqi He & 
Xiaoning Jin implemented multi-modal data fusion on the 
Ion-Mill Etching process by collecting multi-sensor data 
from different run-to-failure cycles [214]. The designed 
method presented a more systematic failure prediction 
methodology. Using heterogeneous sensory and 
operational data under diverse operating conditions and 
contexts.  
One of the future research directions in multi-modal data 
fusion strategy would be to accurately rate the important 
sensor modalities while simultaneously distinguishing the 
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important elements within each modality. Such a technique 
can guide the RUL estimation system for the contribution 
of each sensor for better diagnosis and prognosis. Also, 
most of the multi-modal data in smart manufacturing setup 
needs to be collected in dynamic environments indicating 
a variation in the data itself. 
 

 
Figure 36. Multi-sensor data collection using Multi-Modal data fusion  

 
Hence the design of online and incremental data fusion 
models that can learn new knowledge without losing 
historical knowledge is needed as part of future research 
work. Also, the data quality in multi-modal might not be 
very good, and the data can contain a lot of noise. Hence 
deep learning models for low-quality multimodal noisy 
data need to be strategized urgently [184]. 

XII. RECOMMENDATIONS FOR FUTURE WORK 

Apart from the above-mentioned future research work in 
each existing advancement, the authors would also like to 
put forth few more potential research directions in RUL 
estimation: 
• A hybrid modeling and decision-making approach for 

RUL: It was found that many researchers individually 
consider the data-driven model or model-based 
approach to calculate the RUL of the tool, which may 
contain prediction errors due to uncertainties in 
individual models. A combined data-driven and model-
based approach along with hybrid decision-making 
algorithms may decrease the errors in RUL prediction.  

• Machining parameters optimization: Condition 
monitoring during predictive maintenance can also 
help optimize the input parameters of the machine to 
improve the RUL of the system. Researchers can 
consider the real-time process parameters and 
degradation machine state for optimizing the input 
process parameters.  

• Integrated de-noising method: Sensor signals are 
contaminated by the changes in sensor working 
conditions, disturbance due to large machinery startup, 
high-frequency interference, etc. It is challenging to 
remove or filter the noise from the raw signals to 
improve the reliability and accuracy of the signal to 
extract the original features. To overcome industrial 

sensor signal de-noising, one can use integrated de-
noising based on energy-correlation analysis and 
wavelet transform packet.            

• Robust Condition-Base Predictive Maintenance 

(CBPM): In a complex system, CBPM is still a 
challenging area due to heterogeneous data, remote 
location monitoring, and network infrastructure. The 
data collected from the system is in heterogeneous 
(discrete) forms, such as system state data, system 
errors data, system, and environmental sensors data, 
manually collected operator observation data and, 
maintenance action data, etc. For implementing the 
robust Condition-Base Predictive Maintenance 
(CBPM) for a complex system, researchers can use 
smarts sensors, a hybrid-predictive analysis model, and 
secure network infrastructure. The smarts sensors are 
capable of handling heterogeneous data. Hybrid 
predictive analysis models help analyze the data to 
produce the prognostic alarms, estimate RUL of key 
components, maintenance action needed, and 
comprehensive health management of the system. 
Secure network infrastructure helps to provide an 
extensible and flexible framework to apply CBPM for 
complex systems successfully. 

• Prescriptive maintenance: Prescriptive maintenance 
approach aiming to automize the maintenance process. 
It is not only monitored, predict, and provided the 
maintenance recommendations but can able to take its 
own maintenance steps decision with the help of 
advanced ML/DL and AI techniques. 

• Reinforcement Learning: Reinforcement learning is a 
type of machine learning in which a program learns to 
perform a task by repeatedly interacting with a complex 
environment. Figure 37 shows the working principle of 
Reinforcement Learning (RL) [215].  

 
Figure 37. Working principle of Reinforcement Learning (RL) 

The computer explores the world using an iterative 
trial-and-error method. This investigation produces 
evidence that the computer uses to decide the best 
course of action to complete its task. 
Reinforcement learning can be utilized for real-time 
decision-making capability in predictive maintenance 
techniques. The reinforcement agent can be used to 
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optimize model predictions for RUL and achieving 
high utilization of resources simultaneously 
[216],[217],[218].   

• PHM as a Service: Cloud Manufacturing applies cloud 
computing technology in the manufacturing domain 
[219]. Cloud Manufacturing is a customer-centric 
manufacturing paradigm that takes advantage of on-
demand access to a pooled pool of diversified and 
dispersed manufacturing tools to form a single product 
[220]. Prognostics Health Management (PHM) can be 
offered as a service on the cloud providing SaaS, PaaS, 
and IaaS facilities. The service provider can provide 
Cloud-based data acquisition software and models for 
prognostic applications. The manufacturer can build a 
maintenance model using available platforms and 
leverage cloud infrastructure (storage and networking 
resources) to implement solutions [219]. 

• Physics-induced deep learning prediction: Physics-
induced machine learning is a promising approach to 
stimulating interpretability in machine learning 
models, especially for applications beyond the image 
processing domain where visualizations cannot be 
easily extracted. Prior knowledge about the system's 
physical mechanics integrated with deep learning-
based knowledge can help amplify the performance of 
the system and improve its interpretability [190],[221]. 

• Generation of representative/benchmarking datasets: 
One of the key demands of any deep learning 
application is the need for representative or 
benchmarked datasets which can be used to represent 
real-world scenarios. Computer vision and natural 
language processing domains have ample 
representative datasets, which are key drivers for 
exemplary research in those domains. However, in the 
context of Predictive Maintenance, the lack or 
insufficiency of representative datasets has 
discouraged the application of deep learning 
approaches in industrial applications to a certain extent. 
Generation of representative datasets using data 
augmentation techniques can be one of the potential 
research directions. 

• Federated Learning: Centralised data for applying 
machine learning and deep learning models can be a 
practical challenge for real-time manufacturing 
industries. Consider the case study of a milling 
machinery company that wishes to predict a costly 
milling machine's RUL. Foremost the models require 
training data. However, the supervisor will have to test 
many milling machines before they failed to obtain the 
data. A less expensive solution would be to get client 
operating milling machine data representing real-world 
scenarios and operating setups for the milling 
machinery. The client training data would be a practical 

and cheaper solution. However, the client might be 
apprehensive about sharing their data with the 
company considering privacy concerns and regulatory 
impediments. Another challenge could be that the 
client might be geographically located in another 
country, and sharing such enormous sensory data 
would be infeasible. Federated learning comes to the 
rescue in such scenarios.  
 

 

Figure 38. Federated Learning (FL) framework for Industry  

A server synchronizes a network of nodes in federated 
learning, each of which has training data that it cannot 
exchange directly. The nodes each train their model, 
which they then exchange with the server. Figure 38 
shows the framework of the FL in the context of 
Industry 4.0 [222]. Federated learning aims to ensure 
anonymity and reduce communication costs by not 
transferring the data itself. Since federated learning 
allows for training on a large volume of private data by 
only transmitting small models across the network, it 
has a lot of potential for industrial predictive 
maintenance [223]. 

XIII. CONCLUSION 

This paper reviews the data-driven predictive maintenance 
for the RUL estimation of the milling cutting tool. Existing 
literature shows that RUL prediction is an emerging area 
and has a lot of scope for development in industry 4.0. The 
paper also explores various open research questions faced 
by PHM researchers in this domain. The authors have 
discussed different data-driven monitoring methods, 
feature extraction methods, and decision-making models 
as well. Also, the paper covers datasets related to milling 
under various operating conditions to compare the 
accuracy of the prediction model for tool wear estimation. 
Effective RUL estimation aims to serve the purpose of 
Predictive Maintenance (PdM). Identifying the RUL of 
machinery can help us to strategize the predictive 
maintenance activities for the machinery. Accelerometer, 
acoustic, dynamometer, current are mainly used sensors 
for collecting the data signals from the milling machine. 
The multi-sensors technique provides better prediction and 
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more trustable results as compared to the single sensor 
technique. Due to the non-stationary behavior of acquired 
signals, the time-frequency domain wavelet analysis is 
preferable for milling feature extraction. ANN, SVM, 
LSTM are generally used as decision-making algorithms 
for condition monitoring and RUL prediction of the tool 
during the milling operation. The paper also presents 
challenges, limitations, AI advancement in RUL 
prediction, and future directions related to this area.  
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