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Abstract—Power system investment planning problems become
intractable due to the vast variability that characterizes system
operation and the increasing complexity of the optimization
model to capture the characteristics of renewable energy sources
(RES). In this context, making optimal investment decisions by
considering every operating period is unrealistic and inefficient.
The conventional solution to address this computational issue is
to select a limited number of representative operating periods by
clustering the input demand-generation patterns while preserving
the key statistical features of the original population. However,
for an investment model that contains highly complex nonlinear
relationship between input data and optimal investment decisions,
selecting representative periods by relying on only input data
becomes inefficient. This paper proposes a novel investment cost-
oriented representative day selection framework for large scale
multi-spacial investment problems, which performs clustering
directly based on the investment decisions for each generation
technology at each location associated with each individual day.
Additionally, dimensionality reduction is performed to ensure
that the proposed method is feasible for large-scale power systems
and high-resolution input data. The superior performance of the
proposed method is demonstrated through a series of case studies
with different levels of modeling complexity.

Index Terms—Clustering, dimensionality reduction, investment
planning, renewable energy sources, representative days.

I. INTRODUCTION

DECARBONIZATION of electricity systems will signif-

icantly increase the penetration of renewable energy

sources (RES). The variability, uncertainty and limited inertia

capability of RES lead to fundamental challenges for system

control, operation and planning. In particular, the key charac-

teristics of intermittent RES need to be well accommodated

in system planning models to achieve optimal investment

decisions regarding future low-carbon power systems [1].

Power systems planning is generally modeled as a linear

programming (LP) problem aiming to make the optimal in-

vestment decisions that minimize the total cost, which consists

of operational cost and investment cost. Specifically, invest-

ment decisions are normally represented by binary decision

variables at coarse time intervals (e.g., yearly) whereas an

embedded system operational model makes short-term op-

erational decisions on an hourly time scale [2]. Recently,

more advanced planning models with significantly increased

complexity have been proposed to fully reflect the challenges

of increased penetration of RES through detailed modeling of

inter-temporal constraints such as minimum up/down time for
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generators and the ancillary service requirements in hourly or

even sub-hourly time scale [3].

It is important to highlight that the increasing complexity

of investment planning models directly results in significant

computational burden and may even lead to a problem that

cannot be analytically solved if all operating periods are con-

sidered. To this end, it becomes imperative to select a subset of

representative periods from a vast number of operating periods

for consideration in the investment problem to attain optimal

or near-optimal investment decisions.

Alternative approaches have been developed for selecting

representative periods. Traditionally, heuristic selection is ap-

plied by experts to manually determine the representative oper-

ating conditions that describe the most relevant scenarios based

on the variations in load and RES availability. For example,

in [4], 17 time slices are selected from a 2-year period of

data (i.e., 16 time slices representative of different seasons and

one slice of summer super-peak time) to capture diurnal and

seasonal variability in load and generation resources. However,

heuristic selection approaches suffer from a lack of consistent

selection criteria to use to select the representative periods or

to validate the effectiveness of the selected periods [5], [6].

Moreover, the increased penetration of RES leads to more

diverse patterns of system operation conditions and makes

manual heuristic selection approaches inadequate.

A series of clustering-based methods have recently been

proposed in the literature to capture statistical character-

istics and correlations among the load and RES data. In

[7], the k-means clustering technique is employed to model

interspatial correlation between load and wind power gen-

eration for investment problems. The authors in [8] use k-

means clustering to select representative operating points for

wind generation investment. However, solving the generation

investment planning problem based solely on the selected

representative operating points cannot consider intertemporal

operating constraints because of the break in the chronological

sequence. Therefore, it is imperative to select representative

time slices with longer periods (e.g., days or weeks) that

simultaneously capture the correlations among load, wind

and solar; the temporal autocorrelation within each variable;

and the interspatial correlations among different locations. To

this end, an optimization-based representative day selection

method is presented in [5] for capturing the implications of

integrating RES in generation investment planning problems,

along with proposed representativeness evaluation metrics.

The authors of [2] propose two hierarchical clustering-based

selection methods for long-term capacity expansion models by
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considering intertemporal operating constraints. Meanwhile,

this method can capture important statistical features of the

input operating conditions (i.e., temporal autocorrelations and

spatial correlations).

All of the above selection approaches are based on the

operating conditions in the input domain (e.g., demand and

RES availabilities), with the benefit of straightforward im-

plementation. However, this domain may not be the most

efficient domain to perform clustering since the long-term

investment decisions are highly non-linear with respect to

the input variables. To this end, reference [9] recognizes that

power flow patterns are key drivers for investing in new

transmission lines. A moment-matching algorithm is applied

to cluster operating points based on the optimal power flow

(OPF) patterns. Numerical experiments have demonstrated that

the OPF-based method indeed results in a more effective

reduction in the number of scenarios required for obtaining

the optimal transmission investment decisions. Moreover, in

[10], an operational state aggregation approach is proposed to

select representative conditions according to the line benefit.

Note that the requirement of solving a relaxed transmission

network expansion planning (TNEP) problem increases the

computational cost before the clustering procedure. Addition-

ally, the expected power transfers of the network corridors

are considered as the clustering variables in [11], with a

special focus on critical situations. The authors in [12] recently

proposed an objective-based scenario selection framework

that considers the transmission investment decisions of each

individual scenario as the clustering variables.

In this context, little research has been conducted to in-

vestigate the alternative clustering domains that may lead to

more effective selection of representative days (or even longer

operating periods) for the investment planning problem with

intertemporal operating constraints. In the research field of

electricity trading, the authors in [13] and [14] proposed a

novel idea, for the first time, to perform scenario reduction on

the transformed space (i.e., outcome space), instead of the in-

put space. More specifically, the space of the objective function

value is considered as the transformed space. In the context

of the investment planning problem, the objective function

value is composed of the investment cost and the operation

cost. Since the investment cost obtained in the expected value

problem has been fixed as proposed in [13] and [14], the

cost that is used to differentiate the scenarios are actually the

operation costs, which are still not the most straightforward

“objective” of the investment problem. Additionally, using

a single cost value may neglect the information about the

interspatial correlations between generation technologies at

various locations.

Inspired by the work reported in [13] and [14] for an

electricity trading problem, in this paper, an investment cost-

oriented representative day selection framework is proposed

for power system investment problems to cluster the operating

days based on the costs of investment decisions that are driven

by each individual day. Hierarchical clustering with Ward’s

linkage is employed to group the operating periods based on

the costs associated with investment decisions. Subsequently,

the medoid of each constructed cluster is selected as the repre-

sentative day. To address the curse of dimensionality of large-

scale systems, dimensionality reduction is applied before the

clustering procedure. The performance of the proposed method

is demonstrated based on a four-location generation investment

planning model with different levels of modeling complexity.

The key contributions of this paper can be summarized as

follows:

i) A novel investment cost-oriented framework, including

four main stages of Run System Investment Planning Per Day,

Dimensionality Reduction, Perform Clustering and Represen-

tative Day Selection, is proposed to select representative days

for large scale multi-spacial power system investment planning

problem with intertemporal operating constraints. In particular,

clustering is performed based on a more effective domain - the

costs of investment decisions for each generation technology

at each location associated with each individual day.

ii) To ensure scalability of the proposed framework for

large-scale systems, a nonlinear dimensionality reduction tech-

nique, Laplacian Eigenmaps, is implemented prior to cluster-

ing to address the curse of dimensionality.

iii) A comprehensive analysis is performed to demonstrate

the superior performance of the proposed investment cost-

oriented method based on a series of investment planning

models with different levels of complexity. The key drivers

for the increased benefit of the proposed approach are identi-

fied: 1) modelling of inter-temporal constraints and ancillary

service, 2) including the RES capacities as decision variables,

3) utilizing high time-resolution input data.

The rest of this paper is organized as follows: Section II

presents the representative day selection problem and its main

challenges. Section III introduces the proposed framework and

the related technical details. Section IV conducts numerical

experiments on different investment models. Finally, the main

conclusions are given in Section V.

II. PROBLEM STATEMENT

Given the multidimensional operating condition data X =
{~xd, d = 1, ..., D} of load, wind and solar availability, where

D is the total number of periods, the power system investment

planning problem aims to obtain the optimal investment deci-

sions Γ∗ that can minimize the total cost Ctot(X,Γ
∗) which is

composed of system operational cost Cop and investment cost

Cinv with the consideration of carbon target constraint and a

series of intertemporal operating constraints, such as ramp-up

and ramp-down constraints. Then, the minimum total cost can

be defined as

C∗ = Ctot(X,Γ
∗) = Cinv(Γ

∗) + Cop(X,Γ
∗) (1)

With the increasing complexity of the investment planning

model, solving the optimization problem based on the whole

dataset X becomes intractable. One effective solution is to se-

lect a subset of representative days X† and their corresponding

probabilities Ψ† such that the investment decisions Γ† obtained

by solving the investment planning problem based on X† can

result in

Cinv(Γ
†) + Cop(X,Γ

†) = Ctot(X,Γ
†) ≈ C∗ (2)
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where Cop(X,Γ
†) is the system operation cost based on the

full operating data X with the investment decisions Γ†. In

other words, representative period selection aims to regain

tractability of the investment planning problem.

Although clustering-based methods have been demonstrated

to be an effective approach for selecting representative pe-

riods X†, a series of key questions related to representa-

tive period selection can be summarized as follows: How

is the optimal clustering domain determined? Among the

various clustering techniques, which is the most appropriate

for representative period selection? After clustering, how is

the representative day of each cluster selected? The previous

work [12] investigated the aforementioned questions with the

focus on the selection of representative operating snapshots

with the application of TNEP. However, for the power system

investment planning problem with intertemporal operating

constraints (e.g., the generation investment planning problem),

it is imperative to select longer representative periods, such as

days, which leads to the additional challenges as following:

Problem 1(P-1): For the multivariate operating condition

data, selecting representative operating snapshots only requires

clustering to be performed based on a two-dimensional dataset,

including d1-the variable (e.g., demand) and d2-the object

(operating snapshots in this case). However, for representative

period selection, clustering a three-dimensional dataset that

includes d1-the variables, d2-the time steps within a period

(e.g., 48 half-hourly data points for each day), and d3- the

operating periods (e.g., days) becomes more difficult.

Problem 2(P-2): The increased complexity of system invest-

ment planning models leads to higher nonlinearity between the

input operating conditions and the output investment decisions.

Therefore, capturing only the important statistical character-

istics of the original input data (e.g., correlation, variability,

and distribution) cannot guarantee the optimal investment

decisions.

Problem 3(P-3): The longer the operating periods that we

need to select, the higher the dimension of the data that will

be clustered in terms of d2 (i.e.,the time steps), thus resulting

in the curse of dimensionality. In addition, for large-scale

systems, a more significant dimensionality problem related to

d1 could be encountered.

Note that, regarding the operating periods, this paper will

focus on selecting representative days with the application of

the generation investment planning problem. Nevertheless, the

proposed method can be readily expanded to a longer period

selection version (e.g., representative week or month selection)

by changing the considered operating periods (d3) for other

long-term investment planning problems.

In addition, beyond the intraday storage, the proposed

method faces the challenge of handling the interday storage

in the investment model because the selection procedure

has not considered the continuity between the representative

periods. Recently, the authors in [15] and [16] provide novel

solutions to maintain the chronology of the input time series

for dealing with interperiod storage. In particular, in [16], the

‘Representative Periods with Transition Matrix and Cluster

Indices’ (RP-TMCI) model can guarantee some continuity be-

tween representative days, which can be employed to link the

representative days selected using the proposed cost-oriented

approach to capture the interday information. Additionally, a

novel chronological time-period clustering method proposed

in [15] is developed based on a hierarchical clustering method

and performed in the input domain so that the selected

representative periods can maintain the chronology of the

input time series throughout the planning horizon. To this

end, combined with the chronological time-period clustering

method, the proposed cost-oriented approach could be further

developed to handle both types of storage (i.e., intraday and

interday), which will be investigated in our future work.

III. PROPOSED COST-ORIENTED REPRESENTATIVE DAY

SELECTION FRAMEWORK

To address the aforementioned challenges, a novel repre-

sentative day selection framework is proposed in this paper,

as shown in Fig. 1. The proposed framework consists of four

main steps: Step 1-Clustering Domain Transformation: Run

system investment planning for each individual day to obtain

the clustering variables, consisting of the costs of the invest-

ment decisions per day. Step 2-Dimensionality Reduction:

Perform dimensionality reduction on clustering variables to

extract effective features. Step 3-Cluster Assignment: Perform

clustering on the extracted features. Step 4-Representative Day

Selection: Select a representative day of each cluster in the

original domain of the input data. A detailed description of

each step will be presented in the following subsections.

A. Clustering Domain Transformation (Step 1)

To develop an efficient clustering-based representative pe-

riod selection approach, the first question that needs to be

properly answered is: ’What is the most effective domain

in which to perform clustering such that the selected rep-

resentative periods can lead to near-optimal or even opti-

mal investment decisions?’ Mathematically, this question can

be defined as follows. Let X = {~xd, d = 1, ..., D} ∈
R

D×[NB×(NG+1)]×Nd denote the input multivariate operating

condition data of the investment planning model, where NB ,

NG, and Nd represent the numbers of network buses, gen-

eration technologies, and data points within each operating

period, respectively. Note that regarding the dimension of X ,

[NB × (NG + 1)] = NB × NG + NB × 1 is the sum of the

number of technologies multiply by the number of locations

NB×NG and the number of loads NB×1. The key challenge

related to P-1 and P-2 is transforming the data from the

input domain into a more effective domain with a nonlinear

mapping f : X → Γ such that the clusters [X1, ..., XK ] ⊂ X
constructed based on the cluster labels y = Clustering(Γ)
can finally result in the optimal investment decisions Γ∗ by us-

ing the representative periods X† selected from [X1, ..., XK ].
Note that K and Clustering(·) are the number of clusters

and the clustering procedure, respectively.

In the literature, most of the current work focuses on

obtaining the cluster labels y based on the domain of input

data X while attempting to make the selected representative

periods X† exhibit similar statistical characteristics to X (e.g.,

[2], [5]). In particular, the average and standard deviation of
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original dataset X are the general target moments that are

required to retain in X†. In addition, authors in [5] attempt

to preserve the annual load and average RES capacity factors,

the distribution of each time series, the correlation between

the different time series, and the variability. Nevertheless,

clustering the operating periods based on the information in

the input domain may not lead to an efficient operating period

reduction for the following reasons:

R1: Operating periods with significantly distinguished pat-

terns regarding their statistical factors in the input domain may

drive identical or similar investment decisions;

R2: Operating periods with similar patterns regarding their

statistical factors in the input domain may drive completely

different investment decisions.

R3: The capacities of RES are decision variables in the

generation investment planning problems. Without knowing

the installed capacity of RES, directly clustering the input

data, which usually includes the normalized load and the RES

availability factor [2], may lead to less effective selection

because the ratio of the bases (i.e., maximum values) between

the loads and the RES capacities, which use normalized input

data, cannot be determined before solving the investment

problem. In other words, using the same normalized input data

with different ratios of bases may result in different investment

decisions.

R4: The impacts of ancillary service on system operation

cannot be considered if clustering is performed in the input

domain. In other words, the input data cannot depict the actual

requirements of ancillary services for each time step, which

can only be determined after solving the investment problem.

To this end, it becomes imperative to tackle the afore-

mentioned issues by transforming the clustering domain (i.e.,

where we perform clustering based on) from the input space to

a more effective space. For the transmission investment prob-

lem, the line benefit and the optimal power flow pattern have

been demonstrated as effective clustering domains for select-

ing representative operating points in [9] and [10], respectively.

However, they are still not the most straightforward drivers

for the final optimal investment decision. In addition, for the

periods with similar total or investment costs, a single cost

value may consist of different system compositions. Therefore,

clustering based on a single cost value may neglect the inter-

spatial correlations between different generation technologies

at various locations and thus resulting in a less effective

clustering. Motivated by the fact that the overall optimal

investment decision is fundamentally related to the investment

decision for each operating period, in this research, a cost-

oriented approach is proposed to transform the clustering

domain from input periods to their corresponding investment

costs of each generation technology at each location via

running system investment planning for each period and then

assigning the clusters based on the cluster label obtained via

grouping the capital costs.

To highlight the motivations of the proposed cost-oriented

approach and explain the aforementioned issues of the input-

based method, Fig. 2 presents an example of the generation

investment problem that aims to optimize the number of

CCGTs (50MW each) and wind generators (50MW each)

Fig. 1. The proposed cost-oriented representative day selection framework.

given the input data of load and wind availability factor, where

the load data needs to be normalized to make the calculated

distance used in the clustering methods place the same weight

[2]. Let Lmax = 150MW denote the magnitude of the loads,

the three operating periods considered in this case are:

Period1 = [LPeriod1
,WPeriod1

] = [0.6, 1.0], (3)

Period2 = [LPeriod2
,WPeriod2

] = [0.4, 0.2], (4)

Period3 = [LPeriod3
,WPeriod3

] = [1.0, 0.0]. (5)

As can be seen in the left part of Fig. 2, the input-based

approach will result Period2 and Period3 being assigned

to the same cluster because they are statistically located

near each other. More specifically, in the input domain,

the Euclidean distances between each pair of periods are

d(Period1, P eriod2) = 0.8246, d(Period1, P eriod3) =
1.0770 and d(Period2, P eriod3) = 0.6325, respectively.

However, given the operational costs of Wind (0£/MWh) and
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Fig. 2. An example of the input-based and cost-oriented representative period selection processes.

CCGT (78£/MWh), the optimal investment costs for each

period are:

ΓPeriod1 = ΓPeriod2 = πINV
CCGT × 1CCGT

+ πINV
WIND × 1WIND = 101.5£m (6)

ΓPeriod3 = πINV
CCGT × 3CCGT = 76.5£m (7)

Note that the investment costs of CCGT and Wind are given

in Table II. According to these results, point R1 can be

well explained by the fact that significantly different input

data Period1 and Period2 can result in the same invest-

ment decisions (i.e., Γ1 = Γ2). However, regarding point

R2, the operating periods with similar patterns in the input

domain (i.e., Period2 and Period3) can drive completely

different investment decisions (i.e., Γ2 = 101.5£million and

Γ3 = 76.5£million). Beyond that, it can be seen that when

the capacities of RES (i.e., wind) are decision variables, the

investment decisions of wind are not only determined by

its availability factor (i.e., R3): ΓPeriod1 and ΓPeriod2 have

identical investment decision determined based on the total

cost although their wind availability factors are significantly

different (i.e., WPeriod1
= 1 and WPeriod2

= 0.2). In other

words, before the investment problem is solved, the proportion

of the demand that can be supplied by the available wind

generation is unknown and thus, rendering the input-based

method ineffective when the capacities of RES have not been

determined. To this end, using the proposed cost-oriented

approach can effectively avoid this issue by directly grouping

the operating periods based on their investment costs: as can be

seen, Period1 and Period2 with same investment decisions

are successfully clustered in the same group although their

distance in the input domain is larger than that of Period2
and Period3.

Finally, when the number of selected periods is two (K=2),

based on the representative periods selected using the input-

based approach, the investment decision is to build two CCGTs

and one Wind; however, the proposed cost-oriented method

can lead to the real optimal investment decision to invest

in three CCGTs, which is identical to the result with all

three operating periods. The above example clearly illustrates

the rationale and demonstrates the superior performance of

the proposed cost-oriented approach in a simple case. More

comprehensive analysis with complex system configurations

will be presented in Section IV.

For the proposed framework shown in Fig. 1, this step

aims to transform the clustering variables from the input

domain to the domain of investment cost. The input operating

condition data is denoted by X = [XL, XW , XP ] = {~xd, d =
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1, ..., D} ∈ R
D×[NB×(NG+1)], where XL, XW , and XP

represent the datasets of electricity load, wind availability and

solar availability, respectively. The first step of the proposed

framework is to run system investment planning for each

individual day d. Note that day d is assumed to repeat across

the whole horizon and the output of this step is the dataset

of investment cost results Γ = [Γ1, ...,ΓD]T ∈ R
D×(NB×NG),

where Γd = {γb,gd , b = 1...NB , g = 1...NG} represents the

investment cost of day d for generation technology g at bus

b. Although D one-day-based investment planning problems

need to be solved in this step, it is not computationally

demanding as they can be effectively solved in parallel.

B. Dimensionality Reduction (Step 2)

In this step, dimensionality reduction is conducted to re-

solve the issue of the curse of dimensionality. As presented

in Section II, two main challenges of representative day

selection related to dimensionality can be summarized as

P-1: input operating days have 3 dimensions: d1-variables

NB × (NG + 1), d2-data points within the day Nd, and d3-

days D; P-3: limited number of days for clustering. Regarding

P-1, note that the proposed clustering domain transformation

step can contribute to solving the problem by performing

clustering on a 2-d dataset Γ ∈ R
D×(NB×NG) rather than

a 3-d dataset X ∈ R
D×[NB×(NG+1)]×Nd . Nevertheless, for

P-3, the large number of buses and varieties of candidate

generation technologies in large-scale systems will lead to

the curse of dimensionality, which refers to the problem

caused by the exponential increase in volume associated with

adding more dimensions to Euclidean space [17]. As illustrated

in [18], the high dimensionality problem of input features

will lead to the ineffective clustering results because of the

unreliable similarity metrics in high dimensional space. One

of the intuitive solutions is to transform data from high

dimensional feature space to lower dimensional space in which

to perform clustering. To this end, it is imperative to perform

dimensionality reduction on the domain of investment costs,

which already has lower-dimensional clustering variables than

the conventional input-based method.

In general, dimensionality reduction can be achieved using

two types of methods: feature extraction and feature selection.

In this paper, the considered clustering variables of the pro-

posed cost-oriented method are the investment cost of each

technology for each location. Therefore, it is ppropriate to

extract important features from the clustering variables in an

automatic or nearly automatic manner as it is challenging to

manually determine the most influential variables on the final

optimal decisions.

Conventional linear dimensionality reduction (DR) tech-

niques (e.g., PCA and linear discriminant analysis) have been

widely used but with a performance limitation due to the linear

transformation. To this end, a series of nonlinear DR tech-

niques have been proposed, such as kernel PCA, Kohonen self-

organizing maps, data-driven high-dimensional scaling (DD-

HDS), and Laplacian Eigenmaps (LEM) [19]. The limited

number of data samples (i.e., days) in our case restricts the

performance of the techniques that require a large amount

of data, such as neural network (NN)-based approaches and

DD-HDS. Therefore, we select a geometrically motivated

algorithm, LEM, which has locality-preserving properties and

a natural connection to clustering. The constructed lower-

dimensional data can reflect the intrinsic geometric structure

of the manifold. Mathematically, the dimensionality reduction

procedure for LEM can be illustrated as follows.

Given the input dataset of investment costs for each day

Γ = {Γd}
D
d=1 ∈ R

D×(NB×NG) and the target dimension r,

the first step is to construct the adjacency graph Q = (N,E),
where Γi, i ∈ [1, ..., D] corresponds to one node in ni ∈ N ,

the total number of nodes |N | = D. A pair of nodes ni and

nj are connected by an edge if Γi, i ∈ {1, ..., D} and Γj , j ∈
{1, ..., D} are close to each other. The “closeness” is measured

using the k-nearest neighbor (KNN) method.

Then, we determine the weights W = {wi,j , i, j = 1, ..., D}
of the constructed edges E = {Ei,j , i, j = 1, ..., D} using a

simple method as follows:

wi,j =

{
1, if ni and nj are connected via edge Ei,j

0, if ni and nj are not connected
(8)

The next step is to solve the generalized eigenvector prob-

lem: Lα = λDα, where D = {Di,i =
∑

j wj,i, ∀i, j ∈
1, ..., D} is the diagonal weight matrix and L = D −W is

the Laplacian matrix. Given the target reduced dimensions r,

the solution vectors A = [α0, ..., αr−1] ∈ R
D×r, which are

ordered based on their eigenvalues 0 = λ0 ≤ λ1 ≤ ...λr−1.

Finally, the lower-dimensional output data Γ̃ = {Γ̃i, ∀i ∈
1, ..., D} ∈ R

D×r, where we have

Γ̃i = (α0(i), ..., αr(i)) ∈ R
r (9)

C. Cluster Assignment (Step 3)

This step is to cluster the investment decisions in a lower-

dimensional space. Based on the extracted features of invest-

ment costs Γ̃, the clustering techniques can be applied to

construct K groups Γ̃k ⊂ Γ̃, for k = 1, ...,K, which aims

to distinguish different investment costs. The output of the

clustering procedure will be the set of cluster labels y ∈ R
D,

which can be employed to assign the input operating days

~xd, d = 1, ..., D into different groups

Xcls = {Xk}
K
k=1 (10)

where Xk ∈ R
Nk×[NB×(NG+1)]×Nd , according to their indi-

vidual investment costs.

As one of the most prevalent clustering techniques, hier-

archical clustering can construct a hierarchy of clusters by

employing a measure of similarity between groups of data

points [20], [21]. In this research, we employ the agglom-

erative hierarchical clustering method (bottom-up approach)

with Ward’s linkage to establish different groups of investment

decisions and identify the representative day from each cluster

for the following reasons:

i) In terms of the shape of the constructed clusters, the

hierarchical clustering method can handle nonspherical data;

ii) Regarding repeatability, the constructed hierarchical clus-

ters have a deterministic nature because they are independent

of the initial allocation of data points;
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iii) No prior knowledge of the number of clusters is required

for hierarchical clustering. In other words, we can terminate

the agglomeration procedure at any number of clusters as

required;

iv) In contrast to other types of linkages (e.g., single-linkage

and complete-linkage), Ward’s minimum variance criterion

[22] aims to minimize the total within-cluster variance. For

the proposed cost-oriented representative day selection algo-

rithm, it is important to ensure that the variance of grouped

investment costs in each cluster can be minimized to identify

the operating conditions in the input domain that result in

similar investment decisions.

In general, hierarchical clustering can be outlined in the

following steps based on our clustering variables Γ̃ ∈ R
D×r.

First, each data point of Γ̃ is assigned to its own singleton

group. Then we construct the similarity matrix

S = {si,j , ∀i, j ∈ 1, ...D} ∈ R
D×D (11)

for Γ̃ based on the Euclidean distance. Consequently, each

pair of clusters that are closest to each other will be merged

to a higher level according to the calculated similarity. Note

that, in this research, Ward’s linkage criterion is employed to

measure the intergroup similarity. For a pair of clusters k1 and

k2, the distance measure dk1,k2
can be calculated as follows:

dk1,k2
= ‖Γ̃k1

c − Γ̃k2

c ‖2
√
2nk1

nk2
/(nk1

+ nk2
) (12)

where nk1
and nk2

are the numbers of operating days in

clusters k1 and k2, Γ̃k1

c and Γ̃k2

c represent the centroids of

clusters k1 and k2, and ‖ · ‖2 is Euclidean distance.

D. Representative Day Selection (Step 4)

Finally, each cluster needs to be represented by one oper-

ating period selected or created from the cluster. The most

widely used representatives are the mean point as the average

value or the medoid point as the period closest to the mean

point. Due to the domain transformation in Step 1, the mean

point cannot be linked back to any real operating period.

Therefore, the medoid point ~γ†k ∈ R
NB×NG of cluster k is

selected in the domain of Γ̃ and then transformed back to

the input domain of X to obtain the representative operating

condition data ~x†k ∈ R
NB×(NG+1).

Given that each operating period has the same probability

of occurrence, the weight of each cluster can be calculated

as the number of operating periods that belong to the cluster.

The final outputs of the proposed framework are the selected

representative days and their corresponding weight defined as

X† = {~x†k, k = 1, ...,K} and Ψ† = {ψ†
k, k = 1, ...,K},

respectively.

To summarize, the proposed cost-oriented representative day

selection method is outlined in Algorithm 1.

IV. SIMULATION STUDY AND RESULTS ANALYSIS

A. Test Model and System Description

To demonstrate the performance of the proposed repre-

sentative day selection algorithm, the electricity investment

model presented in [23], in which various constraints are taken

Algorithm 1 Proposed Cost-Oriented Representative Day

Selection Method for the Generation Investment Planning

Problem

Input: Multidimensional historical data of demand, wind

availability and solar availability: X = [XL, XW , XP ] =
{~xd, d = 1, ..., D}; Target dimension: r; Number of

selected representative days: K; The tested system invest-

ment planning model: Planning(·).
Output: Set of selected representative days: X† = {~x†k, k =

1, ...,K}; Set of corresponding probabilities: Ψ† =
{ψ†

k, k = 1, ...,K}.

Step 1: Run system planning for each operating day and

obtain the corresponding investment cost.

1: Γd = Planning(~xd), for d = 1,...,D.

Step 2: Given the input target dimension r, LEM is

performed to reduce the dimensionality of Γ to r.

2: Γ̃ = LEM(Γ).
Step 3: Given the number of selected representative days

K, hierarchical clustering is performed to construct the

groups of Γ̃. Then map the constructed clusters from the

cost domain of Γ̃k to the input domain of Xk.

3: [Γ̃k|Kk=1,ΛD,k|
K
k=1] = HierachicalClustering(Γ̃,K).

4: Xk = { ~Xd, ∀d ∈ ΛD,k}, for k = 1, ...,K.

Step 4: Determine the representative day and the corre-

sponding probability for each cluster. Note that the output

of function medoid is the index of the day that indicates

the medoid point of a dataset.

5: idxmed
k = medoid(Γ̃k), for k = 1, ...,K

6: ~x†k = Xk(idx
med
k ), for k = 1, ...,K

7: X† = {~x†k, k = 1, ...,K}

8: Ψ† = {ψ†
k = |ΛD,k| / |ΛD| , k = 1, ...,K}.

into consideration including electricity balance constraints,

generation operation constraints, network reinforcement con-

straints, power flow constraints, security constraints, ancillary

service constraints and carbon constraints, while minimizing

the total system cost, is applied in this paper. A simplified

GB transmission system characterized by four key regions,

including 1) Scotland, 2) North England & Wales, 3) Middle

England & Wales, and 4) South England & Wales is employed

for the simulation. Different types of conventional generation

(i.e. CCGT and OCGT) and various low-carbon generation

(i.e., nuclear, gas CCS, wind, and PV) are taken into account.

Table I summarizes the technical and economic data of each

technology. In addition, all operational and investment data

related to the electricity system are given in [24]. Hourly

and half-hourly electricity demand data, wind and solar power

generation output data in different regions are obtained from

the Open Power System Data (OPSD) project [25]. Note

that the collected demand data need to be scaled to the

corresponding level according to the local population.

As presented in Table II, three cases of generation in-

vestment planning with different levels of complexity are

considered. Specifically, ’RES’ indicates whether the model

considers wind and PV generation capacities as fixed values or

as decision variables in the optimization model. In this work,
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M1 uses a fixed capacity of RES, and the others consider the

capacity of RES as decision variables. In addition, M3 includes

the ramp up/down constraints, minimum online/offline time

constraints as well as ancillary service requirements, indicated

by ’Ramp’, ’MinOn/Off’ and ’AS’, respectively. Note that

for simplicity, we consider the planning from scratch and

the investment problem is relaxed to a LP problem with

continuous investment decisions. As demonstrated in [26], the

relaxed LP problem can provide very similar decision as the

original MILP problem in the case of clustered representation

of generation units. The total number of continuous variables

and constraints are 3,529,800 and 2,505,850, respectively.

Additionally, the considered planning approach is static.

TABLE I
PARAMETER VALUES OF TEST MODEL

Capital Cost

(£m/MW)

RampUp/Down

(%/h)

MinUp/Down

(h)

Nuclear 4.34 0.10 10
CCGT 0.51 0.60 4
Gas-CCS 2.15 0.50 4
OCGT 0.32 1.00 1
Wind 1.52 - -
PV 0.67 - -

TABLE II
TEST MODELS WITH DIFFERENT COMPLEXITIES

M1 M2 M3

RES fixed non-fixed non-fixed
AS, Ramp, MinOn/Off × ×

√

B. Tested Methods

In this paper, for each of the aforementioned models,

’COST’ refers to the proposed cost-oriented representative

day selection method and ’INPUT’ denotes the state-of-the-

art input-based method proposed in [2], which can be briefly

described as follows:

Step1: Reshape the input operating condition data. For day

d, load data, wind availability data, and solar availability data

are represented as XL
d = {xLb,d,1, ..., x

L
b,d,24, ∀b = 1, ..., |B|},

XW
d = {xWb,d,1, ..., x

W
b,d,24, ∀b = 1, ..., |B|}, and XP

d =

{xPb,d,1, ..., x
P
b,d,24, ∀b = 1, ..., |B|}, respectively;

Step2: Construct the clustering variables in the input domain

Xinput = {[XL
d , X

W
d , XP

d ], ∀d = 1, ..., D};

Step3: Hierarchical clustering method is employed to group

the days based on Xinput;

Step4: The medoid point of each constructed cluster is se-

lected as the representative day with corresponding probability.

Detailed information of the ’INPUT’ method can be found

in [2]. Note that the tested representative day selection meth-

ods and the investment planning optimization problem were

implemented in MATLAB 2017a and FICO Xpress, respec-

tively, and run on an Intel Xeon E5-2690 PC with 8 cores.

C. Performance Evaluation Across Different Models and Time

Resolutions

1) M1: As shown in Table II, M1 is designed to be the

simplest generation investment planning model that does not

include any intertemporal constraints; at the same time, the

RES capacities are assumed to be fixed. In particular, wind

generators built in regions 1 and 4 (i.e., WIND1 and WIND4)

are set to 18GW and 10GW, respectively. Additionally, solar

generators built in regions 3 and 4 (i.e., PV3 and PV4) are set

to 2 GW and 9 GW. First, Table III presents the benchmark

solution of M1 when considering all days (i.e. K=365).

TABLE III
GEP SOLUTION BENCHMARK:M1

Operational Cost

(£million/year)

Investment Cost

(£million/year)

All days 2340.07 1230.86

Total Cost

(£million/year)
CPU Times(s)

All days 3570.94 899.62
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Fig. 3. Comparison of tested methods with different numbers of K based on
GEP solutions of total cost (M1).

The performance of the tested methods across different

numbers of selected days is illustrated in Fig. 3, indicated by

the percentage error of the total cost between the benchmark

and the estimated results for K = [5, 10, 20, 30, 40, 50, 100].
As shown, both the input-based and cost-oriented methods

can approach the benchmark solution after K = 10 with

extremely low errors (i.e., ≤ 1%). Additionally, the proposed

cost-oriented method exhibits slightly better performance than

the input-based method for most numbers of K.

Regarding the computational cost of M1, the simulation

times of each number of selected days are presented in Table

IV. Compared with the CPU time for all days, the day selection

approach leads to an approximately 99.76% reduction in CPU

time while obtaining very accurate investment decisions. It is

imperative to note that the CPU time of the COST method

includes the entire selection and optimization process under

the assumption that the investment problem for each day can

be solved in parallel.

TABLE IV
CPU TIMES(S):M1

K=5 K=10 K=20 K=30 K=40 K=50 K=100

COST 2.10 2.12 4.35 7.08 11.78 17.58 70.74
Input 1.78 2.22 3.68 6.84 11.69 15.75 65.19

2) M2: In the context of fixed capacities of RES, both

input-based and cost-oriented methods present considerable

performance in terms of the required number of selected
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days to approach the optimal investment decisions. However,

when considering RES as decision variables that need to

be optimized by solving the generation investment planning

problem, it becomes inefficient to perform clustering based

on RES availability data because the accurate proportion of

RES during clustering cannot be predefined. In contrast, the

proposed method overcomes this challenge by clustering based

on the investment costs driven by each individual day.

TABLE V
GEP SOLUTION BENCHMARK:M2

Operational Cost

(£million/year)

Investment Cost

(£million/year)

All days 1666.95 1712.44

Total Cost

(£million/year)
CPU Times(s)

All days 3379.39 4325.83

To demonstrate the aforementioned points, the input-based

and cost-oriented methods are conducted on M2 for different

numbers of clusters. The results of the benchmark case that

considers all the operating conditions for 365 days are pre-

sented in Table V. In addition, the estimated total costs and

the percentage errors between the estimated and benchmark

values are shown in Fig. 4. It can be seen that, for both

methods, a sustained decline in the estimated total cost is

observed with increasing number of selected days. However,

the superior performance of the proposed cost-oriented method

can be indicated regarding the required number of K to achieve

the benchmark value. Specifically, for the input-based method,

the calculated percentage error can be reduced from 180.21%
to 0.13% when K increases from 5 to 100, which is still

approximately 6.5 times greater than that of the cost-oriented

method when K = 30. In other words, for the proposed cost-

oriented method, the estimated total cost tends to converge to

the benchmark solution after K = 30 with significantly low

total error (i.e., ≤ 0.02%), whereas the input-based method

can achieve a relatively accurate result when K = 100 but

still with e = 0.13%.
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Fig. 4. Comparison of tested methods with different numbers of K based on
generation investment planning solutions of total cost (M2).

In addition, the computational times for different numbers

of selected days are given in Table VI. Compared with the

CPU time for all days (i.e., 4325.83s), significant reductions

in computational burden can be achieved by solving the

generation investment planning problem based on a reduced

number of representative days. For example, it only takes

TABLE VI
CPU TIMES(S):M2

K=5 K=10 K=20 K=30 K=40 K=50 K=100

COST 11.46 14.26 25.40 40.26 60.72 92.92 368.01
INPUT 11.76 13.84 25.58 35.69 55.57 83.47 353.12

40.26 seconds to obtain an accurate investment plan that

can approach the optimal total cost with only approximately

0.02% error, achieving an approximately 99.7% reduction in

computational cost.

3) M3: To further complete the investment planning

model, ancillary services, ramp constraints and minimum

online/offline time constraints are included in M3. In this

case, the considered intertemporal operating constraints in-

troduce difficulties in selecting the representative days that

can retain the original temporal autocorrelations. Nevertheless,

the proposed cost-oriented method can prevent the selection

procedure from addressing this issue by directly considering

the information extracted from their corresponding investment

decisions for each day. The benchmark solutions and CPU

times for M3 are shown in Table VII.

Under different day selection methods for M3, Fig. 5

summarizes the estimated total costs and percentage errors for

different numbers of selected days K, ranging from 5 to 100.

The results indicate that, for model M3 with intertemporal

and ancillary service constraints, the proposed cost-oriented

method exhibits a more outstanding performance than for M2.

This result is evidenced by the fact that the differences in

the total cost error between the cost-oriented and input-based

methods are larger than those of M2 for most numbers of K.

Additionally, it is constructive to highlight that, for COST,

only 20 representative days are required to be selected to

achieve the benchmark solution with approximately 0.05%

error. Nevertheless, the input-based method cannot achieve

such a low error even when K = 100.

TABLE VII
GEP SOLUTION BENCHMARK:M3

Operational Cost

(£million/year)

Investment Cost

(£million/year)

All days 2179.79 1320.61

Total Cost

(£million/year)
CPU Times(s)

All days 3500.40 95460.13
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Fig. 5. Comparison of tested methods with different numbers of K based on
generation investment planning solutions of total cost (M3).
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More specifically, considering the case of K = 20, the

estimated investment decisions and corresponding decision

errors for each technology as well as the normalized root

mean square error (NRMSE) between the benchmark and the

estimated total cost are shown in Table VIII. Note that the

results of Nuclear and Gas-CCS are not presented in this

table because they are not chosen to be built in this case.

Regarding the investment decisions for each technology, OBJ

presents significantly lower decision errors for most of the

generation technologies, except for a slightly larger error (i.e.,

0.93MW − 0.68MW = 0.25MW ) for PV. Additionally, it is

important to highlight that the superior overall performance of

the proposed method can be indicated by the approximately

ten times lower NRMSE value when using the COST method

(i.e., NRMSE = 2.11%) rather than the Input method (i.e.,

NRMSE = 22.59%).

TABLE VIII
INVESTMENT DECISIONS (MW) AND DECISIONS ERRORS (MW) FOR

EACH GENERATION TECHNOLOGY AND NRMSE (%)

Benchmark COST INPUT ǫCOST ǫINPUT

CCGT 41.34 41.52 33.94 0.18 7.4
OCGT 28.13 28.08 34.32 0.05 6.19
WIND 24.37 22.78 39.61 1.59 15.24
PV 36.77 35.84 37.45 0.93 0.68

NRMSE - 2.11% 22.59% - -

Table IX presents the CPU times for solving the generation

investment planning model of M3 based on the selected days

obtained via COST and INPUT, respectively, for different

numbers of K. It is important to highlight that, with the

increasing level of model complexity, solving the planning

problem is more time consuming and the CPU times increase

exponentially with an increasing number of K. However, it

can be observed that when employing the proposed cost-

oriented method, the planning problem only needs to be solved

based on 20 representative days, which reduces the CPU times

from 95,460.13s in the full case to 141.42s with less than

0.05% error. This result demonstrates the increasing benefit

of optimal representative day selection for more complex

generation investment planning models. It is imperative to

note that, as the proposed COST approach requires to perform

system investment planning for each day within a year, if

the investment problem is extremely complex so that it is

not possible to perform this task within acceptable times

for system planners with limited computational resources,

the “per-day-investment-problem” can be somehow relaxed to

make the clustering variable construction procedure tractable.

In addition, system planners can also employ high performance

computing techniques and cloud computing services (e.g.,

Amazon Web Services or Google Cloud) to solve the per-day-

investment-problem in parallel with sufficient computational

resources.

4) Performance Evaluation For Different Data Resolutions:

The influx of high-resolution measurements renders it more

challenging to select the representative days, particularly for

input-based methods, due to the issues of high variability

and dimensionality. Nevertheless, the proposed cost-oriented

method does not need to address these issues because the

selection procedure is performed in the domain of investment

costs, whose dimensions and variabilities are not directly de-

pendent on the input operating condition data. To demonstrate

this point, based on M3, we employ higher-resolution data

with a 30-minute time interval as the input data for M3.

The previous numerical testing indicates that a minimum

of 20 representative days is required to obtain an accurate

solution (e.g., NRMSE< 0.2%) for COST. Consequently, the

calculated NRMSE of the estimated investment decisions,

the total cost errors, and CPU times are shown in Table X

for K=20. The challenges of higher-resolution data can be

illustrated by the increased total cost error and the calculated

NRMSE for both the COST and Input methods. Nevertheless,

the proposed COST method still presents the best performance

for this high-resolution case. The extremely high computing

time 2.98 × 105 when considering all 365 days emphasizes

the importance of selecting a subset of representative days,

particularly for the case of high-resolution input data.

5) Performance Evaluation Across Different r: In order

to evaluate the effectiveness of the proposed dimensionality

reduction stage, for the high-dimensional case with higher

resolution input data (30 min), we compare the estimated

total costs of the proposed cost-oriented approach with and

without using LEM to perform dimensionality reduction in the

context of K = 10, which exhibits higher error than that of

K = 20. Note that the original dimension of the clustering

variables in the cost domain is 15 (i.e., roriginal = 15)

because 9 variables of investment costs with all zeros have

been removed from the original 24-dimensional dataset. Fig.

6 shows the total cost errors for K = 10 across different

numbers of reduced dimensions r = [1, 3, 6, 10, 15]. It can be

seen that the proposed Dimensionality Reduction Stage can

effectively enhance the performance of the proposed objective-

based method with the estimated total cost error reduced from

22.65% (roriginal = 15) to 2.39% (rreduced = 10) even

though only K = 10 representative days are considered.

Fig. 6. Performance evaluation across different r (cost-oriented approach).

V. CONCLUSIONS

This paper proposes a novel cost-oriented representative day

selection method that includes four main stages: clustering

domain transformation, dimensionality reduction, cluster as-

signment, and representative day selection. In the clustering

domain transformation stage, we aim to obtain the dataset to

perform clustering in the objective domain, which consists
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TABLE IX
CPU TIMES(S):M3

K=5 K=10 K=20 K=30 K=40 K=50 K=100

COST 15.43 47.73 141.42 369.92 684.61 1098.32 8419.37
INPUT 14.98 48.31 136.39 357.62 659.24 997.45 8143.58

TABLE X
RESULTS OF M3+HALF-HOURLY DATA

NRMSE of

Investment Decisions(%)

Total Cost

Error(%)

CPU

Times (s)

All Days - - 2.98E5
COST 3.23% 0.17% 157.58
Input 23.35% 2.57% 211.24

of the investment costs of each technology across different

locations for each individual day. Dimensionality reduction

aims to address the issue of high-dimensionality and to

enable the clustering procedure to be performed in a more

effective domain that is constructed with important features.

Hierarchical clustering method with Ward’s linkage criterion is

employed to group the days based on the associated investment

costs. Finally, the medoid point of each constructed cluster is

selected as the representative day. The superior performance of

the proposed method is demonstrated based on a GB electricity

system. The tested generation investment planning problems

with different levels of complexity are designed to illustrate

the increasing advantages of the proposed method over the

conventional input-based method. Finally, the effectiveness of

the proposed dimensionality reduction stage is demonstrated

through sensitivity analysis.

Future research could be devoted to further developing the

proposed framework for selecting longer operating periods to

deal with the investment models with interday or seasonal

energy storage. Furthermore, it would be useful to inves-

tigate the expansion of the proposed framework for multi-

stage investment problems. Beyond the generation investment

problem, the development of the cost-oriented approach for

generation and transmission investment problems with large-

scale system is also of significant interest.
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